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Abstract

Computational models of verbal analogy and relational
similarity judgments can employ different types of vec-
tor representations of word meanings (embeddings) gen-
erated by machine-learning algorithms. An important
question is whether human-like relational processing de-
pends on explicit representations of relations (i.e., repre-
sentations separable from those of the concepts being re-
lated), or whether implicit relation representations suf-
fice. Earlier machine-learning models produced static
embeddings for individual words, identical across all
contexts. However, more recent Large Language Mod-
els (LLMs), which use transformer architectures applied
to much larger training corpora, are able to produce
contextualized embeddings that have the potential to
capture implicit knowledge of semantic relations. Here
we compare multiple models based on different types of
embeddings to human data concerning judgments of re-
lational similarity and solutions of verbal analogy prob-
lems. For two datasets, a model that learns explicit
representations of relations, Bayesian Analogy with Re-
lational Transformations (BART), captured human per-
formance more successfully than either a model using
static embeddings (Word2vec) or models using contextu-
alized embeddings created by LLMs (BERT, RoBERTa,
and GPT-2). These findings support the proposal that
human thinking depends on representations that sepa-
rate relations from the concepts they relate.
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Introduction
A core property of human thinking is that the mental
representation of a relation is separable from the repre-
sentations of the concepts it relates (Hummel & Holyoak,
1997). That is, for humans a relation representation is at
some cognitive level explicit, so that it can itself serve as
an input to mental processes. In particular, judgments of
similarity show dissociations between the contributions
of entity-based and relational similarity. Relational sim-
ilarity tends to be more potent when overall relational
similarity across analogs is relatively high (Goldstone,
Medin, & Gentner, 1991), when the objects in visual
analogs are sparse rather than rich (Markman & Gen-
tner, 1993), and for older as compared to younger chil-
dren (Gentner & Rattermann, 1991). When reasoning
by analogy, human adults can sometimes identify corre-
spondences between situations based primarily on simi-
lar relations, even when the entities involved are very dis-
similar (Gick & Holyoak, 1980). Explicit relation repre-

sentations provide the basis for flexible generalization to
novel instantiations of relational patterns (e.g., Doumas,
Puebla, Martin, & Hummel, 2022).

An important goal for cognitive science is to charac-
terize the representation of relations, and in particu-
lar to show how explicit relation representations could
be acquired from non-relational inputs, while avoid-
ing hand-coding of the inputs (Lu, Chen, & Holyoak,
2012). In recent years, advances in machine learning
have enabled the generation of high-dimensional vectors
of continuous-valued features, termed embeddings, which
can be interpreted as representations of word meanings
(for a general overview see Günther, Rinaldi, & Marelli,
2019). Embeddings correspond to activation states in
the hidden layer of a neural network that has been
trained to predict patterns of words that co-occur in
large text corpora. Notable early embedding models in-
clude Word2vec (Mikolov, Sutskever, Chen, Corrado, &
Dean, 2013) and GloVe (Pennington, Socher, & Man-
ning, 2014), both of which have been used to model hu-
man judgments based on similarity between words (Bha-
tia, Richie, & Zou, 2019). Embedding models such as
Word2vec have also been used to solve four-term ver-
bal analogies by computing the cosine distance between
difference vectors for A:B and C:D pairs (Zhila, Yih,
Meek, Zweig, & Mikolov, 2013). A difference vector
provides an implicit representation of the specific re-
lation between two particular concepts. But although
Word2vec achieved some success for analogies based on
semantically-close concepts, it fails to reliably solve prob-
lems based on more dissimilar concepts (Linzen, 2016;
Peterson, Chen, & Griffiths, 2020).

