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Abstract 

We see the external world as consisting not only of objects 
and their parts, but also of relations that hold between them. 
Visual analogy, which depends on similarities between 
relations, provides a clear example of how perception 
supports reasoning.  Here we report an experiment in which 
we quantitatively measured the human ability to find 
analogical mappings between parts of different objects, where 
the objects to be compared were drawn either from the same 
category (e.g., images of two mammals, such as a dog and a 
horse), or from two dissimilar categories (e.g., a chair image 
mapped to a cat image). Humans showed systematic mapping 
patterns, but with greater variability in mapping responses 
when objects were drawn from dissimilar categories. We 
simulated the human response of analogical mapping using a 
computational model of mapping between 3D objects, 
visiPAM (visual Probabilistic Analogical Mapping). 
VisiPAM takes point-cloud representations of two 3D objects 
as inputs, and outputs the mapping between analogous parts 
of the two objects. VisiPAM consists of a visual module that 
constructs structural representations of individual objects, and 
a reasoning module that identifies a probabilistic mapping 
between parts of the two 3D objects. Model simulations not 
only capture the qualitative pattern of human mapping 
performance cross conditions, but also approach human-level 
reliability in solving visual analogy problems. 

Keywords: vision; analogy; mapping; graph matching; deep 
learning 

Introduction 

Suppose a preschooler is asked questions about pictured 

objects, such as, “If a tree had a knee, where would it be?” 

or “Can you point to the eyes of this car?” Children often 

provide reasonable answers to such questions, providing 

evidence of the creative nature of human intelligence 

(Gentner, 1977). Such findings show that the ability to see 
visual analogies develops early. Visual analogies can also 

contribute to vivid communication. In a humorous 

explanation of radio communication, Albert Einstein 

remarked, "... the wire telegraph is a kind of very, very long 

cat. You pull his tail in New York and his head is meowing 

in Los Angeles…. And radio operates exactly the same way: 

you send signals here, they receive them there. The only 

difference is that there is no cat." Einstein’s analogy 

depends on a visual mapping between the imaginary cat and 

a telegraph line, stripped away from the specific features of 

either, but linked to the functions of signal and receiver. The 
analogy is then abstracted further: in the case of radio, there 

is no solid connector (“no cat”) linking signal and receiver. 

As an aside, the joke arises from the violation of 

expectation: Einstein deliberately uses a vivid analogy to 

not convey any insight into the causal mechanism 

underlying a new technology. 

In addition to humor, Einstein’s remark illustrates the 

operation of analogical reasoning on visuospatial 

representations. Humans are clearly able to identify 

systematic relational correspondences between visualizable 

entities, based on visual imagery (often in response to verbal 
input), pictures (either realistic or schematic), and/or three-

dimensional objects. Whereas analogies stated in language 

have relations provided as part of the input (via verbs and 

relational phrases), analogies based on visual inputs more 

obviously depend on perceptual mechanisms to achieve the 

eduction of relations (Spearman, 1923): the extraction of 

relations from non-relational inputs, such as pixels in 

images or spatial mesh regions in 3D objects. Reasoning by 

analogy from raw visual input (e.g., thousands of pixels or 

meshes) is clearly a challenging computational problem that 

demands the integration of perception with reasoning. 

Computational and psychological work on visual analogy 
has largely focused on problems inspired by the Raven’s 

Progressive Matrices (RPM) (Raven, 2000). After extensive 

training with RPM-style problems, deep neural networks 

have achieved human-level performance on test problems 

with similar basic structures (e.g., Santoro et al., 2017; 

Zhang et al., 2019). However, the success of these deep 

learning models depends on datasets of massive numbers 

(sometimes more than a million) of RPM-style problems, 

which makes the deep-learning approach fundamentally 

different from human analogical reasoning. When the RPM 

task is administered to a person, “training” is limited to 
general task instructions with at most one practice problem.  

