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Abstract 

Explicit similarity judgments tend to emphasize relational 

information more than do difference judgments. We propose 

and test the hypothesis that this asymmetry arises because 

human reasoners represent the relation different as the 

negation of the relation same, so that processing difference is 

more cognitively demanding than processing similarity. For 

both verbal comparisons between word pairs, and visual 

comparisons between sets of geometric shapes, we asked 

participants to select which of two options was either more 

similar to or more different from a standard. On unambiguous 

trials, one option was unambiguously more similar to the 

standard; on ambiguous trials, one option was more featurally 

similar to the standard, whereas the other was more 

relationally similar. Given the higher cognitive complexity of 

assessing relational similarity, we predicted that detecting 

relational difference would be particularly demanding. We 

found that participants (1) had more difficulty accurately 

detecting relational difference than they did relational 

similarity on unambiguous trials, and (2) tended to emphasize 

relational information more when judging similarity than 

when judging difference on ambiguous trials. The latter 

finding was captured by a computational model of 

comparison that weights relational information more heavily 

for similarity than for difference judgments. Our results 

provide convergent evidence for a representational 

asymmetry between the relations same and different.  
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Introduction 

A naïve construal of similarity and difference is that one is 

the inverse of the other: As things become more similar, they 

become less different. Cognitive scientists, however, have 

demonstrated that human reasoners sometimes process the 

two relations in a way that violates this inverse relation. 

Specifically, people tend to use divergent information when 

judging what makes things similar than when judging what 

makes things different (Bassok & Medin, 1997; Medin et al., 

1990; Simmons & Estes, 2008; Tversky, 1977).  For example, 

Medin et al. (1990) asked participants to select which of two 

options was more visually similar to or more different from a 

standard. Across trials, one option was relationally more 

similar to the standard and the other was more featurally 

similar. Participants tended to select the relationally similar 

option as both more similar and more different from the 

standard. Bassok and Medin (1997) found the same 

asymmetry using verbal stimuli. Broadly, these findings 

indicate that people tend to consider relations more heavily 

when judging similarity than when judging difference. 

However, the reason for this asymmetry remains unclear. 

One attempt to explain this phenomenon invokes structure 

mapping theory (Gentner, 1983). Under this hypothesis, 

assessments of similarity and difference involve the same 

comparison process of structural alignment, in which 

representations of entity features and their structural relations 

are placed into one-to-one correspondence (Gentner & 

Markman, 1994; Markman, 1996; Markman & Gentner, 

1993; Sagi et al., 2012). The asymmetry observed by Medin 

et al. (1990) is hypothesized to arise from an asymmetry in 

the relevant output of this comparison process. Whereas all 

commonalities contribute to similarity judgments, 

differences are split into alignable differences (i.e., those 

filling corresponding roles within a shared relational 

structure) and nonalignable differences (i.e., those not based 

on corresponding roles). For example, in a comparison 

between a car and a bicycle, wheel number would be an 

alignable difference (i.e., 4 vs. 2), whereas window number 

would be a nonalignable difference because this feature is 

only applicable to cars and not bicycles. 

Proponents of this explanation noted that the featurally-

similar option in the study by Medin et al. (1990) did not 

involve a salient relation, so that any relational difference 

between it and the standard did not constitute an alignable 

difference, and was therefore ignored in difference 

comparisons. However, later work found that both alignable 

and nonalignable differences contribute to judgments of 

difference; indeed, the latter actually exerted a greater 

influence than the former (Estes & Hasson, 2004). This result 

appears to undermine the core assumption required to explain 

asymmetries in similarity and difference judgments in terms 

of structure mapping theory. 

