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Well, I spent an hour working on this message this pm, only
to have the system crash on me and lose it. So, once more into
the breech....

As an overview, I'm assuming the entire analogy system will
include the following modules:

1) standard rule-firing problem solver

2) EBL-massaged storage of solved problems

3) similarity-based retrieval

4) mapping engine

5) transfer

6) generalization by intersection (schema formation)

A truly staggering package, if it could really be done!

With respect to (3), you are quite right to question the
degree to which retrieval is systematic. It is *not* the case
that reminding quarantees transfer. The retrieved analog may be
superficial and hence useless, or the mapping may be too complex
("Gee, these problems seem alike, but I’m not sure exactly
how"--we get that sort of thing with Laura Novick’s math
analogies). 1If I have time I’1l come back to thoughts about (3).
In brief, I like your idea of deriving similarities in part from
similar rules. 1Indeed, for some functional categories that may
prove crucial.

For now, however, let’s assume (3) is worked out, and the
system has found two analogs to compare. As we’ll see,
similarity of elements can be used to guide mapping, but ACME
actually doesn’t require it.

A. WHY ACME?

Why not? More seriously, mapping has all the hallmarks of
the class of problems that can be neatly solved by constraint
satisfaction. There are multiple constraints, such as the
following (all embodied in ACME) :

CONSTRAINT 1: Only logically comparable elements can map
(constants with constants, n-place predicates with n-place
predicates) .

CONSTRAINT 2: Elements of initial-state descriptors map onto
initial-state descriptors, goal-state descriptors to goal-state
descriptors.

CONSTRAINT 3: Each element maps to just one element (or to
nothing) .

CONSTRAINT 4: Argument structure is preserved under mapping.

CONSTRAINT 5: The more similar the elements, the more likely they
map.

But none of these constraints are absolute. Dissimilar elements
may play analogous roles; argument mapping may be imperfect (the
army is like the rays, but also like the flesh in being
endangered) ; some elements may not map at all. In your coherence
algorithm, mapping starts by assuming the two most similar
elements map. This is a reasonable heuristic, but the serial
nature of the process can lead to arbitrary decisions (what if 2
pairs of elements are tied for most similar?). ACME is really
quite similar in spirit to your algorithm, I think, except it
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Sets up all constraints and then lets them all influence mapping
in parallel, like a set of simultaneous equations.

B. PRELIMINARY ASSUMPTIONS

I'1l describe the algorithm as if we were drawing analogs
between problem representations with 2 components: initial state
and goal state. This seems to mean avoiding predicates like
"causes" that take propositions as arguments, which I understand
we introduce as rules rather than state descriptions. However, I
think in the end we may want to derive mappings such as the
following:

cause ( apply ( high-intensity (ray)), tumor ), (destroyed ( tumor)))
cause ( apply ( high-intensity (laser)), filament), (fused (filament)))
I think the description below is extensible to more complex
relational structures, but what to do hinges on how we represent
operators in problems.

ACME has two major parts:
1) Procedure for setting up a constraint-satisfaction network.

This is specific to analogy, and has nothing to do with
connectionism.

2) Relaxing the network into a "best fit" mapping. This is just
the Rumelhart/McClelland equation on p. 11 of PDP Vol. 2.

C. SETTING UP THE NETWORK

Let’s take a simple abstract example to play with. Let
capital letters represent predicates, small represent constants,
early letters the source analog, later letters the target. Here
is a possible analogy:

SOURCE TARGET

A(a) R(r)
B(b) S(s)
C(c) Tt
D(a,b) U(r,s)
E(b,c) V(s,t)
F(a,c)

Our goal is to find the "best" correspondences between predicates
and between constants, which obviously are:

A=R
= 3

S C=T D=U E=V F=0
a 8 c=t

B=
b=

Note that source has a predicate F with no map to target (0 means
null map). Later transfer stage may do something with that.

ACME just finds there is no map. More generally, the system will
(hopefully) prove robust in the face of less-than-isomorphic
analogs.

We let hypothesized mappings be units; weights on
connections represent constraints; activation levels on units
represent degree of confidence in hypothesized mappings. (Just
like Necker cube figure on p. 10 of PDP Vol. 2.). Network is
built as follows:
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STEP 1: BUILD UNITS

For each element of source and each element of target, form unit
for each possible hypothesis. Here we build in Constraint 1:
only logically comparable elements can map (constants with
constants, n-place predicates with n-place predicates). This may
be unduly restrictive, but seems like a desirable simplification
for now. (It is equivalent to having 0 weights on all links
leading to "illegal" mappings.) So the following units are
built:

A=R A=S A=T A=0
B=R B=S B=T B=(
C=R C=S C=T C=0
D=U D=V D=0
E=U E=V E=0
F=U F=V F=0
a=r a=s a=t a=(
b=r b=s b=t b=0
c=r c=s c=t c=0

Thus we consider all possible pairings of l-place predicates with
l-place predicates, 2-place with 2-place, and constants with
constants, plus in each case the possibility of a null map.

In a further initial restriction (not illustrated in
example), we can limit hypotheses to mappings between elements of
initial-state descriptors and other initial-state descriptors,
and goal-state to goal state (Constraint 2). Thus for ray problem
the predicate DESTROYED will only generate units mapping it with
l-place predicates of *goal* states in the analog.

Finally, we add one special unit representing the entire
situation (see below).

STEP 2: ADDING CONNECTION WEIGHTS
NB: All connections are symmetical.

a) For all units with a particular predicate or constant, put in
inhibitory links to all other units that mention that element.
This embodies Constraint 3: each element maps to just one element
(or to nothing). In above diagram, this amounts to having
inhibition between all units within each of the three sets
(2-place predicates, l-place predicates, constants) that are in
either the same row or same column. (Exception: units with the
element 0 do not inhibit its other occurrences, since more than
one element can have a null map.)

b) For each hypothesis about a predicate map, put in excitatory
links with the units for corresponding mapped arguments. This is
Constraint 4: Argument structure is preserved under mapping. For
example, the unit for D=V will have excitatory links to a=s and
b=t. Likewise, a=s will excite D=V and b=t; b=t will excite D=V
and a=s.

