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A B S T R A C T

For causal knowledge to be worth learning, it must remain valid when that knowledge is applied. 
Because unknown background causes are potentially present, and may vary across the learning 
and application contexts, extricating the strength of a candidate cause requires an assumption 
regarding the decomposition of the observed outcome into the unobservable influences from the 
candidate and from background causes. Acquiring stable, useable causal knowledge is challenging 
when the search space of candidate causes is large, such that the reasoner’s current set of can
didates may fail to include a cause that generalizes well to an application context. We have hy
pothesized that an indispensable navigation device that shapes our causal representations toward 
useable knowledge involves the concept of causal invariance – the sameness of how a cause 
operates to produce an effect across contexts. Here, we tested our causal invariance hypothesis by 
making use of the distinct mathematical functions expressing causal invariance for two outcome- 
variable types: continuous and binary. Our hypothesis predicts that, given identical prior domain 
knowledge, intuitive causal judgments should vary in accord with the causal-invariance function 
for a reasoner’s perceived outcome-variable type. The judgments are made as if the reasoner 
aspires to formulate causally invariant knowledge. Our experiments involved two cue- 
competition paradigms: blocking and overexpectation. Results show that adult humans tacitly 
use the appropriate causal-invariance functions for decomposition. Our analysis offers an 
explanation for the apparent elusiveness of the blocking effect and the adaptiveness of intuitive 
causal inference to the representation-dependent reality in the mind.   

1. Introduction

We all have a yearning to make sense of the world, to represent causal relations between observed events in a way that finds order
and meaning from overwhelming complexity. In our attempt to most effectively represent how the world works, what criteria do we 
use for formulating, evaluating, and revising our hypotheses? As with any form of inductive inference, there is the issue of under- 
determination (e.g., Atlas, 2005): inevitably there will be multiple causal hypotheses that can explain the same observed pattern of 
events. 

The magnitude of the issue is better revealed when we realize that reality does not come represented (Hawking & Mlodinow, 2010; 
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Kant, 1781/1965). Our perceptions and conceptions of reality are our representations of it, formulated within an infinite search space. 
Machine-vision, vision-science, and neuroscience research have brought this problem of under-determination from a quarter- 
millennium-old insight in philosophy into the realm of cutting-edge science, engineering, and clinical treatment (Botvinick & 
Cohen, 1998; Hofer, Singer, & Williams, 2005; Jayadevan, Michaux, Delp, & Pizlo, 2017; Pizlo, 2001; Mitchell & Rushton, 1971; 
Ramachandran & Hirstein, 1998). Consider your perception of a cube, for example, a percept that you are likely quite confident of. 
However, the 2-dimensional image cast by a cube on our retina is ambiguous in that it can map onto an infinite number of 3-dimen
sional objects, objects that need not be symmetric, and whose edges do not have to be straight lines (e.g., see Pizlo, 2001). 

Yet, despite the inherent under-determination of the distal object, we are not paralyzed by indecision. We confidently perceive a 
cube. Narrowing down to this adaptive percept in the infinite space of possible distal objects illustrates the application of potent 
constraints in the form of a priori assumptions, in this case the default assumption that the distal object has the simplest form that is 
consistent with the image (i.e., the object is a “parsimonious explanation” of the image). Likewise, to construct causal beliefs in the vast 
search space of possible representations of reality, an adaptive solution requires cognitive constraints (Cheng & Lu, 2017). 

Unlike typical current methods in artificial intelligence such as causal Bayes nets (e.g., Pearl, 2000; Spirtes, Glymour, & Scheines, 
1993/2000), the human causal-induction process did not evolve in response to situations in which data input are already encoded in 
terms of predefined variables. The variables and concepts that serve our purposes are representations that we alone formulate––we are 
our own “users”. This difference in the input to the causal-induction process leads to two distinct computational-level problems (Marr, 
1982)—one for humans and another for current artificial-intelligence methods. Different problems require different solutions. 

Recognizing the distinct problems being solved enables a reconciliation between two seemingly contradictory lines of findings. On 
one hand, even for the simplest causal networks, which involve three nodes, intuitive human causal reasoning violates the causal 
Markov assumption, a fundamental assumption in causal Bayes nets (e.g., see Meder, Hagmayer & Waldmann, 2008; Park & Sloman, 
2013; Rehder, 2014, 2015; Rehder and Burnett, 2005; Rottman & Hastie, 2014, 2016). On the other hand, intuitive estimates of causal 
strength in three-node networks are remarkably rational (e.g., Buehner, Cheng, & Clifford, 2003; Liljeholm & Cheng, 2007; Lu, Yuille, 
Liljeholm, Cheng, & Holyoak, 2008; Lu, Rojas, Beckers, & Yuille, 2016; Novick & Cheng, 2004; Wu & Cheng, 1999). These estimates 
are consistent with the causal invariance assumption, also termed the independent-causal-influence assumption. 

In the present paper, we consider the causal invariance hypothesis, which posits that the tacit aspiration to acquire causal knowledge 
that holds when it is applied is a key component of a rational solution to the natural causal-induction problem (Cheng, Liljeholm, & 
Sandhofer, 2013, 2017, under review; Cheng & Lu, 2017). We report two experiments testing some predictions of our hypothesis in 
two well-known inductive learning paradigms (Kamin, 1968; Kremer, 1978; Rescorla & Wagner, 1972). 

1.1. Overview of framework 

Here, we give a brief introduction to our hypothesis. In subsequent sections, we further clarify the nature of humans’ causal- 
induction problem, and explain why causal invariance as an aspiration is essential to solving this problem. 

Whether specific factors (as represented) are independent causes of an outcome or interact to form a complex cause can only be 
learned empirically, from one’s own or someone else’s observations. But, for the acquired knowledge to be useful, such empirical 
learning is, in our view, dependent on analytic knowledge of causal-invariance integration functions. Such knowledge, which concerns 
what happens when multiple causes of an outcome are present, states what the expected outcome would be if the causal mechanisms 
operate the same way in combination as when they operate alone. It does not state that the causal mechanisms are invariant; nor does it 
state what the outcome must be or will be. 

When the observed outcome deviates notably from the outcome expected under causal invariance, the deviation provides a signal 
to the reasoner indicating a potential need to revise current empirical knowledge toward greater causal invariance. Such revision may 
include the formulation of candidate causes that are not in the current representations. 

