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Enhancing Visuospatial Mapping in Relational Category Learning
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2 Department of Statistics, University of California, Los Angeles

Visual relational concepts—defined by patterns of relationships between entities—are thought to require
structured, compositional representations with explicit role information about each entity. Analogical
mapping over compositional representations is a key strategy for acquiring such concepts, but in complex
situations with many entities and relations, this process can be cognitively demanding. As a result, learning
may occur over feature-based representations, where exemplars are encoded as unstructured lists of entities
and relations, losing crucial role information and limiting generalizability. To reduce the cognitive load of
analogical mapping, we explored the effectiveness of two visuospatial training aids: (a) spatially organizing
exemplars by category to facilitate comparisons and (b) using color coding to highlight the roles of entities
within each exemplar. Across three experiments, we examined whether these visuospatial aids improve
learning rates on the Synthetic Visual Reasoning Test (SVRT), a collection of 23 problems that require
learning relational concepts. Our results showed that displays of previous instances that spatially sorted
them into positive and negative sets led to faster concept learning. Learning was faster overall when
problems were ordered easy-to-hard rather than randomly, but sorted displays were more effective in either
case. Color coding proved beneficial only when colors unambiguously and nonredundantly linked entities
that played corresponding roles; when color coding did not support a clear mapping, it interfered with
learning. These findings suggest that rapid learning of relational concepts can be facilitated by display
characteristics that support analogical mapping by comparisons.

Keywords: categorization, analogy, mapping, relations

Visual categories have traditionally been defined as sets of ex-
emplars that share similar features with either a prototype or each
other (Estes, 1986; Tversky, 1977). Historically, what counts as a
“feature” has been construed broadly, encompassing virtually any
aspect of a stimulus from low-level visual details to high-level
semantics. Many perceptual learning experiments have focused on
predefined features of artificial stimuli (e.g., Erickson & Kruschke,
1998; Nosofsky & Palmeri, 1998; Zaki & Salmi, 2019). Some
human modeling studies have used the complex distributed patterns
of activities extracted by convolutional neural networks trained on
naturalistic images (Battleday et al., 2020, 2021). Other work has
explored the hypothesis that features can be created by the category
learning goal itself (Goldstone, 1998, 2000; Schyns et al., 1998).
Despite their unbounded range of potential content, features
act as independent elements in classification models; no single

feature possesses a uniquely different form or representational
type than another.

Although a variety of feature-based models have been applied to
human category learning, it is widely believed that relational cat-
egories require a fundamentally different representational format.
Many everyday concepts are defined by patterns of relationships
between parts, rather than the individual parts or their properties
(e.g., inside is a relational concept that holds when any object is
enclosed within another; Asmuth & Gentner, 2017; Gentner &
Kurtz, 2005; Goldwater & Schalk, 2016). As such, relational cat-
egories naturally lend themselves to structured, compositional re-
presentations in which relations and individual entities are encoded
as separable components that combine to form relational structures
(Doumas et al., 2022; Hummel & Holyoak, 1997, 2003; Kurtz et al.,
2013; Shurkova & Doumas, 2022). A compositional approach to
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relational categories is consistent with evidence that visual per-
ception is organized by relations. Some basic visuospatial relations
may be perceived quickly and automatically (Hafri & Firestone,
2021), and object representations appear to encode the hierarchical
structure of the scenes in which they are embedded (Turini &
Võ, 2022).

Mechanisms for Relational Category Learning

One long-posited mechanism for acquiring relational re-
presentations of categories is analogical mapping (Gick & Holyoak,
1983). Analogical mapping involves aligning two or more ex-
emplars so as to identify correspondences between entities that
play similar roles within their respective relational structures. Once
an optimal alignment is found, a relational category is formed
by abstracting the common structure. This structured, relationally
sensitive style of comparison is widely regarded as the mechanism
by which humans learn relational categories (Christie & Gentner,
2010; Halford & Busby, 2007; Halford et al., 1998; Jung &
Hummel, 2015; Kittur et al., 2004; Kurtz et al., 2013) and appears to
occur automatically when tasked to compare two exemplars without
explicit instruction to focus on relational similarities (Gentner &
Markman, 1997; Markman &Gentner, 1993a, 1993b). But although
spontaneous and unprompted comparisons are a frequent part of
everyday cognition, it is also the case that analogical mapping
requires substantial cognitive effort, as aligning and maintaining
multiple relational structures places heavy demands on working
memory and its executive functions, such as inhibitory control (e.g.,
Phillips et al., 2016; Waltz et al., 2000).
Partly because of the cognitive demands apparently imposed by

analogical mapping, recent work has explored the possibility of
alternative representational formats. Corral et al. (2018) suggested
that learners may opt for simpler “featural” representations when
these are less demanding and adequate for a same-different judg-
ment task. Here, “features” include not only visual elements but also
the relation itself. When categories differ only with respect to the
presence or absence of a relation (e.g., a ball inside vs. outside of a
box), the roles of the individual objects become unnecessary, and
learners only need to notice the difference in the relation to make a
similarity judgment. Rather than representing the category com-
positionally as inside (ball, box), learners may use the unstructured
“flattened” list of concept-level features ball, box, and inside, where
the relation inside is encoded but the roles of ball and box are not.
The choice of representation may depend on cognitive load and task
demands, with learners favoring a less complex shortcut when it
sufficiently supports the task (Ichien et al., 2024). However, Corral
et al. point out that such featural representations, while less
demanding, are limited in supporting generalization and inference
precisely because they fail to capture specific object roles. The
limitation arises because these representations cannot distinguish
between, for instance, a category defined by a square inside a
triangle versus a triangle inside a square. Role-filler bindings are
crucial for generalization as they specify how elements relate to one
another and ensure that relational concepts transfer properly to new
contexts with different elements (Hummel et al., 2004).
Another alternative learning strategy proposes that relational

categories can be represented as generative programs capable of
recreating category members (Ellis et al., 2015). Like relational
structures, generative programs are compositional representations

composed of separately encoded parts and relations. However,
unlike the purely static connections of relational structures, relations
in programs can be action-oriented (i.e., draw [x],move [y, 3 steps]),
specifying a sequence of operations in addition to semantic, spatial,
and comparative relations. These structured operations, much like a
computer program, unfold in a sequence to generate category
members. Models based on generative programs often create a vast
space of possible program representations by recombining existing
elements and functions (Lake & Piantadosi, 2020; Lake et al., 2015).
The most plausible program is then selected using Bayesian
inference, an exhaustive search method that ranks the likelihood of
each program generating exemplars correctly. Although generative
programs offer a different form of compositional representation, it is
unclear whether this approach circumvents the level of computa-
tional demands imposed by analogical mapping.

Overview of the Present Study

An important objective in cognitive science is to identify task
constraints that shape the form of conceptual representations.
A second objective is to develop learning methods that foster
knowledge capable of broad generalization (Goldwater & Schalk,
2016). If analogical mapping—which relies on compositional re-
presentations based on role-filler bindings—is hindered by cognitive
load, it is essential to explore training conditions that may reduce
this load. To reduce the cognitive load associated with analogical
mapping and encourage learners to engage with compositional
representations, we consider two potential training aids: (a) spatially
organizing exemplars by category and (b) using color to highlight
the roles of entities within each exemplar.