NB: the hypotheses about the element 0 (e.g., D=0) receive
inhibition from rival hypotheses (like D=V), but have no
excitatory links. Thus if every possible mapping for an element
is ruled out, the element=0 unit will weakly win (I think).

Finally, if I follow the book, we should have one special
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unit representing the whole situation. It should have excitatory
Connections to all other nodes, reflecting the fact that all
hypotheses are at least possible.

D. RUNNING THE NETWORK

Now we’re about ready to let ’‘er rip. First, though, we
need to set the bushel of free parameters us slippery
bandwagon-connectionists get to play with. Trial-and-error
(and/or Charlie) will be needed here. I guesstimate as follows,
from numbers used in McClelland’s TRACE model (p.76):

1) Activation levels of units range from 0-1. All start at O,
except for the special unit, which is clamped to 1.

2) All inhibitory links: .02
3) All excitatory links other than those from special unit: .04

4) The trickiest and most interesting are the excitatory weights
from the special unit to the hypothesis units. Two versions (at
least) are possible:

a) All weights are some low positive value, like .0l1. This means
the system has no a priori beliefs about the possible mappings.

b) The weights reflect the computed similarity of the mapped
elements, embodying Constraint 5: The more similar the elements,
the more likely they map. Under this version, which we should
surely use, the output of retrieval (or very 1lst step in mapping)
is to calculate the similarity of predicates. The higher the
similarity, the higher the weight from the special unit (perhaps
in range .01 to .05). Since constants are by definition
semantically empty, their units all still get low weight of .01.

Now, off we go, following the recipe for updating given on
p.11. The system will stabilize with the units at activation
levels reflecting the plausibility of each possible mapping. For
each element, one map (possibly 0) will be most active, hence
"best". Importantly, the Hopfield equation (p. 13) will describe
the overall "goodness" of the analogy. (Technical question for
Charlie: is the value of G really comparable across different
analogies, which may have network structures with different
relational structures and different sizes, depending on how many
propositions represent each analog?)

Something else to note: in the Necker cube runs presented on
pp.12-13, the third run gives an impossible figure. Text says
this is because stimulus gave big excitatory weights to certain
hypotheses. In our terms, if person thinks two predicates are
highly similar, hence puts large weight on excitatory link from
special unit to that hypothesis, but in fact the two elements are
not analogous, the system may get trapped--thus we have a model
of how misleading surface similarity could interfere with finding
correct mapping. Note our system, under option (a) above, can be
directed to place little or no weight on predicate similarity.
Mapping can then be found even if similarity is misleading. Thus
ACME can both model human heuristic use of similarity in mapping,
and also "rise above" such mundane considerations. Indeed, in
the purely abstract analogy used as the example above, obviously
there is no similarity of elements at all--just a similar
relational structure. This is like an abstract mathematical
isomorphism. ACME can handle such cases; unlike Gentner (or any
other mapping procedure I know of), mapping does *not* *requirex
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identical elements (although similarity/identity will usually
play a role in making analogies easy or hard to process).

Well, in the interests of modularity I’1ll end here. What do
you think? =--Keith
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Date: Fri, 15 May 87 13:48:31 PDT

From: K Holyoak <holyoak>

To: pault@mind.princeton.EDU

cCr holyoak

Subject: Re: Canuckshionism.

In-reply-to: Message of Fri, 15 May 87 15:12:23 EDT

from "pault@Princeton.EDU"
<8705151917.AA25868@mind.Princeton.EDU>
Message-ID: <870515.204831z.06679.holyoak@PEGASUS.CS.UCLA.EDU>

Gee, I'm glad you think ACME/NADIR has some hope. I too am worried that
we are carrying our famous eclecticism to dizzying heights: imagine, a
program that integrates (concatenates?) Mitchellian EBLism, Winstonian
intersectionism, Andersonian activationism, Rumelhartian neurologism,
Simonesque productionism, with a dash of Hollandaze, and manages to
solve the ray problem! Far freakin’ out! This is canuckshionism at its
NADIR.

I really think, though, however monstrous the connectionist piece
of the model is, it behooves us to do it and see what happens. Indeed,
now that I’ve thought about it, doing mapping by constraint satisfaction
fairly screams to be tried, and I'm amazed that none of the evangelicals
have done it yet. Rumelhart and Lakoff will surely drool if we beat them
to this proposal.

On your specific points:

1) Yes, the network has to be built each time mapping takes place. I

agree its more plausible at mapping than retrieval. There are some ways

I think the model could be eventually psychologized a bit more. For example,
maybe people only form a subset of the possible hypotheses. But that can
wait.

2) The similarity calculations do not have to be as much of a bugaboo as
you may think. If I’m right, the system will actually converge on the best
relational structure even if initial similarities of predicates don’t vary.
Indeed, here is what may be a plausible procedure for using similarity:

a) The output of retrieval is to report that certain predicates are quite
similar, like laser--x-rays, because these triggered reminding. Give these
relatively high weights from the special unit.

b) All other weights to mapping hypotheses (e.g., from the special unit

to tumor-lightbulb) are set at some uniform low positive value, like .01.
Thus there is no special computation of similarity required for mapping.
The predicates that were similar enough to aid in retrieval are given

high values, others a low value. In fact, given that predicate similarity
is only a rough guide to appropriate mappings, this crude use of similarity
may be at least as good as one that requires explicit calculation of all
predicate similarities.

3) I think G may distinguish the good vs bad version of lightbulb analogs.
The good version has the goal proposition, intact (bulb), whereas the

bad version has the initial condition, lacking(high-I(laser)). The former
will map onto the ray goal, alive(patient) {or maybe uninjured(flesh)},
whereas the latter will have no map into the ray problem. Actually I'm not
at all sure G will have all the right properties to be a general yardstick of
analogical goodness. The more crucial thing is that bad analogs should give
less evidence that the useful operators should be transferred from source to
target.

