
Abstract 
Analogy problems involving multiple ordered relations of the 
same type create mapping ambiguity, requiring some 
mechanism for relational integration to achieve mapping 
accuracy. We address the question of whether the integration 
of ordered relations depends on their logical form alone, or on 
semantic representations that differ across relation types. We 
developed a triplet mapping task that provides a basic paradigm 
to investigate analogical reasoning with simple relational 
structures. Experimental results showed that mapping 
performance differed across orderings based on category, 
linear order, and causal relations, providing evidence that each 
transitive relation has its own semantic representation. Hence,  
human analogical mapping of ordered relations does not 
depend solely on their formal property of transitivity. Instead, 
human ability to solve mapping problems by integrating 
relations relies on the semantics of relation representations. 
We also compared human performance to the performance of 
several vector-based computational models of analogy. These 
models performed above chance but fell short of human 
performance for some relations, highlighting the need for 
further model development.    
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Introduction 
The solution of verbal analogy problems (e.g., tool : 
hammer :: flower : rose)  is a longstanding focus of work in 
psychology and educational testing (e.g., Sternberg & Nigro, 
1980). More recently, computational models that can solve 
verbal analogies based on representations of word meanings 
have been developed both in artificial intelligence (AI) (e.g., 
Mikolov et al., 2017; Turney, 2013) and cognitive science 
(Lu, Wu, & Holyoak, 2019). A core problem that these 
computational models must address is the eduction of 
relations (Spearman, 1923): retrieving or computing the 
unstated semantic relation between the two words in each pair 
(e.g., the relation between the source pair tool and hammer, 
and that between the target pair flower and rose). A general 
solution is to make use of vector representations 
(embeddings) that capture important aspects of the meanings 
of individual words, generated by machine learning models 
such as Word2vec (Mikolov et al., 2017), which are trained 
on large text corpora. The relation between any two words 
can then be educed either by the generic operation of 
computing the difference vector between the paired words, or 

by additional learning mechanisms that enable generation of 
explicit representations of relations as vectors in a 
transformed relation space (Lu et al., 2019; Ichien, Lu, & 
Holyoak, 2022). Once relation vectors have been created, an 
analogy can be evaluated by assessing the similarity of the 
relation vectors for the source and target pairs (e.g., by 
computing cosine similarity). 
 Solving verbal analogies presented in the form A:B::C:D 
does not require mapping of individual concepts, because the 
format itself specifies clear correspondences (AàC, BàD). 
In order to extend vector-based computational models of 
analogy to more complex problems in which each analog 
involves multiple relations between more than two concepts 
(necessitating a mapping process), the models must be 
augmented with some mechanism to integrate multiple 
relations so as to identify the optimal mappings between 
concepts in source and target analogs. One approach is to 
organize vector representations of both concepts and the 
relations between them into attributed graphs, in which 
concepts correspond to nodes and relations to edges (Lu et 
al., 2022). Given a pair of attributed graphs, a probabilistic 
graph matching algorithm can then be applied to identify the 
optimal mappings between source and target concepts by 
maximizing graph similarity under a soft isomorphism 
constraint. 
 Lu et al. (2022) introduced a paradigm for testing the 
ability of both humans and computational models to find 