An alternative approach, developed in a model
termed Bayesian Analogy with Relational Transforma-
tions (BART) (Lu et al., 2012; Lu, Wu, & Holyoak,
2019), is to use embeddings of individual words as in-
puts to a learning mechanism that yields explicit rep-
resentations of relations. BART operates on word em-
beddings, taking Word2vec embeddings for pairs of in-
dividual words as inputs. From Word2vec embeddings,
BART learns dimensions of disentangled relation vectors
in a transformed space. As illustrated in Figure 1, BART
effectively re-represents the relation between two specific
concepts as a vector in a new semantic space (for a re-
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Figure 1: Learning Explicit Relation Vectors from Embeddings
Left: Schematic illustration of BART model architecture for relation representation. The bottom layer of the BART
model is a concatenated input vector based on the two words in a pair; the top layer indicates the set of learned
relations (ellipses indicate additional relations beyond the three illustrated here). After learning, the semantic relation
between any two words is represented as a vector of the posterior probabilities of each learned relation; the relation
vector (Rel) linking love and hate is shown on the top as an illustration. Right: A schematic illustration of semantic
relations formed by BART to generate a transformed (and disentangled) space in which pairs instantiating similar
sets of relations tend to show similar patterns in relation vectors, and hence are located close to one another in the
relation space.

lated approach see Roads & Love, 2020). The dimensions
in BART’s relation vectors are meaningful semantic re-
lations that have been identified in classic psychometric
and psycholinguistic research (Bejar, Chaffin, & Embret-
son, 1991; Chaffin, 1989), including major classes such
as class inclusion (tree : oak), part-whole (hand : fin-
ger), similar (road : highway), contrast (hot : cold),
case relation (read : book), and cause-purpose (joke :
laughter). Each element in BART’s relation vector cor-
responds to the posterior probability that a particular
meaningful relation holds between the concepts. These
distributed (but disentangled) representations enable the
model to generalize to new word pairs that may be linked
by relations on which the model had not been specifi-
cally trained. By comparing the similarity between rela-
tion vectors (assessed by cosine distance), semantic rela-
tion representations derived by BART have been used to
solve verbal analogies in A:B :: C:D format (Lu et al.,
2019), to predict human judgments of relation typicality
and similarity (Ichien, Lu, & Holyoak, 2021), and to pre-
dict patterns of similarity in neural responses to relations
during analogical reasoning (Chiang, Peng, Lu, Holyoak,
& Monti, 2021). In each case BART’s performance ex-
ceeds that of the baseline Word2vec model, supporting
the importance of incorporating explicit relation repre-
sentations into models of human reasoning.

However, machine-learning models developed in the
field of Natural Language Processing (NLP) provide new
potential alternatives as predictors of human judgments

of relational similarity. Large Language Models1 (LLMs)
equipped with self-attention mechanisms (Vaswani et
al., 2017) have driven large increases in performance in
many natural language processing tasks (for a review see
Kalyan, Rajasekharan, & Sangeetha, 2021). The inno-
vation behind the success of LLMs in natural language
processing is known as the transformer block, which em-
ploys a multi-head attention mechanism (for a visual in-
troduction to transformers see Alammar, 2018, and for
visualization of the self-attention mechanism see Vig &
Belinkov, 2019). For each token in an input sequence,
a transformer block creates a representation for that to-
ken through multiple weighted combinations of the rep-
resentations of all the tokens in the sequence. The multi-
head attention mechanism determines the weights given
to each representation in the sequence. These reweighted
representations are then fed through a fully connected
neural network layer. The full LLM is a deep stack
(typically 12 or more) of these transformer blocks with
one or more task-specific final output layers. LLMs are
typically trained using either masked language modeling
(where some input tokens are corrupted and the model
attempts to predict the masked words) or autoregres-
sively on next-word prediction tasks. This training is
done over multi-billion word corpora of text.

In addition to improving performance on applications
to natural language processing, LLMs have been shown

1We use the term LLM rather than transformer because
the transformer block itself is a deep neural network module
that is not specific to text input.



to better predict brain activity and behavior during lan-
guage processing than static word embeddings, includ-
ing during naturalistic story comprehension (Schrimpf et
al., 2020). Accuracy of an LLM on next word prediction
is related to measures of processing difficulty of words
during reading (Wilcox, Gauthier, Hu, Qian, & Levy,
2020). Probing tasks have found that LLMs learn struc-
tural representations of sentences similar to those posited
by theoretical linguists (Manning, Clark, Hewitt, Khan-
delwal, & Levy, 2020). Although devised as an “engi-
neering” solution for pretrained representations for NLP,
there is potential for these models to inform the study
of brain and behavior.