A further limitation of empirical and computational work 

on visual analogy is that efforts have been largely focused 

on problems based on simple line-drawn geometric forms or 

line-drawn pictures (e.g., Sternberg, 1977; Krawczyk et al., 

2008; Richland, Morrison & Holyoak, 2006). Relatively few 

studies have used images, such as pictures of cars (Ichien et 

la., 2021), line drawings (Lu et al., 2019) or photos of 

human interactions (Green et al., 2017). In addition to the 

limited range of stimulus types, the form of analogy tasks 

has also been very constrained. The most common task used 

in studies of visual analogy is to ask participants to select a 
valid analogical completion among several invalid foils 
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(e.g., Krawczyk et. al., 2008; Green et al., 2017; Lu et al., 

2019). Although such forced-choice tasks can be useful to 

test specific hypotheses, participants’ performance heavily 

depends on what distractors are used. 

A different paradigm, first used in the classic study by 
Gentner (1977), is to let people annotate analogous parts of 

objects. Gentner asked children and adults to place two dots 

on a line-drawn object (either a tree or mountain) that would 

correspond to two human body parts (e.g., mouth and a 

knee). The advantage of this marker-placement tasks is that 

it provides a direct measure of analogical mapping that does 

not require predefining the “correct” response, and which 

avoids biases that might be triggered by the choice of foils. 

Here we propose a flexible computational model of visual 

analogy for 3D objects, and compare its predictions to 

findings from an experiment in which people made 

judgments about correspondences between a range of 
familiar 3D objects.  We focused on analogical mapping 

between object parts because human perception and 

thinking show sensitivity to part-whole relations across both 

visual and semantic domains (e.g., Tversky & Hemenway, 

1984; Lee et al., 2021). Our experimental paradigm was 

adapted from the marker task introduced by Gentner (1977). 

We refined the paradigm by using analogies based on 

images of 3D objects (without verbal cues), and obtained 

more fine-grained quantitative measures of judged 

correspondences. 

Human Experiment 

The goal of the experiment was to measure human mapping 

performance for visual analogy problems in which the two 

3D images were drawn either from the same category (e.g., 

dog and horse images as the analogs), or from two 

distinctively different categories (e.g., the source image was 

a chair and the target image was a cat). 

Participants Fifty-nine participants (mean age = 20.55 

years; 51 female) were recruited from the Psychology 

Department subject pool at the University of California, Los 
Angeles. All participants were compensated with course 

credit. 

Stimuli 3D object stimuli were selected from two publicly 

available datasets used in computer vision: ShapeNetPart 

(Yi et al., 2016) and a 3D animal dataset ("Animal Pack 

Ultra 2") from Unreal Engine Marketplace. Nine chairs 

were selected from the ShapeNetPart dataset (each chair 

with a different shape), and nine animals from the Animal 

Pack dataset: horse, buffalo, Cane Corso, sheep, domestic 

pig, Celtic wolfhound, African elephant, Hellenic hound, 

and camel. We used the Blender software to render 2D 
images from the 3D models. The stimulus images were 

generated using a constant lighting condition, with a gray 

background. Multiple camera positions were sampled for 

each object, with 30∘ separation between camera angles for 

depth rotation. Two undergraduate research assistants 

manually annotated the keypoints (i.e., center locations) of 

predefined parts on the 3D objects. Chair parts included 

seat, back, and chair legs, while animal parts included spine 

of torso, head, and legs. 

We generated 192 pairs of images. A few examples of the 

stimuli are shown in Figure 1. Each image pair included a 

source image (either a chair or an animal), which was 
annotated with two markers on two different parts of the 

object. To generate marker locations for source images, we 

first rendered the images using corresponding 3D object 

models, and then calculated marker locations on the 

rendered 2D images using a perspective projection for the 

predefined camera position. In the within-category 

condition, the source and target images were from the same 

general object category (e.g., two images of animals). In the 

between-category condition, the two images were from 

different object categories (e.g., a chair image with an 

animal image). The two objects in an image pair were 

shown in the same orientation.   