One thing that may bear on the above is how we treat the 0 map. 1In
yesterday’s proposal, hypotheses such as predicate=0 are given low excitatoru
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weights from the special unit, just like any other low-similarity mapping.
Intuitively, though, the mapping should be worse if it is necessary to
assume some elements don’t map. An alternative way to handle null maps
might be:

a) special unit has weak *inhibitory* links to all null-map hypotheses,
creating pressure to try to map all elements onto some real element.

b) Consider the following set of units:

A=R A=S A=T A=0
B=R B=S B=T B=0
C=R C=§ C=T C=0
D=R D=§ D=T D=0

In the story as of yesterday, we put inhibitory links between all units
that share a common element (e.g., A=R inhibits A=T because these are
competing possible mappings). This amounts to inhibiting all units in the
same row or column (except the rightmost X=0 column doesn’t mutually
inhibit).

Now add the following addition: each unit is given a weak excitatory link to
all units that it doesn’t inhibit. That is, each unit excites those units
that do *not* share a common element; i.e., those not on the same row or
column. (Again the rightmost X=0 column is an exception; the 0 maps neither
inhibit nor excite each other.) The rationale is that if there is evidence
that A=R, for example, then there is evidence that B does not =R;
accordingly B must = something else (B=S, B=T, or B=0). The effect of this
will be that if all other alternatives have been ruled out, the X=0 unit will
get enough positive excitation to outweigh the inhibition from the special
unit. E.g., suppose A=R, B=S, and C=T are highly active. They will then
strongly inhibit D=R, D=S, and D=T, which therefore can’t inhibit D=0.
Furthermore, each of the three highly active units will weakly excite D=0.
Thus D=0 will weakly win. But because the initial constraint represnted ny
the inhibition from the special unit to D=0 will have been violated, the G
measure will indicate this analogy is worse than one in which there was some
real target predicate U such that D=U.

Note this means that if new predicates are invented for target as
part of transfer, the effect will be to *improve* the G measure, because the
mapping will be extended by removing a null map and substituting a real one.
At least, that’s my hope.

4) On a related note, you are absolutely right to include operators in
mapping from the start. Transfer rule may be something like, if a source
operator that participates in solution has a null map to target, propose an
analogous source operator.

5) You say we have syntax and semantcs, but where did the pragmatics go?
It’s really still there I think. Note the constraint I put in that Goal
elements only form units hypothesizing mappings to Goal units, Initial
elements to Initial elements (and now, Operator elements to Operator
elements). Also, remember that EBL is serving to ensure that only causally
relevant aspects of source ever get stored, so as to possibly be mapped
later. (The physicist’s white lab coat is out right there.)

6) Your suggestion that we reduce Gentner’s examples to NADIR is dead on.
Indeed, in my current ACME-induced hubris the malicious idea of presenting
our mapping of the solar-system--atom at Psych & Phil has crossed my mind.
The extension required, I think, is to add propositions to the list of
elements being mapped. Yesterday we had constants and predicates forming
units; add that propositions map onto propositions. Then we can handle
things like
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cause ( R (x,y)), (S (u,w)))

which would result in setting up maps between the propositional arguments
like R (x,y) and propositions in the analog (e.g., we would have units
like R(x,y)=C(a,b). Each proposition mapping then excites each
corresponding predicate mapping, and each corresponding constant mapping,
and all combinations thereof.

I will continue to ruminate over retrieval. =--Keith

\001\001
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Paul:

Well. I finally was able to read all your messages after our
computer got straightened out. A version of this message was
written several days ago but I was unable to send it. It is now

edited somewhat in light of your recent achievements. Further
messages will discuss:

1) I have a suggestion for an empirical test of the adequacy of
the mapping-transfer model we’re working on. It involves data
from studies of the good old missionaries and cannibals problem,
which shows that for homomorphs, you get good transfer from more
constrained to less constrained problem, little in the reverse
direction. This may be a fairly simple test of whether our model
is doing sensible things with less~-than-isomorphic analogs.

2) I think I have thought of an algorithm for doing structured
retrieval of the sort Ziva demonstrated. It is an extension of
an idea involving marker passing, which I believe I was babbling
about several messages ago ("color-coding" activation traces).
Now I think I see how to make it work. Needless to say, this
insight may dissolve overnight. We’ll see.

’

In this message, I will just cover details relevant to
finalising acme.

FINALIZING ACME

Given the rapidity of your progress last week, it looks like
we are close to being able to put acme to a series of (hopefully
publishable) tests. I think we should pause a moment to make
sure we're in agreement about exactly how the model is working,
so when we get into systematic tests we’re able to minimize
backtracking later on. Incidentally, are you still planning to
do SACME? And are we going to get Gentner’s SME into the
picture? I believe you are exactly right in your assessment of
how SME can be viewed as a special case of acme, by the way. (As
an aside, my intuition is that the best psychological version of
acme will not be a serial approximation, but a quasi-parallel
one--QUacme?--that is basically acme except that only a subset of
units get established, with some degree of seriality, due to
working-memory limitations. But for now I believe our best bet
is to continue to focus on acme as an idealized computational-level
description of mapping. If it proves to be superhuman in some
respects, I can cheerfully live with that.)

I’'m sure the viability of acme as a psychological model will
be a matter of debate. But its claim for merit is a certain
elegance that lends credence to the demonstrations that it really
does compute interesting mappings. For this reason I think we
should be compulsive in ensuring we make the program as above
reproach on the "elegance" criterion as possible. (None of that
"look ma no hands" stuff; rather, two hands on the handle-bars at
all times.)

A. CONSTRAINTS

First, let’s check whether acme has all the constraints
originally planned. These are (from original acme message) :

CONSTRAINT 1: Only logically comparable elements can map
(constants with constants, n-place predicates with n-place
predicates) .
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CONSTRAINT 2: Elements of initial-state descriptors map onto
initial-state descriptors, goal-state descriptors to goal-state
descriptors. **[And by extension, operators to operators,
constraints to constraints, if we have such a category.]**

CONSTRAINT 3: Each element maps to just one element (or to
nothing) .

CONSTRAINT 4: Argument structure is preserved under mapping.

CONSTRAINT 5: The more similar the elements, the more likely they
map.