As an alternative explanation, we propose that this 

asymmetry emerges from a representational asymmetry 

between the relations same and different. Whereas assessing 

similarity involves a relatively straightforward comparison of 

degree of sameness, assessing difference involves a more 

complex comparison of not-sameness, in a form of negation 

processing. This analysis has been used to explain the well-

established developmental lag between children’s 

understanding of the concepts same vs. different  (Hochmann, 

2021; Hochmann et al., 2016, 2018). In general, processing 



of negation tends to place additional cognitive load on human 

reasoning. For example, determining the truth of a 

proposition including a negated expression (e.g., “star isn’t 

above the plus”) takes longer than a matched positive 

expression (e.g., “star is below the plus”) (Carpenter & Just, 

1975; Clark & Chase, 1972). Introducing extra negation into 

sentences makes them more difficult to interpret (e.g., 

“Because he often worked for hours at a time, no one 

believed that he was not capable of sustained effort”) 

(Sherman, 1976). Previous research has shown that 

processing negation often involves multiple steps, including 

processing the affirmative components of negated phrases 

before processing the entire phrase (Hasson & Glucksberg, 

2006). Although the complexity of negation is most 

pronounced when an explicit negative such as not is used, 

processing difficulty is also increased for expressions that 

incorporate implicit negation (e.g., words such as few, little, 

or deny; Clark, 1976). 

Human reasoners can compare entities on the basis of both 

features of individual entities, and also relations between 

entities and their component parts. Importantly, processing 

and comparing relational information is more cognitively 

demanding than processing featural information (Bunge et 

al., 2005; Green et al., 2010; Halford et al., 1998; Kroger et 

al., 2002, 2004; Waltz et al., 2000). It follows that 

incorporating relational information will be particularly 

demanding when the task also involves negation. As a 

consequence, difference judgments—which involve implicit 

negation—are less likely to be sensitive to relational 

information. 

We tested this hypothesis for both verbal comparisons 

between word pairs and visual comparisons between sets of 

geometric shapes. For both types of stimuli, we measured 

participants’ sensitivity to featural and relational information 

in a 2-alternative forced-choice task, in which participants 

selected which of two options was more similar to or more 

different from a standard. In order to directly examine the 

relative difficulty of similarity and difference judgments, we 

included unambiguous comparisons, in which one option was 

unambiguously more similar to a standard than the other 

based either on features or on relations. Participants 

completed two kinds of unambiguous comparisons: On 

featural trials, failure to select the similar option would 

reflect a difficulty in using featural similarity in comparison, 

whereas failure to select the similar option on relational trials 

would reflect a difficulty in using relational similarity. We 

expected that relational trials would be more cognitively 

demanding, and hence prove more difficult for participants 

judging difference as compared to similarity. On the other 

hand, since featural trials could be successfully completed 

without any relation processing, performance for difference 

versus similarity judgments was expected to be more equal.  

We also included ambiguous comparisons, for which either 

of the options might be selected depending on whether 

features or relations are emphasized (Bassok & Medin, 1997; 

Medin et al., 1990). We predicted that when judging 

difference as compared to similarity, participants would tend 

to base their choices on features rather than relations. 

Experiment 

Method 

Participants Participants were 184 undergraduates (Mage = 

20.70, SDage = 3.73, range = [18, 51]) at the University of 

California, Los Angeles (UCLA). Our sample consisted of 

128 female, 51 male participants, and 3 nonbinary; 2 

participants did not report their gender. All participants 

completed our tasks online to obtain partial course credit in a 

psychology class. The study was approved by the 

Institutional Review Board at UCLA. 

 

 
Figure 1: Example trials of the verbal comparison (left) and 

visual comparison (right) tasks. In both examples, the left 

bottom option is more featurally similar to but more 

relationally different from the standard at the top, whereas the 

right option is more featurally different from but more 

relationally similar to the standard. 

 

Comparison tasks All participants completed two 

comparison tasks: a verbal task featuring word-pair stimuli 

and a visual task featuring geometric shape stimuli. On each 

trial, participants were presented with a standard at the top of 

the screen and two options on either side at the bottom of the 

screen. Figure 1 shows an example trial of the verbal task on 

the left and the visual task on the right. Some participants 

were instructed to select which option was more similar to 

the standard across both tasks, whereas other participants 

were asked to select which was more different from the 

standard across both tasks. 