Sorting exemplars spatially (into groups by category) can reduce
cognitive load by easing a tendency to compare examples by
highlighting similar relations within categories and different rela-
tions across categories—a critical step of analogical mapping. Such
comparison could involve representations of relations as indepen-
dent features (without role-filler bindings) rather than as part of
a compositional structure. However, evidence suggests that com-
parison of scenes with shared relational structures induces an
alignment of those scenes based on relational roles beyond simple
visual similarity (Gentner & Markman, 1997; Markman & Gentner,
1993a, 1993b). Nevertheless, color coding of exemplars may more
explicitly highlight role-filler bindings than a mere sorting of ex-
emplars and could thereby direct attention to overall compositional
structure. In educational settings, color coding can be used to
highlight analogous parts of scientific and mathematic diagrams
(Gray & Holyoak, 2021). However, the possible impact of color
coding on visual relational category learning has yet to be explored
experimentally.

In this study, we test the impact of organized sorted displays and
color-coded exemplars on relational category learning using the
Synthetic Visual Reasoning Test (SVRT; Fleuret et al., 2011). The
SVRT consists of 23 visual relational concepts, each defined by an
abstract pattern of visuospatial relations over objects. Each concept
includes a large pool of positive and negative examples, in which
positive images depict the defining relational pattern (e.g., two
objects touching at a point) and negative images deviate from it (e.g.,
two objects that do not touch). Each image is perceptually simple,
with a few black pixelated shapes that resemble islands populating a
white background. The goal of the SVRT is to learn the abstract
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relational pattern that defines each concept and correctly categorize
new images into the positive or negative set. Various models have
been applied to the SVRT using program synthesis, connectionist-
style analogical mapping, or convolutional and transformer-style
deep learning (Ellis et al., 2015; Messina et al., 2021, 2022;
Shurkova & Doumas, 2022).
Several properties make the SVRT particularly suitable for

studying relational category learning. First, SVRT problems vary
widely in difficulty, and this range reflects the complexity and type
of relations involved. Humans require, on average, 5.7 classification
attempts to achieve seven correct classifications of novel images in a
row, with a range from 2.4 to 9.3 attempts across problems (re-
constructed from Fleuret et al., 2011). At least 10 of the 23 concepts
are based on sameness or difference of shape; the rest involve other
spatial relations (Kim et al., 2018). Most concepts are based on a
single relation, but several involve conjunctions of relations (e.g.,
two objects have the same shape, and one is inside the other) or

complex patterns over multiple objects (e.g., the distance between
objects in a pair is the same across pairs). See Table 1 for a complete
description of the relational concepts underlying each problem.

Second, the SVRT’s design compels learners to identify relations
between objects rather than simple visual features of the objects.
This is because negative examples are “hard negatives”—they
contain the same number of objects with similar visual features as
positive examples but differ in the relational patterns formed by the
objects. Moreover, negative examples often exhibit their own
coherent relational patterns. In problem 11, for example, negative
images are not merely the negation of “two objects touching at a
point”; instead, they consistently show two objects separated by
roughly equal distance. This “positive” property of negative images
makes it challenging to distinguish positives and negatives on the
basis that negatives can depict anything besides the positive concept,
such as an unequal variance of pixel locations (Fleuret et al., 2011).
Thus, the inclusion of hard negatives with their own “positive”
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Table 1
Description of Positive and Negative Concepts for Each Problem, With the Relation(s) That Need to Be Identified to Distinguish Concepts

Problem Relations needed Positive concept Negative concept

1 Same/different shape Two same shapes of same medium size Two different shapes of similar medium size
2 Center/boundary Small shape inside and at center of large one Small shape inside but near boundary of large

one
3 Touching/not touching Three out of four different medium-sized

shapes touching at a point
Two pairs of all different medium-sized
shapes, with each pair touching at a point

4 Inside/outside Small shape inside large one Small shape outside large one
5 Same/different shape Two different pairs of same medium-sized

shapes
Four different shapes of similar medium sizes

6 Equal/unequal distance Two different pairs of same small shapes, with
equal distances within pairs

Two different pairs of same small shapes, with
unequal distances within pairsSame/different shape

7 Same/different shape Three different pairs of same medium-sized
shapes

Two different triplets of same medium-sized
shapes

8 Same/different shape Medium-sized shape inside large one, and
both have same shape

Medium-sized shape outside large one, or
inside large one but with different shapeInside/outside

9 Between/trailing Medium-sized shape is in between two smaller
ones

Medium-sized shape is leading or trailing two
smaller ones

10 Square/not square Four small shapes form the points of a square Four small shapes in random locations
11 Touching/not touching A large and a medium-sized shape touching at

a point
A large and a medium-sized shape not
touching

12 Equal/unequal distance Two small shapes equally distant to a
medium-sized one

Two small shapes unequally distant to a
medium-sized one

13 Same/different shape Two metashapes are identical (metashape
consists of a pair of a large and small
shape)

All four of the shapes are randomly located

14 Line/not line Three small identical shapes arranged in a line Three small identical shapes are do not form a
line

15 Same/different shape Four small identical shapes arranged in a
square

Four small different shapes arranged in a
square

16 Mirrored/not mirrored Three small same shapes reflected and
mirrored across vertical bisector

Three small same shapes reflected across
vertical bisector but not mirrored

17 Equal/unequal distance Three small identical shapes equally distant to
a different small shape

Three identical small shapes randomly located
Same/different shape

18 Mirrored/not mirrored Three small identical shapes reflected but not
mirrored across the vertical bisector

Three small identical shapes located randomly

19 Same/different shape Two same shapes where one may vary in size Two different shapes of varying sizes
20 Same/different shape Two small identical shapes mirrored along

some line of reflection in the image
Two different small shapes

21 Same/different shape Two same shapes where one may vary in size
and rotation

Two different shapes of varying sizes

22 Line/not line Three small identical shapes in a line Three small different shapes in a line
23 Inside/outside Two different small shapes inside a large one Two different small shapes—one is inside and

another is outside the large one

VISUOSPATIAL MAPPING 3



concept ensures that categorization cannot rely on object recognition
or salient low-level visual differences.
We note, however, that simply identifying relations that differ-

entiate positive and negative sets does not ensure a compositional
relational concept representation. As previously discussed, if pos-
itive and negative sets differ only in the presence or absence of a few
relations, one can distinguish sets by encoding each set as a separate
noncompositional list of concept-level features—capturing indi-
vidual objects and relations without their relational roles—and then
comparing these lists to identify differences in the relations (Corral
et al., 2018). All SVRT problems can, in principle, be solved with a
noncompositional approach based on flat feature lists (see Table 1).
For Problem 1, for example, the positive examples exhibit the
relation same, whereas the negative examples exhibit the relation
different. Since this simpler strategy is cognitively less demanding,
learners are likely to favor it when cognitive load is relatively high.
This, in turn, allows us to assess any performance gains that may
emerge specifically due to the use of mapping, as facilitated by our
manipulations to reduce cognitive load.
Finally, the SVRT provides a promising testbed for probing

representation learning, as its standard method of presenting ex-
amples uses category-organized displays. Fleuret et al. (2011)
displayed all previously presented examples in a sorted format,
where positive and negative examples are spatially separated below
the current trial’s image (see Figure 1, left). This arrangement may
encourage comparisons within categories, facilitating the extraction
of common relational structures; it may also promote comparisons
between positive examples and the negative “near misses” (i.e., hard
negatives) to highlight relational contrasts (Winston, 1975) or
“alignable differences” (Gentner & Markman, 1994). Previous
research has shown that simultaneous comparison of similar objects
across categories enhances category learning by highlighting critical
distinguishing properties (Gentner & Markman, 1994; Jee et al.,
2013). However, direct experimental evidence that the organized
property of sorted displays benefits learning relational categories by
promoting systematic comparisons—contrary to the potential
cognitive disruption of shuffled displays—is lacking.
To determine whether display format impacts learning on the

SVRT, we conducted experiments in which the cumulative record of

previous examples was either sorted (as in the original study) or
shuffled, with prior examples recorded in the same random order as
they had been presented. We hypothesized that if sorted displays
reduce the cognitive load of comparisons, learning speeds should be
faster with sorted displays. Experiment 1 tests this hypothesis. In
Experiments 2 and 3, we introduced color coding in conjunction
with sorted versus shuffled displays. We hypothesized that
appropriate highlighting of role-filler bindings through color
coding might reduce the cognitive load of analogical mapping,
thereby enhancing learning efficiency.

