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Abstract 

The ability to learn new visual concepts from limited examples 
is a hallmark of human cognition. While traditional category 
learning models represent each example as an unstructured 
feature vector, compositional concept learning is thought to 
depend on (1) structured representations of examples (e.g., 
directed graphs consisting of objects and their relations) and 
(2) the identification of shared relational structure across 
examples through analogical mapping. Here, we introduce 
Probabilistic Schema Induction (PSI), a prototype model that 
employs deep learning to perform analogical mapping over 
structured representations of only a handful of examples, 
forming a compositional concept called a schema. In doing so, 
PSI relies on a novel conception of similarity that weighs 
object-level similarity and relational similarity, as well as a 
mechanism for amplifying relations relevant to classification, 
analogous to selective attention parameters in traditional 
models. We show that PSI produces human-like learning 
performance and outperforms two controls: a prototype model 
that uses unstructured feature vectors extracted from a deep 
learning model, and a variant of PSI with weaker structured 
representations. Notably, we find that PSI’s human-like 
performance is driven by an adaptive strategy that increases 
relational similarity over object-level similarity and upweights 
the contribution of relations that distinguish classes. These 
findings suggest that structured representations and analogical 
mapping are critical to modeling rapid human-like learning of 
compositional visual concepts, and demonstrate how deep 
learning can be leveraged to create psychological models. 

Keywords: relations; concepts; few-shot learning; analogical 
comparison; mapping; abstraction 

Introduction 

A fundamental aspect of human intelligence is few-shot 

learning: the ability to grasp concepts from just a few 

examples. In a visual few-shot learning task, learners are 

given a small set of class-labeled images (e.g., “image 1 

belongs to category A”) and must correctly classify a new 

unlabeled target image. A decade ago, deep learning models 

struggled with few-shot learning, even for perceptual 

categories defined by simple visual features (Lake et al., 

2015; Vinyals et al., 2016). In recent years, this performance 

gap has dramatically narrowed due to advances in model 

architectures (e.g., prototypical networks, Fort, 2017; Snell et 

al., 2017) and learning paradigms (e.g., meta-learning, Finn 

et al., 2017). 

However, a large performance divide persists for few-shot 

learning of relational or compositional categories, defined by 

abstract patterns of relations between multiple objects (see 

Figure 1). Unlike concepts for which the few-shot 

performance gap has narrowed, learning relational or 

compositional categories, like those in the Synthetic Visual 

Reasoning Test (SVRT), remains challenging even with 

extensive training on a vast number of examples (Fleuret et 

al., 2011). Moreover, in cases for which prolonged training 

does achieve high test accuracy, small visual perturbations of 

the objects dramatically reduce performance, suggesting that 

the learned concepts rely on non-relational visual features 

rather than genuine relational understanding (Kim et al., 

2018; Messina et al., 2021; Puebla & Bowers, 2022).  

Meanwhile, cognitive psychologists have extensively 

studied how humans rapidly learn relational concepts. 

Decades of research have pinpointed two capacities that 

support this ability. First, evidence suggests that human 

representations of visual scenes are compositional: people 

perceive scenes as sets of objects structured by the relations 

between them with role information bound to each object 

(e.g., inside (cat, box); Hafri & Firestone, 2021; Wiesmann 

& Võ, 2023). This format ensures that inside (cat, box) is 

semantically distinct from inside (box, cat) and preserves role 

information that would be ambiguous in a flat list of objects 

and relations (e.g., [cat, box, inside]; Corral et al., 2018).  

 Second, humans acquire relational concepts from these 

compositional representations by abstracting their common 

relational structure. To identify shared structure, people 

compare compositional representations using analogical 

mapping, a process that aligns objects playing similar roles 

Figure 1: Example of a 4-shot compositional learning test 

from SVRT. The positive images display objects configured 

in a square, whereas the negatives randomly scatter the 

objects. Given both sets of images, the task is to classify a 

target image as positive or negative. 
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across images (Gick & Holyoak, 1983; Halford, Bain et al., 

1998; Halford & Busby, 2007; Christie & Gentner, 2010; 

Kurtz et al., 2013; Jung & Hummel, 2015; Corral et al., 

2018). For example, given inside (cat, box) and inside (dog, 

house), we recognize that cat and dog fill the same role 

relative to their relations and therefore correspond to each 

other, rather than to box or house. When comparing across 

classes, mapping highlights critical relational differences 

(Winston, 1975; Gentner & Markman, 1994; Jee et al., 2013). 