Each comparison task consisted of 24 trials, presented in a 

random order. Of these, 6 unambiguous trials included one 

option that was unambiguously more similar to the standard 

than the other. Correct responding on half of the 

unambiguous trials was more reliant on detecting the relative 

featural similarity of the two options, and so we  refer to these 

as featural trials. The other 3 unambiguous trials were 

relational trials. On these, correct responding was more 

reliant on detecting the relative relational similarity of the two 

options. 

The remaining 18 trials consisted of one option that was 

more featurally similar to but relationally different from the 

standard (FS/RD; e.g., the left option of both trials depicted 

in Figure 1) than the other option, which was more featurally 

different from but relationally similar to the standard (FD/RS; 

e.g., the right options of both trials in Figure 1). We refer to 

these trials as ambiguous trials because they were constructed 

so that selecting either option was valid, depending on a 

participant’s criteria for judging similarity or difference. We 

used these trials to compare participants’ preferential 



weighting of featural or relational information in their 

similarity and difference judgments. Selecting the FS/RD 

option as more similar indicates a preferential weighting of 

featural information, whereas selecting it as more different 

indicates a preferential weighting of relational information, 

and vice versa for selecting the FD/RS option. 

For the verbal task, featural similarity was determined by 

the semantic similarity among the individual words in each 

word pair. The left panel of Figure 1 shows an example of an 

ambiguous trial of the verbal task. The individual words 

composing the standard (thorn and rose) and those 

composing the right option (shrub and bush) all refer to 

concepts related to garden plants, and thus are more 

semantically similar than the words composing the left option 

(finger and hand), which are generally less semantically 

similar to those in the standard. 

Relational similarity was determined by the semantic 

relation instantiated by each word pair. Returning to the left 

panel of Figure 1, the standard (thorn:rose) and the left option 

(finger:hand) both instantiate the semantic relation part-of, 

and are thus more relationally similar to each other than the 

standard is to the right option (shrub:bush), which most 

saliently instantiates an instance-of relation (which does not 

match the relation in the standard). In addition to part-of and 

instance-of relations, verbal comparison trials included 

antonym (e.g., love:hate), synonym (e.g., big:large), category 

coordinate (e.g., broom:mop), and  located-in (e.g., 

grill:patio) relations. 

For the visual comparison task, featural similarity was 

determined by a shared salient visual feature among 

individual objects, either shape (as with the left option in the 

right panel of Figure 1) or shading. Relational similarity was 

determined by the visual relation instantiated by each set of 

shapes. Most of the visual comparison trials were comparable 

to the one presented in the right panel of Figure 1, where the 

standard and the FD/RS option (right) instantiated the same 

relation and each consisted of repetitions of different shapes, 

while the FS/RD option (left) violated the standard’s same 

relation but instantiated a same-shading relation and shared 

one object of the same shape as the standard. Other visual 

relations featured in this task included symmetry, consisting 

of two identical objects reflected about a vertical axis; ABA 

sequences consisting of three objects, of which the first and 

last were identical to each other; ABC sequences consisting 

of three unique objects; and AABB sequences consisting of 

two repetitions of different objects. We acknowledge that 

some FS/RD options in the visual comparison task may not 

have been interpreted as instantiating a relation, so 

performance on this test does not constitute as strong a test of 

the structure mapping theory as does the verbal comparison 

task. 

Ravens Progressive Matrices Following the verbal 

comparison task, all participants completed an abridged, 12-

problem version of the Ravens Advanced Progressive 

Matrices (RPM) (Arthur et al., 1999). On each problem in 

this task, participants are presented with a 3x3 array of simple 

geometric objects, with the object in the bottom-right corner 

of the array missing, and they are asked to select which one 

of 8 options best completes the pattern instantiated by the 

incomplete array. Carpenter et al. (1990) showed that 

individual differences in performance on these visual 

reasoning problems predict differences in the ability to 

induce abstract relations between objects and to maintain a 

hierarchy of problem goals and subgoals in working memory. 