Figure 1: Time-course of an example category triplet 
problem. 
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mappings between words in analogy problems minimally 
more complex than the standard A:B::C:D format. Rather 
than each analog consisting of a single word pair, analogs are 
triplets composed of three words (see Figure 1). One type of 
problem involved category triplets, in which the source was 
an ordered set of category names (e.g., clothing : sweater : 
turtleneck), and the target consisted of three scrambled words 
(e.g., dog, animal, beagle) that could also form an ordered set 
of categories. For each problem participants were asked to 
create a valid analogy by using their mouse to drag each of 
the randomly ordered target terms under one of the terms in 
the ordered source triplet. 
 The triplet mapping problem provides a basic paradigm for 
investigating analogical reasoning using simple relational 
structures. When the source and target analogs involve 
multiple pairwise relations of the same type, as in category 
triplets, inherent mapping ambiguities arise. For example, 
animal : dog considered alone could map to either clothing : 
sweater or sweater : turtleneck, because all of these pairs 
instantiate the superordinate-of relation. Lu et al. (2022) 
found that people were able to reliably solve such triplet 
problems; a comparable requirement to integrate multiple 
relations arises in many other relational reasoning paradigms, 
such as transitive inference (Andrews & Halford, 1998; 
Waltz et al., 1999). To resolve ambiguity in local mappings, 
a reliable analogy model must assess relation similarities and 
also integrate across relations based on mapping constraints. 
 Category relations are one of several general types of 
semantic relations that exhibit the logical property of 
transitivity (i.e., for relation r, A r B and B r C jointly imply 
A r C). For any transitive relation, it is possible to form triplet 
mapping problems, the solution of which requires both 
eduction of relations between pairs of concepts and 
integration of multiple relations. An important question is 
whether the solution to mapping problems based on transitive 
relations depends solely on their logical form, or on the 
semantic representations of different relations. If the logical 
form of structures directly determines analogical mapping (as 
predicted, for example, by structure-mapping theory; 
Gentner, 1983), we would expect constant mapping 
performance regardless of semantic relations. In contrast, if 
mapping performance varies across different transitive 
relations, this would suggest that the semantics of relations 
plays an important role in analogical mapping and reasoning. 
 Here we compare human performance on triplet problems 
involving three types of transitive relations: category (e.g., 
bird : parrot : parakeet), linear order (e.g., pebble : rock : 
boulder), and causal (e.g., lightning : fire : smoke).  All of 
these relations constitute formal structures based on transitive 
relations. According to a taxonomy of forms proposed by 
Kemp and Tenenbaum (2008), for categories, the ordering is 
part of a hierarchy; for linear orders, the relation is itself an 
ordering; for causal relations, the ordering is a chain within a 
causal network (Waldmann, 2017). 
 If mapping of ordered relations depends solely on their 
formal property of transitivity, then the three relation types 
would yield mapping problems of approximately the same 

difficulty. On the other hand, if each type of transitive 
relation has its own semantic representation (as vector-based 
models of analogy assume), then mapping difficulty may 
vary across types. To explore this issue, we performed an 
experiment to determine how well people are able to solve 
triplet mapping problems based on the three types of 
transitive relations. In addition, we also compared human 
performance with several recent models of mapping based on 
vector representations of word embeddings and relations.  

Experiment: Mapping Triplets Based on 
Transitive Relations 

Method 
 
Participants A total of 561 participants (Mage = 40.85, SDage 
= 12.44, 288 female, 265 male, 6 gender non-binary, 2 gender 
withheld; located in the United States, United, Kingdom, 
Ireland, South Africa, New Zealand, Canada, and Australia) 
were recruited via Amazon Mechanical Turk and received a 
payment of $1. Of these, 27 participants reported not paying 
attention while completing the task and were therefore 
excluded from analyses, resulting in a final sample of 534. 
The study was approved by the Office of the Human 
Research Protection Program at the University of California, 
Los Angeles, and participants provided informed consent. 
The study was pre-registered online on AsPredicted and can 
be accessed at: https://aspredicted.org/B2M_28Y.       

   
Materials and Procedure Each participant completed three 
verbal analogy problems, each based on pairs of triplets 
(three words) of one of three types. The three triplet types 
instantiated three classes of semantic relations, each formally 
transitive: category member, linear order, and cause-effect. 
The triplets were primarily based on norms of word pairs 
instantiating the three relations, reported by Jurgens, 
Mohammed, Turney and Holyoak (2012); some causal word 
pairs were drawn from stimuli used in a study by Fenker, 
Waldmann, and Holyoak (2005). 