Experiment 1

Method

Participants

Sixty-four undergraduates from the University of California, Los
Angeles participated for course credit (46 female, 18 male; Mage =
20.1), with equal numbers assigned to the sorted and shuffled
display conditions (32 each).

Stimuli

The 23 SVRT problems have been previously categorized into
different types. In one study, the authors classified the problems into
either same-different shape or other spatial relation problems (Kim
et al., 2018). In Table 1, we provide a brief description of each
problem’s positive and negative sets, along with the relations that
need to be utilized to distinguish the sets. Our classification of
problemsmirrors that of Kim et al. (2018) with some exceptions. For
example, we include Problem 6 as requiring same-different shape
detection because, even though equal/unequal distance distin-
guishes the sets, this relation operates at the level of same-shape
pairs. Noticing this higher order relation requires initially detecting
two pairs of same shapes.

Materials and Procedure

Participants attempted each of the 23 SVRT problem one-by-one
in a quasi-randomized easy-then-hard order. The experiment began
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Figure 1
An Illustration of Displays With Visual Records of Category Exemplars

Note. Left: sorted display in which previously presented instances are separated into positive versus negative examples (blue vs. red frame). Right: shuffled
display in which previously presented instances are intermixed in their randomized presentation order, with positive versus negative examples distinguished by
blue versus red frame. See the online article for the color version of this figure.
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with a subset consisting of 13 easy problems, followed by the
remaining subset of 10 harder problems, with order randomized
within subsets separately for each participant. This division between
easy and hard problems was based on the rank order of problem
difficulty as defined by trials-to-criterion in the original study
(Fleuret et al., 2011); a small gap separated the 13 easy problems
from the 10 harder ones. In accord with evidence that an “easy-
then-hard” training schedule can support more efficient learning
(Hornsby & Love, 2014; McLaren & Suret, 2000), the easy subset
of problems was presented before the hard subset. The easy-then-
hard ordering was intended to aid in motivating participants by
promoting their success on early problems.
On each trial of an SVRT problem, a previously unseen image

was randomly selected from either the positive or negative category
and presented at the center-top of the screen. Participants were
instructed to classify the image (without speed pressure) into one of
two categories, simply termed A and B, after which feedback was
displayed for 1 s after their decision (“Correct!” or “Incorrect!”). We
did not inform participants that either A or B referred to the positive
or negative set, or that categories may be construed as two positive
concepts. Trials for each problem continued until the participant
reached a strict learning criterion of seven correct trials in a row, or
a maximum of 34 trials (to control the duration of the experiment).
If criterion was reached within 34 attempts, trials-to-criterion was
scored as the total number of attempts minus 7. Otherwise, the
problemwas considered a “fail,” and trials-to-criterion was set to the
ceiling of 34.
Below each image to-be-classified, participants could see all

images they had previously classified for the current problem
(following the procedure used by Fleuret et al., 2011). In this “visual
record or history” of category exemplars, every image was sur-
rounded by a colored border denoting its true category membership
(blue for category A, red for category B). Participants saw one of
two types of visual records throughout the 23 problems (Figure 1).
In a sorted display, previous exemplars were spatially separated by
category, accumulating left-to-right in trial order on either the left
side (category A) or right side (category B) of the visual record. In a
shuffled display, previous images accumulated in trial order from
left to right without spatial category separation; this display
effectively intermixed categories (since successive trials were
randomly positive or negative).
Because categories of images in the visual record were always

distinguished by the color of their border, the segregated grouping of
categories in the sorted display provided a redundant cue to category
membership of each image. For both display types, no more than 10
images accumulated per row; whenever necessary, subsequent rows
were added. Images in the record were scaled down by a factor 0.64
relative to the width at which images were initially presented, and
then placed side-by-side to maximize visibility. Materials, data, and
code for all experiments are available on Open Science Framework
at https://osf.io/q6uad/ (Lee et al., 2024).

Results and Discussion

Two dependent variables were measured for each problem: trials-
to-criterion (the number of classification attempts before seven
correct in a row) and problem failure rate (based on whether or not
criterion was met within the maximum allotment of 34 attempts).
Figure 2 depicts the grand means of each dependent measure and

condition, calculated by averaging over problems and participants.
Note that lower trials-to-criterion and failure rates indicate superior
performance.

To account for the nested structure of our data set, where each
participant completed 23 problems, we employed mixed-effects
regression models. These models were fitted separately for trials-to-
criterion (using linear regression) and problem failure (using logistic
regression) with the lmer and glmer functions of lme4 Version
1.1.35.3 in R. For each dependent variable, our full model included
display type (sorted vs. shuffled), problem difficulty (easy vs. hard),
and their two-way interaction as fixed effects. We incorporated
participant ID and problem ID as random intercepts to capture
variations across participants and problems. In addition, problem
difficulty was included as a random slope for participant ID to
account for its within-subject nature.

To test the interaction between display type and problem diffi-
culty, we used a likelihood-ratio test of the full model relative to a
reduced model that lacked only the effect of interest but was oth-
erwise equivalent to the full model. An interaction was not sig-
nificant: a reduced model without the interaction term did not
increase regression error for either trials-to-criterion, ΔAIC = 0,
χ2(1) = 1.77, p = .18, or problem failures, ΔAIC = 1.26, χ2(1) =
0.74, p = .39. Next, we tested our primary prediction that sorted
displays lead to improved performance compared to shuffled
displays. A contrast of display type in the full model (collapsing
over easy and hard problems) suggests that sorted displays led to
fewer trials-to-criterion, M = 8.22; t(62) = 2.81, p = .0065, and a
lower failure rate, M = 0.099; z = 3.51, p = .0004, compared to
shuffled displays (trials-to-criterion:M = 11.73; failure rate:M =
0.22). Finally, to check that our selection of easy and hard
problems based on the original experiment’s trials-to-criterion
data was, in fact, easy and hard for participants, we also tested a
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Figure 2
Trials-to-Criterion (Left) and Failure Rates (Right) in Experiment 1
for Alternative Displays of the Visual Record (Sorted vs. Shuffled)
and Problems of Varying Difficulty Levels