This process has been formalized using graph-matching 

algorithms in which nodes represent objects and edges 

represent relations (Falkenhainer et al., 1989; Holyoak & 

Thagard, 1989; Lu et al., 2022).  

Probabilistic Schema Induction 

Here, we introduce Probabilistic Schema Induction (PSI), a 

model that combines deep learning with theories of human 

compositional concept learning and demonstrates human-like 

performance on few-shot visual concept learning of the 

SVRT. Our approach broadly mirrors that of classic 

prototype models of categorization: a class prototype is first 

formed from exemplar representations and then used to guide 

classification based on similarity to the target. As shown in 

Figure 2, our model is composed of several major parts. The 

first module aims to generate a compositional representation 

of each image in the form of a directed graph. The second 
module constructs a schema—the prototypical graph—for 

every class using PSI. The third module predicts the class of 

a target image by selecting the class whose schema is most 

similar to the target (also represented as a directed graph).  

PSI departs from classic categorization models in three 

novel ways: representation, similarity, and prototypes. First, 

in prototype and exemplar models, every exemplar is 

represented as a single vector, where each value reflects the 

magnitude of a particular feature of the exemplar. In contrast, 

PSI decomposes an exemplar image into a graph consisting 

of objects and the relations between them. In this graph, each 

node is a vector capturing the visual properties of a single 

object. Each edge—a connection between two nodes—is a 

vector with values that capture the probability the two objects 

instantiate some set of visuospatial relations (e.g., inside (A, 

B) = 0.7, sameShape (A, B) = 0.2). As a result, a graph in PSI 

can be representationally more complex (or “heavier”) than 

the single-vector format used in classic models. This increase 

in representational complexity—which imposes a greater 

cognitive load and may prompt a shift to single-vector 

representations under certain task conditions—is a core 

theoretical claim about how humans represent relational 

categories (Corral et al., 2018; Lee et al., 2023, in press). 

Graph-based representations also satisfy three other 

theoretical properties of relational concepts. Specifically, 

they support relational invariance: a relation retains its 

identity across different entity pairs because it is represented 

separately from the entities themselves—for instance, as an 

edge distinct from the nodes it connects (Doumas & Hummel, 

2005). Edges also enable universal quantification: because 

relations are encoded independently of particular entities, the 

same relation can apply to all relevant entities. Furthermore, 

directed graphs exhibit role-filler independence: the roles in 

a relation are encoded independently of the specific entities 

that fill them (Doumas & Hummel, 2005). To achieve this, 

every pair of nodes is connected by two directed edges, one 

in each direction. In one edge, a given node serves as the 

“sender” and the other as the “receiver”; in the reverse edge, 

these roles are swapped. Role identity is therefore determined 

not by explicit labels, but by edge direction. A similar format 

has been employed in analogical inference models by Lu et 

Figure 2: Diagram of schema formation in Probabilistic Schema Induction (PSI). Each exemplar image is first converted into 

a compositional representation in the form of a directed graph, with nodes representing objects and edges representing relations. 

PSI then aligns nodes and edges across exemplars to compute a prototype graph, or schema, by averaging over the aligned 

components. This alignment is discovered based on maximizing similarity between the schema and exemplar graphs. 

 

 

 

 

 



al. (2022) and Webb et al. (2023). Other models satisfy these 

constraints using, for instance, temporal synchrony (Hummel 

& Holyoak, 1997; Doumas et al., 2008, 2022). 

The second and third ways in which PSI departs from 

classic categorization models are its novel formulations of 

similarity and prototypes. Classic models compute similarity 

as a function of the distance between two feature vectors, 

typically based on the difference in values of corresponding 

features. A class prototype is defined as the average feature 

vector across its instances. Critically, these definitions rely 

on the assumption that feature vectors share a fixed feature 

order: each feature occupies the same index across vectors for 

all exemplars (e.g., index i always refers to size). This 

alignment in feature position ensures comparisons are always 

made between the same type of information. Size is never 

compared with color because vectors in the same space 

preserve the order of representational units. Distance is 

therefore a straightforward subtraction between feature 

vectors, and the prototype a straightforward mean.  