An LLM uses transformer blocks to yield a context-
specific representation for each token in the input se-
quence that is conditioned on itself and the other to-
kens in the sequence. As little as 5% of the variance in
higher, contextualized layers of LLMs can be accounted
for by the initial embedding layer, the LLM’s analogue
to static word embeddings (Ethayarajh, 2019). These
context-specific representations distinguish LLMs from
static word embedding techniques such as Word2vec and
GloVe. Static word embeddings are insensitive to local
word contexts and ordering, and instead (either in an
explicit or implicit fashion) perform factorization of the
global co-occurrence matrix of all words in the training
corpus (Levy, Goldberg, & Dagan, 2015). The success of
LLMs can be attributed in part to their ability to learn
from complex interactions between words. For example,
an ambiguous word such as bank can be disambiguated
by local context (e.g. I swam by the river bank versus I
dropped my deposit in the bank). An LLM will yield a
separate representation for bank in each sentential con-
text, whereas static word embeddings will yield only a
single representation for bank, encoding ambiguity only
implicitly by clustering semantic neighbours of its senses
in semantic space (Günther et al., 2019).

Despite these important differences, representations
derived from LLMs, like static word embeddings, con-
tain no explicit relational component. The adequacy of
LLMs for capturing human abstract generalization re-
mains open to question (Balasubramanian, Jain, Jindal,
Awasthi, & Sarawagi, 2020; Ettinger, 2020). With re-
gards to analogy, the performance of LLMs is often worse
than that of static word embeddings (Ushio, Espinosa-
Anke, Schockaert, & Camacho-Collados, 2021). For a
review of work on unpacking the success of LLMs and
the nature of their internal representations, see Rogers,
Kovaleva, and Rumshisky (2020).

In the present paper we compare contextual word em-
beddings derived from LLMs, static word embeddings,
and BART, as predictors of human judgments in two
studies of relational similarity. The first study we con-
sider (Peterson et al., 2020) derived crowd-sourced hu-
man judgments of relational similarity on a subset of

relation pairs taken from a set of norms created by Ju-
rgens, Mohammad, Turney, and Holyoak (2012). The
second study we consider (Lu et al., 2019) measured hu-
man ability to solve a set of verbal analogy problems in
A:B :: C:D format.

Methods

Materials

Crowdsourced Relational Similarity Judgments Peter-
son et al. (2020) collected crowdsourced human similarity
judgments for 6191 relation pairs. Each pair was drawn
from one of the ten major relation types in the taxon-
omy proposed by Bejar et al. (1991), which provided the
basis for the normative data collected by Jurgens et al.
(2012). On each trial, participants were presented with
two pairs of words, and were instructed to rate on a 1-7
scale the degree to which the two word pairs instantiate
the same semantic relation. We compare computational
models as predictors of mean human judgments of rela-
tional similarity for individual pair combinations.

Static Word Embeddings To obtain static word embed-
dings, we used pretrained Word2vec word embeddings 2.
To directly predict human judgments of relational simi-
larity, the relation between any given pair is represented
by the difference vector between its constituent words.
The degree of (dis)similarity between pairs is predicted
by the cosine distance between the two difference vectors
(a measure termed Word2vec-diff).The alternative mod-
els (see below) all also derive their predictions based on
cosine distance.

BART Model of Relational Similarity BART repre-
sents the relation between a given word pair as a vec-
tor, in which each dimension corresponds to a differ-
ent learned relation. The value along each dimension
is based on posterior probability that the word pair in-
stantiates a particular relation. For instance, finger :
hand is a good example of the relation X is a part of Y
but a poor example of the relation X causes Y, so its
vector would have a high value for the dimension corre-
sponding to the former relation but a low value for the
dimension corresponding to the latter. BART is trained
using Word2vec embeddings of pairs of individual words.
We used a version of BART that generates vectors based
on 79 dimensions, where each dimension represents one
of 79 relations learned from word pairs provided by Jur-
gens et al. (2012). In predicting human similarity judg-
ments, previous work has shown that fits are improved
by raising the value on each dimension to the power of 5,
thereby increasing the relative weight of the most prob-
able relations (Ichien et al., 2021). This transformation
also proved helpful for BART in the simulations reported
here.