For example, reasoners may have a hypothesis that consuming fiber helps prevent metabolic syndrome. But, if they find that eating 
whole fruits helps lower their blood-sugar level and thus prevent metabolic syndrome, while drinking fresh fruit juices with the 
equivalent amount of pulp fiber does not lower (but may in fact raise) their blood-sugar level, then they would see that the preventive 
strength of fiber is not invariant across contexts. The deviation from invariance would be a cue to revise the original hypothesis. 
Whereas reasoners’ current set of candidate causes may all be formulated in terms of dietary substances and their interactions, the 
deviation may motivate looking beyond that set of possibilities, to consider the topology of fiber as a means to re-represent the cause in 
a more invariant way. Specifically, fiber––in the form of intact cell walls enclosing the fructose in the cell––sequesters fructose “away 
from the absorptive surface of the small intestine,” blocking it from being rapidly released into the digestive system (Ludwig, 2013, p. 
34). This revised knowledge is more invariant in that it predicts the presence or absence of metabolic syndrome more accurately across 
a broader set of contexts: both fiber in whole fruits and fiber in fresh fruit juice. Furthermore, the revised knowledge generates novel 
predictions (e.g., eating guacamole would protect against metabolic syndrome but eating apple sauce would exacerbate it, because the 
crushing of cell walls would not affect fructose absorption in a low-fructose fruit like avocado but would affect it in a high-fructose fruit 
like apple). 

Now, what is believed to be a more invariant cause may subsequently be found to be non-invariant in a new context, in which case 
reasoners may further revise their causal knowledge, depending on their resources. The signaling of a deviation from causal invariance 
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reiterates.1 Notably, current artificial-intelligence methods, to our knowledge, do not seek to revise the user-supplied variables. 
Although causal invariance is an important topic in the philosophy literature (e.g., Woodward, 2003, 2006, 2010, 2021), it has 

been relatively neglected in the cognitive science literature. For example, cognitive scientists studying integration functions or functional 
forms––mathematical functions that specify how causes combine their influences on an outcome of interest––have not considered a 
role for causal invariance as an aspiration or a cognitive constraint (e.g., Beckers, De Houwer, Pineño, & Miller, 2005; Beckers, Miller, 
De Houwer, & Urushihara, 2006; Gopnik, Griffiths, & Lucas, 2015; Griffiths & Tenenbaum, 2005; Lovibond, Been, Mitchel, Bouton, & 
Frohardt, 2003; Lucas, Bridgers, Griffiths, & Gopnik, 2014; Lucas & Griffiths, 2010; Melchers, Lachnit, & Shanks, 2004; Shanks & 
Darby, 1998; Tenenbaum & Griffiths, 2001). In these accounts, if causal invariance is considered special (e.g., the additivity function as 
discussed in Beckers et al., 2006), it is only as a default that is simply abandoned when it is disconfirmed by observations. Even when 
specific integration functions are regarded as more appropriate than other functions for certain outcome-variable types (Lu et al., 
2016), no connection is made to the concept of causal invariance, which in our view explains why those functions are appropriate and 
what is in common across the “appropriate” functions. (Appropriateness might be due to reasoners’ prior experience of how causes in a 
domain combine, for example.) 

The neglect of causal invariance may in part stem from the belief that the aspiration to develop theories that are invariant across 
contexts is a hallmark of scientific reasoning (Sloman, 2005; Woodward, 2000; 2003; 2010) but not intuitive everyday causal learning. 
Curiously in that regard, intuitive evaluations of causation involving a binary outcome variable (the most studied outcome type in the 
human causal-learning literature) do assume causal invariance as a default (e.g., Buehner et al., 2003; Liljeholm & Cheng, 2007; Lu 
et al., 2008, 2016). Do intuitive reasoners (tacitly) aspire toward invariant causal explanations across contexts? In Experiments 1 and 
2, we tested some predictions that follow if they do. Is it coincidental that causal invariance plays a role in both scientific and intuitive 
reasoning? Our analysis below suggests not. 

1.2. The natural causal-induction problem 

What is required to solve a causal-induction problem in which the search for causal knowledge occurs in the infinite space of 
possible representations? Given that enumerating all possible representations and evaluation them is not an option, a fruitful search for 
causal knowledge in that space would require a signal to tell the reasoner when to look outside their current—necessarily limit
ed—candidate set, to formulate or reformulate concepts and variables. The signal itself is a representation, albeit that of an imagined 
possible world. 

We assume the reasoner’s goal is to acquire causal knowledge that is useable, in the sense that knowledge induced from prior 
experiences holds true when subsequently applied. However, every new situation differs in some (potentially unknown) way from 
situations in the past. Thus, when a reasoner applies causal knowledge, they inherently assume causal invariance, namely, that while 
background causes may vary, the influence of the cause in question is stable––that the causation aspect of nature does not change. As 
the philosopher David Hume (1748/1975, p. 38) notes, “if there is any suspicion that the course of nature may change, … all expe
rience becomes useless.” In other words, the goal of useable causal knowledge implies a reasoner-imposed constraint of causal 
invariance: the unchanging operation of a causal mechanism from a learning context to an application context. We use “contexts” to 
denote situations in which background causes of an outcome may occur; in different contexts, these causes may occur with different 
probabilities. By background causes, we mean (observed and unobserved, known and unknown) causes other than the candidate causes 
in question. 

To see the role of causal invariance as an indispensable navigation device within the infinite search space of causal representations, 
consider three environmental constraints. First, causal relations are inherently unobservable (Cheng, 1997; Gopnik, Glymour, Sobel, 
Schulz, Kushnir, & Danks, 2004; Griffiths & Tenenbaum, 2009; Hume, 1739/1987; Ichien & Cheng, in press; Pearl, 2000; Spirtes et al., 
2000). By causal relations being “unobservable”, we mean that causal relations are not in the input available to a downstream 
construct that we label the causal-induction process. Given that our sensory input does not contain causal relations, but we “know” 
causal relations, there must be a downstream process that does the work of inferring causal relations, the output, from its noncausal 
input. What is “observable”, namely, the input to that process, are the states of candidate causes (as represented) and the aggregate 
outcome due to all contributing causes (observed and unobserved causes). The orbit of the Moon we observe, for example, is the orbit 
due to the total gravitational pull from all celestial bodies. No telescope will delineate separate orbits due to the Sun, the Earth, etc., no 
matter how powerful! These individual causal powers must be inferred through the causal-induction process. 

Second, the environment always has the potential to contain unknown background causes of an outcome (hence the mantra 
“association need not imply causation”). Assessing the embedded potential contribution of a candidate cause therefore requires 
extricating it from the influence of the background causes. This crucial step during learning requires a decomposition assumption 
specifying how the observed outcome can be analyzed into influences from the target cause and those from the contextual background 
causes. Nature does not tell us how to do the extrication: the task is reserved for us the reasoners. 

Third, it is always possible for background causes of an outcome to differ across contexts. Because events in the world inevitably 
change, the injunction in statistical textbooks for scientific inference to only interpolate (i.e., to restrict inference to the population 
sampled) is unrealizable in practice. The universe we inhabit has never repeated itself. By the time we apply causal knowledge from a 
medical study, the population from which the study drew its sample has aged; climate change may have brought pervasive and 

1 Our present paper addresses when causal knowledge needs revision but not how it is revised. How it is revised would depend on the domain and 
the reasoners’ knowledge and imagination. 
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unanticipated health consequences; societal forces such as new technology, immigration, and the interconnectedness between human 
populations might have modified the younger population’s habits, culture, and genetics. For everyday causal inference, which does not 
involve random sampling of a population, interpolation is not even a theoretical possibility––there is no representative, randomly 
sampled population to which to circumscribe interpolative inference. Extrapolation is our only choice. 