By presenting each participant with just one problem of 

Table 1: Examples of Triplets used in Experiment 
 

 
Relation type Triplet examples 

Category 
clothing: sweater: turtleneck 
weapon: gun: rifle 
reptile: lizard: iguana 

Linear order 
second: minute: hour 
past: present: future 
penny: nickel: quarter 

Causal 
exercise: fitness: health 
nuts: allergy: rash 
salt: thirst: drink 

Table 1: Examples of Triplets used in Experiment 
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each type, we minimized any opportunity to learn the general 
structure of the problems (as our focus was on initial 
analogical mapping, rather than schema induction). For each 
problem, an ordered set of three terms (e.g., clothing : 
sweater : turtleneck) appeared in a fixed position on the top 
of the screen, and a set of three randomly ordered terms (e.g., 
dog, mammal, beagle) appeared on the left (see Figure 1). 
Participants were instructed to create a valid analogy by 
clicking and dragging each of the randomly-ordered terms to 
a box below the corresponding fixed term. Examples of each 
type are provided in Table 1.  Each problem was formed 
using two triplets randomly drawn from a pool of eight, and 
were shown in either order (56 possible pairs for each triplet 
type). The presentation order of the three triplet problems was 
counterbalanced across participants.  

Before working on the three experimental problems, 
participants read instructions that explained the triplet 
analogy task using two examples, each involving different 
relations than the experimental problems. The triplets in the 
first example were barber : scissors : hair and bandage : 
nurse : wound, and the triplets of the second example were 
finger : hand : arm and leaf : branch : tree. The instructions 
stated that an analogy is valid if the relations among the terms 
in the two triplet sets match each other. Participants needed 
to complete the second example correctly in order to begin 
the experimental problems.  

Results 
 
Human Performance Mapping responses were first coded 
as correct only if all three words were mapped correctly in a 
problem. As there are six possible orderings of three items, 
chance-level performance would be 0.17. Mean mapping 
accuracy of the participants was 0.69 for category triplets, 
0.77 for linear order triplets, and .48 for causal triplets. A one-
way repeated measures ANOVA, with triplet type (category, 
linear order, causal) as a within-subjects factor, revealed a 
significant main effect of semantic relation on mapping 
accuracy, F(2,1066) = 68.387, p < .001. Using a Bonferroni  
correction for multiple comparisons, mapping accuracy was 
reliably higher for linear order triplets than for category (p = 
.003) or causal triplets (p < .001), and accuracy was higher 
for category triplets than causal triplets (p < .001). 

We also analyzed mapping accuracy for each of the three 
individual role positions within each triplet problem. Role-
based mapping accuracy was coded as 1 if the correct target 
word was mapped to its corresponding source word, scored 
separately for each of the three words in the target triplet. The 
means are shown in Figure 2. We conducted a two-way 
ANOVA on mapping accuracy for each role, with triplet type 
and role position (word 1, 2, and 3) as within-subject factors. 
Mauchly’s test indicated a violation of the sphericity 
assumption, χ2(9) = 85.949, p < .001. Given a violation of 
sphericity (ε = 9.27), we report Huyn-Feldt corrected results. 
This analysis revealed significant main effects of triplet type, 
F(1.97, 1051.035) = 70.00, p < .001, and role position, 
F(1.94, 1034.16) = 10.40, p < .001, as well as a significant 

interaction, F(3.738, 1992.29) = 8.086, p < .001. These 
results indicate that specific semantic relations affect not only 
overall mapping accuracy, but also accuracy for individual 
roles in transitive triplets.    

To further examine the impact of semantic relations on 
mapping accuracy for individual roles, we conducted nine 
pairwise comparisons between role positions within each 
triplet type, using a Bonferroni correction for multiple 
comparisons. For category triplets, accuracy was reliably 
higher for the first role than the second (p < .01) or third (p 
< .001), with no significant difference between the second 
and third roles. For linear order triplets, accuracy for the 
second role was reliably higher than for the first (p = .001) or 
third role (p = .006), with no reliable difference between the 
first and third roles. For causal triplets, accuracy was reliably 
higher for the first role than for the second (p = .016) or third 
(p = .009), with no significant difference between the second 
and third. Thus for category and causal triplets, accuracy was 
highest for the first word; whereas for linear order triplets, 
accuracy was highest for the middle word.   

