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Abstract

ACME and Copycat have been viewed as competing models
of analogy making. Mitchell (1993) makes three major
criticisms of ACME in arguing for Copycat's superiority: that
because ACME considers all syntactically possible mappings
it is psychologically implausible and computationally
infeasible; that its representations are rigid and band-tailored
for each problem; and that ACME's representations are
semantically empty. To evaluate these criticisms we applied
ACME to simulating problems in the only domain addressed
by Copycat, letter-string analogies such as. "If ahec is
changed into abd. bow would you change kji in the same
way?" Using representations that include only knowledge
available to Copycat. ACME generated the most common
solutions that people and Copycat produce. In addition,
ACME was able to generate some solutions produced by
people but that are impossible for Copycat. demonstrating
that in some respects ACME is a more flexible analogical
reasoner than is Copycat. These simulations answer each of
Mitchell's criticisms of ACME. ACME can incorporatc
domain-relevant knowledge to allow a principled reduction
in the number of mappings considered: it can generate novel
representations bascd on its domain-general constraints; and
it can incorporate semantic content into its representations.
In addition. ACME has the advantage of being applicable to
many different domains.

Introduction

Copycat attempts to computationally model the processes
underlying the creation of analogies (Hofstadter, 1984,
Mitchell, 1993). Analogies are produced by the interaction
of processes for building structured representations of the
source and target analogs, including processes that lead to
“slippage” of concepts to allow mappings between non-
identical concepts. ACME (Holyoak & Thagard, 1989),
another computational model of analogy making. finds a
systematic mapping between a source domain and a target
domain by building a network based on multiple soft
constraints (in particular, semantic, structural and
pragmatic constraints), and then allowing it to settle using
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parallel constraint satisfaction. ACME and Copycat have
been viewed as competing models of analogy, and Mitchell
(1993) has criticized ACME's approach to making
analogies. It has been difficult to evaluate these alternative
models, however, because they were not designed to be
applied to the same analogy problems. Copycat only solves
problems in the micro-domain of letter-string analogies
(e.g., If abc is changed into abd, how would you change
kji in the same way?). Copycat has had some success in its
restricted domain, both computationally and when
compared to human data (Burns & Schreiner, 1992), but it
is unclear what factors provide the basis for its successes.
ACME is designed to be applicable to analogies in any
domain, but in practice it has usually been applied to cases
in which a complex source story is mapped to a complex
target analog, often in the context of solving the target
analog as a problem. Misunderstandings related to the
comparative advantages and disadvantages of the two
models may be partly due to them being tested on very
different problems. In this paper we try to assess the
models by applying ACME to letter-string analogies

The approaches of ACME and Copycat are similar in
important ways. In particular, the models share the idea
that analogies develop from competition between multiple
soft constraints. Indeed, Mitchell (1993, p. 210) points out
that Copycat has counterparts for each of the three basic
classes of constraints that ACME uses. However, Mitchell
directs three major criticisms at ACME. First, ACME
creates all possible syntactic mappings, which appears to be
computationally infeasible and psychologically implausible.
Second, Mitchell claims that ACME uses knowledge
representations that are unduly rigid and are hand-tailored
for each new analogy. If true, this would imply that ACME
lacks the ability to do the kind of re-representation that is
central to Copycat. Third, Mitchell claims that ACME's
representations are devoid of semantic content. Given that
these criticisms are also applied to another major analogy
model, SME (Falkenhainer, Forbus, & Gentner, 1989),
Mitchell presents Copycat as an approach radically
different from previous analogy models. The status of these
criticisms will be evaluated after describing our attempt to
use ACME (o simulate the solution of analogies drawn
from Copycat's chosen domain.
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Simulating Solutions to Letter-String Analogies

ACME Principles

ACME computes a mapping between a source and a
target domain, represented using a predicate-calculus style
representation, by forming a network containing units
representing potential mappings between elements of the
source and target. The network is constructed to conform
to structural, semantic and pragmatic constraints, and the
final mapping is derived by allowing the network to settle
under parallel constraint satisfaction. The structural
constraints play the dominant role in determining
mappings, as is consistent with findings from research on
human analogical mapping (see Falkenhainer et al., 1989).