Predicting the expected outcome in a new context by applying previously induced causal knowledge requires a composition 
assumption specifying how to combine the influences of the candidate and (new) background causes. Composition is the inverse of 
decomposition. (We refer to both functions characterizing decomposition and composition as integration functions.) 

Given these objective constraints, how should causal relations be extricated from their incidental context? Does the subjective goal 
of formulating useable causal representations impose a constraint on the extrication? Our paper addresses this issue at the level of what 
is computed rather than how it is computed (Marr, 1982).2 

2. An assumption in the construction of generalizable causal knowledge 

2.1. Causal invariance as aspiration 

Our proposal is that the concept of causal invariance shapes our representations by serving as a default decomposition function, a 
default composition function, and a knowledge-revision criterion, with the three roles all driven by the (tacit) goal to acquire causal 
knowledge that generalizes across contexts, in particular across the learning and application contexts (e.g., Cheng et al., 2013, 2017; 
Cheng & Lu, 2017). Because that goal is likely never reached across all contexts (consider theory revisions in the history of science, 
Kuhn, 1962/2012), we refer to it as an aspiration. 

To explain the three intimately related roles in this subjective constraint, we make two distinctions: 1) a part-whole distinction, 
between a “whole” cause (elemental or complex) and an interactive component (part) within a whole cause, and 2) a distinction between 
analytic and empirical knowledge (cf. Hume’s, 1739, fork of knowledge: “relations of ideas” and “matters of fact”). Stating the goal of 
causal learning in terms of these distinctions, the goal is to formulate whole causes––potentially consisting of interacting components––using 
empirical information from our observations, such that the whole causes would conform to how our analytic knowledge of causal invariance 
informs us they should behave in application contexts that may have different background causes; that is, such that whole causes are ideally 
teased apart from (do not interact with) other causes (e.g., those in the background). We explain each distinction in turn below. 

Consider examples of the part-whole distinction. To “force quit” a frozen computer program, a user must simultaneously press 
multiple keys, such as Ctrl + Alt + Delete. Each of these key presses is a necessary component of a “whole” cause of the outcome. 
Playing a guitar chord requires a conjunction of finger placements and strumming. To have “healthy forest growth,” there must be 
adequate nitrates in the forest soil, rain, drainage, amounts of carbon dioxide and of oxygen, elevation, sunshine, etc. The conjunction 
of these individually insufficient but necessary factors is a complex “whole cause” of growth3, alongside other whole causes of forest 
growth, such as logging by the lumber industry. Each whole cause (whether elemental or complex, generative or preventive) by itself 
has an influence on growth (cf. Mackie’s, 1974, “INUS” condition: each component factor is an insufficient but necessary part of a 
condition which is itself an unnecessary but sufficient cause of the outcome). 

Our second distinction concerns the basis for belief. Whereas analytic knowledge is justified by reason––that is, by what logically 
follows from a set of premises given the meaning of the concepts in question––empirical knowledge is justified by experience, by 
encounters with the world.4 Let us use an example from Luria (1931) to illustrate the distinction. A villager in Uzbekistan was asked, 
“In the far North, where there is snow, all bears are white. Novaya Zemlya is in the far North, and there is always snow there. What 
color are the bears there?” One of the Uzbek villagers replied, “Your words can be answered only by someone who was there.” To this 
villager, the answer is to be settled by testimony based on experience, and by that only. They might have wondered why Luria asked 
such an odd question. By contrast, an analytic answer would be a conditional: If Luria’s premises are true, then the bears in Novaya 
Zemlya are white. 

In the case of integration functions, empirical knowledge of an integration function would state (after actual encounters) that 
causal influences a, b, and c combine as described by function f to produce outcome x on the basis of observations. By contrast, analytic 
knowledge of a causal invariance integration function would be a conditional that states the expected outcome under its premise: if 
causes are invariant across contexts, then the outcome would be as predicted according to < the appropriate causal invariance function 
for that outcome variable type > . The premise of the conditional is the sameness of the operation of a causal mechanism across contexts 
given the meaning of “sameness”, “causal mechanism”, and “context”. Such analytic knowledge is necessary because in order to 
discern whether an observed outcome indicates a causal interaction, one must first specify the outcome that means “no interaction”, 
then compare that criterion to the observed outcome. 

To consolidate our part-whole and empirical-analytic distinctions, let us illustrate both distinctions within Newton’s theory (1687/ 

2 In other words, our paper does not address how the inferences are implemented, by propositional reasoning, mathematical reasoning, or some 
other process.  

3 The conjunctive cause consisting of the combination may be regarded as a place-holder for more in-depth revisions. A botanist, for example, may 
further explain why the conjunction of sunshine, water, and nutrients in the soil produces plant growth.  

4 Analytic knowledge can be either qualitative or quantitative. Conversely, quantitative knowledge can be either analytic or empirical. The 
formula in Newton’s (1687/1713) inverse-square law governing celestial and terrestrial motion, for example, is quantitative, but nonetheless 
empirical because it is justified by observations. 
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1713) of celestial motion. Newton’s law of universal gravitation characterizes the “whole cause”—the vectors representing the equal 
and opposite gravitational pull at any moment between any two bodies—as an interaction among its component factors (as a direct 
function of the masses of the two bodies and an inverse function of the square of the distance between them). This inverse-square law is 
empirically induced. The causal-invariance integration function is vector addition. In our view, the gravitational forces obeying the 
empirical function nicely hold between any two bodies regardless of other bodies in the context because the variables in that law were 
formulated so that any individual “whole cause” would be invariant across all possible configurations of other bodies in the context, 
with vector addition as the analytic expression of that invariance. More generally, the reasoner (to the extent resources are available) 
seeks to represent causes that are invariant across contexts. 

To see how the aspiration of causal invariance shapes causal representations toward useable causal knowledge, we can make use of 
the symmetry of the learning and application contexts. It seems that the minimal requirement for a causal relation to be useable would 
be that it holds in the original context in which it was inferred. As explained earlier (Section 1.2), when applying causal knowledge in a 
new context to predict the outcome, the default composition function for the target cause and the contextual causes is inherently causal 
invariance. But, to satisfy that minimal requirement, note that during the original learning, causal invariance must also be the default 
integration function that decomposes the observed outcome into the contributions from the candidate cause and the background. Take a 
causal relation that has been found to generalize to an application context (using causal invariance as the composition function to 
correctly predict the outcome). Now, treat this as a “learning” context, and consider “applying” this successfully generalized relation 
back in the original context. Which context is encountered first is incidental and should not affect the content of the inferred causal 
relation that, under our supposition, holds across the two contexts; flipping the “learning” and “application” context labels should 
make no difference. But, composition is the inverse of decomposition. Thus, if causal invariance had not been the decomposition 
function during the original learning, the hypothetical flipped test—which applies the target causal relation using causal invariance 
now as the composition function—would not correctly “predict” the actual data in the original learning context. (See Ichien and Cheng, 
in press, for data-set examples.) 