2https://code.google.com/archive/p/word2vec/
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Figure 2: Model Comparisons for Human Judgments of Relational Similarity
Predictions of each model (and each layer of LLMs) for human relational similarity judgments obtained by Peterson
et al. (2020). BART (red line, all plots) outperforms Word2vec (purple line, all plots), which is based on static
embeddings, as well as all layers of all three LLMs, which are based on contextual embeddings. Among the LLMs,
the highest layers of gpt2-large yield the predictions with the greatest correlation with human judgments. Solid lines
of the LLMs indicate goodness of fit from a linear effect of distance and dashed lines from a spline fit to distance.

LLM Relation Representations To examine perfor-
mance on relational similarity judgments for transformer
models that yield contextual embeddings of words, we se-
lected three of the most used LLMs3: BERT (bert-base-
uncased) Devlin, Chang, Lee, and Toutanova (2018),
RoBERTa (roberta-base) (Liu et al., 2019), and GPT-2
(gpt2-large) (Radford et al., 2019). We extracted rep-
resentations using the transformers library (Wolf et al.,
2020). We use capitalized names to refer to specific LLM
architectures, and lowercase names with hyphens to in-
dicate a specific set of pretrained weights available in
the transformers library using that architecture. BERT
uses bidirectional attention and is trained on a masked
language-modeling task. RoBERTa shares its architec-
ture with BERT, but receives longer training with larger
batch sizes and with corrupted words randomized dur-
ing each epoch of training, leading to improved empirical
performance over BERT on many NLP tasks. GPT-2 is
trained with a next-word prediction task and differs in
the attention mechanism in its transformer blocks: the
representation for a token at each point can only at-
tend to its own representation and the representation
of the tokens that precede it. This constraint differs
from BERT and RoBERTa, in which attention mecha-
nisms allow tokens to attend to all other tokens in the
sequence at all points. As well, gpt2-large is a much
larger model than bert-base-uncased and roberta-base,
containing some 750 million parameters and 36 layers,
compared to 110 million and 12 layers for bert-base and
125 million and 12 layers for roberta-base.

For each of the LLMs, we extracted semantic distances
between relation pairs. In doing so, an important con-

3According to the most-used online API for these mod-
els, https://huggingface.co/models, bert-base-uncased
has been downloaded 12.6 million times, roberta-base 5.89
million times, and gpt-2 14.9 million times.

cern is that previous work has shown that raw hidden
states from LLMs tend to have a small number of hidden
units with large“outlier”activations, leading to poor per-
formance on tasks involving the calculation of distances
between states of the network (Sajjad, Alam, Dalvi, &
Durrani, 2021; Timkey & van Schijndel, 2021). To avoid
this problem, we normalized activations obtained from
each network by inputting 10,000 random sentences from
the Blog section of COCA (Davies, 2008), recording the
mean and standard deviation of activations for each hid-
den unit, and then applying a z-score transformation to
activations prior to any further transformation.

To obtain embeddings for comparison to human sim-
ilarity judgments, we placed the two words in each pair
into a sentence in the form “A is related to B”. This sen-
tence form matches the input to human similarity judg-
ments in the study conducted by Peterson et al. (2020),
where no explicit semantic relation was given to partic-
ipants, and word pairs were only described as “related.”
From each layer we extracted representations for only the
word tokens A and B (averaged across the token dimen-
sion if the model’s tokenizer splits the word into subword
units). These values became a 768-1280 dimensional vec-
tor representation for words A and B. As for Word2vec,
distance between relation pairs was predicted using the
cosine distance between difference vectors. Thus each
LLM generated a set of predictions using each of its lay-
ers, allowing us to assess which layer(s) provided the best
match to human judgments of relational similarity.