From your messages, you clearly have (5), and also (4).
[The latter was Step 2b under "ADDING CONNECTION WEIGHTS" in the
original acme message.] Do you have (3)? This I couldn’t tell
for sure, as you didn’t explicitly mention building inhibitory
units. See Step 2a in original message: For all units with a
particular predicate or constant, put in inhibitory links to all
other units that mention that element.

As stated above, Constraints 3-5 are explicit and matters of
degree, as they are explicitly represented by weights on links.
Constraints 1 and 2 are absolute, in that units that violate them
are never even built. They implicitly correspond to units with
all 0 weights on links leading to them (thus guaranteed to have
activation levels that remain at 0). Are (1) and (2) reflected
in program? (1) is the one I have least theoretical committment
to, but seems a useful convenience; (2) is the clearest pragmatic
constraint on the mapping process--it uses problem structure to
cut down on the number of possible maps considered.

Another thing I wanted to check: did you include units
representing null maps (X=0), to accommodate elements that have no
map? I was a bit unsure how these would work out, and could
imagine doing without explicit null maps, as a null map could
also be found indirectly if all real maps for an element are
ruled out by competing alternatives. The latter approach may be
preferable, since I think it will ensure that absence of a map
for an element will reduce G.

B. TREATMENT OF SIMILARITY

I see from one of your messages that you indeed are modeling
the similarity effect by setting inital activation levels in
proportion to similarity. Although this is certainly a
reasonable first approximation, I would like to continue to urge
that this be changed to the "special unit" idea: a special unit
has links to all hypotheses about predicate mappings, with
weights proportional to similarity. That is, a process of
similarity calculation feeds into a su with weights to all
hypothesis units proportional to the similarities of the mapped
predicates. There are several reasons for this, as noted in
previous message. Chiefly:

(1) Elegance criterion: I would like to be able to say that all
*constraints* on mappings are represented by *weights* on links,
whereas *degree of confidence* in a mapping is represented by
*activations* on units. The former, of course, determine the
latter. The present implementation violates this generalization.

(2) Potential empirical implications: I think there are some
tricky things about the correct treatment of similarity in the
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model, and the su idea will allow us to deal with them better.

Of the results you’ve already got, the one that decreasing
similarity of laser and ray diminishes G, hence analogical
goodness, is the most empirically questionable. Gentner, I
believe, has evidence that people think *less* similar objects
make better analogies. I guess I'm enough of a syntactician to
feel that the "bottom line" on analogy is relational structure
(Constraints 3 and 4): if the mapping is consistent, its a good
analogy. My intuitiion about similarity is: It’s a heuristic for
*starting* the mapping, which will be found more readily if
mapped elements are similar, and more slowly (or even not at all)
if it turns out similar elements don’t map. But ultimately, it’s
the internal relational constraints that should determine the
asymptotic goodness of the analogy.

There are two ways we can potentially deal with this, not
mutually exclusive, and both best formulated with the su units
coding similarities in terms of weights:

(a) Under this coding system, similarities are exactly analogous
to "perceptual input"™ in the necker cube example. (As an aside,
the development of acme is itself a clear example of the use of
analogy, as I literally worked it out from the necker cube case.
When done, perhaps we can get acme to discover itself! [AI
hubris again....]) Note that Hopfield’s G measure decomposes
into 2 parts, degree to which internal constraints are satisfied,
and degree to which constraints of perceptual inputs are
satisfied. We can easily compute these two components
separately. Then we have measures of satisfaction of relational
constraints (Gl) and of similarity constraints (G2), as well as
global G (G = G1+G2). The current version does not allow
calculation of G2, the specific contribution of similarity. (I
believe, in fact, it must not be giving a theoretically
interpretable "degree of contribution" of similarity to the
overall G.)

(b) We can make similarity constraints higher at first, then
"fade them out". (I think your current version is doing
something like this, but not in a sufficiently principled way.)
It makes sense that as mapping proceeds, the impact of the prior
process of similarity assessment should gradually be reduced.
Increasingly, the mapping should depend on the internal
consistency of the mapping of arguments, rather than on a priori
similarity of predicates. This can be naturally modeled as
follows: The su is initialized at activation = 1. It is then
allowed to decay away to 0 (or to some parameter that sets its
minimal activation). The result will be that similarity of
predicates will have less and less impact as mapping proceeds.
(See next section for a refinement of this idea.)

C. DECAY PARAMETERS

In the present simulation, as in the necker cube example in
Ch. 14, at asymptote each unit goes to either 0 or 1--no
intermediate values. This may lose valuable information, like
what was the "second best" mapping (army is mainly like rays, but
a bit like flesh). I think it may be useful to include a decay
parameter in the activation-updating equation, which I believe
will yield intermediate asymptotic activation levels. That 183
on each update you add the net input to the unit after reducing
its previous activation level by some fraction. This is in fact
the general form of the Rumelhart/McClelland activation rule,
which is given as an equation on p. 72 of Vol. 1 (the theta
parameter). According to my math intuition, if activation tends
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to decay, then asymptotic level will be the value at which the
net input to the unit is exactly offset by the amount of decay.
The higher the net input, the higher the asymptote (assuming
decay is a constant for all units).

The potential advantage of the above is that in addition to
getting an overall measure of the goodness of the analogy, we can
also get a continuous measure of the strength of individual
mappings at asymptote (e.g., army=rays).

Note that the suggestion of allowing the su to decay (see
above) can be partially or perhaps completely assimilated to the
general use of decay. The su, which starts at activation=1, will
not get any further inputs. If we simply update it like other
units, it will gradually decay. I believe, however, we may want
to make the decay rate differ (be slower?) for the su. So I
recommend establishing 2 distinct decay parameters, one for the
su and one for all other units. We can always set them equal, or
indeed set both to zero, if this decay idea doesn’t prove useful
after all. But for purposes of exploration, it would be nice to
have the program written to include decay parameters, which we
can always set to 0 if we want to ignore either or both of them.

I just realized that the last para. contains an important
error: If all connections are symmetrical, as we assume, then the
su will receive inputs back from the units it supports (e.gq.,
laser=rays). So as long as these units are in fact consistent
with the relational structure, and hence remain active, they will
tend to keep the su active. But if the actual mapping violates
the similarities, it should be possible for the su to finally get
turned off. One of the tests I’d like to do is to model a
Gentner expt. in which similarity *mismatches* analogical
structure to some degree.