In other words, for any causal mechanism that indeed remains unchanged across two contexts, the desired inferred causal relation 
that does generalize across the contexts could not have resulted from the actual data in the learning context unless causal invariance is 
the decomposition function during learning. 

Intimately tied to causal invariance’s role as a default integration function is its role as a revision criterion: deviation from causal 
invariance serves as a signal to revise causal knowledge. What if the need for revision were signaled instead by deviation from a causal- 
interaction (i.e., non-causal-invariance) criterion? If candidate c of effect e is expected to interact with some component of the back
ground causes, then there would be 1) a deviation from this expectation––signaling a need to revise causal knowledge––when the 
actual influence of c in fact generalizes across contexts (resulting in a false alarm), and 2) no deviation from expectation––hence no 
signal to revise–– when c interacts with background causes as expected (resulting in a miss). If c interacts with background causes, the 
causal relation as represented can actually benefit from revision, because it presumably would not generalize to other contexts, as not 
all contexts contain the same interacting component. In other words, adopting causal interaction as a revision criterion would result in 
faulty signals. Because confirmation and disconfirmation depend on the signal, such systematic errors would be grievous in an 
immense search space. 

In summary, to enable generalization across contexts where unknown causes may be present, the aim of causal-knowledge con
struction is to formulate whole causes that are teased apart from other causes. Given the infinite space of possible representations, 
whole causes (e.g., Newtonian gravitational force) are not independent of other whole causes by happenstance: they are represen
tations that were constructed expressly to attain causal invariance. Our analysis explains why causal invariance plays a role in both 
scientific and intuitive causal learning. In our framework, scientists aspire to causal invariance because they share with lay folks a 
deep-rooted solution to the natural causal-induction problem in the search space of reality where variables await our representation. 

2.2. A contrast with empirical knowledge of integration functions 

What is the scope with which empirically acquired integration functions generalize? For example, do such functions generalize 
within a domain (celestial motion but not forest growth)? Do they generalize within a variable type? We start with some examples, 
then consider the general issue. 

Within the domain of celestial motion, we see that whereas an empirical interaction function (the inverse-square law in Newton’s, 
1687/1713, theory) combines the interactive influences from the component factors, a causal-invariance function (vector addition) 
combines the independent influences from multiple whole causes (e.g., the force vectors representing the gravitational pull on the 
Moon from the Sun, the Earth, and other bodies). Notice that the four variables in Newton’s law (the gravitational pull between two 
bodies, the masses of the two bodies, and the distance between them) may all be regarded as being of the continuous type. This 
example illustrates that, for variables of the same type in the exact same domain, an interaction among some variables co-exists with 
invariance among other variables. We see the same co-existence for the continuous variables in the forest growth domain. As our 
examples illustrate, empirically learned interaction functions generalize neither across variables of the same type nor across variables 
within a domain. 

Such failure to generalize empirical integration functions is to be expected. Under our causal invariance view, if our empirical 
knowledge is successfully formulated (i.e., invariant and useable), the interactions among component factors should not generalize to 
variables at the whole-cause level! The interaction among factors such as sunlight and soil nitrogen in the conjunctive cause that 
produces healthy forest growth should not generalize to the relation between that conjunctive whole cause and logging by the lumber 
industry. (Because conjunctive causes are common, there would be more interactive-component causes than whole causes within the 
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same domain.) That is, empirical integration functions are specific to the content of the represented variables (e.g., sunlight, soil ni
trogen, forest growth; mass, distance, gravitational force) rather than to their form (continuous scalar, vector, etc.). Whether and how 
they generalize depends on the similarity between the underlying causal mechanisms in question (e.g., Lucas & Griffiths, 2010, Expt. 5; 
Miller & Schachtman, 1985; Wheeler, Miller, and Beckers, 2008, Expt. 3) as well as on situational variables (e.g., the demand char
acteristics in an experiment; Wheeler et al., 2008, Expts. 1 & 2). Notably, although an empirical interaction function may serve as a 
default hypothesis for variables that are perceived to share the same causal mechanism (e.g., novel cues in the same domain as learned 
conjunctive causes; e.g., Melchers et al., 2004), if that default in fact fails, that interaction function is simply abandoned, and is not 
retained as a goal for knowledge representation. 

In contrast, analytic knowledge of causal-invariance functions (e.g., vector addition, the “noisy-OR” function in Eq. 1 below, wave 
addition) is formal, that is, domain-, content-, and context-independent: invariance functions are specific to outcome variable types (e. 
g., vectors, binary variables, waves), with their validity resting on logical consistency given the meaning of “sameness” as applied to 
the outcome-variable type of the causal mechanism in question. The validity of the if-then conditional, 

if < cause x > influences outcome z the same way regardless of the state of < cause y>, then it follows that their combined influence 
would be as specified by < the causal-invariance function for outcome type z given the states of causes x and y>, 

does not depend on the truth of the consequent: a mismatch between an observed outcome and the consequent of the conditional only 
implies (by the contrapositive) that the antecedent is false (which may trigger revising the hypothesis relating x, y, and z). Thus, vector 
addition would always represent causal invariance for vectors, and would remain a goal for knowledge revision whether or not a 
specific predicted invariance actually holds. 

2.3. Analytic knowledge of causal invariance functions: For continuous and binary outcomes 

Given that analytic knowledge of causal-invariance functions enables computing the expected outcome assuming super
position—the combination of invariant causal influences—reasoners must have such knowledge, at least in an implicit form, for at least 
some outcome-variable types, to construct new useable causal knowledge involving those outcome-variable types. Notably, the su
perposition of causal capacities is manifested as distinct mathematical functions for different outcome variable types. For example, 
superposition is expressed for a binary outcome (e.g., a bone being fractured or not, a patient being alive or dead) by noisy-OR and 
noisy-AND-NOT functions; for a continuous outcome (e.g., food in varying quantities, the amount of light from multiple lamps falling 
on an area per unit time) by scalar addition; and for vectors (e.g., gravitational or electric force vectors) by vector addition. 

For scalar continuous (and approximately continuous) outcome variables, in the range where an outcome Z is on an interval scale 
and not at a ceiling or floor level, changes in the strength of a cause produce corresponding changes in the intensity of Z. Thus, if the 
magnitude of change in Z produced by each of two generative causes is unaffected by the state of the other cause (i.e., their causal 
powers combine invariantly), then the magnitude of change in Z when these two causes both occur would be the arithmetic sum of the 
magnitudes of change in Z produced by each of the respective causes alone; that is, causal invariance manifests itself as additivity for 
scalar continuous outcomes. Consider the physical amount of light cast in an area (rather than the area’s perceived brightness): 

If two lamps each casts 1000 lm of light when it is on by itself, 
and each lamp does not change the amount of light energy it casts depending on the state of the other lamp, 
then together the area would receive 2000 lm of light when both lamps are on. 
As should be clear, the validity of this if-then conditional is justified by reason (cf. Luria’s, 1930, question about white bears). In 

particular, the validity of the conditional is distinct from the truth of the consequent: an observation that the consequent is false (e.g., 
the area receives a total of 1500 lm rather than 2000 when both lamps are on) invalidates not the conditional itself but rather the 
assumption that the lamps cast light invariantly (i.e., denying the consequent of a conditional entails that the antecedent is false, per 
modus tollens). Say, the lamps are energy-conserving and automatically dim when they detect an ambient light beyond some brightness 
threshold. The combined outcome would be less than 2000 lm in that case, deviating from causal invariance, but the conditional 
implementing additivity as the causal-invariance function would still hold. 