However, unlike vector format, nodes and edges with the 

same indices across graphs do not necessarily share the same 

type of information. Standard verbal analogy tasks in a 

A:B::C:? format, by design, align roles by index (A shares 

the same role and relative index as C). However, alignment 

is not guaranteed in graphs parsed from visual data in which 

objects with corresponding roles across images may lie in 

different spatial positions. To appropriately compute 

similarity and prototypes without averaging across differing 

types of information, we propose using analogical mapping: 

each object in one graph maps to an object in another image 

based on similarity of objects and similarity of relations (e.g., 

Gentner, 1983; Holyoak & Thagard, 1989). Once an 

appropriate mapping is discovered (e.g., graph alignment), a 

prototype is computed as the average of nodes and edges with 

the same alignment index, and similarity is based on the 

average cosine similarity of only aligned nodes and the 

average cosine similarity of only aligned edges.  

Although it would be ideal to extract object and relation 

information directly from visual input for compositional 

inference, most existing models can cleanly segment a scene 

into its constituent objects but still struggle to reliably infer 

the relations between objects. Given this limitation, we pose 

three questions. First, when provided with “ideal” graphs, 

composed of objects and relations directly sourced from the 

image generators of the SVRT (i.e., simulating perfect object 

segmentation and relation detection), how closely does PSI 

emulate human-like performance? Second, can PSI 

outperform a deep-learning variant of a prototype model that 

relies on singleton feature vectors—i.e., does the 

compositional structure of representations imposed by PSI 

enhance classification? Third, how does PSI perform when 

using pseudo-compositional but automatically generated 

representations that do not explicitly encode object-relation 

structure, such as patch embeddings from a pretrained vision 

transformer?  

Here, we show that PSI is able to demonstrate human-like 

learning on the SVRT, outperform a singleton-vector 

prototype model, and perform better when using object-

relation representations rather than pseudo-compositional 

patch embeddings. Our results suggest that structured, 

compositional representations confer an advantage in few-

shot concept learning of compositional concepts. More 

broadly, these findings support the hypothesis that human 

visual reasoning relies not just on feature similarity, but on 

the ability to represent and compare structured 

representations. PSI thus provides a computational bridge 

between deep learning models and human concept learning. 

Model Architecture 

Mapping As mentioned before, PSI addresses the challenge 

of invalid averaging across misaligned nodes and edges by 

first computing a mapping between nodes and between edges 

based on a combination of node similarity and edge 

similarity. This mapping identifies correspondences between 

nodes in an exemplar and nodes in the schema, thereby 

determining which nodes should be averaged across 

exemplars. PSI discovers a mapping between nodes by 

minimizing a loss function based on an overall graph-level 

similarity 𝐺 between a schema and its exemplars. 

Specifically, this loss function maximizes similarity 𝐺 based 

on two assumptions: (1) maximum similarity between a 

schema and its exemplars is achieved when mappings align 

similar object features and similar relation values, and (2) 

maximizing similarity between graphs approximates their 

“true” similarity.  

Formally, a mapping between a schema and an exemplar is 

represented as a binary matrix, where rows correspond to 

schema nodes and columns to an exemplar’s nodes. Each cell 

in this matrix is either 1 (mapped) or 0 (not mapped) with a 

one-to-one constraint: each row and column contains at most 

one “1,” ensuring that each node is mapped to exactly one 

counterpart. A separate mapping matrix is learned between 

the schema and each exemplar. All matrix entries across 

exemplars are free parameters updated to minimize the loss 

function using backpropagation. Crucially, rather than 

updating a binary matrix itself, backpropagation (which 

provides continuous updates to parameters) updates mapping 

matrices that are continuously valued. At every step of 

backpropagation, the continuous matrices are converted into 

discrete permutation matrices using the Hungarian algorithm. 

These permutation matrices—binary and one-to-one—are 

used to compute the schema and the similarity between the 

schema and its exemplars. The loss based on this similarity is 

backpropagated to the underlying continuous matrices. 