Mapping Semantic Relations with Vector-
Based Computational Models  

We implemented several vector-based models that are 
capable of computing the semantic relation between any two 
words, and then integrating multiple relations to identify the 
optimal mapping between analogs. Each model simulates 
mapping performance on each of the 56 triplet problems used 
in the human experiment. For the present simulations, 
mappings were considered correct only if all three entities in 
the target were correctly mapped to the source (chance 
performance = 0.17). 
 We tested models based on four different methods for 
creating vector representations of semantic relations. These 
methods were: two versions based on sentence embeddings 
generated by a recently-developed model for natural 
language processing (NLP), Bidirectional Encoder 
Representations from Transformers (BERT) (Devlin et al., 
2019); a version based on an earlier NLP method to create 

Figure 2: Mean mapping accuracy for words in each of 
three roles, by triplet type. Error bars reflect ± 1 SEM. 



 4 

word embeddings, Word2vec (Mikolov et al., 2013; Zhila et 
al., 2013), and vector representations of word-pair relations 
generated by a model of relation learning, Bayesian Analogy 
with Relational Transformations (BART) (Lu et al., 2019). 
Each of these four sets of relation embeddings was used with 
an exhaustive algorithm for finding the optimal mapping 
between two triplets. In addition, two of the sets of relation 
embeddings (based on Word2vec and BART) were also 
coupled with an algorithm for Probabilistic Analogical 
Mapping (PAM) (Lu et al., 2022), which is more 
computationally efficient than the exhaustive algorithm. 
Thus, a total of six computational models were implemented 
and used to simulate human performance. 
 In exhaustive mapping, for each problem all alternative 
mappings are considered between an ordered source triplet 
(e.g., tool : ax : hatchet) and each of the six possible orderings 
for the entities in a target triplet (e.g., bird : parakeet : parrot, 
parrot : bird : parakeet, etc.). All representations are derived 
from word embeddings: high-dimensional vector 
representations of individual word meanings computed from 
hidden layers of activation in Natural Language Processing 
(NLP) models (implemented as artificial neural networks) 
that have been trained to predict word and/or sentence 
sequences within vast text corpora. For all models based on 
exhaustive mapping, the predicted correct mapping is 
obtained by selecting the one of the six possible mappings 
that minimizes cosine distance. 
 
BERT BERT is an NLP model that takes full sentences as 
input and is equipped with a transformer block, which 
enables the model to generate embeddings of individual 
words in input sentences that are context-dependent: 
sensitive to both the identity and order of other words used in 
that sentence (Devlin et al., 2019). Although it represents 
verbal input as unstructured vectors of activation, BERT 
embeddings have been used to recover structural properties   
of sentences that approximate those posited by theoretical 
linguists (Manning et al., 2020). In the present simulations, 
we examined the extent that such representations could be 
used to find correspondences across instances of transitive 
relations. 

We acquired sentence embeddings from BERT through the 
Transformer Model for MATLAB toolbox1, using the bert-
base model pre-trained on the BooksCorpus (800M words) 
(Zhu et al., 2015) and the English Wikipedia corpus (2,500M 
words) (Devlin et al., 2019). In order to represent each 
ordering of a given triplet, we used each of two methods. The 
first employed a generic sentence across all three triplet 
types, in which words representing each entity within a triplet 
were embedded in the following structure: “A is a related to 
B, which is related to C.” Within this skeletal sentence, we 
replaced the first word in an ordered triplet with A, the second 
word with B, and the third word with C (e.g., the ordering 
tool : ax : hatchet yielded “Tool is related to ax, which is 

 
1 https://github.com/matlab-deep-learning/transformer-models 

related to weapon”).  
The second method for obtaining embeddings from BERT 

employed a specific sentence for each triplet type, specifying 
the particular semantic relation instantiated by that triplet: 
For category triplets: “A is a category of B, which is a 
category of C;” for linear order triplets: “A goes before B, 
which goes before C;” and for causal triplets: “A causes B, 
which causes C.” 