In contrast to continuous variables, binary variables have no graded intensity levels. For such variables, magnitude of causal ca
pacity is expressed by probabilities. Generative causal capacity, for example, can be represented as the probability of a cause producing 
the effect in an entity (Cartwright, 1989): The capacity of cause C to produce effect E in an entity is the probability of E occurring in the 
entity in the presence of C when all other causes of E are absent (potentially counterfactually). Causal capacities, being unobservable, 
must be estimated by inference under a set of assumptions from observed frequency data for the occurrences of the cause and effect 
variables. Note that the relative frequency of occurrence of an outcome in a set of entities is a proportion involving cardinal numbers 
(e.g., 3 out of 10 patients treated have a fractured bone), which are on a ratio scale. Units on this scale have a physical meaning and are 
not arbitrary. 

For binary outcome variables, in accord with the product definition of independence in probability theory (e.g., Feller, 1957/1968; 
Jaynes, 2003), the sameness of the causal capacities of generative causes of an outcome manifests itself as a noisy-OR integration 
function (e.g., Cheng, 1997; Glymour, 2001; Good, 1961; Pearl, 1988; Sheps, 1958; Yuille & Lu, 2008). For generative causes A and B, 
assuming they are the only causes of E, and the capacity of each cause to produce E is unaffected by the other cause (i.e., they are 
invariant), the noisy-OR function states that the probability of E occurring is: 

P(e = 1|a, b; pA, pB) = pAa+ pBb − pApBab,
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where a, b, e ∈ {0,1} denote the absence and presence of A, B, and E, and pA and pB denote the respective capacities of A and B to 
produce E. Note that the sub-additivity of causal invariance for binary outcomes is not a ceiling effect: the noisy-OR function deviates 
from arithmetic additivity whenever both A and B produce the outcome with a nonzero probability (see the negative product term in 
Eq. 1). We return to this point in Experiment 2. 

If our analysis is correct, people should intuitively use the appropriate causal-invariance functions for at least some outcome 
variable types. Our experiments tested whether untutored reasoners use the appropriate causal invariance functions for continuous 
and binary outcome variables. 

2.4. An alternative view: The purely empirical integration-rule-learning hypothesis 

One might argue that the reported use of the additive function for continuous outcomes and the noisy-OR function for binary 
outcomes are empirically justified, and are not interpreted analytically in terms of the sameness of causal influences across contexts. 
Instead, reasoners might have merely learned from their experience that––as a matter of empirical fact––most causal variables of 
continuous outcomes combine additively, whereas most causal variables of binary outcomes combine in a noisy-logical manner. Note 
that because the additive and noisy-OR integration functions are in fact causal invariance functions for their respective outcome 
variable types, the empirical rule-learning hypothesis implies that most of our individually hypothesized and culturally transmitted 
causal relations have elemental causes (with no interacting components) that do generalize across contexts. 

This hypothesis is both conceptually and empirically problematic. Fundamentally, the empirical rule-learning hypothesis is 
inconsistent with a basic tenet of cognitive science: namely, that our conception of the world is our representation of reality rather than 
reality itself. There are many possible representations of reality, for something as mundane as the color of an object (cf. the artist James 
Turrell’s Skyspaces) or as profound as the nature of time and space. The empirical rule-learning hypothesis overlooks the crucial fact 
that which integration function characterizes how variables are observed to combine depends on the chosen representation of those 
variables. 

Consider the representations of planetary motion. Isaac Newton’s choice of variables enabled his universal law of gravitation to 
yield gravitational forces that superpose on each other. Not all choices of variables enable that desirable property. If Newton had 
instead chosen other variables (e.g., “conatus”, a body’s inherent tendency to move instead of a body’s mass, as proposed by Hobbes 
and Leibniz, or a circularly moving body’s inherent “center-fleeing” (centrifugal) tendency, as proposed by Descartes), superposition 
would not have resulted. Needless to say, there are any number of other possible representations. It took a Newton to have formulated 
the variables in his universal law and framework. (A simple concrete example in our general discussion further illustrates how choice of 
representation affects whether invariance results.) The hypothesis that causal-invariance functions are empirically learned implies, 
anomalously, that regardless of the choice of representation, the chosen variables would typically give invariant causal knowledge. 

Moreover, the empirical rule-learning hypothesis implies that if most chosen variables fail to generalize across contexts (i.e., 
interact with background causes), then interaction-integration functions would be the adopted default. In fact, many causes in our 
knowledge base involve complex interacting components. Consider traits such as an individual’s height or weight. Each trait depends 
on the interaction of a large number of variables: genes, societal factors such as the wealth of one’s socio-economic group during 
childhood, the influence of the agricultural and food-processing industries, the individual’s food preferences and habits, etc. Likewise, 
whether someone has a car accident is likely the result of the interaction of numerous factors, each one of which would not have 
produced the outcome on its own. In our gravitational force and forest growth examples, for each whole cause there are three or more 
component causal factors that combine interactively. Thus, it seems that the burden of proof is on the empirical rule-learning hy
pothesis to demonstrate that most causes we have inferred are represented elementally. 

Even if it were the case that causal knowledge inherited from our current culture tends to consist of elemental invariant causes, why 
would human representations have begun in terms of conveniently generalizable variables right from the start? In fact, archaeology 
and history inform us that human causal knowledge has evolved enormously (e.g., see Diamond, 1997; Kuhn, 1962/2012; Needham, 
1956, 1962, 1965, 1985a–c, 2000). Given that the intuitive human causal-learning process is unlikely to have undergone fundamental 
change within the same time frame, that process must be capable of freedom from the rut of failures, capable of formulating (relatively) 
invariant causal relations despite having proposed and tested numerous hypotheses that fail to generalize. In sum, from multiple 
perspectives, the empirical rule-learning hypothesis is untenable. 

Turning the empirical rule-learning view on its head, our account holds that the (relatively) invariant causes that are useful to our 
understanding of the world are formulated with invariance as an aspiration rather than by happenstance. Rather than the world 
presenting itself to us already represented, the human causal-inference process develops the (potentially complex) invariant “whole” 
causes drawing on analytic knowledge of causal invariance functions, which differ mathematically depending on the form rather than 
the content of the outcome variable, as a tool to navigate the vast search space of representations (Carroll & Cheng, 2010; Cheng & Lu, 
2017). 