We used this test as a measure of individual differences in 

general reasoning ability. Since our key manipulation of 

comparison type (similarity vs. difference) was between-

subjects, we included RPM score as a covariate in analyses, 

in order to compare performance on similarity versus 

difference judgments after controlling for any individual 

differences in general reasoning ability. 

Procedure All participants completed a verbal comparison 

task and a visual comparison task in a counterbalanced order, 

and then completed the Ravens Progressive Matrices. 

Results 

Performance on unambiguous trials Performance on 

unambiguous trials across conditions is depicted in Figure 2. 

Overall, participants performed well on unambiguous trials. 

Those making similarity judgments (n = 98) frequently 

selected the more similar option for both the verbal task (Msim 

= .80, SDsim = .17) and the visual task (Msim = .86, SDsim = 

.14). Those making difference judgments (n = 86) frequently 

selected the more different option across both tasks (verbal: 

Mdiff = .77, SDdiff = .21; visual: Mdiff = .77, SDdiff = .22). We 

refer to the above responses as ‘accurate’. Of particular 

interest was the relative accuracy with which similarity and 

difference participants completed relational trials.  

 

 
Figure 2: Human accuracy on unambiguous trials of verbal 

(left) and visual (right) comparison tasks, broken down 

according to trial type (featural vs. relational) and comparison 

type (difference vs. similarity). Error bars reflect ± standard 

error of the mean, and horizontal line reflects chance 

performance. 

 

We used the glmer function from version 1.1.26 of the 

LME4 R package (Bates et al., 2015) in R version 4.1.1 (R. 

Core Team, 2021) to fit a logistic mixed-effects model to 

performance on unambiguous trials. We defined a full model 

including participant and comparison problem as random 

intercept effects; comparison task (verbal vs. visual), 

comparison type (similarity vs. difference) and trial type 

(featural vs. relational), as well as an interaction between the 

last two as fixed effects. As discussed previously, we 

included RPM score as a covariate, along with task order 



(verbal first vs. visual first) and trial number. The latter two 

variables respectively account for any impact of task order 

and any potential improvement in performance across trials 

within each task. 

We used likelihood-ratio tests to compare this full model 

to reduced models that omitted a term of interest but that was 

otherwise equivalent to the full model. First, we tested 

whether performance generally differed across verbal and 

visual tasks. To do so, we fit a reduced model to the data that 

lacked the comparison task term but that was otherwise 

equivalent to the full model. We used a likelihood ratio test 

to compare the full model to the reduced model and found 

that removing the comparison task term did not increase 

model prediction error, ∆AIC = -1.40, χ2 (1) = .65, p = .420. 

This result indicates that the verbal and visual tasks did not 

differ in their overall difficulty. 

Next, we tested our main hypothesis that relational trials 

would be more difficult for participants judging difference 

than for those judging similarity. In order to do to so we 

compared our full model to a reduced model that lacked the 

judgment type x trial type interaction term (but that retained 

the individual terms for judgment type and trial type). 

Dropping the interaction term did increase model prediction 

error, ∆AIC = 10.7, χ2 (2) = 14.66, p < .001, indicating that 

performance differences between participants making 

similarity judgments and difference judgments varied across 

featural and relational trials. To examine this interaction 

further, we used the emmeans and pairs functions from 

version 1.8.4 of the emmeans R package (Lenth, 2023) to 

compare the relevant estimated marginal means of our full 

model. Across verbal and visual tasks, similarity participants 

(M = .81, SD = .18) outperformed difference participants (M 

= .69, SE = .22) on relational trials, z = 4.81, p < .001, but not 

on featural trials, z = .04, p = .966 (similarity: M = .84, SD = 

.14; difference: M = .84, SD = .20). This result supports our 

hypothesis that difference judgments involve more 

cognitively demanding comparisons than similarity 

judgments, which particularly impact relational trials. 