Solving letter-string analogy problems requires more
than mapping, however, as new elements must be generated
in order to form the solution. An extension to ACME
proposed by Holyoak, Novick, and Melz (1994) uses a
copying with substitution and generation algorithm
(CWSQG) to allow ACME to perform analogical pattern
completion by generating new elements where they are
necessary.  This mechanism assumes that if some
proposition exists in one analog, but has no corresponding
proposition in the other, then a new "image" proposition in
the other analog may be generated by substituting mapped
predicates and objects and generating counterparts for
unmapped components.

Representations

Given that many of the criticisms Mitchell makes of
ACME are related to its representations, it is necessary (o
carefully explain how our representations were constructed.
We will focus on the problem, "If abe is changed into abd,
then how would you change kji in the same way?" Because
the abc:abd part of the problem was always the same in
problems used here, problems will be referred to by the
string to be changed, for example, kji.

The abc:abd part of the analogy is treated as the source
domain while the kji and answer strings form the target.
The representation of the source was divided into a number
of logically distinct fields. In ACME, elements of a source
field are only mapped to elements in the same type of field
in the target domain. Thus by using fields we limit the
number of mapping units formed and increase the
likelihood of appropriate mappings being formed.

A semantic field was declared that contained information
about what is the predecessor and successor of each letter of
the alphabet (where the "letters" represent types, rather
than tokens, of letters that are part of a string). Hence the
source domain semantic field consisted of predicate-
calculus statements of the form:

(PRED_OF ( A* B*) A_predecessor_of_B)
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( SUCC_OF ( B* A* ) B_successor_of_A)

These two statements respectively indicate that the letter
type a (types are denoted by *) is the predecessor of letter
type b, and that b is the successor of a. While this field
should in principle contain the successor and predecessor
relations between all letters in the alphabet, for the present
simulations only relevant letters were included in this field
in order to avoid the formation of a large number of
irrelevant mapping units. The predecessor and successor
relations for letters a through e were included. Copycat
never produces answers to this problem that require
knowledge about letters outside of this range.

A first_string field contained propositions about the first
string (abc), such as which letters are left of each other,
which are right of each other, and what the start, middle
and end letters were. For example:

(RIGHT (B1 Al ) B1_right_of_Al)
( START ( A1) Al_starts string )

The first statement indicates that a token of the letter b in
abc (string 1) is to the right of a token of the letter a. Left
and right relatons for all three letters in abc were
represented. The second statement indicates that the letter
a is at the start of the string.

A second_string field contained information about the
second string (abd), including the same type of information
given for the first string, that is, which letters are to the
right and left of each other and which are at the start,
middle and end of the string. For example,

(RIGHT ( D2 B2 ) D2_right_of_B2)

In addition, statements were included that indicated which
letter types had been retained from the first string, which
had been deleted, and which added in order to form the
second string. In total these leave, add and delete
statements were:

(LEAVE ( A2 ) A2_retained )
(LEAVE ( B2 ) B2_retained )
( DELETE ( C2 ) C2_deleted )
( ADD (D2 ) D2_added)

First_string_instantiated and second_string_instantiated
fields served to link the letter type information in the
semantic field to specific letter tokens. The following are
examples for the first and second strings respectively,

(INSTANTIATE ( A1 A*) Al_isa_A)
(INSTANTIATE ( A2 A*) A2 isa_A)



All letter tokens used in the string were instantiated in this
way.

A relations field specified which letters stay as the same
type and which change between the two strings. This field
consisted of the following statements:

(SAME ( A1 A2) Al_stays_as_A2)
(SAME (B1 B2) B1_stays_as_B2)
(CHANGE (C1 D2 ) C1_changed_into_D2)

The representation of the target domain was structured in
the same way as the source domain. The semantics field
had the same type of successor and predecessor statements,
but for the letters f through m. The first_string field
contained the same type of statements as the source version
did, but for the string kji instead of abc.  The
second_string field was left highly impoverished, in that it
was limited to listing the potential additions and deletions
from that string. The second-string field contained LEAVE
statements for K2, J2 and 12, and DELETE statements for
the same letters. In addition there were ADD statements
for all letters between d and m (including new tokens of the
k, j and 1 letter types). The relations field was left blank.
The details for the later two fields, which provide ACME's
answer to the problem, had to be filled in by the CWSG
algorithm. The instantiation fields instantiated all letters
that were used in any other field.