I therefore arrive at the following tentative
recommendation: Try using a single decay parameter that applies
to the su and all other units. Then the similarity effect will
not, in general, fade away (I think), unless similarity actually
doesn’t predict the mapping. I also think we will want to have
the weights based on argument structure to be higher than those
based on similarity. To account for the apparent fact that
people can judge goodness of analogy separately from similarity,
we can simply assume they have access to both Gl and G2, and base
analogical goodness judgments on Gl.

D. RATE OF CONVERGENCE ON ASYMPTOTE

An important implication of the view of similarity I’'m
pushing is that it primarily affects the *rate* at which acme
converges on asymptotic G, rather than asymptotic G itself. It
will be useful to have the program produce a plot of G over
iterations, so we can inspect the rate at which different
analogies converge. I expect this may also imply that you should
lower all weights so that convergence is slower, thus making
differences in rate easier to see.

In sum, I'm suggesting the following measures should be
tracked as we do our simulations:

(a) Gl and G2, which add to G

(b) asymptotic activation of the "best"™ maps, which with decay in
the system will not always be 1

(c) rate of change in the above over iterations
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E. ASYNCHRONOUS UPDATES

Finally, a purely technical matter. I assume you'’ re now
doing the most obvious updating procedure: updating activations
of all units in simulated parallel fashion (synchronous updates).
The PDP books emphasize that Hopfield’s proof that the system
will tend to minimize G depend on two assumptions:

(a) all connections are symmetrical (which I assume we’ve got)

(b) updating is asynchronous. That is, rather than updating all
units in parallel on each "tick", you randomly select one unit to
update, then randomly select again (with replacement) .

In the interests of compulsive purity, I therefore recommend
we shift to an asynchronous updating procedure. For purposes of
plotting rate of convergence, we can look at system each time n
units have been updated, where n is the number of units. It will
be the case that in each such time step, by chance some units
will have been updated more often than others, but that should
only be a minor source of noise.

F. PROBLEM REPRESENTATIONS

I thought the representations you suggested for missionaries
and cannibals in your last message looked good. I think I may
have misunderstood the problem. It seems it doesn’t have to do
with representing higher-order relations in Gentner’s sense of
predicates that take propositional arguments, but rather
representing propositions about variables rather than constants.
I believe your suggestion is the same thing that Mitchell and the
EBL folks do when they are generalizing from an example.

Here’s the point I made on phone, as originally written:

Thinking about the missionaries and cannibals problems
reopened for me the question of whether "constraints"™ on problem
solutions should be treated just like goals. In the current
plan, the fundamental problem schema is: initial state, goal
state, operators. In the ray problem, the constraint that
patient must not die is listed as a proposition in the "goal
state" slot: alive (patient). That seemed sort of ok.

But in M&C, we have constraint: cannibals must never
outnumber missionaries on same side of river. This seems
different from the goal: all Ms and Cs on far side of river. The
latter must only be true in final state, but the constraint must
hold at every step on path to goal. Yet more clearly, consider
the constraint: find a solution in minimum number of moves. This
is not a description of the goal state per se, but rather of the
solution as a whole. Based on these considerations, I suggest
you consider moving to a 4-slot problem representation: initial
state, goal state, constraints, operators. This is what Jaime C
assumes I believe. I presume nothing much hinges on this as far
as mapping goes, but it may be useful for other purposes. For
example, a projection should be stopped whenever a constraint is
violated, whereas of course it should not be stopped just because
the goal state has not yet been realized.

I fear this message is filled with tedious trivia.
Nonetheless, I think we should nail down details of this sort as
much as possible now, before investing lots of time in fitting
acme to data. If you diagree with any of the above
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recommendations, let’s thrash it out on phone.

On a more general level, here is a tentative list of
computational experiments for a paper:

1) Simulate H&Koh (especially total solutions: retrieval part
more properly belongs in the *next* paper).

2) Show sensitivity of both G and our transfer process (let’s not
forget the pragmatic computation of the operator(s) to pass from
source to target) to:

(a) similarity (which may be complex, as discussed above)

(b) order of arguments (violating structure)

(c) dropping or adding unmappable propositions to source and/or
target.

All of (2) can be done with lightbulb and ray problems.

(3) Model Gentner’s solar system/atom examples, just to show we
can do anything SME can do.

(4) Model Gentner’s results on negative effect of object
similarity mismatching relational structure. (I’1ll send you a
message explaining this at some point--it will be easy I think).

(5) Modeling asymmetries of transfer between Miss & Cann,
Farmer’s Dilemmna problems.

(6) (Maybe): show acme can do mappings between some formal
analogs (e.g., arithmetic-series problems and
constant-acceleration problems, studied by Miriam Bassok and me).
I'm still thinking about this one.

Also, if you can’t readily get your hands on SME, I think we
can take the tack of arguing it can’t even be applied to our
examples, which is basically true. Remember, SME requires
*identities* of relations in order to do mapping at all. No way
it gets fused=destroyed, or even laser=x-ray. Thus in a sense
SME is entirely dependent on similarity of predicates, given that
identity is just the extreme of high similarity. In contrast,
while acme can nicely use similarity to guide mapping, a crucial
point is that in the limit it can dispense with similarity
altogether, and find mappings in which *nothing* is identical.
Thus we can dismiss SME as beneath serious consideration as an
alternative.

If we get even half of the above tests to produce reasonable
results, which I’m certain of, we will have the ingredients for a
whiz-bang Cog Sci article.

Geez, I just noticed how long this message got--I hope the
more important ones to follow can be shorter!
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Here is my idea for ARM, the Analogical Retrieval Module (an
acronym for every function, I always say). I'm less sure of this
than I was for acme, especially in detail, but see if you can
make anything of it.