Notably this difference in performance persisted even after 

we accounted for individual differences in reasoning ability 

by including RPM score as a covariate in our full model. A 

likelihood ratio test comparing the full model and a reduced 

model that lacked the RPM score term showed that removing 

that term indeed increased model prediction error, ∆AIC = 

13.5, χ2 (1) = 15.56, p < .001. Thus, even though general 

reasoning ability influenced performance on unambiguous 

trials, comparison type impacted performance specifically on 

relational trials, over and above individual differences in this 

ability. 

Relational responding on ambiguous trials 

Next, we examined ambiguous trials to estimate participants’ 

preferential weighting of featural and relational information 

in ambiguous comparisons for which the two kinds of 

information are pitted against each other. Overall, 

participants selected the FD/RS option more often regardless 

of whether they were judging similarity (M = .61, SD = .29) 

or difference (M = .62, SD = .26). Notably, selecting this 

option implies different criteria based on comparison type: 

Selecting FD/RS as more similar implies an emphasis on 

relational similarity, whereas selecting that option as more 

different implies an emphasis on featural difference. In order 

to assess participant responses across comparison types 

(similarity vs. difference), we grouped responses according 

to whether they indicated an emphasis on relational 

information. We thus compared responses in which similarity 

participants selected the FD/RS option and in which 

difference participants selected the FS/RD option, and refer 

to these as relational responses. 

As with unambiguous trials, we fit logistic mixed-effects 

models to predict relational responses on ambiguous trials. 

We defined a full model including participant and 

comparison problem as random intercept effects; comparison 

task (verbal vs. visual), comparison type (similarity vs. 

difference) as fixed effects; and RPM score, task order 

(verbal first vs. visual first), and trial number as covariates. 

As was done for unambiguous trials, we used likelihood-

ratio tests to compare this full model to reduced models that 

omitted a term of interest but that was otherwise equivalent 

to the full model. First, we compared the full model to a 

reduced model omitting the comparison task term. We found 

that dropping this term did not reduce model prediction error, 

∆AIC = -2.0, χ2 (1) = .01, p = .930. This result again indicates 

that relational responding did not differ across verbal and 

visual comparison tasks. 

Next, we compared relational response rates for similarity 

judgments and difference judgments, to test our main 

prediction that participants will preferentially weight 

relational information more when judging similarity than 

when judging difference. Indeed, dropping the comparison 

type term from the full model did increase prediction error, 

∆AIC = 33.3, χ2 (1) = 35.31, p < .001, which confirms our 

main prediction that relational response rates were affected 

by comparison type on ambiguous trials. As on unambiguous 

trials, this effect on ambiguous trials held even after we 

accounted for individual differences in reasoning ability by 

including RPM score as a covariate in our full model. 

Omitting RPM score from the full model also increased 

model prediction error, ∆AIC = 2.6, χ2 (1) = 4.60, p = .032. 

Even though individual differences in reasoning ability 

predicted relational responding on ambiguous trials, our 

manipulation of comparison type impacted responses over 

and above these individual differences. 

This result disconfirms the hypothesis that both similarity 

and difference judgments are based on the same inputs to a 

structural alignment process, as is assumed by structure 

mapping theory (Gentner, 1983; Gentner & Markman, 1994; 

Markman & Gentner, 1993; Sagi et al., 2012). According to 

that theory, similarity judgments are based on all 

commonalities, whereas differences are sensitive to alignable 

but not nonalignable differences. In the present study, 

however, all relational differences on the verbal task (and 

possibly the visual task) were alignable, so structure mapping 



theory erroneously predicts symmetric responding across 

similarity and difference judgments. 

 

 
Figure 3: Relational response rate on ambiguous trials in 

verbal (left) and visual (right) comparison tasks, broken down 

according to comparison type (difference vs. similarity). 

Unfilled circles each reflect an individual participant’s 

response rates, dark lines reflect mean response rates, box 

boundaries reflect ± standard error of the mean, and 

horizontal line corresponds to indiscriminate selection of 

relational versus featural options. 