In order to examine BERT’s performance on analogy 
triplet problems, we adopted two methods for extracting 
representations of generic and specific sentences, spanning 
the source analog and the 6 different orders of the target 
analog for each problem. Using the first method, we 
computed the mean of the individual word embeddings 
constituting each input sentence to generate a unified 
sentence embedding. Using the second method, we simply 
extracted the embedding for the [CLS] classification token 
for each input sentence. Because the first method 
outperformed the second, we report results using the first 
method.  
 
Word2vec-diff In contrast to context-dependent word 
embeddings created by BERT, static word embeddings 
generated from earlier language models like Word2vec 
(Mikolov et al., 2013) represent individual word meanings 
using single vectors, regardless of their context of use. In 
order to compute representations of pairwise relations 
between words from Word2vec embeddings, we took a 
generic operation: the vector difference (Word2vec-diff) 
between words in each pair. This difference-vector approach 
to representing relations between individual words has been 
used to solve four-term analogy problems relating similar 
pairs of concepts (Zhila et al., 2013; but see Peterson, Chen, 
& Griffiths, 2020, for evidence of limitations). In order to 
represent the relations instantiated in a triplet A:B:C, we 
concatenated vector differences between vectors representing 
A and B as 𝒇𝑨 − 𝒇𝑩, B and C as 𝒇𝑩 − 𝒇𝑪, and A and C as 𝒇𝑨 −
𝒇𝑪, for source triplets as 𝑺 = [𝒇𝑨 − 𝒇𝑩, 𝒇𝑩 − 𝒇𝑪, 𝒇𝑨 − 𝒇𝑪]. 
Similar operations are used for the target triplet.  
  
BART BART uses supervised learning to acquire explicit 
representations of semantic relations (e.g., X is a part of Y) 
and the individual roles that constitute them (e.g., part and 
whole) from unstructured vector representations of individual 
word meanings (Lu et al., 2019, 2022). For the present 
simulations, BART was trained using Word2vec word 
embeddings for word pairs that instantiate a set of relations. 
The learning model acquires weight distributions over 
selected feature dimensions of input word vectors. These 
weight distributions are used to predict the posterior 
probability that a word pair instantiates a particular relation, 
 After relation learning, BART has acquired role-based 
weight distributions that are diagnostic of individual words 
serving the first role of a given relation (e.g., part in the 
relation X is a part of Y), which constitute explicit 
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representations of those relational roles. To do so, BART 
reapplies Bayesian logistic regression to the element-wise 
product of prior-learned relation weight distributions and 
vectors representing the first word of training example word 
pairs. BART’s learning culminates in explicit representations 
of both full semantic relations and the individual roles that 
constitute them. 
 In order to then represent the relation between any pair of 
words A:B, BART applies its learned relation weight 
distributions to generate a relation vector 𝑅𝑒𝑙$% in which 
each element represents the posterior probability of the word 
pair instantiating each of  learned relations: 𝑅𝑒𝑙$% =
〈𝑃(𝑅𝑒𝑙& = 1|𝑓$, 𝑓%), …𝑃(𝑅𝑒𝑙' = 1|𝑓$, 𝑓%)〉.  
 Ichien et al. (2022) found that applying a power 
transformation to BART’s relation vectors, raising the value 
along each dimension to a power of 5 (i.e., “winners take 
most”) improves their ability to predict human judgments of 
relational similarity. We applied that power transformation to 
relation vectors in the present simulations.	
	 BART uses its learned role weight distributions to generate 
a role vector 𝑅𝑜𝑙𝑒$ populated by posterior probabilities 
representing the extent that the first word 	𝑓$	in a given pair 
of word vectors	 𝑓$	 and	 𝑓% instantiates the corresponding 
learned role:		
𝑅𝑜𝑙𝑒$ = 〈𝑃(𝑅𝑜𝑙𝑒& = 1|𝑓$, 𝑓%), . . . , 𝑃(𝑅𝑜𝑙𝑒' = 	1|𝑓$, 𝑓%)〉. 
In order to represent the full relational meaning of a given 
word pair 𝑅$%, we concatenated 𝑅𝑒𝑙$% and 𝑅𝑜𝑙𝑒$ to form the 
relation representation  𝑅$% = [𝑅𝑒𝑙$% , 𝑅𝑜𝑙𝑒$]. 
 In the present simulations, we combined two datasets of 
human-generated word pairs to train BART. The first dataset 
(Jurgens et al., 2012) consists of at least 20 word pairs (e.g., 
engine : car) instantiating each of 79 semantic relations (e.g., 
X is a part of Y). The second dataset consists of at least 10 
word pairs instantiating each of 56 additional semantic 
relations (Popov, Hristova, & Anders, 2017). Across both 
datasets, BART acquired weight distributions for 135 
semantic relations. Since BART’s learned relation weights 
can be expressed as two separate halves (i.e., those associated 
with the first relational role and those associated with the 
second relational role), BART can automatically generate 
representations of the converse of each learned relation by 
swapping the relation weights associated with each 
individual relational role. Thus, upon learning a 
representation of X is a category for Y, BART can also form 
a representation of its converse, Y is a member of category X, 
effectively doubling its pool of learned relations from 135 to 
270 in total. 