Note. Error bars represent standard errors of the mean (trials-to-criterion)
and binomial standard errors (failure rate) at the individual problem level.
See the online article for the color version of this figure.
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contrast of problem difficulty, collapsing over display type. Our
designation of easy problems indeed yielded fewer trials-to-
criterion,M = 7.07; t(21.6) = 3.27, p = .0036, and a lower failure
rate (M = 0.095; z = 3.11, p = .0018) than hard problems (trials-
to-criterion: M = 13.75; failure rate: M = 0.24).
Although the magnitude of sorted-shuffled dependent variable

differences may be similar across problem difficulty, it remains
possible that hard problems, which have a poorer performance
baseline than easy problems, demonstrate a larger percentage
improvement for sorted displays, compared to hard problems. To
account for such baseline differences, we normalized the dependent
variables by expressing both trials-to-criterion and problem failure
as a percentage change of its respective easy or hard marginal mean,
where each marginal mean was a simple average over participants
in either display type (as sorted and shuffled display conditions
have equal sample sizes). Using percent-changes as the dependent
variables, sorted displays resulted in improved performance com-
pared to shuffled displays, trials-to-criterion: t(62) = 2.74, p =
.0080; problem failures: t(62) = 2.49, p = .016. Thus, the overall
advantage of sorted over shuffled displays clearly held for both easy
and hard problem subsets in an easy-then-hard order.
The results indicate that sorted displays lead to faster learning and

fewer problem failures across levels of task difficulty compared to
shuffled displays. This performance advantage reflects the organi-
zational benefits of sorted displays, which eases the difficulty of
performing comparisons within and across categories. It is possible
that systematically organizing the SVRT examples enhanced
learning by specifically facilitating analogical mappings, but we
remain agnostic about the exact mechanism.

Experiment 2

Given the promising role of sorting exemplars in supporting
comparisons for relational category learning, Experiment 2 explored
whether color coding could further enhance learning by explicitly
reducing the cognitive load of analogical mapping. Color coding
is used to teach analogies (Gray & Holyoak, 2021) with the
assumption that color eases the mapping process by highlighting
corresponding object roles. This assumption has not been empiri-
cally tested. In addition, we aimed to replicate the impact of display
format for prior instances (sorted vs. shuffled) while changing the
order of the presented problems from easy-then-hard to fully
randomized.

Method

Participants

One hundred thirty-six University of California, Los Angeles
undergraduates participated for course credit (105 female, 26 male,
four nonbinary; Mage = 20.0). Sample sizes for each of the four
between-subjects conditions were: sorted/color-mapped (n = 35),
shuffled/color-mapped (n = 31), sorted/uncolored (n = 34), and
shuffled/uncolored (n = 36).

Materials

For the uncolored conditions, we used the same stimuli as in
Experiment 1. For the color-mapped conditions, color codes for
each problem were generated based on the number of colors

required. If an analogical mapping in an SVRT problem could be
achieved with two colors, then a random color was chosen from red–
green–blue (RGB) value 0–63 or 192–255, and its opposite was
calculated (255 minus the RGB value). These RGB ranges were
selected to exclude blue or red hues and minimize confusability with
the colored category borders. If the analogical mapping required
three or four colors, then colors were selected at random from the
same RGB ranges. Images were colored with Adobe Photoshop’s
paint-bucket tool using point-and-click. Each SVRT problem used a
different set of colors. Positive and negative images of the same
SVRT problem used the same color code (i.e., same colors and same
number of colors).

To avoid having colors correlated with visual features of the
objects, half of the problems with a large or centrally placed object,
or left-positioned objects, were colored with the darkest of each
problem’s color code, whereas for each problem in the other half
these objects were colored with the lightest of its code. For problems
defined by same-different shape, each object was given a different
color from the code, regardless of whether they had the same or
different shape from other objects. Furthermore, objects were
randomly assigned to colors with respect to positioning, so that the
locations of these colors were evenly distributed across images.

We examined each of the 23 SVRT problems and attempted to
generate color codes that highlight the roles of each object as defined
by the relational concept. This task was difficult because we aimed
to highlight the appropriate mapping for both positive and negative
instances (which formed two distinct categories), while using the
same number of colors (so that number of colors would not become
a superficial cue to category membership). We were able to create
optimal color codes for six of the problems (Figure 3) bymeeting the
following five criteria (which we explicitly defined post hoc, after
the color coding was constructed and data were collected):

1. Color consistency across sets: Both positive and negative
instances used the exact same color code so that number
of colors alone (a nonrelational feature) cannot distin-
guish sets.

2. Multiple colors for both sets: More than one color should
be utilized by the color code, since positive and negative
sets cannot be distinguished by a single color.

3. No role-color conflicts: The color coding should not
introduce conflicts such that objects filling the same role
are represented by different colors.

4. Conceptually reinforcing roles: The roles of objects as
determined by the color coding should highlight, rather
than obscure, the relational concept of the problem.

5. Minimal perceptual redundancy: An optimal color code
should enhance role information that is not already easily
determinable from visual features. We allowed for minimal
size differences that correlate with role information, as in
problems 9 and 12 (Figure 3).

The first criterion is essential to avoid confounding positive/
negative class rules with nonrelational visual features. Two pro-
blems (3 and 7) could not meet this criterion. Data from these
problems were therefore dropped from all analyses for both this
experiment and Experiment 3.
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For the remaining 15 problems we were able to satisfy the first
and necessary criterion, but unable to satisfy all others. These 15
problems can be grouped into three challenges, as illustrated in
Figure 4. The first group, consisting of nine problems, are based
on same-different shape (Figure 4, left column), where positive
images contain objects of the same shape and negative images
contain differing shapes. If positive and negative images share the
same single color to clarify the positive concept, then sameness of
color would not distinguish positive and negative sets (Criterion 2)
and furthermore would conflict with the difference of shape in
negative images (Criterion 3). We therefore assigned a unique color
to each object, while using the same set of colors for positive and
negative images. However, this assignment creates an ambiguity for
the positive set, since objects with the same shape are assigned
different colors (violating Criterion 3).

A second group of two problems involve a set of objects that form
a geometric configuration, arranged in either a line or a square (vs. a
disorganized group; Figure 4, middle column). If all objects shared
the same color so as to highlight the positive concept of a geometric
arrangement, then sameness of color would not distinguish sets
(Criterion 2). We therefore colored each object differently, such that
objects with the same relative location in the arrangement had the
same color (e.g., upper right corner of square). Although this may
clarify a mapping based on relative object position, coding the role
of each object by difference in color may sharpen attention to the
individual objects themselves rather than their larger configuration
(violating Criterion 4).

In the last group of four problems, images contain a large object
and one or two small objects. The concepts are defined by the rules
that the objects are touching (vs. not touching), the small object is
inside the large one (vs. outside), the small object is near the large
object’s center (vs. near its border), and that both small objects are
either inside or outside the large object (Figure 4, right column). For
all four problems, we were able to construct a color code that
satisfies Criteria 1–3: all the large objects share the same color, and
all the small objects share a different color. However, because the
large size difference of objects is a strong indicator of role (as
opposed to smaller size differences as in problem 9), color coding
may not add relevant information that is not already apparent
in uncolored images (Criterion 4). Thus, while the mapping is
unambiguous, the color coding is suboptimal.