Computational modeling 

In order to formally characterize the human comparison 

process on ambiguous trials, we attempted to predict 

responses of individual participants on the verbal comparison 

task using a computational model. This model includes a 

weighting mechanism that controls the relative contribution 

of relational and featural information to a comparison 

judgment. We predicted that this weighting mechanism 

would create the observed asymmetry by altering the 

emphasis on relational information between similarity and 

difference judgments. Moreover, the computational model 

operates entirely on semantic representations of words and 

relations generated by machine learning, avoiding any hand-

coding or reliance on experimenters’ intuitions. Unlike 

computational implementations of structure mapping theory, 

the present model captures the eduction of relations (Lu et 

al., 2019; Spearman, 1923): generation of relations from 

nonrelational inputs. The same basic framework could be 

applied to visual judgments, given an appropriate front-end 

to create representations of visual stimuli. 

Model specification and approach 

Recall that the comparison task dissociated featural and 

relational information, and that the verbal task involved 

comparisons between word pairs (e.g., love:hate and 

spouse:partner). We operationalized featural information as 

individual word meanings (e.g., love, hate, wide, and narrow) 

and relational information as semantic relations holding 

between paired words (e.g., antonym-of, synonym-of). Our 

computational model incorporates semantic representations 

of both individual words and relations between them. 

In order to represent individual word meanings, we used 

pre-trained Word2vec word embeddings (Mikolov et al., 

2013), which represent word meanings as high-dimensional 

vectors of length 300. These vectors constitute the hidden 

layer of activation within a neural network trained to predict 

patterns of text in sequence as they appear in a large corpus 

consisting of Google News articles (about 100 billion words). 

Such word embeddings provide psychological models of 

semantic memory in that they preserve the similarity 

structure of individual word meanings in a psychologically 

realistic way. These embeddings have been used to 

successfully model a number of cognitive processes beyond 

similarity judgments, including human memory search, 

categorization, and decision making (Bhatia & Aka, 2022; 

Günther et al., 2019). 

To compute lexical similarity, the meaning of a word pair 

is represented by a simple aggregate of the semantic vectors 

of the two individual words. We use A to denote the first word 

in a word pair and B to represent the second word in a word 

pair. We compute the featural similarity between two word 

pairs 𝑖 and 𝑗 as the cosine similarity between concatenated 

word vectors constituting I, [𝑓𝐴𝑖
, 𝑓𝐵𝑖

], and those constituting 

j, [𝑓𝐴𝑗
, 𝑓𝐵𝑗

]: 

𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗
= 1 − 𝑐𝑜𝑠 ([𝑓𝐴𝑖

, 𝑓𝐵𝑖
], [𝑓𝐴𝑗

, 𝑓𝐵𝑗
]).  (1) 

To compute relational similarity, we used representations 

generated by Bayesian Analogy with Relational 

Transformations (BART), a learning model that has been 

used to predict human analogy performance and graded 

judgments of relational similarity (Ichien, Lu, & Holyoak, 

2022; Lu, Chen, & Holyoak, 2012; Lu et al., 2019). BART 

assumes that specific semantic relations between words are 

coded as distributed representations over a set of abstract 

relations. The BART model takes pairs of Word2vec vectors 

as input, and then uses supervised learning with both positive 

and negative examples to acquire representations of 

individual semantic relations. After learning from datasets 

(Jurgens et al., 2012; Popov et al., 2017), BART can take 

inputs of any pair of words to calculate a relation vector 

consisting of the posterior probability that the word pair 

instantiates each of the learned relations. The posterior 

probabilities calculated for all learned relations form a 270-

dimensional relation vector, in which each dimension codes 

how likely a word pair instantiates a particular relation. The 

relational similarity between word pairs 𝑖 and 𝑗 is computed 

as the cosine similarity of the corresponding relation vectors: 

𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗
= 1 − 𝑐𝑜𝑠 (𝐵𝐴𝑅𝑇(𝑓𝐴𝑖

, 𝑓𝐵𝑖
), 𝐵𝐴𝑅𝑇(𝑓𝐴𝑗

, 𝑓𝐵𝑗
)). (2) 

Having characterized both featural and relational 

similarity, we now combine these components simply as a 

weighted sum in a computational model of comparison: 

𝑠𝑖𝑚𝑖𝑗 = 𝛼(𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗
) + (1 − 𝛼)𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗

  (3) 

𝑑𝑖𝑓𝑓𝑖𝑗 = −𝛼(𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗
) − (1 − 𝛼)𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗

, (4) 

where α is a free parameter that reflects the degree to which 

a comparison weights relational information. We refer to α as 

the relation-weight parameter. Note that both similarity and 

difference judgments are based on a computation of 

similarity: difference judgments simply negate the output of 

that computation. 