Evaluating ACME's Performance

Our use of ACME to simulate solution of letter-string
analogies was guided by several constraints. First, we
based our representations entirely on concepts that have
been incorporated into Copycat's "slipnet™:  rightmost,
leftmost, successor, predecessor, first, and last. The slipnet
also contains all the letters of the alphabet and links from
each letter to its successor and predecessor, and Copycat
makes a type-token distinction for letters. By equating its
representational elements with those assumed by Copycat,
we ensured that ACME's representations would be as
semantically rich as those used by Copycat, as intuitively
obvious, and as general in their applicability to multiple
letter-string analogies.

People produce a wide range of answers to these
problems. Copycat also produces a variety of answers
because on different runs it builds different structures and
mappings that underlie alternative answers, by
probabilistically invoking different small pieces of
structure-building code. In contrast, ACME operates by
over-generating all syntactically possible mappings, and
selecting the most coherent subset by a deterministic
algorithm. Accordingly, the representation of the second
string in the target included an overly-general list of
possibilities, different subsets of which would constitute
alternative answers. ACME's pragmatic constraint
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provides features that allow it to simulate variations in
active representations and mappings. In different runs,
alternative critical mappings can be promoted by being
presumed, and different parts of structure can differ in
importance. A presumed mapping is given additional
external excitation, and less important components are
inhibited (Spellman & Holyoak, 1993). Critical mappings
would be those for predecessor, successor, right, left, start
and end, for which the alternative mappings (to the same or
to the opposite relation) appear to underlie many of the
answers Copycat produces for letter-string analogy
problems. By varying which of these mappings were
presumed on different runs we attempted to generate
alternative answers using ACME's CWSG algorithm. On
some runs we deleted some structural elements (a crude
implementation of differential importance) to simulate
generation of answers that appear to reflect insensitivity to
certain aspects of structure.

It is important to note that using “presumed" mappings
does not in itself provide ACME with a solution to the
problem. The presumed mappings do not themselves
constitute an answer; rather, they bias the concept
mappings from which an answer emerges after constraint
satisfaction is performed. Copycat arrives at these
mappings though the probabilistic running of codelets. In
its current implementation ACME is deterministic;
however, it would be possible to have the strength of the
critical mappings altered probabilistically. But whether a
model is implemented in a probabilistic or deterministic
fashion does not appear to be a major issue at stake in
evaluating models of analogy.

Qur aim in this effort was not to exhaustively generalte all
possible answers, nor to match the details of the probability
distribution of answers produced by people, which would
require a thorough search of parameter space. Rather, we
focused on generating the most common solutions to
problems that have been extensively tested with people. If
ACME can in fact generate the answers most frequently
provided by people using plausible assumptions about
differential presumed mappings and importance of
structural elements, this would demonstrate that its
approach to analogy is at least viable as a psychological
model of solving letter-string analogies. In addition, we
will report examples of solutions generated by ACME (and
some people) that Copycat is unable to generate. Such
cases undermine claims that Copycat is inherently less
rigid.

Simulation Results

In all simulations the following parameters were kept
constant: excitation, .00S; inhibition (structural), -.16;
decay, .005; similarity of identical predicates, .005; starting
activation of all units .001. The Grossberg updating rule,
with maximum activation of 1.0 and minimum activation



of -.3, was used to settle the network. These paramelers
were chosen because they had been used to explore other
domains with ACME. The mappings of LEAVE=LEAVE,
ADD=ADD, and DELETE=DELETE were always
presumed, as these predicates have no other sensible
mappings.

ACME was presented with two problems: the kji
problem, and the xyz problem: "If abc was changed into
abd, then how could xyz be changed in the same way?"
(with the xya answer prohibited. Note that solutions to
letter-string problems will be given in italics, problems
themselves will be in bold.) These problems were chosen
because they have been solved by Copycat, and Burns
(1994) has administered them to large groups of people.
(Another problem, mrrjjj, meets this criterion as well, but
requires addressing the issue of how groupings of elements
can be represented, which we have not yet attempted.)