 

Similarity We define overall graph-level similarity 𝐺 as the 

weighted average of node-level similarity 𝐺𝑛𝑜𝑑𝑒𝑠  and edge-

level similarity 𝐺𝑒𝑑𝑔𝑒𝑠 : 
  

𝐺 = α𝐺𝑛𝑜𝑑𝑒𝑠 + (1–α)𝐺𝑒𝑑𝑔𝑒𝑠  
 

Here, the alpha (α) parameters control the relative 

contribution of node and edge similarity: higher values place 

more weight on node similarity (i.e., object similarity) and 

lower values place more weight on edge similarity (i.e., 



relational similarity). Alpha is also treated as a parameter 

(along with the mapping matrices) and is constrained to a 

value between 0 and 1 through a sigmoid function at every 

step of backpropagation. We hypothesize that successful 

classification of compositional concepts—defined by a 

similar pattern of relations over objects—will be associated 

with lower final estimates of alpha, indicating a greater 

reliance on edge similarity.  

We compute node similarity 𝐺𝑛𝑜𝑑𝑒𝑠  as the average cosine 

similarity between aligned schema-exemplar node pairs. 

Edge similarity 𝐺𝑒𝑑𝑔𝑒𝑠  is computed as the average cosine 

similarity between aligned schema-exemplar edge pairs. 

Unlike node mappings, which are estimated, edge mappings 

are derived deterministically from the node mapping matrix. 

Specifically, an edge in the schema (from “sender” node a to 

“receiver” node b) is aligned with an edge in the exemplar 

(from “sender” node c to “receiver” node d) only if the 

“sender” nodes are mapped (a→c = 1) and the “receiver” 
nodes are mapped (b→d = 1). Then, the mapping value for 

the two edges is the product of the “sender” a→c mapping 

and the “receiver” b→d mapping. If either fails to map, the 

edge will not map either. Edges align only when their 

corresponding nodes align, reflecting the intuition that 

relations correspond only when their arguments do. 
 

Edge Weights and Contrastive Learning Standard 

category learning tasks typically involve at least two 

categories. Learners must infer not only what defines a single 

category, but also what distinguishes it from others. To 

support this type of learning, we introduce an edge-weight 

vector that scales each relation within an edge, analogous to 

selective attention parameters in classic models (e.g., 

Nosofsky, 1986). The edge-weight vector is a free parameter 

constrained by a softmax function applied at each 

backpropagation step, ensuring that the weights are non-

negative and sum to 1. Because PSI is trained to maximize 

similarity between a schema and its exemplars, the edge-

weight vector gives PSI the flexibility to upweight relations 

that are consistent across exemplars of the same class. Due to 

the softmax constraint, increasing the weight of one relation 

necessarily reduces the relative influence of others, creating 

competitive pressure that helps suppress noisy, inconsistent 

relations. However, maximizing similarity within-classes 

alone does not guarantee that the relations that are 

upweighted are discriminative across classes. To encourage 

PSI to estimate the edge-weight vector so as to enhance 

consistent and discriminative relations, we incorporate 

contrastive learning terms in the loss function.  
Specifically, when the task involves learning two 

categories, we compute node and edge similarity between the 

two schemas, denoted as 𝐺𝑛𝑜𝑑𝑒𝑠
𝐶  and 𝐺𝑒𝑑𝑔𝑒𝑠

𝐶 . These values are 

computed using an additional mapping matrix between the 

schemas (also a free parameter). In principle, we want to 

minimize edge similarity between schemas. However, doing 

so without constraints risks forming trivial node mappings 

(i.e., misaligning nodes to artificially reduce edge similarity). 

To avoid this, we simultaneously minimize edge similarity 

and maximize node similarity between schemas. Doing so 

forces PSI to simultaneously align schema nodes and search 

for a solution state that minimizes edge similarity under a 

non-trivial node mapping. Since schemas are computed from 

edge-weighed exemplars, one solution is to discover edge-

weights that increase within-class similarity and reduce edge 

similarity. Relations that meet both criteria are likely to be 

consistent within-class and discriminative between-classes. 

 

Loss Function and Free Parameters We define the total 

loss function as: 
 

𝐿 = −𝐺𝑃 − 𝐺𝑁 −𝐺𝑛𝑜𝑑𝑒𝑠
𝐶 + 𝐺𝑒𝑑𝑔𝑒𝑠

𝐶  

 

where P refers to the positive class and N refers to the 

negative class in a two-class setup. The first three terms are 

negated because the objective is to maximize similarity 

between a schema and its exemplars and maximize similarity 

between schemas’ nodes (note that this models a special case 

where both positive and negative categories share similar 

object features). The final term is not negated because we aim 

to minimize edge similarity between schemas. In sum, the 

free parameters that are estimated by this loss function 

include the schema-exemplar mapping matrices, the schema-

schema mapping matrix, the edge weights, and alpha. The 

mapping matrices are initialized as random values in the 

range [0, 0.01). We use an AdamW optimizer with learning 

rate 0.01. 