 
Figure 1. Sample stimuli. Left panel: within-category trials 

with source and target images from the same object 

category. Right panel: between-category trials with images 

from different object categories. 

 
Procedure To measure human mapping judgment, we 

asked participants to perform a visual analogy task adapted 

from that used by Gentner (1977). On each trial, participants 

were presented with one image pair on a computer screen as 

shown in Figure 1, and completed a marker-placement task. 

For each of two colored markers, they were asked to “move 

the marker on the top right corner in the target image to the 

corresponding location that maps to the same-color marker 

in the source image.” If the participant did not think there 

was an analogy between the two images, they were allowed 

to move the markers back to the top right corner. No time 

constraint was imposed; the entire experiment was 
completed in about 41 minutes on average. On each trial, 

the exact location of each marker placement was recorded.  

Results Five out of the 59 participants were removed from 

analysis either because they indicated they were not serious, 

or because they moved less than 30% of the markers.  Thus, 

data from a total of 54 participants were included in 

analyses.  

Figure 2 shows two representative examples of human 

responses. The target image was the same for these two 

comparisons (a horse), while the source image was either a 

different animal (a Celtic wolfhound) or a chair.  The 
locations marked as analogous by different participants are 

shown as a heatmap on the target image. These examples 
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illustrate the general pattern of human performance on the 

task. Human responses in identifying analogous parts were 

not idiosyncratic: rather, marker placements were relatively 

consistent across participants, especially for within-category 

image pairs (left panel). Variability of responses among 
participants was greater for between-category comparisons 

(right panel).  

 

 
Figure 2. Example heatmaps of human marker placements 

on target images for two comparisons.  The source images 

have been reduced in size for the purpose of illustration. 

 

 For each comparison of an image pair, we calculated the 
mean location of colored marker placements, averaged 

across participants. We then computed the spatial distance 

(in pixels) from the marker location provided by each 

individual participant to the overall mean location. This 

measure of individual distance to the mean marker location 

provided a quantitative assessment of human variability in 

mapping judgments, with smaller distance values indicating 

higher consistency of marked locations across participants. 

For the within-category image pairs, the mean distance to 

the mean marker location was around 8 pixels. Relative to 

the object sizes (average height of 213 pixels and width of 

135 pixels), 8-pixel variability indicates strong agreement of 
people’s judgments in analogical mapping.  

 Overall similarity between source and target images 

influenced human response consistency in identifying 

analogous parts. As shown in Figure 3, variability in 

mapping judgments was higher when the two analog objects 

were from distinctively different categories (mean 31.66 

pixels) than from the same category (mean 7.66 pixels). A 

repeated-measures ANOVA with two within-subjects 

factors (within- vs. between-categories for source and target 

images, and type of target images) revealed a reliable main 

effect of category consistency between source and target 

images, 𝐹(1,192) = 971.92, 𝑝 < .001. The main effect of 

target category was not reliable, but a two-way interaction 

effect was found, 𝐹(1,192) = 15.75, 𝑝 < .001 . This 

interaction reflects greater within-category distances for 

comparisons between pairs of chairs than of animals, likely 

due to greater shape variability among the set of chairs than 

the set of animals used in the experiment. 

Human responses for some between-category problems 

showed sub-clusters in marked locations. In the example 

shown in Figure 2 (right), some participants mapped the 
back of the chair to the head of the horse, as both parts 

extend out from the main “body” of the object. Other 

participants instead mapped the back of the chair to the back 

of the horse, likely based on conceptual knowledge of 

semantic labels for parts. To ensure that our findings were 

not solely due to use of a single mean placement for each 
problem, the KMeans++ algorithm (Arthur & Vassilvitskii, 

2007) was applied to human-marked locations for each 

between-category problem, identifying two clusters for each 

problem. We then redid the distance analysis for human 

responses by calculating distances to the closer center of 

two clusters for between-category image pairs. Using this 

revised distance measure for between-category placements, 

mean distance from the closer mean placement was reduced 

from 31.66 pixels (SD = 13.39)  to 13.27 pixels (SD = 4.60). 