In sum, we created six optimal color-mapped problems (6, 9, 12,
16, 17, 18) and 15 suboptimal color-mapped problems (1, 2, 4, 5, 8,
10, 11, 13, 14, 15, 19, 20, 21, 22, 23).We determined this distinction
post hoc. The optimal color-mapped problems have a higher average
difficulty (mean trials-to-criterion = 9.66, mean failure rate= 0.312;
reconstructed from Fleuret et al., 2011) compared to the suboptimal
problems (mean trials-to-criterion = 5.15, mean failure rate = 0.07).
Furthermore, based on our classification of easy and hard problems
in Experiment 1, four of the six optimal problems are deemed “hard”
compared to only five of the 15 suboptimal problems. We account
for this difference of difficulty in our analyses with a regression term
for problem ID.
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Figure 4
Three Representative Problems of the 15 Suboptimal Color-Mapped
Problems, Each Exhibiting by a Distinct Color Coding Challenge
(See Main Text)

Note. Each column displays the best color code we were able to create for a
problemwith a distinct challenge. Labels at the top indicate problem concept.
Labels at the bottom indicate problem ID from Fleuret et al. (2011). See the
online article for the color version of this figure.

Figure 3
Example Instances for Each of the Six Optimal Color-Mapped Problems

Note. Labels at the top indicate problem concept. Labels at the bottom indicate problem ID from Fleuret et al.
(2011). See the online article for the color version of this figure.
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It is not simply coincidental that the optimal problems happen to
be more difficult than the suboptimal problems. The optimal pro-
blems, by nature of our selection criteria, have less salient object size
cues that reflect those roles (Criterion 5). These problems consist of
several objects (at least three) that are smaller, with concepts mostly
based on noticing sameness of these (small) shapes.

Design and Procedure

The experiment used a 2 (sorted vs. shuffled displays) × 2 (color-
mapped vs. uncolored) between-subjects design. Initial displays
were identical to those used in Experiment 1 (i.e., all instances were
first presented uncolored). Target images were initially presented
uncolored for both color-mapped and uncolored conditions in order
to control for information in the target image. This aspect of the
design ensured that color could not be directly used to classify a
novel image.
In the sorted condition, the positive and negative sets were

spatially segregated; in the shuffled condition, all previous instances
appeared in the same random order in which they had been pre-
sented. For the color-mapped condition, the previous instances were
colored in the manner described above; in the uncolored condition
they continued to appear in black-and-white (as in Experiment 1).
Figure 5 depicts an example of a display in the sorted, color-mapped
condition. As in Experiment 1, previous instances appeared within a
blue or red border that distinguished the positive and negative sets.
In Experiment 2, the order of all problems was randomized (rather

than using an easy-to-hard order as in Experiment 1). Each parti-
cipants received an individual randomized problem order, which
was matched across conditions. Specifically, every ith participant in
each condition shared the same problem order. All other aspects of
the procedure were the same as Experiment 1.

Results and Discussion

We first analyzed the data for all problems by fitting linear and
logistic mixed-effects regressions to trials-to-criterion and problem

failures. The full model for each analysis included display type
(sorted vs. shuffled), color type (color-mapped vs. uncolored), and
their interaction as fixed effects, as well as participant ID and
random problem order seed as random effects. We attempted to
include problem ID as a random effect, but the logistic models failed
to converge despite 100 million iterations and various optimizers.
Since it is desirable to account for differences in problem difficulties,
we included problem ID as a fixed effect, specifically as a cate-
gorical predictor with 23 levels. To simplify the highly parame-
terized model, we excluded problem difficulty (easy vs. hard), as we
did not find an interaction with display type in Experiment 1.

Across all problems, there was no interaction between display
type and color type: dropping the interaction term in the full model
did not result in worse regression error, trials-to-criterion: ΔAIC =
2, χ2(1) = 0.63, p = .43; problem failures: ΔAIC = 2, χ2(1) =
0.0001, p = .98. There was a main effect of display type: sorted
displays resulted in improved performance compared to shuffled
displays, trials-to-criterion: t(99.9) = 2.43, p = .017; problem
failures: z = 2.34, p = .019, replicating the finding of Experiment 1.

For uncolored displays, we examined the impact of problem
presentation order (random vs. easy-then-hard) on learning by
comparing performance in the uncolored condition of this experi-
ment with Experiment 1, which presented problems in an easy-then-
hard order. A full model was defined with experiment (Experiment 1
vs. Experiment 2) and problem ID as fixed effects, and participant
ID as a random effect. Indeed, the uncolored condition of
Experiment 2 showed weaker learning than Experiment 1 across
all problems, trials-to-criterion: t(2362) = 7.32, p < .0001; problem
failures: z = 6.74, p < .0001). This finding suggests that a ran-
domized problem order increases the overall contextual difficulty of
category learning relative to easy-then-hard.

Interestingly, results in Experiment 2 did not show a significant
main effect of color type: color-mapping across all problems did not
enhance learning than uncolored, trials-to-criterion: t(101) = −0.77,
p = .44; problem failures: z = −0.70, p = .49. However, as outlined
in the Method, there is color coding complexity at the individual
level of problem items. We distinguished two sets of problems post

T
hi
s
do
cu
m
en
t
is
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

P
sy
ch
ol
og
ic
al

A
ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le

is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al

us
e
of

th
e
in
di
vi
du
al

us
er

an
d
is
no
t
to

be
di
ss
em

in
at
ed

br
oa
dl
y.

Figure 5
Example of a Sorted Display With Color-Mapping Used in Experiment 2

Note. Only images of instances from previous trials were colored; the novel image displayed at the top was black-and-white in
both color-mapped and uncolored conditions. See the online article for the color version of this figure.
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hoc: optimal color-mapped problems, for which we deem the color-
mapping procedure to adequately highlight otherwise unclear
relational roles, and suboptimal color-mapped problems, for which
our color codes would not clearly enhance category learning. If this
distinction holds, optimal color-coded problems should exhibit a
beneficial effect of color coding (otherwise masked by the overall
analysis), whereas suboptimal color-coded problems may show no
effect (or even impair learning) relative to uncolored versions. To
test this possibility, we again fit mixed-effects models to analyze
trials-to-criterion and problem failure, but now separately for the
optimal and suboptimal problems. The full models were the same as
before. Note that the problem ID random effect is now particularly
important because it accounts for the inherent difficulties of optimal
and suboptimal problems, which differ substantially on average (see
Materials).
We first report analyses of the optimal problems, then the sub-

optimal problems. For the optimal problems (Figure 6, left), again
there was no interaction between display type and color type, trials-
to-criterion: ΔAIC = 0.6, χ2(1) = 0.58, p = .45; problem failures:
ΔAIC = 2, χ2(1) < 0.0001, p = .98. However, color coding was
more effective than uncolored images, trials-to-criterion: t(103) =
2.05, p = .043; problem failures: z = 2.11, p = .035, suggesting that
color coding improves performance when it clearly highlights
relational roles. Sorted displays yielded trends toward better
learning, but did not reliably improve performance compared to
shuffled displays, trials-to-criterion: t(101) = 1.43, p = .16; problem
failures: z = 1.49, p = .14.
The suboptimal problems yielded a complementary pattern of

results (Figure 6, right). There was again no interaction between
display type and color type, trials-to-criterion: ΔAIC = 2, χ2(1) =
0.56, p = .45; problem failures: ΔAIC = 1.8, χ2(1) = 0.21, p = .65,
but color coding did not enhance learning relative to uncolored
images, trials-to-criterion: t(100) = 0.16, p = .88; problem failures:
z = 0.45, p = .65, indicating that color coding does not improve

performance when it does not optimally highlight relational roles.
The suboptimal problems yielded a reliable advantage for sorted
relative to shuffled displays, trials-to-criterion: t(99.7) = 2.68, p =
.0087; problem failures: z = 2.74, p = .0061.