3. Empirical tests of the use of causal-invariance functions 

3.1. Overview of experiments 

We present two experiments testing whether people use the appropriate causal invariance functions as a criterion for hypothesis 
revision. If reasoners aspire toward causal invariance, and they have analytic knowledge of the causal invariance functions for 
continuous and binary outcomes, they would use the respective causal-invariance function in accord with an outcome that is 
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represented as continuous or binary. 
Experiment 1 tested whether reasoners’ causal judgments in a blocking paradigm (Kamin, 1968) are consistent with their spon

taneous use of the respective causal-invariance functions for continuous and binary outcomes, depending on their interpretation of the 
outcome variable type, which our experiment manipulated. To our knowledge, no previous study has manipulated the interpretation of 
the outcome variable type while keeping all else—including prior domain knowledge and the actual outcomes—constant. Experiment 
2 tested the appropriate use of the causal-invariance function for a binary outcome (Eq. 1) in the overexpectation paradigm (Kremer, 
1978; Rescorla & Wagner, 1972), evaluating predictions based on noncausal integration functions against those based on Eq. 1. 
Experiment 2 additionally clarified the causal nature of the application of Eq. 1. In particular, it tested the role of the “no confounding” 
prerequisite for causal induction in the application of that equation. 

Our experiments test qualitative predictions of the causal-invariance hypothesis, and do not require that reasoners have explicit 
knowledge of the relevant invariance functions. Although knowledge of the noisy-logical functions can be made explicit (as we did in 
Eq. 1), people’s use of these functions is likely to draw on knowledge that is implicit. We return to this issue in the general discussion. 
Both our experiments obtained informed consent from participants. 

3.2. Experiment 1 

Experiment 1 utilized a blocking paradigm (Kamin, 1968) adapted for human participants from the non-human associative learning 
literature. We first explain the typical blocking paradigm and subsequently our adaptation. In the usual paradigm, participants are 
shown multiple instances in which stimulus cue A is paired with the target outcome. Following conventional notation, we label such 
trials as A+ trials (“+” indicates the occurrence of the target outcome). Subsequently, cue A is repeatedly shown co-occurring with cue 
X, and this combination of the two cues is paired with the outcome (AX+ trials). Thus, cue X, like cue A, is always paired with the 
presence of the outcome. Cue X is the cue of theoretical interest. The control cues for X are two other cues, B and Y, that only occur in 
combination, and are always paired with the outcome (BY+ ). Note that blocking training does not convey any information on the 
integration function because only cue A is ever presented alone. 

During a subsequent test phase, participants rate how likely each cue alone is to cause the target outcome. Because cue X only 
differs from the control cues (B and Y) in that X was paired with a cue that was previously associated with the outcome on its own (cue 
A), any reduction in the causal rating for cue X relative to those for the control cues can only be due to the acquired knowledge 
regarding cue A. We operationally define the blocking effect to refer to this reduction due to knowledge acquired during the prior A+
trials. In an associative framework, the effect may be viewed as the “blocking” by the prior A+ trials of the accumulation of associative 
strength between X and + despite their constant pairing during the AX+ trials. The amount of blocking is the extent of this reduction in 
the causal rating for X. In our experiment, the target outcome was an allergic reaction, and cues A, B, X, and Y were assigned to four 
potential food allergens, with the assignment counterbalanced across participants. 

To disambiguate the variable type of the target outcome, our Experiment 1 used a novel variant of the just-described paradigm. 
Prior to blocking training, our experiment introduced a short pre-training phase in which one and only one stimulus cue appeared: 
ragweed pollen. Ragweed pollen appeared in this phase only, but the target outcome was the same allergic reaction as in the sub
sequent blocking training phase. The level of exposure to the ragweed pollen was indicated by a pollen index: a continuous variable. 
We manipulated the interpretation of the outcome-variable type by randomly assigning participants to one of two between-subjects 
outcome-variable-type conditions: increasing levels of the pollen index (kept identical across conditions) were paired with either a) 
increasing levels of the allergic reaction, as indicated by an increasing number of red dots on a patient’s face (the Continuous condition), 
or b) with a single level of the allergic reaction whenever a threshold was exceeded (the Binary condition). The single level in the Binary 
condition was identical to the maximum level in the Continuous condition (the same number of red dots appeared on the patient’s 
face). All participants therefore experienced the exact same range of the allergic reaction. The pairing between levels of ragweed pollen 
with levels of the allergic reaction in this pre-training phase was the only difference between conditions. The purpose of the pairing was 
to disambiguate the nature of the outcome variable, as continuous or binary, notably without conveying any information on how 
multiple causes combine their influences (ragweed pollen was the only pre-training-phase cue). 

Blocking training, the main part of the experiment, was identical across conditions. Potential allergens during blocking training 
were all food cues. All participants experienced identical A+ and AX+ trials with the outcome occurring at the same level –– the 
maximal level participants experienced for both conditions during the pre-training phase. Now, by our causal-invariance hypothesis, 
given reasoners’ a priori concepts of continuous and binary variables, participants in the Continuous group would infer that, according 
to the additive invariance function for a continuous outcome, if Cue X were causal, then it would have led to a stronger allergic reaction 
on the AX+ trials than on the A+ trials. Cue X must therefore be noncausal (i.e., X is considered “blocked” from receiving associative 
weight in the associative literature, although we would say the inference of noncausality actually “comes through”). In contrast, 
participants in the Binary group would infer that, according to the noisy-OR invariance function, regardless of whether Cue X is causal, 
AX+ trials would have the same level of reaction as A+ trials. Thus, based on the respective causal-invariance functions for the two 
outcome-variable types, our hypothesis predicts that Cue X should be judged noncausal in the Continuous group, but causal (with 
uncertainty) in the Binary group. 

Note that in a blocking paradigm involving a continuous outcome, reasoners who judge Cue X as noncausal may be adhering to 
either causal invariance or merely to additivity (e.g., see Lu et al., 2016), without interpreting additivity as causal invariance. The 
judgment is consistent with either hypothesis. However, if reasoners also use the additivity function when the paradigm involves a 
binary outcome, then we can infer that they are adopting additivity per se (as in Rescorla and Wagner’s, 1972, model). Experiment 1 
serves to disambiguate whether reasoners adhere to causal invariance or to a particular mathematical function, by testing whether they 

J. Park et al.                                                                                                                                                                                                            



use different causal-invariance functions as appropriate for the respective outcome-variable types. 

3.2.1. Ruling out two alternative explanations: Going beyond previous findings 
To provide support for our analytically-based account, our experiment must rule out explanations due to reasoners’ prior 

knowledge, in other words, empirically-based explanations. In previous research, participants using a noisy-logical function (e.g., as 
shown in Buehner et al., 2003; Liljeholm & Cheng, 2007) might have interpreted the function simply as an empirical description of the 
way causes in a specific domain combine their influences on an outcome (due to their prior knowledge of the domain evoked by the 
cover story), rather than as an expression of causal invariance. Therefore, while our experiment manipulated participants’ interpre
tation of the outcome-variable type, it kept all domain knowledge and prior experience with integration functions constant across 
conditions. 