A repeated-measures ANOVA using the new distance 

measures (based on the closer mean placement) continued to 

reveal a significant effect of category consistency on 

distance from the closest mean placement, 𝐹(1,99) =
56.38, 𝑝 < .001.  

visiPAM: From Vision to Analogy 

To model human judgments in the visual analogy task, we 

developed a model, visiPAM, that extends an approach 

previously applied to verbal analogies (Lu, Ichien, & 

Holyoak, in press). The overall framework (Figure 4) 

involves (1) training a visual module to create vector-based 

representations of visual features for 3D objects, (2) using 
the learned visual model to form structural representations 

of individual objects coded as attributed graphs, and then (3) 

inferring analogical mappings using a probabilistic graph 

matching algorithm that aims to maximize similarity 

between mapped analogs subject to a soft isomorphism 

constraint (preference for one-to-one correspondences).  

 
Figure 3. Human judgments in the marker-placement task. 

Mean distances of marked locations to the mean placements 

varied as a function of whether the source and target images 

were drawn from the same or different categories, and 

which category was used in the target image.  
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Visual module: Structural representation of objects  

The basic aim of the visual module in visiPAM is to form a 

part-based structural representations of 3D objects that 

captures both local 3D shape information about parts and 

the relative spatial relations between parts (see Figure 5). 

We employed a type of deep neural network, a Dynamic 

Graph Convolutional Neural Network (DGCNN) (Wang et 

al., 2019) to capture shape features of 3D objects. The 

network takes as input a set of 3D points of an object 
(termed a point cloud), which is used to accomplish a wide 

range of tasks, including object classification and semantic 

part segmentation. The core component of DGCNN is the 

EdgeConv operation: for each point, the layer aggregates 

information from the K nearest neighboring points through a 

nonlinear function to learn features  𝑒𝑖𝑗 = ℎ(𝑥𝑖 , 𝑥𝑗), where 

the  ℎ(⋅)  function itself is a shared-weight Multilayer 

Perceptron. The point cloud first passes through three layers 

of EdgeConv operations. The features created by each 

EdgeConv layer are max-pooled globally to form a vector, 

and concatenated with each other to combine geometric 

properties. These features are then passed to four additional 

MLP layers to produce a segmentation prediction for each 

3D point.  

The DGCNN is trained on a supervised part segmentation 
task (Yi et al., 2016) using 16 types of 3D objects drawn 

from the ShapeNetPart dataset, which contains about 17,000 

models of 3D objects from 16 rigid object categories, 

including cars, airplanes, and chairs. Each 3D object is 

annotated with 2-6 parts. After training with a part 

segmentation task, DGCNN is able to extract local 

geometric properties from nearby 3D points and encode 

these as embedding features. Hence, DGCNN transforms 

the three-dimensional input (x, y, z coordinates) of each 3D 

point of the object into a 64-dimension embedding vector in 

the third EdgeConv layer. These embeddings capture critical 

local geometric properties of 3D shapes, and thus represent 
informative visual features associated with object parts. 

 

 
Figure 4. Overview of visiPAM. Left: The visual module 

takes as input a set of 3D points of an object and forms a 

structural representation of the object as an attributed graph. 

Right: The reasoning module then identifies the optimal 

mappings between nodes in the attributed graphs for two 

objects. Points on parts predicted to be analogous are coded 
with the same color in the two objects. 

 

In all the simulation results reported below, the DGCNN 

was trained on the ShapeNetPart dataset only.  Critically, 

the DGCNN was only trained on man-made objects in the 

ShapeNetPart dataset and was never trained with 3D 

animals. About 2000 points were used to represent each 3D 
object. To reduce the computation cost in the reasoning 

module, a cluster algorithm (KMeans++ algorithm; Arthur 

& Vassilvitskii, 2007) is applied to point embeddings to 

group the points into eight clusters. Each cluster includes 

3D points that share similar visual features of geometric 

shapes. Although this clustering is based entirely on visual 

embeddings, each cluster typically corresponds to a 

semantically meaningful part of the object. The clustering 

algorithm thus approximates the formation of visual 

representations of object parts. 