Although a reliable sorted advantage was obtained for the sub-
optimal problems, the trend was not reliable for the optimal pro-
blems. Notably, the mean trials-to-criterion for the optimal problems
was numerically closer overall to the ceiling of 34 attempts than for
the same problems in Experiment 1. The optimal problems were
more difficult (mean trials-to-criterion = 9.66, mean failure rate =
0.312; reconstructed from Fleuret et al., 2011) than the suboptimal
problems (mean trials-to-criterion = 5.15, mean failure rate = 0.07).
Difficulty may likely have increased due to the fully randomized
problem order. Thus, the lack of statistical significance for the sorted
effect in the optimal problems could be explained by poor per-
formance for these very challenging problems, combined with the
relatively small number of problems included in the set.

Experiment 3

Our proposed explanation for the advantage of color mapping
on the optimal problems in Experiment 2 is that the color code
highlights relational similarities across images. However, an
alternative possibility is that colored stimuli simply increase visual
saliency and attention toward individual images without enhancing
relational comparisons between images. To assess this alternative, in
Experiment 3 we introduced a color-scrambled condition in which
we randomized the assignment of colors so that the color code did
not convey a systematic mapping. If color simply increases visual
saliency is some way, the color-scrambled condition would enhance
performance; but if color operates by aiding mapping, the color-
scrambled condition will not benefit learning, and may in fact
impair it.
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Figure 6
Trials-to-Criterion and Failure Rates in Experiment 2 for Optimal (Left) and Suboptimal (Right) Color-Mapped Problem Sets

Note. Error bars represent standard errors of the mean (trials-to-criterion) and binomial standard errors (failure rate) at the individual problem level. See the
online article for the color version of this figure.
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The sorted advantage was not reliable for optimal problems in
Experiment 2 perhaps because of the additional overall difficulty
created by the fully randomized problem order. In Experiment 3
we used a variant of the easy-then-hard presentation (similar to
Experiment 1), aiming to return to a reduced overall difficulty. In
addition, wemanipulated sorted versus shuffled displays as a within-
subject variable, aiming to increase statistical power.

Method

Participants

Experiment 3 employed a more complex design than the first
two experiments. The sorted/shuffled factor was manipulated as a
within-subjects variable, while color remained between-subjects,
with an added third level (color-scrambled). While manipulating
sorted/shuffled as a within-subjects factor was expected to reduce
variance attributable to individuals, it may not compensate for the
increased between-group variance created by adding a third level to
color type. To ensure adequate statistical power—particularly for
detecting interactions, including a potential three-way interaction
between display type, color type, and display order (sorted first vs.
shuffled first)—sample sizes were increased for each between-
subjects group (three groups vs. four in Experiment 2). A total of
205 University of California, Los Angeles undergraduates partici-
pated for course credit (152 female, 49 male, four nonbinary;Mage =
20.8). Sample sizes for each of the three between-subjects condi-
tions were: color-mapped (n = 69), color-scrambled (n = 67), and
uncolored (n = 69).

Materials

To control for the stimuli used across all conditions, we edited the
color-mapped stimuli in Experiment 2. To create the scrambled-
color condition, we randomized the assignment of colors to objects
(Figure 7). We defined the color coding of each problem as a list of
colors of each object. We then shuffled the list 34 times such that
for each image in the total set of 34 images for the problem,
objects were colored from left to right in the order of the colors of
the randomized list.

Design and Procedure

We employed a 3 (color-mapped/color-scrambled/uncolored) × 2
(sorted/shuffled) mixed-factors design, with color type as a between-
subjects factor and display type a within-subjects factor. Participants
underwent two phases, each based on one display condition (sorted
or else shuffled). Within each phase, problems were presented using
an easy-to-hard order. Problems were first ordered from easy to hard
according to the trials-to-criterion means reported by Fleuret et al.
(2011). Then, for every two problems starting with the easiest, one
of the two was randomly assigned to the sorted condition and the
other to the shuffled condition; this procedure randomly assigned
the optimal and suboptimal problems to the first and second phases.
The two problems (No. 3 and No. 7) excluded from Experiment 2
(because the number of colors could not be matched between
positive and negative sets) were also excluded in Experiment 3. To
establish an even split of ten problems for each easy-to-hard list,
we also removed the hardest problem (6). This problem happens to
be an optimal color-mapped problem, resulting in five optimal
problems for Experiment 3. The order of display conditions was
counterbalanced, and the ith participant in each color condition
received the same random problem assignment to create the easy-to-
hard problem lists. Figure 8 depicts an example display for a trial in
the color-scrambled condition.

Results and Discussion

We first analyzed the entire set of problems. The full model
included display type (sorted vs. shuffled), color type (color-mapped
vs. color-scrambled vs. uncolored), and experiment phase (first half
vs. second half), along with their three-way interaction and all
possible two-way interactions as fixed effects. Random intercepts
were included for participant ID, problem order seed, and problem
ID, and a random slope of display type was included for participant
ID. We removed the random slope of display type whenever setting
problem ID as a fixed categorical predictor did not help the model
converge. We continued to exclude problem difficulty.

There was no three-way interaction between color, display, and
experiment half, and no two-way interactions between these effects
(all p > .10). There was a main effect of display type, with sorted
displays leading to improved learning performance over shuffled
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Figure 7
Examples of Color-Scrambled Problems (Experiment 3)

Note. Each group displays a problem with color-mapped and color-scrambled variants. Rows separate positive
and negative instances. See the online article for the color version of this figure.
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displays, trials-to-criterion: t(197) = 3.132, p = .0020; problem
failures: z = 3.288, p = .0010. There was also a main effect of
experiment phase for trials-to-criterion only, with the first half being
more difficult than the second, t(210) = 2.21, p = .028; problem
failures: z = 1.17, p = .24. Furthermore, uncolored problems re-
sulted in improved performance over color-scrambled versions,
trials-to-criterion: t(167) = 2.42, p = .044; problem failures: z =
2.50, p = .033. Similar to the results of Experiment 2, color-mapped
performance was not significantly different from uncolored per-
formance, trials-to-criterion: t(168) = 1.46, p = .31; problem fail-
ures: z = 1.850, p = .15 and even color-scrambled performance,
trials-to-criterion: t(168) = 0.98, p = .60; problem failures: z = 0.67,
p = .78.
Although performance with uncolored displays was superior to

that with color-scrambled displays, the lack of an overall color-
mapped advantage suggests the possibility that color-mapping
may only be beneficial when it does not hinder or repeat otherwise
salient information. We therefore split the problems into an
optimal (Figure 9, top) and a suboptimal set (Figure 9, bottom).
Although a trend toward a three-way interaction between color,
display, and optimality of a problem is apparent, this interaction
was not significant, trials-to-criterion: ΔAIC = 3, χ2(2) = 0.63,
p = .73; problem failures: ΔAIC = 3.4, χ2(2) = 0.62, p = .73.
Nevertheless, given previously stated reasons that effects of color
may vary based on our criteria of color coding efficacy, we
analyzed the optimal and suboptimal problems separately, as in
Experiment 2. We also analyzed the data separately for the two
phases, given the difference in learning performance across
experiment phases in trials-to-criterion. Such performance dif-
ferences between the two phases could be driven by multiple
factors, such as a carry-over learning effect from the early phase to
the later phase, or some kind of disruption in the switch in display
formats between the two phases (from sorted to shuffled or vice
versa). Hence, our analysis focuses on only the first phase of the

optimal and suboptimal problems to avoid confounds with carry-
over effects.