 

Classification To classify a target image, we compute its 

similarity to each class schema using the final parameters 

obtained from backpropagation. During this stage, the 

schemas are fixed; we do not update either schemas or the 

edge-weight vector. Instead, we optimize new mapping 

matrices between the target and each schema. The contrastive 

loss terms are removed, and only schema-target similarities 

are maximized. The target's edges are augmented by the final 

estimated edge-weight vector, and similarity is computed 

using the final estimated alpha. The predicted class is the one 

with the schema with highest similarity to the target. 

 

Control Models We compared PSI to two control models. 

The first is a single-vector prototype model that uses CLS 

tokens extracted from a pretrained vision transformer 

(DINOv2; Oquab et al., 2023). A CLS token is a vision 

transformer’s single-vector representation of an image. 

Classification is based on the cosine similarity between the 

target image’s CLS token and the average CLS token. The 

second is a pseudo-compositional variant of PSI, which uses 

DINOv2 patch embeddings as node representations. Vision 

transformers standardly process an image by dividing it into 

a grid of patches that then undergo refinement across layers 

of self-attention (Dosovitskiy et al., 2020). Patches inevitably 

cut across object boundaries, but the “cross-pollination” 

effect of self-attention in transformers may reconstruct object 

and relation information to some extent. This model uses no 

edges, edge weights, alpha, or contrastive loss; the loss 

function is based purely on node similarity of patches. 



Dataset 

SVRT The Synthetic Visual Reasoning Test is an image 

generator that produces 23 compositional concepts, each 

consisting of positive and negative image classes (Fleuret et 

al., 2011). Each object in an SVRT image is a simple 

pixelated contour shape resembling an island (Figure 1). 

Objects vary in shape and size across both positive and 

negative images within a given problem (except when about 

sameness of shape). All negative examples in the SVRT are 

“hard” negatives: they share similar object properties as 

positives and differ only in relations over objects. 

Problems span a wide range of relational rules. Roughly 

half are defined by first-order relations in which classes differ 

by a single pairwise relation. Examples include Problem 4, 

where a smaller object is inside a larger one (vs. outside the 

larger one); and Problem 16, where objects are mirrored 

along the vertical bisector (vs. not mirrored but located in 

same positions). The remaining half are defined by second-

order relations in which classes differ by relations over 

pairwise relations. For example, Problem 10 is defined by 

four shapes organized into a square configuration (vs. random 

configuration; see Figure 1). Problem 12 is based on two 

small objects equally distant to a larger object (vs. unequally 

distant). The present version of PSI is only able to code first-

order relations. At least one other model uses an analogy-

style approach to the SVRT (Shurkova & Doumas, 2022). 

 

Forming Graphs The SVRT image generator creates scenes 

by placing objects according to the structure of each problem. 

To extract object and relation representations, we modified 

the generator to save each object’s pixel coordinates and 

compute pairwise relations between all objects. Using these 

coordinates, we reconstructed individual “object masks,” or 

images that each show only a single object in its original 

spatial position. These masks were passed through a 

pretrained vision transformer (DINOv2), and the resulting 

CLS token was the feature vector for a node in the graph. 

We defined seven relational features to describe pairwise 

relations: inside, touching, sameness of shape, normalized 

distance, mirrored, sameness of size, and reflection. All 

relations were binary (1 or 0) except for normalized distance, 

which was continuous. To introduce variability, we added 

Gaussian noise (mean = 0, sd = 0.1) to each relation value. 

For the continuous normalized distance value, noise was 

scaled to 20% of the random sample. Each edge in the graph 

was thus a 7-long vector coding these relations. 

Results and Discussion 

We tested variants of PSI that either set alpha as a free 

parameter or fixed it to values of 1 (similarity is based 

entirely on node similarity), 0 (based entirely on edge 

similarity), or 0.5 (half node, half edge similarity). Figure 3 

displays performance as a function of the number of few-shot 

examples on the SVRT, separately for first-order and second-

order problems. To compare model and human performance, 

we computed root-mean-square error (RMSE) and mean 

absolute error (MAE) between each model’s accuracy curve 

and the human curve, measured in percentage-point deviation 

across number of few-shot examples.  