Results of Model Comparisons: Relational
Similarity

Figure 2 presents the results of regressing relation pair
distances derived from BART, Word2vec (static embed-
dings), and three LLMs (contextual embeddings) on



human judgments of relational similarity obtained by
Peterson et al. (2020). Among all the models tested,
BART distances between relation pairs yielded the most
accurate predictions of human relation similarity judg-
ments (r = 0.46). The highest performing LLM layers
were gpt2-large layer 28 (r = 0.34), roberta-base layer
6 (r = 0.22), and bert-base-uncased layer 7 (r = 0.27).
Among the three LLMs, higher layers of gpt2-large out-
performed Word2vec. Some middle layers of bert-base-
uncased also exceeded the performance of Word2vec,
while roberta-base was the worst performing LLM, ex-
ceeding the accuracy of Word2vec only for a few middle
layers. It is noteworthy that none of the LLMs exceed
Word2vec performance using their first layer (which like
Word2vec is based on static embeddings).

BART distances underwent a power transformation;
accordingly, to ensure that BART’s superior perfor-
mance was not purely the result of this transformation,
we tested non-linear transformations of the LLM dis-
tances. For distances from each layer and model, we fit
a thin plate regression spline with a maximum of 10 de-
grees of freedom with R package mgcv (Wood, 2017).
Effective degrees of freedom exceeded 3 for all models,
indicating the effect of distance on relation similarity is
nonlinear. However, while nonlinear models improved
goodness of fit across the board, the improvements never
increased LLM performance to the level of BART (see
dashed lines, Figure 2).

Model Comparisons for Verbal Analogies

Judgments of relational similarity are closely related to
the solution of verbal analogies. In a second set of model
comparisons, we assessed the performance of the same al-
ternative computational models on a set of verbal anal-
ogy problems for which data on human performance is
available.

Materials

UCLA Verbal Analogy Test The UCLA Verbal Anal-
ogy Test (VAT) (Lu et al., 2019) consists of 80 analogy
problems in the form A:B :: C:D versus C:D’, with 20
items representing each of four general relations: cat-
egory member, function, antonym, and synonym. The
task requires selection of one of two forced-choice alter-
natives (D) as the better analogical completion, where
the incorrect option (D’) is also closely related to the C
term; e.g., artificial : natural :: friend : enemy (correct)
versus friend : relative (incorrect).

Deriving Model Predictions For all models, represen-
tations were derived in the same manner as in the simu-
lations of relational similarity judgments reported above
(except that the power transformation was omitted for
the BART simulation to be consistent with Lu et al.,
2019). A model was considered to select the correct an-
swer to a problem if it yields a cosine distance between

A:B and C:D less than that between A:B and C:D’.

Results of Model Comparisons: Verbal
Analogies

Figure 3 presents performance of each type of model for
each of the four relation types in the UCLA VAT. BART
has the highest overall performance at .84 correct, which
matches the human mean of .84 correct reported by Lu
et al. (2019). The next highest accuracy is achieved
by gpt2-large (across layers: min=0.575, max=.80,
mean=0.70), followed by Word2vec (0.69 correct), fol-
lowed by BERT (across layers: min=0.6, max=.725,
mean=0.66), and roberta-base (across layers: min=0.59,
max=.74, mean=0.66). The only LLM variants that nu-
merically exceed BART’s accuracy are a single layer of
BERT on the antonym relation and a few layers of gpt2-
large on the antonym and synonym relations. However,
for the LLMs the best performing layers are not con-
sistent across relations, and the best performing single
layer does not exceed BART’s overall accuracy.

Discussion

We compared multiple models of relational comparisons,
each based on a different source of vector representa-
tions of meanings, to human data concerning judgments
of relational similarity and solution of verbal analogy
problems. The basic decision criterion for determining
relation similarity (cosine distance between vector rep-
resentations) was identical across all models. For both
human judgments of relational similarity between word
pairs (Peterson et al., 2020) and human solution of ver-
bal analogy problems (Lu et al., 2019), the best match to
human performance was obtained using BART, a model
that learns explicit representations of relations, coded as
vectors in a transformed similarity space. BART cap-
tured human performance more successfully than either
a model using static embeddings (Word2vec) or mod-
els using contextualized embeddings created by LLMs
(BERT, RoBERTa, and GPT-2).