 Using the pipeline described above (see Figure 3), an 

attributed graph with eight nodes can be constructed to form 
a structural representation of any 3D object. The part 

clusters provide the nodes and mean embedding vectors for 

each cluster constitute node attributes. The eight nodes are 

fully interconnected to form attributed edges that capture the 

relative spatial relations among object parts. The relative 

spatial relations between parts are used to form edges in the 

attributed graph. For each object part, we calculate the 

center location by averaging 3D coordinates of points in one 

cluster. For any pair of parts, we capture spatial relations 

using three angular distances between cluster centers of the 

two parts and the object centroid. We denote the 3D 

coordinates of two cluster centers for two object parts as 𝒄𝒊 

and 𝒄𝒋, and the center location of the whole object as 𝒄𝟎. A 

relation vector that includes three elements is computed 

using the cosine distances (i.e., angular rotation): (cos(𝒄𝒊 −

𝒄𝒋, 𝒄𝒊 − 𝒄𝟎) , cos(𝒄𝒊 − 𝒄𝟎, 𝒄𝒋 − 𝒄𝟎) , cos(𝒄𝒊 − 𝒄𝒋, 𝒄𝒋 − 𝒄𝟎)).  

Note that the relation vector is invariant to object rotation.  

 

 
Figure 5. The visual module forms a part-based structural 

representation of each object organized into an attributed 

graph. 

Reasoning module: Probabilistic Analogical 

Mapping (PAM) 

After forming the structural representation objects in the 

form of attributed graphs, the reasoning module uses the 

Probabilistic Analogical Mapping (PAM) model (Lu et al., 

2022) to identify correspondences between analogous parts 
across the two objects. Essentially, PAM is a constrained 
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graph-matching algorithm that operates on a pair of 

attributed graphs, 𝐺  and 𝐺′ , composed of nodes 𝑁 

approximately corresponding to object parts, edges 𝐸 

coding spatial relations between parts, node attributes 𝐹 

based on visual embeddings extracted from the DGCNN 

model, and edge attributes 𝑅  based on vectors of relative 

spatial relations between parts. Let i and j be indices of 

nodes in the graph. 𝐹𝑖  indicates the node attribute (visual 

features) of the ith node and 𝑅𝑖𝑗 indicates the spatial relation 

of the edge linking the ith node to the jth node. We denote 

the attributed graph for source objects as 𝐺 = (𝑁, 𝐸, 𝐹, 𝑅) 

and that for target objects as 𝐺′ = (𝑁′, 𝐸′, 𝐹′, 𝑅′). We use 𝑖 
and 𝑗 as indices of nodes in the source graph 𝐺, and 𝑖′ and 𝑗′ 

as node indices for the target graph 𝐺′. 

PAM adopts Bayesian inference to estimate the 

probabilistic mapping matrix m, consisting of elements 

denoting the probability that the 𝑖th  node in the source 

analog maps to the 𝑖′th node in the target analog, 𝑚𝑖𝑖′ =
𝑃(𝑀𝑖𝑖′ = 1). 𝑀𝑖𝑖′ = 1 if the 𝑖th node in the source object 

maps to the 𝑖′th node in the target object, and 𝑀𝑖𝑖′ = 0 if 

the two nodes are not mapped. The mapping follows the 

constraints ∀i  ∑ Mii′i′ = 1, ∀i′  ∑ Mii′i = 1.  The optimal 

mapping identified by PAM is based on maximizing the 

posterior probability 𝑃(𝑚|𝐺, 𝐺′): 

 

P(m|G, G′)  ∝ & P(G, G′|m)P(m),                                (1) 

with the constraints ∀i  ∑ mii′

i′

= 1, ∀i′  ∑ mii′

i

= 1, 

 

where the prior term favors isomorphic (one-to-one) 
mappings, defined as 

 