 For first-order problems (Figure 3 left), PSI comes closest 

to reproducing human performance when alpha is a free 

parameter, deviating by 5.3% RMSE and 3.1% MAE. 

Interestingly, PSI with patches follows second with 6.7% 

RMSE and 5.7% MAE. The CLS model has slightly worse 

fit with 8.1% RMSE and 7.7% MAE, and also performs 

worse than PSI with adaptive alpha (β = -0.56, z = 7.95, p < 

.0001) but similarly as PSI patches (β = 0.10, z = 1.54, p 

0.12). The worst matches to human performance are PSI with 

fixed alpha (RMSE ≥ 11.4%, MAE ≥ 10.8%). For second-

order problems (Figure 3 right), no model captures human 

performance adequately; the closest fit is PSI with patches 

(RMSE = 12.3%, MAE = 11.7%). 

   Among variants of PSI, first-order problem performance 

is highest when similarity is based entirely on edge similarity 

(compared to adaptive alpha: β = 0.78, z = 8.82, p < 0.0001). 

Figure 3: Accuracy by total number of few-shot examples, separately for first-order and second-order problems. Curves are 

logistic regressions. Error bars/bands are binomial 95% confidence intervals. Dashed lines indicate chance.  



In contrast, relying solely on node similarity yields 

performance statistically indistinguishable from chance (z = 

-0.79, p = 0.43). Interestingly, combining node and edge 

similarity (alpha of 0.5) performs no differently than using 

edge similarity alone (β = -0.054, z = -0.54, p = 0.59). These 

results are consistent with the hypothesis that success on 

compositional concept classification depends more on 

similarity of relations between objects than similarity of 

object-level features. 

 Consistent with these results, adaptive alpha decreases as 

accuracy increases (β = -2.94, z = -17.3, p < 0.0001; Figure 4 

left) and as more few-shot examples are provided (β = -0.064, 

z = -3.96, p < 0.0001; Figure 4 right). However, on average, 

alpha converges on values slightly below 0.5 (mean = 0.44, 

sd = 0.43), reflecting a mixture of contributions from 

relational and object similarity. The fact that alpha does not 

fully collapse to 0 (full edge similarity) suggests that human 

learning may rely in part on object-level similarity.  

 In addition, PSI with adaptive alpha progressively 

increases the weight assigned to class-distinguishing 

relations as more few-shot examples are provided, while 

downweighing non-distinguishing relations (Figure 5 left). 

These shifts affect accuracy: higher weights on 

distinguishing relations yield higher accuracy, while higher 

weights on non-distinguishing relations yield lower accuracy 

(Figure 5 right). Together, these results suggest that PSI’s 

human-like learning curve arises from a dual adaptation 

mechanism: (1) a shift in alpha toward relational similarity, 

and (2) selective weighting of relevant relations. 

Conclusion 

We introduced Probabilistic Schema Induction (PSI), a 

prototype model of compositional concept learning that 

departs from classic approaches to category learning by using 

compositional representations and a novel formulation of 

similarity and prototypes based on analogical mapping. We 

showed that PSI not only achieves human-like performance, 

but also outperforms deep-learning baselines on a few-shot 

compositional classification task. Critically, PSI's success 

stems from its ability to adaptively emphasize relational 

similarity and to upweight relations that distinguish classes. 

Interestingly, the model does not fully converge on purely 

relational similarity, suggesting that humans may rely on a 

blend of object similarity and relational similarity. 

The version of PSI presented here is able to handle first-

order relation problems by representing pairwise relations 

between objects as edges. However, it does not represent 

relations between pairwise relations and is therefore unable 

to capture second-order relational similarities. In principle, 

second-order relations can be modeled as the difference 

between pairwise relations, coupled with an adaptive alpha 

that weights three tiers of abstraction: node, first-order edge, 

and second-order edge similarity. In addition to extending the 

model to handle second-order relations, future work should 

explore whether PSI’s alpha values can predict human 

accuracy in far generalization tests, and develop methods that 

automatically parse object and relation representations 

directly from raw visual input. 
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