However, considerably more work will be required to
assess the potential of LLMs to support human-like re-
lational reasoning. LLMs have great flexibility in how
they can be applied to solve verbal analogies and similar
tasks. Not only can embeddings be taken from different
layers in the network (as explored here), but the con-
textualized embeddings can be produced by indefinitely
many different text contexts. Here we used a very sim-
ple context, a sentence in the form “A is related to B”,
which is arguably a natural expression for a similarity
statement. Other choices for formatting the inputs to
LLMs (e.g., sentences with linking phrases more specific
than “is related”) can be explored in future work.

In the present study we derived predictions using con-
textualized embeddings directly produced by pretrained
LLMs. Another avenue is to use forms of “fine tuning”:
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Figure 3: Model Comparisons with Human Accuracy in Solving Verbal Analogy Problems
Accuracy of each model (and each layer of LLMs) for problems in the UCLA VAT based on each of four relation
types. Mean human accuracy from Lu et al. (2019) is indicated at right side in each panel.

copying weights from an LLM trained on masked or au-
toregressive language modeling and retraining the model
on a new task, such as document classification. An LLM
can be fine-tuned on specific cognitive tasks (Bhatia &
Richie, in press), potentially including verbal analogy
tasks. However, the cognitive interpretation of trans-
fer learning via a fine-tuning step is not clear. Insofar
as the aim is to model human cognition, it is necessary
to explain how people accomplish analogical reasoning
without direct training on analogy as a task.

Our approach to using LLMs in the present study was
to directly extract hidden states of a network and then
use difference vectors for these extracted states to predict
human judgments. Language models can also function
in a generative fashion: a verbal prompt can be fed to
the network, based on which the network generates a
completion. Indeed, it has been shown that providing
LLMs with a few examples of the desired output can
improve performance (Brown et al., 2020). An important
direction for future research will be to evaluate the use of
LLMs to solve analogy problems in the generative mode.

A further limitation of the present study is that we
were unable to test recent state-of-the-art LLMs such as
GPT-3 (Brown et al., 2020). These models, with hun-
dreds of billions of parameters, exceed the capabilities of
consumer hardware and/or are not publicly available for
use in extracting representations. There is a concern as
to whether the sheer scale of the data used to train the

latest LLMs so far exceeds human capacity as to ren-
der these models implausible as the basis for cognitive
models. Moreover, the representativeness and balance of
LLM training corpora compared to the natural language
use to which an average speaker is exposed is question-
able.

Finally, an important future direction is to explore
whether contextualized word embeddings can be used
as inputs to a model such as BART, which aims to
learn explicit representations of relations in a trans-
formed space. BART has been trained on a variety
of vector representations of word meanings (Lu et al.,
2012). BART in the present paper was trained using
static Word2vec embeddings. There is some evidence
that explicit training on relations can yield LLMs repre-
sentations that in some cases outperform static word em-
beddings (Bouraoui, Camacho-Collados, & Schockaert,
2020). By taking contextualized embeddings as inputs
to learn vector representations of relations, it may be
possible to better capture the human ability to solve
complex analogies. More complex analogies that require
mapping of more than two concepts in each analog can
be performed using vector representations organized into
attributed graphs (Lu, Ichien, & Holyoak, 2022) and us-
ing higher-order relations such as causal relations (Yuille
& Lu, 2007). More generally, advances in machine learn-
ing can continue to create opportunities for synergistic
advances in cognitive modeling.



Acknowledgments

Preparation of this paper was supported by NSF Grants
IIS-1956441 to H.L.,and BCS-1827374 to K.J.H..

References

Alammar, J. (2018). The illus-
trated transformer. Retrieved from
https://jalammar.github.io/illustrated-

transformer/

Balasubramanian, S., Jain, N., Jindal, G., Awasthi, A.,
& Sarawagi, S. (2020). What’s in a name? are
BERT named entity representations just as good for
any other name? arXiv preprint arXiv:2007.06897 .

Bejar, I. I., Chaffin, R., & Embretson, S. (1991). Cog-
nitive and psychometric analysis of analogical problem
solving. New York: Springer-Verlag.

Bhatia, S., & Richie, R. (in press). Transformer net-
works of human conceptual knowledge. Psychological
Review .