Figure 9 reports the first phase results for the optimal problems in
the top panel, then for the suboptimal set in the bottom panel. For the
optimal problems, there was no interaction between display type and
color type, trials-to-criterion: ΔAIC = 2.3, χ2(2) = 1.68, p = .43;
problem failures:ΔAIC= 2.1, χ2(2)= 1.87, p= .39. Sorted displays
again did not improve performance relative to shuffled displays for
the optimal problems, perhaps owing to a ceiling effect, trials-to-
criterion: t(151) = 0.96, p = .34; problem failures: z = 0.98, p = .33.
Color-scrambling led to poorer performance than both color-
mapped, trials-to-criterion: t(151) = −3.53, p = .0016; problem
failures: z = 2.87, p = .012 and uncolored conditions, trials-to-
criterion: t(151) = 3.49, p = .0018; problem failures: z = 3.29, p =
.0029. However, color-mapping did not improve performance
compared to uncolored problems, trials-to-criterion: t(151) = 0.038,
p = 1.00; problem failures: z = 0.47, p = .89. As is apparent from a
comparison of the data in Figure 9 (Experiment 3) versus Figure 6
(Experiment 2), learning rate for the optimal color-coded condition
was very similar in the two experiments, but learning rate for the
uncolored condition was faster in Experiment 3. The easy-to-hard
problem order used in Experiment 3 (as compared to the randomized
order in Experiment 2) appears to have eliminated the benefit of
adding color to support mapping.

The suboptimal problems again depicted a complementary pat-
tern of results. There was no interaction between display type and
color type, trials-to-criterion: ΔAIC = 2.0, χ2(2) = 1.79, p = .41;
problem failures:ΔAIC= 3.2, χ2(2)= 0.79, p= .67. Sorted displays
resulted in improved performance compared to shuffled displays,
trials-to-criterion: t(166) = 2.96, p = .0036; problem failures: z =
3.19, p = .0014. There was no effect of color coding; all pairwise
comparisons of color types were not significant (all p > .061). These
results reinforce the hypothesis that color coding does not enhance
performance when it does not highlight relational roles and suggests
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Figure 8
Example of a Sorted Display With Color-Scrambling Used in Experiment 3

Note. Only instances from previous trials were colored; the novel image displayed at the top was black-and-white in all
conditions (color-mapped, color-scrambled, and uncolored). See the online article for the color version of this figure.
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that color-scrambling has a similar effect as color-mapping when
suboptimal.

General Discussion

A prominent theoretical account of relational category learning
emphasizes the importance of analogical mapping—a comparison
of compositional representations of exemplars that reveals their

shared relational structure (e.g., Doumas et al., 2022; Kurtz et al.,
2013; Lovett & Forbus, 2017; Shurkova & Doumas, 2022).
Although research suggests that mapping can occur spontaneously
even when the comparison is not guided by explicit relational cues
(Gentner & Markman, 1997; Markman & Gentner, 1993a, 1993b),
it is also cognitively demanding, which may discourage its use in
relational category learning when negative exemplars (i.e., those
that deviate from the concept) differ from positives only in the
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Figure 9
Trials-to-Criterion and Failure Rates for the First Experiment Phases of Optimal Color-Mapped (Top) and Suboptimal
Color-Mapped Problems (Bottom) in Experiment 3

Note. Error bars represent standard errors of the mean (trials-to-criterion) and binomial standard errors (failure rate) at the individual
problem level. See the online article for the color version of this figure.
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pattern of relations formed by the constituent objects and otherwise
share similar object-level features. In the case where the only dif-
ference is the presence or absence of a particular relation(s), a less
demanding strategy is to encode exemplars as lists of objects and
relations without specifying relational roles (Corral et al., 2018). A
simple comparison of these lists can differentiate categories, but
results in a noncompositional concept (i.e., one that lacks the
structure afforded by role-filler bindings). Thus, if analogical
mapping underlies relational category learning, learners may only
favor it when cognitive demands are low.
A central goal of research on category learning has been to

identify task constraints that shape the content and form of con-
ceptual representations. Specifically, it is important to identify the
constraints that determine which conceptual representations are
compositional in order to foster generalization across domains.
Using the SVRT (Fleuret et al., 2011), we explored factors that
might impact the ease of mapping between exemplars. Critically, all
SVRT problems can be solved with a noncompositional feature-list
“shortcut” because the negative images for every problem share the
same objects and general visual attributes as the positive images,
differing only in the relations formed by the objects. Since all SVRT
problems can be solved using a less cognitively demanding rep-
resentational approach, learners are not forced by the stimuli to
acquire compositional representations, which our visual aids aim to
facilitate. In the original SVRT study, previously presented ex-
emplars accumulated in the visual display. In three experiments, we
manipulated characteristics of this visual record in ways intended to
impact the ease of mapping.

Sorted Versus Shuffled Displays of Previous Instances

In all three experiments, previous items either accumulated in the
order they were presented (which was randomized; shuffled dis-
play), or else positive and negative instances were spatially seg-
regated (sorted display). Our expectation was that the sorted display
would ease the cognitive load of mapping by facilitating compar-
isons both within the positive set and the negative set, and between
the two sets. In each experiment, sorted displays indeed led to
overall faster learning, as measured by both trials-to-criterion and
failure rates (i.e., trials on which the criterion was not reached).
An advantage for sorted displays was observed both when the
set of SVRT problems was presented in an easy-to-hard order
(Experiments 1 and 3) and when problem order was randomized
(Experiment 2). Overall, learning rates for individual problems were
faster when the 23 problems were presented in an easy-to-hard order
(Experiment 1) rather than a randomized order (Experiment 2);
however, the sorted advantage was not reliable for the color-mapped
optimal set in Experiment 2. The major exception to the sorted
advantage was observed in Experiment 3, when the display type was
changed from sorted to shuffled, or vice versa, between the first and
second phases of the experiment. No reliable differences between
conditions were observed in the second phase, but performance in
the second phase improved for one dependent variable and remained
consistent for the other. This finding implies that in teaching
visuospatial categories from examples, it is important to consider
both the consistency of display formats and the potential for learners
to adjust or benefit from prior experience.
The contrast between shuffled and sorted displays bears a

superficial resemblance to that between distributed versus massed

presentation orders (i.e., orders in which instances of different
categories are interleaved, vs. orders in which instances of a single
category are presented in sequence). Several studies have found an
advantage for distributed over massed presentation order in visual
category learning (e.g., Carvalho & Goldstone, 2014, 2017; Kang &
Pashler, 2012; Kornell & Bjork, 2008). However, the shuffled/sorted
distinction in our study applies to the visual record of previous
instances, rather than the initial presentation order of instances. In all
our experiments, for each problem, the initial order of presentation
randomly interleaved positive and negative category instances (i.e.,
was distributed). Few previous studies of category learning have used
displays similar to those used here. In the context of science learning,
Meagher et al. (2017) found that presenting instances of multiple
categories in coherent, spatially organized displays enhanced learning
relative to sequential presentation. The present findings illustrate how
a distributed presentation order can be combined with a record of
prior examples that is spatially organized to segregate positive and
negative instances. Future work can investigate whether this com-
bined presentation mode in fact provides the learning advantages
of both distributed presentation and an organized spatial record of
instances.