Exhaustive Mapping 
Each of the four sets of relations embeddings described above 
was paired with a mapping algorithm that performs an 
exhaustive search, comparing an ordered source triplet to all 
six possible orders of a target triplet. This exhaustive 
mapping algorithm selects mappings based on which 
ordering of the target 𝑻8 maximizes its overall similarity with 

the ordered source 𝑺: 
𝑇: = argmax

(∈{(!,(",(#,($,(%,(&}
1 − 𝑐𝑜𝑠	(𝑆, 𝑇)              (1) 

Probabilistic Analogical Mapping (PAM) 
The second mapping algorithm used in our simulations 
implements a graph-matching procedure that maximizes the 
similarity between two semantic relation networks, 
respectively representing the source and target analogs. 
Formally, semantic relation networks are attributed graphs in 
which each node 𝑵 and each edge 𝑬 is assigned attribute 
embeddings 𝑨. Within semantic relation networks, nodes are 
word embeddings for individual concepts and edges are 
semantic relation vectors between words. 𝑨𝒊𝒊 represents the 
semantic attribute of the 𝒊th concept, and 𝑨𝒊𝒋 indicates the 
relation attribute of the edge between the	𝒊th concept and 𝒋th 
concept.  For the present simulations with PAM, we always 
use Word2vec word embeddings for semantic attribute 𝑨𝒊𝒊 
for the nodes in the attributed graph. In one of two versions, 
for edge attributes 𝑨𝒊𝒋 we use Word2vec-diff vectors, 𝒇𝒊 −
𝒇𝒋; in the other version, we use BART vectors 𝑹𝒊𝒋. 
 We represent the source and target analogs as graphs 𝒈 and 
𝒈′ with concept indices 𝒊, 𝒋, and 𝒊′, 𝒋/,	respectively. 𝑴𝒊𝒊/ = 𝟏 
if the 𝒊th concept node in the source analog maps to the 𝒊′th 
concept node in the target analog. The goal of the model is to 
estimate the probabilistic mapping matrix 𝒎, which consists 
of elements denoting the probability that the 𝒊th node in the 
source analog maps to the 𝒊′th node in the target analog, 
𝒎𝒊𝒊/ = 𝑷(𝑴𝒊𝒊' = 𝟏). PAM adopts a Bayesian approach to 
infer a mapping 𝒎 between concepts in the source and target 
analogs that maximize its posterior probability: 

𝑃(𝑚|𝑔, 𝑔/) ∝ 𝑃(𝑔, 𝑔/|𝑚)𝑃(𝑚), 
with the constraints 

∀0 ∑ 𝑚00/ = 1,0/ ∀0/∑ 𝑚00' = 10              (2) 
The likelihood term 𝑃(𝑔, 𝑔/|𝑚) uses mapping probabilities 
as weights to compute likelihood probabilities based on a 
weighted sum of the semantic similarity between mapped 
concepts and of the relation similarity between mapped 
relations. The prior term favors isomorphism, with one-to-
one correspondence in graph matching.  