      𝑃(𝑚) = 𝑒
1

β
∑ ∑ 𝑚

𝑖𝑖′𝑖′ log 𝑚
𝑖𝑖′𝑖 .                                      (2) 

 

The likelihood term 𝑃(𝐺, 𝐺′|𝑚) is based jointly on visual 

feature similarity between mapped nodes and relation 

similarity between mapped parts, defined in the log form as  

 

log(P(G, G′|m)) = (1 − α) ∑ ∑ ∑ ∑ 𝑚𝑖𝑖′

j′i′ji

mjj′S (𝑅ij, 𝑅i′j′
′ ) 

+α ∑ ∑ mii′S(Fi, Fi′
′ )i′i ,                           (3) 

where S(⋅)  is the cosine similarity function for visual 

features (node attributes) and for spatial relations (edge 

attributes). Thus, the first term in Equation 3 corresponds to 
the weighted sum of edge (relation) similarities multiplied 

by the corresponding mapping probability, and the second 

term corresponds to the weighted sum of node (visual 

feature) similarities multiplied by the corresponding 

mapping probability. The parameter α  is a weight that 

controls the relative importance of spatial relation similarity 

(edges) versus visual similarity (nodes), consistent with 

psychological evidence that a variety of factors can alter 

human sensitivity to relation versus entity-based similarity. 

In the simulation, this parameter is set to a constant value of 

0.5. PAM is implemented using the graduated assignment 

algorithm (Gold & Rangarajan, 1996), which iteratively 

converges on a soft assignment of mapping variables 

between the source and target analogs. 

 

Using visiPAM to generate placement predictions 

The input to visiPAM is the 3D point cloud for each object 

used in the human experiment. The model is also given the 

camera orientation for each image used in the experiment, 

and 3D coordinates of markers for source objects. For each 

pair of images to be compared, the model takes the point 

clouds of both objects as the input and employs the DGCNN 

network to generate structural part representations of the 

two objects as attributed graphs. The reasoning module then 

uses the PAM model to identify mappings of analogous 

parts between the two 3D objects. After the center locations 

of parts in the two 3D objects are mapped, the marker 

locations in the target point cloud that are analogous to the 
markers in the source point cloud are identified by 

computing the relative locations in the mapped target 

cluster. The final position of the target markers is 

determined by the distance of the point to the desired 

location within the cluster. Since all 3D point clouds are 

normalized to the same scale, this method works reasonably 

well for our experiment. After obtaining the mapped 

location in 3D, the final step is simply to project it onto the 

2D image (given camera parameters) in order to compare 

the model’s prediction with human marker placements. 

 

        

  
Figure 6. Examples of part mappings between two objects 

represented as point clouds, generated by visiPAM. The top 

two examples (in blue boxes) generated sensible mappings 

(e.g., legs of chair to legs of dog). The bottom two examples 

(in red boxes) generated some sensible part mappings (e.g., 

head of camel to head of horse), but also some apparent 

mismappings (e.g., hump of the camel to tail of the horse; 

seat of the left chair to stand of the right chair). 

 
Results A few examples of mappings generated by PAM 

(both successful and less successful) are shown in Figure 6. 

To compare the model's performance with human responses, 

we applied the model to all 192 pairs of images used in the 

experiment, and measured the distance between the marker 

location predicted by visiPAM to the mean locations of 

human placements for each pair. We then compared the 
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distance measure from the model with the mean for human 

participants. Overall, marker locations of analogous parts 

predicted by visiPAM were an average of 29 pixels from 

mean locations of human placements, close to the average 

human distance to mean locations (20 pixels). Relative to 
the object sizes, the model and human distances were very 

similar. 

Figure 7 shows a violin plot of human and model 

distances from mean human placements across the various 

conditions. As was the case for participants in the 

experiment, visiPAM’s predicted placements were closer to 

the human mean when the two images were drawn from the 

same rather than different categories.  Model predictions 

were within 1 std of human distances in the between-

category condition, indicating that visiPAM’s mapping 

predictions are near the reliability of human judgments for 

far analogy problems. Model accuracy was comparable 
regardless of whether the target was a chair or an animal. 