Color Coding Images

In Experiments 2 and 3, we also explored the potential impact of
color as a cue to mapping of objects across images in the SVRT.
Although we are not aware of previous experimental studies that
specifically investigated the use of color as a cue to mapping, color is
commonly used to highlight mappings in analogies presented in
educational settings (Gray & Holyoak, 2021). Our initial aim was to
use color to highlight the roles of each object as defined by the
relational concept. However, we immediately confronted difficulties
due to the fact that a categorization task (unlike a typical mapping
between two specific analogs) inherently involves at least two
categories (in the SVRT, a positive and a negative set of instances).
Ideally (to avoid confounding), a color code should satisfy several
basic constraints—in particular, using the same colors to represent
objects playing the same role, with the specific color assignments
held constant across the positive and negative sets. We were only
able to satisfy these constraints for six of the 23 SVRT problems,
which we dubbed the “optimal” color-mapping set. Two problems
had to be set aside because it was not possible to equate the number
of colors across the positive and negative instances, and the re-
maining 15 problems permitted only a “suboptimal” color mapping
(e.g., a color mapping that was redundant with size, another salient
visual cue).

In general, the impact of color mapping was weak. In Experiment
2 (in which SVRT problems were presented in random order),
problems in the optimal set were learned more quickly in the color-
mapped than in the standard uncolored condition. However,
this advantage of the color-mapped condition was not found in
Experiment 3 (in which problems were presented in the more
favorable easy-to-hard order). In Experiment 3, for the optimal set,
scrambling the colors (so color was not a cue to mapping) impaired
learning relative to the color-mapped and uncolored conditions.
However, we found no reliable influence of color coding for the
suboptimal set in either experiment. It is possible that the influence
of color was mitigated because in all conditions, each instance was
initially presented uncolored; the colors were only added when the
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instance appeared in the visual record of presented instances. This
design feature was intended to equate the initial presentation format
across conditions and to make it impossible to use color directly to
classify newly presented instances. However, having images change
from uncolored to colored in the course of a trial may have dis-
couraged participants from attending to the color cues.
Further research is required to explore other possible display

characteristics that may impact relational comparisons during
visuospatial category learning. The present findings call attention to
the need to carefully consider the fact that category learning
inherently involves at least two categories: the positive instances,
and the negative instances that do not fit the rule defining the
positive set. Spatial segregation of positive and negative instances in
a visual record is an effective aid to learning because it supports
comparisons both within and between the two sets. It is more
difficult to design a color mapping that can apply unambiguously to
both sets. Other visuospatial cues that might support mapping, such
as spatial alignment (Simms et al., 2023), should also be investigated
as potential devices to facilitate category learning.

Representational Pluralism

This work explores ways to reduce the cognitive load of ana-
logical mapping in a visual relational category learning task, in
which learners may rely on either compositional representations for
analogical mapping or simpler feature-based representations for
discrimination. While we did not explicitly demonstrate that color
coding or sorted displays enhance the use of analogical mapping,
our findings suggest that in several cases these visual aids improve
learning efficiency. Since these aids help reveal compositional
structure, and previous work suggests that spontaneous comparisons
of scenes evoke mapping (Gentner & Markman, 1997; Markman &
Gentner, 1993a, 1993b), these performance gains may reflect a
tendency for learners to opt for mapping as a consequence of
reduced cognitive load. It remains possible, however, that learners
did not engage in mapping even with visual aids, or that they
naturally employed this strategy even without visual aids (albeit less
effectively). An informative next step would be to test whether
learners encode and recall relational roles differently depending
on the constraints imposed during learning. If a learner forms a
compositional representation that preserves role information of
objects, they should be more likely to recall or recognize the specific
relational roles occupied by objects (e.g., identifying which object
was the agent vs. recipient in a causal relation). In contrast, if a
learner relies on noncompositional encoding based on feature lists,
they may recall object identity or category membership without
preserving role structure. These alternatives could be assessed using
postlearning memory probes or forced-choice recognition tasks
that test role binding (e.g., “Which object was the one that caused
the other?”).
Regardless of the representational format of relational categories,

the downstream reasoning mechanism used to induce the concept
from the exemplars is likely a kind of comparison process, whether a
simple list comparison or the structured kind of analogical mapping.
Our findings of learning differences attributable to sorted versus
shuffled displays, and color coding versus color-scrambled ex-
emplars, coupled with previous empirical evidence (e.g., Christie &
Gentner, 2010; Kittur et al., 2004; Kurtz et al., 2013), consistently
demonstrate a performance advantage for conditions in which

comparison is employed. In particular, Goldwater et al. (2018)
found that blocking trials—presenting exemplars from the same
category consecutively—was more effective than interleaving
trials—presenting exemplars in an order that mixed categories—for
self-reported rule-based learners, who tend to identify patterns
across examples that distinguish categories. However, self-reported
exemplar-based learners, who focus on memorizing individual
items rather than comparing them, showed no benefit from blocking.
Critically, within the blocked condition, performance on relational
category learning was positively correlated with a greater tendency
toward rule-based learning (on a Self-Reported Scale from
exemplar-based to rule-based). These findings—that individuals
predisposed to comparison not only benefit more from learning
conditions that support it, such as blocked presentation, but
also outperform those less inclined to compare under those
same conditions—provide compelling evidence that comparison
functions as a core mechanism through which relational structures
are abstracted.

Evidence for the central role of comparison in category
learning challenges the assumptions of current program induction
models. Although the creation of programs in program induction
models does not forbid comparison, existing program inductionmodels
typically rely on meta-programs that generate multiple candidate
concepts (in the form of programs) from a single exemplar. In
these models, inductive reasoning operates as a selection process:
given a large space of programs, which one best captures the
exemplar? By contrast, comparison-based approaches produce a
single concept—rather than a whole set—from at least two ex-
emplars. Thus, whether relational category representations are
encoded as programs or relational graphs, the process by which
they are learned likely depends on comparison—perhaps through
a novel form of analogical mapping that operates over programs
rather than traditional relational graphs. This possibility echoes a
proposal by Christie and Gentner (2010), who suggested that
Bayesian inference might rely on analogical mapping to construct
candidate concepts.

More broadly, these considerations point to the value of distin-
guishing between (a) the mechanism of concept formation (e.g.,
comparison vs. meta-program), (b) the format of the resulting
representation (e.g., graph, feature list, or program), and (c) the
selection processes that operate when multiple representations are
available (e.g., Bayesian inference). Embracing this kind of repre-
sentational pluralism reframes relational category learning not as the
discovery of a single optimal representation and mechanism, but as a
coordination problem involving multiple representational possibilities
and cognitive strategies. This perspective suggests that learners might
dynamically shift between strategies—sometimes engaging in ana-
logical comparison to construct structured representations, other times
relying on feature-list discrimination when comparison is difficult
(e.g., resource-intensive). This flexibility could account for individual
differences, as well as task demands that modulate strategy use. In
sum, pluralism allows researchers to ask not just what representation is
formed, but how, why, and under what conditions.
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