Bhatia, S., Richie, R., & Zou, W. (2019). Distributed se-
mantic representations for modeling human judgment.
Current Opinion in Behavioral Sciences, 29 , 31–36.

Bouraoui, Z., Camacho-Collados, J., & Schockaert, S.
(2020). Inducing relational knowledge from BERT. In
Proceedings of the aaai conference on artificial intelli-
gence (Vol. 34, pp. 7456–7463).

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Ka-
plan, J., Dhariwal, P., . . . others (2020). Lan-
guage models are few-shot learners. arXiv preprint
arXiv:2005.14165 .

Chaffin, R. (1989). The nature of semantic relations: a
comparison of two approaches. In Relational models
of the lexicon (pp. 289–334).

Chiang, J. N., Peng, Y., Lu, H., Holyoak, K. J., & Monti,
M. M. (2021). Distributed code for semantic relations
predicts neural similarity during analogical reasoning.
Journal of Cognitive Neuroscience, 33 (3), 377–389.

Davies, M. (2008). The corpus of contempo-
rary american english (coca). Retrieved from
https://www.english-corpora.org/coca/

Devlin, J., Chang, M.-W., Lee, K., & Toutanova,
K. (2018). BERT: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805 .

Doumas, L. A. A., Puebla, G., Martin, A. E., & Hummel,
J. E. (2022). A theory of relation learning and cross-
domain generalization. Psychological Review.. doi:
https://doi.org/10.1037/rev0000346

Ethayarajh, K. (2019). How contextual are contextu-
alized word representations? comparing the geome-
try of BERT, ELMo, and GPT-2 embeddings. arXiv
preprint arXiv:1909.00512 .

Ettinger, A. (2020). What BERT is not: Lessons from a
new suite of psycholinguistic diagnostics for language

models. Transactions of the Association for Compu-
tational Linguistics, 8 , 34–48.

Gentner, D., & Rattermann, M. (1991). Language and
the career of similarity. In S. Gelman & J. Brynes
(Eds.), Perspectives on language and thought: Inter-
relations in development (pp. 225–277). Cambridge
University Press.

Gick, M. L., & Holyoak, K. J. (1980). Analogical prob-
lem solving. Cognitive psychology , 12 (3), 306–355.

Goldstone, R. L., Medin, D. L., & Gentner, D. (1991).
Relational similarity and the nonindependence of fea-
tures in similarity judgments. Cognitive Psychology ,
23 (2), 222–262.

Günther, F., Rinaldi, L., & Marelli, M. (2019). Vector-
space models of semantic representation from a cogni-
tive perspective: A discussion of common misconcep-
tions. Perspectives on Psychological Science, 14 (6),
1006–1033.

Hummel, J. E., & Holyoak, K. J. (1997). Distributed
representations of structure: A theory of analogical
access and mapping. Psychological Review , 104 (3),
427–466.

Ichien, N., Lu, H., & Holyoak, K. J. (2021). Predicting
patterns of similarity among abstract semantic rela-
tions. Journal of Experimental Psychology: Learning,
Memory, and Cognition.

Jurgens, D., Mohammad, S., Turney, P., & Holyoak, K.
(2012). Semeval-2012 task 2: Measuring degrees of
relational similarity. In * sem 2012: The first joint
conference on lexical and computational semantics–
volume 1: Proceedings of the main conference and the
shared task, and volume 2: Proceedings of the sixth in-
ternational workshop on semantic evaluation (semeval
2012) (pp. 356–364).

Kalyan, K. S., Rajasekharan, A., & Sangeetha, S. (2021).
Ammus: A survey of transformer-based pretrained
models in natural language processing. arXiv preprint
arXiv:2108.05542 .

Levy, O., Goldberg, Y., & Dagan, I. (2015). Improv-
ing distributional similarity with lessons learned from
word embeddings. Transactions of the association for
computational linguistics, 3 , 211–225.

Linzen, T. (2016). Issues in evaluating semantic spaces
using word analogies. In Proceedings of the 1st work-
shop on evaluating vector-space representations for nlp
(pp. 13–18).

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen,
D., . . . Stoyanov, V. (2019). RoBERTa: A robustly
optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692 .