The kji problem

Copycat has been applied to the letter-string analogy kji,
and Mitchell (1993, p. 80) reports that over a thousand runs
its most common solutions were kjh, kjj and [ji. Bumns and
Schreiner (1992) gave the kji problem to college students
and found that kjh, kjj and [ji were the most common
solutions, although people also generated a wide variety of
additional answers.

Each ACME run used the representation described
above, from which a network of 421 units and 4463 links
was formed. The first run of the program was made with
no presumed mappings. The following relations field was
generated by the CWSG algorithm:

( SAME (K1 K2) T12)
(SAME (11 J2) T13)
(CHANGE (11 H2) T14)

This field represents the answer kjh, as K1 and J1 stay as
tokens of the same letters (k and j, respectively), while I1 is
changed into an A. Thus the answer that is most ecasily
produced by ACME is also commonly produced by both
Copycat and by people. The predominance of the answer is
not surprising, as it is a highly structurally coherent
solution (based on mapping successor to predecessor and
vice versa), and ACME is strongly driven by structural
constraints.

In order to try to produce the /ji answer the mappings of
START=END and END=START were presumed. This
mapping underlies Copycat's generation of this answer (see
Mitchell, 1993, p. 113). Running the program with such a
presumption generated the propositions:

( SAME (11 12) T12)
(SAME (J1 J2) T13)
(CHANGE (K1L2) T14)
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ACME thus succeeded in producing the /i solution. A run
of the program that instead presumed the mappings of
LEFT=RIGHT and vice versa also generated the /ji answer.

The other common answer produced by Copycat and by
people was kjj. The key to producing this solution appears
to be ignoring the fact that k is the successor to j, whereas a
is the predecessor of b, while nonetheless mapping
successor to successor and applying this mapping to the
change in the last element. Loosening of the structural
constraints by ignoring the relationship between k and j
was simulated by removing the propositions concerning K2
and J2 in the target domain's second_string_instantiated
field. Running this representation produced the kjj answer.
In effect, this run simulated Copycat failing to build or
maintain the links between k and j, as it must fail to do in
order to generate the kjj answer.

In another run we presumed the mappings
SUCC_OF=SUCC_OF and PRED_OF=PRED_OF, as well
as START=START, END=END, obtaining the answer kjl.
This solution requires tolerating the inconsistency between
the two pairs of presumed mappings. This answer is
occasionally produced by people (Burns, 1994), but has
never been reported to have been produced by Copycat.

The xyz problem

The xyz problem is of interest because the instructions
block the most natural answer, xya, which arises from
people’'s tendency to view the alphabet as circular.
Copycat's most common answer to the xyz problem was
xyd, and its next most common was wyz (Mitchell, 1993, p.
82). Burns (1994) found that for xyz people generated wyz
most often, as well as a large range of other answers.
ACME's representation of this problem was identical to
that for kji in the source domain, but in the target domain
every k was changed into an x, every j to y and every i to z.
In addition, the semantics and instantiate fields, as well as
the ADD propositions in the second_string field, were
modified to reflect the use of a range of letters between u
and z, as well as d.

The first run using this representation used no presumed
mappings and generated the answer zyw. This answer is
never reported to have been produced by Copycat, but a
number of people do generate it (Burns, 1994). By setting
as presumed the mappings of START=END and
END=START, the answer wyz was generated. The xyd
answer appears to be a simplistic solution derived by
ignoring all predecessor and successor information. We
successfully simulated generation of xyd by replacing the
semantic fields with more primitive letter-type definitions,
such as (A_type (A*)).



Discussion

Our simulations show that the ACME model, which has
been applied to a wide range of analogical mapping and
wransfer problems in many different domains, can also
produce reasonable solutions to letter-string analogies. For
the two problems we have investigated ACME can find the
most common solutions generated by both people and
Copycat, and in addition can find some solutions that
people generate but Copycat cannot. In light of this success
we can evaluate the status of Mitchell's (1993) criticisms of
ACME.