Another potential empirical explanation to be ruled out is the inferential reasoning account of blocking (Beckers, et al., 2005; Beckers 
et al., 2006; Blanco, Baeyens, & Beckers, 2014; De Houwer et al., 2002; De Houwer et al., 2005; Lovibond, 2003; Lovibond et al., 2003; 
Mitchell, De Houwer, & Lovibond, 2009; Mitchell & Lovibond, 2002; Wheeler et al., 2008).5 According to this account, “in order to 
logically infer that X is not a cause of the outcome, people not only have to assume that effective causes have additive effects, but they 
also have to be able to empirically verify [italics ours] that adding X does not increase the outcome over that produced by A. … Such 
verification is … prevented if the outcome is … at the maximal strength when only A is present” (Beckers et al., 2005, p. 239). 

Note that this explanation of the blocking effect assumes an outcome that can occur at varying positive levels, such as a continuous 
outcome, so that the outcome occurring at a higher level than that produced by A is a possibility and potentially verifiable. 

Similarly, Beckers et al. (2006, p. 93) write, “According to a causal reasoning analysis, blocking should be constrained not only by 
whether people assume additivity but also by whether people are actually able to empirically verify on AX trials that X does not add to 
the outcome of A …. Assume that food A results in an allergic reaction with an intensity that corresponds to the maximal intensity …. If 
later the combination of food A and food X results in a similar allergic reaction, the causal nonefficacy of X cannot be validly inferred, 
… [and] people should be unsure about the causal status of X.” Note that the passage refers to the intensity of the outcome, which also 
indicates that the account concerns a continuous outcome variable. 

Thus, according to the empirical-verification explanation, for the blocking effect that involves a continuous outcome to occur, it 
would not be sufficient for the reasoner to merely allow for the possibility that the outcome could occur at a higher level than when only 
A is present. That possibility needs to be “verified” by actually experiencing or having experienced a higher outcome. 

Our Experiment 1 prevented the empirical verification that Beckers et al. (2005) argue is necessary by holding the outcome for both 
the Continuous and Binary groups at the maximally observed strength when only A is present. The empirical-inferential account 
therefore predicts no difference between groups: neither group should show a blocking effect because neither group has information to 
empirically verify that the outcome could have occurred at a higher level than when only A is present. Crucially, this account of 
blocking contrasts with ours not in whether inference is involved, but in whether use of analytic knowledge associated with binary and 
continuous outcome-variable types is sufficient to produce a difference in the blocking effect, controlling for empirical learning and 
verification. 

3.2.2. Method 

3.2.2.1. Participants. Forty-eight undergraduate students (average age = 19.8) at the University of California, Los Angeles partici
pated in the experiment for course credit. The participants were randomly assigned to one of two conditions: 24 each in the continuous 
and Binary conditions. We recruited 24 because our experimental design has 8 counterbalancing subgroups in each condition, and we 
chose a priori to have 3 participants randomly assigned to each subgroup based on the variability of causal judgments observed in 
previous studies (e.g., Liljeholm & Cheng, 2007). Data from all 24 participants were included in our analyses. 

3.2.2.2. Materials and stimuli. All participants were asked to imagine they were an allergist’s assistant, and after reviewing infor
mation about a fictitious patient, they had to determine what potential allergens were likely to elicit an allergic reaction in the patient. 
Four potential allergens were presented during blocking training: milk, peanuts, mushrooms, and strawberries. The information given 
about each of the four food cues indicated what (e.g., milk) and how much (one serving, for all blocking training trials) the patient had 
consumed, along with a picture of the cue (e.g., a glass of milk). The outcome––an allergic reaction––was visually represented by a 
picture of a patient’s face with red dots on it (see Fig. 1 for sample stimuli). The stimuli were presented via a program on a computer. 

3.2.2.3. Design and procedure. All participants completed 3 blocks of trials during the experiment: one pre-training block followed by 
2 training blocks. Learning was assessed at the end of each block. 

As mentioned, the Continuous and Binary conditions differed from one another only in the pre-training phase. During pre-training, 
participants in both groups were told that the patient had been exposed to various levels of ragweed pollen as indicated by a ragweed 

5 The papers just cited often use ‘additive’ qualitatively to mean simply that the outcome due to the combined influence of multiple cues is greater 
than the outcome due to an individual cue. Mitchell and Lovibond (2002, p. 312) make this usage explicit. However, these papers other times use 
“additive” in a quantitative sense, for example, as when Beckers et al. (2006, p. 98) discuss additivity as a “hard-wired feature of associative 
learning” (e.g., Rescorla & Wagner, 1972, which uses quantitative additivity). In the present paper, we use additivity in the quantitative sense (Eq. 
(3)), but we test differences in the predictions of the quantitative models (Eq. (2) vs 3) qualitatively. 
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pollen index (index = 0, 2, 4, 9, 17, 22, or 31; an index of 0 was presented twice, for a total of 8 trials). For the Continuous group, as the 
index increased, so did the number of dots on the patient’s face, varying from 0 to 7 incrementally except for omitting 3. For the Binary 
group, the patient’s face had either 0 or 7 dots depending on whether the ragweed pollen index crossed a threshold––the face displayed 
0 dots when the index was 4 or below, and 7 dots when the index was above 4. Both groups were thus exposed to the same maximal 
outcome (7 dots on the patient’s face). The pre-training trials occurred in a randomized order for each participant. 

The groups completed the same blocking training, with the outcome either present at the maximal level (7 dots on the face) or 
absent (0 dots on the face). There were four training trial types: A+, B− , AX+, and BY− , all involving food cues. In this notation, each 
letter indicates a patient’s consumption of a specific food assigned to that role in the blocking paradigm; “+” indicates the subsequent 
occurrence of an allergic reaction following the assigned food (at the maximal level); and “− ” indicates no allergic reaction. During one 
of the two training blocks, participants were presented with 4 trials of A+ and 4 trials of AX+ . During the other training block, the 
control block, participants were presented with 4 trials of B− and 4 trials of BY− . As in the standard blocking paradigm, our design was 
deterministic, in that a specific stimulus cue or cue combination was either always paired with the outcome or never paired with the 
outcome. The trials in each block were presented in a randomized order for each participant. Cue X was the critical cue for which the 
empirical and analytic views make different predictions. Cue Y was the control cue. Neither X nor Y ever occurred by themselves, and 
their causal status therefore held the same ambiguity. 

The order of the blocking training blocks was counterbalanced between participants. The pairing of the potential food allergens 
with stimulus cue roles A, X, B, and Y was also counterbalanced across participants. The order and pairing were independently 
counterbalanced, resulting in 8 counterbalancing subgroups for each condition. 