This finding suggests that visiPAM is able to generalize its 

mapping ability to untrained objects.  

In addition, we calculated the item-level correlation 

across the 192 analogy problems between average human 

distances from mean placement locations and distances of 

the model predictions from the same mean locations. The 

model reliably predicted human responses at the item level, 

r = 0.58.  

Ablation analysis It is possible to separately evaluate the 

contributions of visual features (node embeddings) and 
relations (edge attributes) to visiPAM’s mapping 

performance. Parameter 𝛂  in Equation 3 controls the 

relative importance of visual feature similarity and spatial 

relation similarity in determining mappings. When the 

contribution of relations is removed (i.e., 𝛂 =  𝟏 ), the 

correlation between model and human distance measures 

was reduced from 0.58 (default model including both visual 

features and relations) to 0.44. When the contribution of 

visual feature embeddings is removed (i.e., 𝛂 =  𝟎 ), the 
correlation between model and human distances was 

reduced to 0.12. These ablation results confirm that both 

visual features and spatial relations contribute to visPAM’s 

ability to identify analogous parts across objects.  

 
Figure 7. Violin plot of human placements and visiPAM 

predictions. Each colored dot indicates average distance of 

marker locations from the human mean for one individual 

participant. Large black dots indicate visiPAM predictions. 

Horizontal lines indicate mean human distances, and the 

error bars indicate one standard deviation. 

Discussion 

Using a marker-placement task, we found that people can 

identify consistent mappings between parts of two 

distinctively different 3D objects, even when the objects 

being compared are drawn from very different categories 

(e.g., a chair and a dog). We present a new analogy model, 

visiPAM, that is able to operate on 3D shapes of visual 

inputs and compute mappings comparable to those 

identified by humans. To the best of our knowledge, 

visiPAM is the first model that can compute analogies 

between 3D objects.  

Most previous machine-learning models that can solve 

visual analogy problems from pixel-level inputs (e.g., 
Santoro et al., 2017; Zhang et al., 2019). However, machine-

learning models that were originally designed to solve 

analogy problems based on simple geometric patterns have 

failed to generalize to analogy problems based on realistic 

images (Ichien et al., 2021). In contract, visiPAM does not 

require end-to-end training on massive numbers of analogy 

problems. Rather, the approach represented by visiPAM 

assumes that analogical reasoning is a similarity-based 

cognitive mechanism that naturally operates on 

representations formed to perform a wide range of 

perceptual and/or cognitive tasks. Once suitable structural 
representations have been acquired from raw inputs, 

analogical reasoning provides a mechanism that promotes 

generalization and knowledge transfer. The visual module in 

visiPAM uses a deep learning model that is trained with 

supervision to perform object classification and part 

segmentation for a range of 3D objects, coupled with an 

unsupervised clustering algorithm. The reasoning module, 

which operates without any training at all, succeeded in 

finding mappings for images taken from an object category 

(animals) on which the visual module has not been trained. 

The integration of structured visual representations coded as 

visual feature embedding and spatial relations organized 
into graphs, with a probabilistic mapping algorithm, yields 

robust analogical mapping that generalizes to novel object 

categories. Previous models of visual analogical reasoning 

have also operated on structured visual representations (e.g., 

Chen et al., 2019; Lovett & Forbus, 2017; Doumas et al., 

2022), but visiPAM goes beyond previous models by 

operating on raw perceptual inputs. 

The present results indicate that visiPAM achieves 

reliability comparable to humans in our marker-placement 

task, encouraging the possibility of extending the model to 

other visual analogy tasks. We believe that achieving 
human-level, generalizable analogical reasoning will require 

synergy between deep learning with big data (to acquire 

suitable representations) and similarity-based reasoning over 

relational structures.  Vision and reasoning must be closely 

coupled in order to “see” the correspondences between 

distinct objects and scenes. 
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