A. THE PROBLEM

Our current simple summation of activation (or more
neutrally, summation of similarity) for analogical retrieval
lacks sensitivity to relational structure. Given the source
proposition "The dog chased the car", it will be reminded of it
equally often by the target propositions "The cat chased the
truck" and "The truck chased the cat". This is surely false; if
we need empirical evidence, the literature on configural effects
on retrieval provides it, not to mention Ziva’s anecdote.
Indeed, making retrieval sensitive to relational parallels is
crucial for getting "deep" analogs, because these typically have
only weak similarity in terms of the individual concepts. So
while we do not want a retrieval module as powerful as acme, we
want it to provide greater analysis of relational structure than
we now have.

B. THE PROBLEM REFORMULATED

All we need, I think, is for the similarity-based retrieval
process to have access to information about local variable
bindings in the target and in potential sources. For our
example:

SOURCE GOOD TARGET BAD TARGET
chase (x, y) chase (a, b) chase (a, b)
dog (x) cat (a) truck (a)
car (y) truck (b) cat (b)

Clearly, the sum of similarities of individual predicates is
equal for GT and Source and for BT and Source. The difference
lies in the preservation of local variable bindings: GT does, BT
doesn’t. Here is a rough algorithm that will give the right
result for this simple example. Assume the similarity of "chase"
to "chase" is 1, and of "dog" to "cat" and "car" to "truck" is
.8. 1If we just added up predicate similarities, then both GT and
BT would have a total similarity of 1+ .8 + .8 = 2.6 to Source.

C. THE BASIC SOLUTION
Instead, we calculate as follows:
For GT and Source:

(1) First, increment similarity counter for each of the "raw"
predicate similarities (i.e., 1.0 + .8 + .8).

(2) Second, check for each argument whether it is consistent in
terms of how is is activated by source. This is best done from
the "top down", beginning with higher-order predicates. Here the
highest-order predicate is chase (x, y). Therefore, for each
argument of chase (x, y), check activation levels of all other
predicates with arguments x and/or y **and the origin of the
activation**, For each such predicate **activated by a target
predicate with the same argument(s) as that which activated chase
(x, y)**, add the predicate similarities of the two relevant
predicates. 1I.e.,
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(i) Given chase (x, y) is activated by chase (a, b), check dog
(x). This is receiving .8 activation from cat (a). Since a also
was first argument of the target predicate that activated chase
(x, y), the criterion is met; hence increment similarity by 1.0
(for chase (x, y)) + .8 (for dog (x)).

(ii) Since there are no other predicates of x, go on to y, the
second argument of chase (x, y). Checking car (y), we find it is
receiving .8 of activation from truck (b). Since b also was the
second argument of the predicate that activated chase (x, y), the
criterion is again met; similarity is incremented by 1.0 + .8.

(3) Since there are no more predicates of y, and no more
arguments of chase (x, y), we are done processing chase (x, y).
Since the two lower-order predicates dog (x) and car (y) were
checked in the process of checking chase (x, y), we are done
altogether.

The result: total similarity of GT to Source is:

0 + .8 + .8 for the three active predicates, +

0 + .8 for the matching binding of x in chase (x, y) and dog (x), +
.0 + .8 for the matching binding of y in chase (x, y) and car (y).
6.2

By contrast, this is what happens for BT and Source:

(1) First, increment similarity counter for each of the "raw"
predicate similarities (i.e., 1.0 + .8 + .8).

(2i) Checking propositions of the first argument of chase (x, y),
we find dog (x) is activated .8 by cat (b). Since b was not the
first argument of the predicate that activated chase (x, y), we
add nothing.

2ii) A check of car (y) also fails for the same reason.

(3) So we are done.

So total similarity is just

1.0 for chase (x, y) + .8 for dog (x) + .8 for car (y) = 2.6.

The general idea, then, is simply to give extra "points" for
consistent local variable bindings across activated predicates.

In our previous proposal for retrieval, we assumed each
predicate (concept) is represented by a set of properties
(features, superordinates, predicates in rules, or whatever).
This is still fine. There are just two crucial changes added in
ARM:

(1) When a predicate activates its properties, and hence all
things that share those properties, identifiers representing the
arguments of the predicate are passed along.

(2) When a predicate in a source is activated by properties
shared with a predicate in the target, the identifiers are used
to perform a check for consistency of variables.

So in the above example, if the target is "The cat chased
the truck”, then activation sent to "chase" properties is marked
with (a,b), "cat" activation is marked (a), and "truck"
activation is marked (b). Then when activation is received at
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the predicates of the source "The dog chased the car", the above
checks for consistent variable bindings can be made.

More generally, the algorithm might be:

(1) Activation spreads via shared properties from each predicate
in target to all similar predicates in potential source analogs.
Each activation trace carries identifiers for the arguments of
the source predicate.

(2) In a given source in memory, each predicate notes which
source predicate(s), if any, are sending it activation.

(3) We collect all propositions in source with predicates that
are receiving activation above some threshold from predicate (s)
of target. This step serves to simplify things by dropping out
all source propositions that are not getting significant
activation. Thus suppose our source is "The dog chased the car"
and the target is "the cat chased the boy". The source
proposition car (y) would be ignored because nothing activates it
significantly.

(4) In the least elegant part of algorithm (I hope), we must
allow for the possibility that a single source proposition will
receive significant activation from multiple target propositions.
Thus suppose target were "The cat chased the wolf". Both "cat"
and "wolf" might activate "dog" significantly. In order to do
argument checking, we need to select one match. There are two
obvious possibilities:

(i) Select the most similar matching predicate, breaking
near-ties randomly if necessary; or

(ii) Perform relation checking with each candidate in turn,

finally using whichever yields greater consistency to increment
similarity counter. In this example, "cat"™ would end up being
preferred to "wolf" because the cat is a chaser, just like dog.

Whichever we do, we should keep all significant similarities
between predicates around, as these will be passed to ACME to
guide mapping. Note that even if ARM errs by matching "dog"™ with
"wolf", ACME should recover if it is given a chance. 1In
calculating activation levels and similarities in ARM, however,
each source predicate is allowed to be activated by just one
source predicate (at a time at least).

(5) All of the above is preliminary to the process illustrated in
the above numerical example. We begin by incrementing counter by
the activation level of each of the significantly active source
predicates.