Modeling results 

We used the model to generate trial-level predictions for each 

participant. We fit the relation-weight parameter to each 



participant’s data by maximizing the accuracy with which the 

model predicted a given participant’s responses on the verbal 

comparison task (i.e., model prediction accuracy). If multiple 

values of the relation-weight parameter predicted a 

participant’s data equally well, we took the mean of those 

parameter values. Overall, the fit model predicted participant 

responses just as well across similarity judgments (MAcc = 

.64; SDAcc = .09) and difference judgments (MAcc = .64; SDAcc 

= .08). The value of the fit relation-weight parameter 

predicted the rate with which similarity participants selected 

FD/RS options (Spearman’s ρ = .82, p < .002), and the rate 

with which difference participants selected FS/RD options 

(Spearman’s ρ = .73, p < .001). 

Figure 4 shows the distribution of the parameter, broken-

down according to comparison type. A Mann-Whitney U test 

confirmed what is clear from visual inspection: Fit relation-

weight parameters were reliably greater for similarity 

participants than for difference participants, W = 2540.5, p < 

.001. This result confirms our prediction that the value of the 

relation-weight parameter would be greater when fit to 

participants making similarity judgments than when fit to 

those making difference judgments. Hence, this result further 

supports our main claim: similarity judgments prompt greater 

reliance on relational information than do difference 

judgments. Moreover, these simulations support the validity 

of our manipulation of featural and relational similarity. 

 

 
Figure 4: Relation-weight parameter values fit to individual 

participant data, broken down according to comparison type. 

General Discussion 

For both visual and verbal comparisons, we showed that (1) 

human reasoners have greater difficulty processing relational 

difference than they do relational similarity, and (2) they tend 

to weight relational information more heavily when judging 

similarity than when judging difference. With respect to this 

latter finding, it is important to note that all word-pair stimuli 

in the verbal comparison task instantiated some binary 

semantic relation (either part-of or category coordinate), and 

so mismatching relations (e.g., between hoof:horse and 

goat:cow) constituted alignable differences. Structure 

mapping theory therefore erroneously predicts that such 

mismatching relations would contribute to difference 

judgments just as much as would mismatching features 

(Gentner & Markman, 1994; Markman, 1996). Participants 

should have thus selected all options with the same 

frequency, regardless of whether they were judging similarity 

or difference. Contrary to this prediction, we obtained an 

asymmetry in similarity and difference judgments even 

though all relational differences in our verbal stimulus set 

were alignable. 

We acknowledge that we did not directly test whether 

nonalignable differences contribute to difference judgments.  

However, when Estes and Hasson (2004) did precisely this— 

comparing the influence of alignable and nonalignable 

differences—they showed not only that nonalignable 

differences impacted both similarity and difference 

judgments but also that they had a greater (not lesser) impact 

than did alignable differences. 

 We were able to account for the asymmetry obtained in our 

experiment with verbal materials with a computational model 

of comparison based on machine-generated vector 

representations for both words and their semantic relations. 

When fit to human data at the level of individual participants, 

this model weighted relational information more heavily 

when fit to similarity judgments than when fit to difference 

judgments. Overall, this set of findings provides convergent 

evidence for the claim that assessments of difference are 

more cognitively demanding than assessments of sameness 

(Hochmann, 2021; Hochmann et al., 2016, 2018). This 

dissociation may ultimately be rooted in a representational 

asymmetry in the relations same and different, such that 

people process different as a negation of same. 
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