To implement the inference in Equation 2, we employ a 
graduated assignment algorithm (Gold & Rangarajan, 1996) 
similar to those previously used in matching problems in 
computer vision (Lu & Yuille, 2005; Menke & Yang, 2020). 
The algorithm incorporates soft assignments in graph 
matching, allowing probabilistic mapping values that lie in 
the continuous range [0,1] rather than requiring deterministic 
one-to-one mapping values. 

Comparisons between Model Predictions and 
Human Performance  
Figure 3 presents mapping accuracy of humans and each of 
the six computational models for each triplet type. For 
category triplets, BART with exhaustive search (.75) and 
with the PAM mapping algorithm (.71) achieved human-
level performance (.69). All the other models showed much 
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worse mapping accuracy for category triplet problems 
(between .23 and .41). For humans, accuracy on linear order 
triplets was the highest among the three triplet types (.77); 
however, all models performed poorly on linear order 
problems. The highest accuracy on linear order triplets was 
achieved by exhaustive BART (.52) followed by BART 
coupled with PAM (.39). The Word2vec-diff models reached 
accuracy around 0.3, and the BERT models showed chance-
level performance. For causal triplets, human performance 
was much lower than for either of the other two types (.48). 
The models performed even worse, with only BART coupled 
with PAM achieving above-chance accuracy (.29).  

Discussion 
Our results show that human performance on mapping 
problems involving transitive relations differs substantially 
between different semantic relations: most accurate for linear 
order relations, followed by category relations, and least 
accurate for causal relations. These systematic differences 
among semantic relation types imply that each type of 
transitive relation has its own semantic representation, and 
that mapping is influenced by these semantic representations, 
rather than being based solely on the formal property of 
transitivity. 

One possible explanation for the experimental results is 
that people have prior schematic knowledge about linear 
orderings based on magnitude, and such existing schemas are 
not as easily retrievable for category and causal problems. 
Future research could explore how people might improve at 
these problems by learning schemas for the semantic 
relations (e.g., by completing multiple problems; Gick & 
Holyoak, 1983).    

The differences in mapping performance across relation 
types also provide insights into how humans represent and 

map each type of semantic relation in analogical reasoning. 
In particular, the three types varied in accuracy across the 
three role positions. For category problems, the first word 
was mapped most accurately, replicating the pattern reported 
by Lu et al. (2022). This finding suggests that the most 
abstract category (superordinate) is the most distinctive of the 
three. For causal triplets, accuracy was also highest for the 
first role, consistent with evidence that the root cause in a 
causal chain is most distinctive (Ahn, Kim, Lassaline, & 
Dennis, 2000). In contrast, for linear order triplets the middle 
role was most accurate. This pattern implies that the most 
common error was a reversal of the order between the source 
and target (i.e., the first and third roles were reversed, while 
the middle role was correct because it remains the same 
regardless of the direction of the ordering).  

Vector-based models of relation representations are 
capable of educing the relation between word pairs; and when 
coupled with a mapping algorithm, such models can in 
principle compute mappings that require integration of 
multiple relations, as is required for our triplet analogies. 
However, none of the six specific models we implemented 
proved particularly impressive in capturing the pattern of 
human performance for all relations examined in the study. It 
is possible that humans adopt different representation formats 
for different types of relation representations. For example, a 
linear ordering could be identified by projecting word vectors 
onto a magnitude dimension in a semantic space (Grand et 
al., 2022). Causal relations may be represented using special 
integration functions (Yuille & Lu, 2007) and learned 
through interventions. Hence, our comparison of model and 
human performance highlights the need to develop more 
sophisticated relation representations (beyond vector-based 
models) that can support analogical reasoning. 

Figure 3: Overall mapping accuracy for models (grey bars) and human reasoners (blue bars) for category (light shade), 
linear order (middle shade), and causal (dark shade) triplet problems. For models, upper x-axis labels refer to alternative 
relation representations, and lower x-axis labels refer to alternative mapping algorithms. Dotted line marks chance 
performance (.17). Errors bars reflect ± 1 SEM.  
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