(6) Then we do argument checking. This is best done
hierarchically, beginning with highest-order predicates.

For each predicate in source active above some threshold
For each argument of predicate
For each other active predicate of that argument

If activation came from source predicate with
consistent argument

Then increment counter by activations of the
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two consistently-activated predicates

And mark that predicate pair as "checked" for
that argument

(7) When all predicate pairs have been checked for consistency of
all arguments, the counter gives total similarity score. If the
score (transformed to reflect Tversky, as specified below) is
above a threshold, ARM calls ACME and reports (a) the entire
representation of the source, and (b) a list from step (3) above
of all similar source-target predicate pairs, with degree of
similarity. This list is used to set ACME’s similarity weights
from the special unit to predicate mappings. All mapping units
involving pairs not on list of "similars" are initialized with
some uniform low positive weight from the su. Thus ARM computes
significant predicate similarities, and ACME doesn’t have to do
it again. This preserves the essence of PI.1l’s "activation
tracing" to start mapping.

D. EXTENSION TO TVERSKY

As a useful refinement, let me suggest a way to extend the
above to compute a Tversky-type similarity measure. The
similarity of a target to a source should be an increasing
function of the degree to which the source is matched by the
target, and a decreasing function of the degree to which the
source is not matched, and a decreasing function of the degree to
which the target is not matched. What is calculated above is
actually the degree to which target matches source. I have been
calling this "total similarity", but it is more properly called
"total overlap" between source and target, the first of the three
contributors to similarity. To properly calculate overall
similarity, observe that the overlap measure has a definite
maximum value (obtained if every predicate was fully activated
with consistent variable assignments; i.e., if target were
actually identical to source).

The maximum would be 7.0 for the above example. By
induction, I believe the maximum overlap score for any set of
propositions is:

1 point for each individual proposition being active, +
2 points for each pair of shared arguments that are activated
consistently.

This maximal value can be calculated for any
representation (both source and target). Call maximum for source
Smax, maximum for target Tmax. Let O be the "overlap score"
calculated by above algorithm. Then overall Tversky similarity
i35

a (0) - b (Smax - 0) - ¢ (Tmax - 0),

where a, b, and c are free parameters representing the relative
weights of Overlap, unique aspects of Source, and unique aspects
of Target, respectively. Given that the implicit task is to
evaluate how similar the Target is to various possible Sources,
it will be most reasonable if a > b > c.

For the time being, however, I’ll neglect this extension,
and continue to refer to the "overlap score" as "similarity".

E. HIGHER-ORDER RELATIONS
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In the simple examples so far, all predicates have constants
as arguments. We will want to extend the basic algorithm to deal
with higher-order relations of the Gentnerian variety that take
propositions (or variables, I suppose) as arguments, e.g.,

"The dog’s chasing the car caused the man to curse the dog"
cause ( chase (dog, car), curse (man, dog)))

In our problem representations, it seems our slots function like
higher-order relations that embed propositions. Thus in the ray
problem we have:

Goal: destroyed (tumor)

which might be written as

Goal (destroyed (tumor))

In the following I will skate on thin notational ice; I hope
you can get the basic idea and invent more approprate predicate
calculus if necessary. I’1ll assume we have these kinds of
logical things:
propositions
predicates

constants (and variables? I’1ll ignore the latter)

Here is a simple case:

Source Target
goal (P30) goal (P1l)
P30 = fused (x) Pl = destroyed (a)
filament (x) tumor (a)

Let’s suppose we have predicate similarities: goal/goal = 1.0
fused/destroyed = .2
filament/tumor = 0

When the target predicates send out activation, "goal" will be
marked (Pl), "destroyed" will be marked (a). The computed
similarity to source (assuming a threshold below .2) will be:

(1) 1.0 for goal (P30) + .2 for fused (x).

(2) Checking consistency, starting with goal (P30):
(i) Note P30 is equivalent to fused (x)
(ii) Checking fused (x), it is activated .2 by destroyed (a).
Since destroyed (a) is P1l, which activated goal
(P30), this is consistent. Add 1.0 + .2.

(3) Filament (x) is ignored because it is not active.
Accordingly, all arguments of active predicates have been checked
and we are done. Total overlap score is:

1.0 for goal (P30) + .2 for fused (x) +

1.0 + .2 because the same proposition, destroyed (a), led to
activation of both goal (P30) and fused (x) =

2:4.

Note that if fused (x) had not been in goal of source, but rather
in initial state, similarity would only have been 1.2.
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In this example, Smax and Tmax are both 7.0. For source, this is
because:

1.0 for each of the three individual propositions = 3.0, +
1.0 + 1.0 because P30 and fused (x) are activated consistently, +
1.0 + 1.0 because fused (x) and filament (x) could be activated

consistently =
7.0

Accordingly, Tversky similarity is
a (0) - b (Smax - 0) - ¢ (Tmax - 0) =

a (2.4) - b (7.0 - 2.4) - ¢ (7.0 - 2.4)

Here is a more complex example of the Gentnerian sort:

Source: The dog’s chasing the car caused the man to curse the dog.
Target: The cat’s chasing the shadow caused the girl to laugh.

Source Target
cause (P11, P12) cause (Pl, P2)
P1ll = chase (x, y) Pl = chase (a, b)
P12 = curse (z, x) P2 = laugh (c¢)
dog (x) cat (a)
car (y) shadow (b)
man (z) girl. (c)

Let predicate similarities be:

identities = 1.0
curse/laugh = .3
dog/cat = .8
car/shadow = 0
man/girl = .5

Here goes calculation:

(1) car (x) is ignored because it is not sufficiently active.
(2) The counter is incremented by 1.0 for cause (P11, P12) +
1.0 for chase (x, y) +

3 for curse (z, x) +
8 for dog (x) +
5 for man (z)

(3) We start checking argument consistency, beginning with the
highest-order proposition, goal (P11, P12), which is activated by
goal (P1l, P2) in target.

(i) Process P1ll. It is equal to chase (x, y). This is activated
1.0 by chase (a, b). Since this is P1, linked to P11, the
result is consistent. Increment counter by 1.0 + 1.0.