The first criticism was that ACME is unrealistic 1n
creating mapping units for all possible syntactic matches.
Our simulations reveal that principled use of subfields in
the representation can reduce the number of mapping units
formed, providing an illustration of the general point that
domain knowledge, when available, can be used to reduce
the space of possible mappings. Mappings only occur
petween members of the same subfields, each of which can
be small. Subfields reduce the computational explosion
that can occur when units for all possible syntactic
mappings are formed. The psychologically plausibility of
the mappings formed is harder to determine, as we do not
know what mappings people may initially form at an
implicit level. Copycat restricts the possible mappings even
further than ACME because the former model is designed
to deal only with a single domain of problems. More
specialized network-construction rules based on domain-
specific knowledge could also be built into ACME, but this
would not seem to constitute a theoretical advance. In fact,
the construction of a diverse set of potential mappings
contributes to ACME's flexibility in constructing a wide
range of answers, some of which turn out to be meaningful.
These include some human solutions that Copycat's
restrictions render it unable to generate. It should also be
noted that ACME’s basic constraints can be realized in
architectures that eliminate the need for explicit generation
of mapping units (Hummel, Burns & Holyoak, 1994).

The second criticism of ACME was that its
representations are inflexible, because they supposedly are
hand-tailored for each problem and do not change during
the running of the program. This criticism is misleading,
in that it hinges on what is meant by "re-representation”.
In a sense, ACME dynamically re-represents the problem
as it runs, because its representation is a product of the
current states of activation of the mapping units.
Furthermore, ACME finds “slippages” in the form of
mappings between non-identical concepts, such as
successor and predecessor, and it builds new structure
using its CWSG procedure. It is certainly true that the
mappings that can be made are constrained by the mapping
units that are initially formed; however, Copycat is
similarly limited by the range of slippages permitted in its
slipnet. ACME's ability to generale solutions that people

produce but Copycat cannot demonstrates that ACME can
actually be more flexible than Copycat, even in the specific
domain to which Copycat has been tailored. The kjl answer
to the kji problem is fundamentally impossible for Copycat
to generate, as it involves defining a change relative to one
letter (k) but then applying it 10 a different letter (i). In
Copycat the required double slippage of end to start and
back again is restricted to occur only once. For the same
reason Copycat is also unable to produce the zyw answer 10
the xyz problem. ACME is less brittle than Copycat in this
regard because it treats structural consistency as a soft
constraint, which does not require global consistency of the
entire set of favored mappings.

The current ACME simulations are representationally
limited in that the model lacks the ability to organize the
elements of the problem into meaningful groups, and thus
is unable to deal with problems such as mrrjjj. Copycat
includes specialized procedures for building structures
representing certain groupings, and hence can produce
reasonable answers for such problems. Nonetheless, it is
important (0 recognize that Copycat is also limited by the
structure-building routines that have been programmed into
it. For example, one of the more cOMmMOoN answers offered
10 the mrrjjj problem by people is mrsjjk, in which every
third letter is changed into its successor (Burns, 1994).
Because Copycat does not include a procedure to link every
third letter, it cannot generate this solution. The apparent
successes of Copycat in dealing with groupings, as well as
its limitations in this area, arise from it being programmed
with specific knowledge. Such knowledge could also
improve ACME's performance if the latter model were
modified to deal with a specific domain.

The third criticism, that ACME is semantically empty,
dissipates once it is recognized that ACME can readily
incorporate the same semantic knowledge as is included in
Copycat. Mitchell (1993) claims that Copycat's concepts
are semantically meaningful because they are embedded in
a network of related concepts; but the same claim can be
made for any model that accepts hand-coded
representations  of domain concepts and  their
interconnections.

Our ACME simulations illustrate that ACME and
Copycat share an emphasis on producing structured
solutions. The fundamental commonalties of the two
approaches are highlighted by Mitchell's observation that
Copycat includes counterparts to the constraints on human
analogy making that ACME takes as fundamental.
Nonetheless, the implementations of the programs differ
vastly, and it is possible that the Copycat approach will
eventually prove more successful than that of ACME. Itis
yet to be demonstrated, however, that Copycat is superior
on either psychological or computational grounds, or that
its computational realization embodies any distinctive
theoretical constraints on analogy making. In addition,
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until it is shown that Copycat can be generalized, the model
will remain vulnerable to the criticism that its successes
depend more on its specialized domain knowledge than on
general principles that underlie human analogy making.
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