Lu, H., Chen, D., & Holyoak, K. J. (2012). Bayesian
analogy with relational transformations. Psychological
review , 119 (3), 617.

Lu, H., Ichien, N., & Holyoak, K. J. (2022).
Probabilistic analogical mapping with semantic re-



lation networks. Psychological Review . doi:
https://doi.org/10.1037/rev0000358

Lu, H., Wu, Y. N., & Holyoak, K. J. (2019). Emergence
of analogy from relation learning. Proceedings of the
National Academy of Sciences, 116 (10), 4176–4181.

Manning, C. D., Clark, K., Hewitt, J., Khandelwal, U.,
& Levy, O. (2020). Emergent linguistic structure in
artificial neural networks trained by self-supervision.
Proceedings of the National Academy of Sciences,
117 (48), 30046–30054.

Markman, A. B., & Gentner, D. (1993). Structural align-
ment during similarity comparisons. Cognitive Psy-
chology , 25 (4), 431–467.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., &
Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In Advances
in neural information processing systems (pp. 3111–
3119).

Pennington, J., Socher, R., & Manning, C. D. (2014).
Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical meth-
ods in natural language processing (emnlp) (pp. 1532–
1543).

Peterson, J. C., Chen, D., & Griffiths, T. L. (2020).
Parallelograms revisited: Exploring the limitations of
vector space models for simple analogies. Cognition,
205 , 104440.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI Blog , 1 (8), 9.

Roads, B. D., & Love, B. C. (2020). Learning as the
unsupervised alignment of conceptual systems. Nature
Machine Intelligence, 2 (1), 76–82.

Rogers, A., Kovaleva, O., & Rumshisky, A. (2020). A
primer in bertology: What we know about how BERT
works. Transactions of the Association for Computa-
tional Linguistics, 8 , 842–866.

Sajjad, H., Alam, F., Dalvi, F., & Durrani, N. (2021).
Effect of post-processing on contextualized word rep-
resentations. arXiv preprint arXiv:2104.07456 .

Schrimpf, M., Blank, I., Tuckute, G., Kauf, C., Hosseini,
E. A., Kanwisher, N., . . . Fedorenko, E. (2020). The
neural architecture of language: Integrative reverse-
engineering converges on a model for predictive pro-
cessing. BioRxiv .

Timkey, W., & van Schijndel, M. (2021). All bark and no
bite: Rogue dimensions in transformer language mod-
els obscure representational quality. arXiv preprint
arXiv:2109.04404 .

Ushio, A., Espinosa-Anke, L., Schockaert, S., &
Camacho-Collados, J. (2021). BERT is to nlp what
alexnet is to cv: Can pre-trained language models
identify analogies? arXiv preprint arXiv:2105.04949 .

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017).

Attention is all you need. In Advances in neural in-
formation processing systems (pp. 5998–6008).

Vig, J., & Belinkov, Y. (2019). Analyzing the struc-
ture of attention in a transformer language model. In
Proceedings of the 2019 acl workshop blackboxnlp: An-
alyzing and interpreting neural networks for nlp (pp.
63–76).

Wilcox, E. G., Gauthier, J., Hu, J., Qian, P., & Levy,
R. (2020). On the predictive power of neural language
models for human real-time comprehension behavior.
arXiv preprint arXiv:2006.01912 .

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., . . . Rush, A. M. (2020, October).
Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference
on empirical methods in natural language processing:
System demonstrations (pp. 38–45). Online: Associ-
ation for Computational Linguistics. Retrieved from
https://www.aclweb.org/anthology/2020.emnlp-

demos.6

Wood, S. (2017). Generalized additive models: An intro-
duction with r (2nd ed.). Chapman and Hall/CRC.

Yuille, A. L., & Lu, H. (2007). The noisy-logical distribu-
tion and its application to causal inference. Advances
in neural information processing systems, 20 .

Zhila, A., Yih, W.-t., Meek, C., Zweig, G., & Mikolov,
T. (2013). Combining heterogeneous models for mea-
suring relational similarity. In Proceedings of the 2013
conference of the north american chapter of the associ-
ation for computational linguistics: Human language
technologies (pp. 1000–1009).