(ii) Process chase (x, y). Start with x. Find dog (x). This

is activated .8 by cat (a). This is consistent, so increment by
1:0" % 8.
(iii) Continue with x. Find curse (z, x). This is

activated .3 by laugh (c). Since c doesn’t equal a, this is
inconsistent. Add nothing. No more propositions with x.
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(iv) Process y in chase (x, y). Since car (y) is not
active, there is nothing to check. This completes processing of
P1l1l.

(v) Now pop up and consider P12. This is equivalent to

curse (z, x). This is activated .3 by laugh (c). Since this is
P2, which is linked to P12 by being second argument of goal
proposition, this is consistent. Increment by 1.0 + .3. [NB:

I'm assuming at the level of propositions, as opposed to

predicates, the number of predicate arguments doesn’t neccesarily
have to be equal.]

(vi) Process curse (z, x). This is linked to laugh (c).
Since the number of arguments mismatch, it is impossible for the
arguments to be consistent; hence the processing of curse (z, x)
can cease immediately at this point. This completes processing
of P12, and hence of goal (Pll, P12).

(4) The only source proposition not yet marked as checked is man

(z) . There is no other proposition of z left to compare it with,
so we are done.

The result:

.6 total for the 5 similar predicates, +

.0 + 1.0 because chase (x, y) was activated by appropriate
causer in "cause" proposition, +

1.0 + .8 because dog (x) was activated by the chaser in target, +

1.0 + .3 because curse (z, x) was activated by an appropriate

outcome in "cause" proposition =

=W

8.7.

To check mutual understanding of algorithm: I calculate Smax in
this case to be:

6 for raw similarity, +

12 for argument agreement =
18.

Well--can it (or should it) be done? --Keith
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Paul:

Well here’s the scoop on transfer betwixt farmer’s dilemma
and missionaries & cannibals. It looks hard, I tell you. If
anything brings arrogant acme to its knees, this will be it.

Part of the problem is surely problem representation, which I
hope you can work out. Let me start by giving you the relevant
details from the paper this is taken from so you know what we’re
modeling.

METHOD

Subjects were 3rd and 4th grade kids. In acquisition each
group is given isomorphs of either FD or MC; then they transfer
to new isomorphs of FD or MC. (Another group did Tower of Hanoi
during acquisition; wierdly, they also transfer to MC, although I
can’t see any analogy there at all. 1I’1ll ignore that condition.)
A Control group does transfer but has no acquisition phase.
There are actually three versions of each isomorph. During
acquisition kids alternate between two versions (allowing schema
formation); the third version is used at transfer.

_Acquisition_. Kids hear problem as a little story, which
includes a 7-move (the minimum number) solution. They then
repeatedly try to recall the solution steps in order. This
continues until they make 2 consecutive error-free trials. This
usually took no more than 5 trials. Thus subjects never really
solved problems during acquisition, but rather memorized
solution.

_Transfer . Now they really have to solve a transfer
problem. When child made an error, experimenter corrected it:
said what constraint was violated and returned the object to
where it was prior to error. Importantly: at transfer any legal
7-move sequence was counted as correct. There are only 2
possible solution paths for FD. For MC I think there are 48 if
every missionary and cannibal is considered individually. This
is the key, I think, as to why FD can transfer to MC (there are
many possible mappings, any of which work), but not vice versa.

RESULTS
Transfer
FD MC
Acquisition
FD 7.08 (43) 9.83 (136)
MC 18.17 (349) 7.58 (55)
Control 25.58 (529) 19.33 (411)

The first number is moves to correct (minimum is 7); the number
in parentheses is solution time in seconds. Thus there is
excellent transfer between isomorphs (FD to FD and MC to MC),
very good transfer from FD to MC, and no transfer from MC to FD.
(Remember that isomorphs have different cover stories than used
during acquisition.)

MATERIALS

_Farmer’s Dilemma . Here is a precis of the "Fox, Goose,
and Corn"™ version:
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A man had a fox, a goose, and some corn in a valley. He wanted
to take them to his house on other side of mountain. He had
wagon, which would carry man plus one thing. If fox is alone
with goose, it eats goose; if goose is alone with corn, it eats
corn. How to get fox, goose, and corn across mountain to house
without anything being eaten?

The learned solution is:

Trip 1: man, goose
Trip 2: man

Trip 3: man, fox
Trip 4: man, goose
Trip 5: man, corn
Trip 6: man

Trip 7: man, goose

There is only one other 7-move solution, which differs only
as follows:

Trip 3: man; coxrn
Trip 5: man, fox

The three isomorphs are identical except for objects:

Version 1: fox, goose, corn
Version 2: lion, pony, oats
Version 3: wolf, rabbit, carrots

_Missionaries & Cannibals_

Precis:

Three mssionaries and two cannibals were on one side of a river.
They all wanted to get to other side. They have a boat that
takes a rower and one passenger. If cannibals ever outnumber
missionaries on either side, cannibals eat missionaries. How to
get everyone to other side of river without anyone being eaten?

The learned solution is:

Trip 1: M, C
Trip: 2 M
Trip 3: M, M
Trip 4: M
Trip 5: M, M
Trip 6: M
Trip.7: M; €

All legal 7-move solutions have the same basic form. I think
there are 48 versions that differ only in terms of which
particular character(s) is involved at each step.

NB: Note there are just 2 cannibals. This is easier than usual
version with 3 cannibals (because subjects were kids).

The three isomorphs are:
2 cannibals, 3 missionaries
2 orcs, 3 hobbits

2 Indians, 3 pilgrims

WHAT TO DO
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I suggest trying to get transfer between 2 isomorphs of each
type, and between one of each (FD to MC or vice versa). I assume
transfer between isomorphs should be doable, assuming you can
figure out how to represent problems. (I see there are nasty
things about variables, specificity of objects, and so on.)

Getting transfer from FD to MC will be the trickiest thing. I
don’t know of any analogy program that ever handled such an
imperfect mapping, do you?

I made a quick stab at converting problems to predicate
calculus, but I doubt what I did will be anything you’ll find
useful, so I’1ll skip it. Good luck!