Verbal instructions for the Continuous and Binary conditions were identical. After the instructions, the participants completed the 
pre-training block, at the end of which they were asked to assess the causal strength of ragweed pollen. Specifically, they were asked to 
rate how likely it would be for the patient to develop an allergic reaction when exposed to ragweed pollen with an index of 30 (near the 
maximal level observed) on a scale from 0 (extremely unlikely) to 100 (extremely likely). Likewise, following each of the two training 
blocks (either A+ and AX+ or B− and BY− ), participants answered causal-strength questions regarding each potential allergen 
depicted during that block. For each of the food cues, participants were asked to assess how likely (on the 0 to 100 scale) the patient 
would develop an allergic reaction after consuming one serving of the food by itself. 

Upon completion of the experiment, all participants were asked two questions that served as manipulation checks. The first checked 
whether participants perceived the allergy outcome as constant across the A+ and AX+ trials: it asked whether they noticed a dif
ference in the number of dots on the patient’s face when he had consumed one versus two food items (the correct answer being “no”, it 
was always either 0 or 7 regardless of the number of food items or condition). Almost all participants in both conditions (22 of the 24 in 
the Continuous condition; 23 of the 24 in the Binary condition) answered correctly, suggesting that the allergy outcomes were indeed 
perceived as constant across the blocking trials. The second question asked participants whether they noticed any pattern between the 
level of the ragweed pollen index and the number of dots on the patient’s face, and to explain their answer. Whereas most participants 
in the Continuous condition (21 of the 24) indicated noticing that the higher the level of ragweed pollen, the more red dots on the face, 
few participants in the Binary group (3 of the 24) gave a similar explanation. The latter group instead indicated a threshold level of 
exposure. The two groups’ responses confirmed that our variable-type manipulation was effective: the Continuous and Binary groups 
perceived the two outcome variable types as we intended. 

3.2.2.3.1. Predictions. All previous accounts of blocking predict no difference in the blocking effect between conditions, because 1) 
the cover story, blocking training, and test phases were identical across conditions, 2) our experiment supplied no information on 
integration functions, and 3) the outcome during blocking training always occurred at the maximum level experienced during pre- 

Fig. 1. Sample A+ stimulus. During presentation, the verbal potential allergen information as well as the picture of the potential allergen(s) were 
shown for 2 s at the top of the screen. The face then appeared below (as shown) and remained on the computer screen along with the allergen 
information for an additional 4 s. 
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training. 
In contrast, analytic knowledge of causal invariance for different outcome-variable types predicts a bigger blocking effect in the 

Continuous than in the Binary condition. For the experimental variables in our Continuous condition, let wa, wb, wx, and wy respectively 
represent the causal capacities or weights of cues A, B, X, and Y to produce the allergic reaction, and let m represent the intensity of the 
reaction during blocking training (equal to the maximal level experienced during pre-training). Assuming that the cues combine their 
strengths additively, in accord with causal invariance for continuous outcomes, cue X should have a causal strength of 0: given that wa 
= m and wa +wx = m, it follows that wx = 0. Because the control cue Y also has a causal strength of 0 (given that wb = 0 and wb +wy = 0, 
it follows that wy = 0), the ratings for cue X and cue Y should be highly similar. That is, cue X should be completely “blocked” by cue A. 

For the Binary condition, generative causal power is the maximum-likelihood estimator of the strength (i.e., probability) of a 
candidate cause to produce a binary outcome (Griffiths & Tenenbaum, 2005; Tenenbaum & Griffiths, 2001), assuming a) the candidate 
and the background cause (a composite consisting of all other causes of the outcome) combine their (generative) strengths according to 
the noisy-OR function, and b) there is “no confounding” by the background cause (i.e., background causes occur just as often in the 
presence of a candidate cause C as in its absence, Cheng, 1997). Let c, e ∈ {0,1} denote the absence and presence of candidate C and 
effect E, respectively. Under these conditions, for situations in which C is potentially generative (i.e., effect E occurs at least as often in 
the presence of C as in its absence), pc is the generative causal power (i.e., capacity or strength; Cheng, 1997) of C to produce E, estimated 
based on the event probabilities: 

pc =
P(e = 1|c = 1) − P(e = 1|c = 0)

1 − P(e = 1|c = 0)
(2) 

For our experimental variables, let R represent the outcome (the presence of an allergic reaction, as indicated by whether red dots 
appeared on a patient’s face), let pa, pb, px, and py respectively represent the generative causal powers (Cheng, 1997) of binary cues A, 
B, X, and Y to produce R, and let a, b, x, y, r ∈ {0,1} denote the absence and presence of cues A, B, X, and Y, and outcome R. With 
respect to our blocking design, the noisy-OR causal-invariance function assumes that cue X’s causal strength is invariant regardless of 
whether cue A is present. Likewise, the function assumes that cues B and Y’s causal strengths are invariant across contexts. In accord 
with causal invariance, by Eq. (2) the generative power of cue X (the answer to the rating question regarding the consumption of food X 
by itself) is: 

px =
P(r = 1|x = 1) − P(r = 1|x = 0)

1 − P(r = 1|x = 0)
=

1 − 1
1 − 1

=
0
0
,

which has an undefined value, whereas the generative power of cue Y is: 

py =
P(r = 1|y = 1) − P(r = 1|y = 0)

1 − P(r = 1|y = 0)
=

0 − 0
1 − 0

=
0
1
= 0.

Fig. 2. Mean ratings of how likely the patient would develop an allergic reaction following exposure to or consumption of each of the potential 
allergens. Error bars represent one standard error of the mean. An asterisk (*) indicates a statistically significant difference, with p ranging from 
0.025 to 0.045. 
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Because the undefined value of the causal strength of cue X is potentially greater than 0, but control cue Y has a causal strength of 0, 
cue X should receive a higher causal-strength rating than cue Y. That is, cue X should be only “incompletely blocked” by cue A. Lu 
et al.’s (2008) Bayesian version of causal strength assuming Eq. (2) and uniform priors makes the same predictions as just explained. 

The blocking design thus provides a qualitative test of the appropriate use of the two quantitative causal-invariance integration 
functions. Comparing across the predictions for the two conditions, we see that cue X should receive a lower causal-strength rating in 
the Continuous condition than in the Binary condition. Moreover, the difference between the ratings for cues X and Y should be smaller 
in the Continuous condition than in the Binary condition. Finally, because cue A should be similarly perceived as having a high causal 
strength in both conditions, the difference between the ratings for cues A and X should be larger in the Continuous condition than the 
Binary condition. All three of these predicted between-group differences indicate a bigger blocking effect for the Continuous than the 
Binary condition. 

Note that in the more typical blocking design – with A+, AX+ in the Experimental condition and BY+ in the control condition – cues 
B and Y are controls for X (see our description earlier). This design, unlike ours, does not have any control cue with a low estimated 
causal strength as a baseline against which to demonstrate the predicted higher estimated causal strength of X when the outcome is 
binary: for all three cues, X, B, and Y, there would be high uncertainty. Under the typical design, the pattern of ratings in support of the 
noisy-OR causal-invariance function over the additive function would be a null result: namely, “no difference” in the Binary condition 
between the ratings for cue X and control cues B and Y. The support would involve the pitfall of accepting the null hypothesis. 
Moreover, ratings for control cues B and Y may show high variability due to the confounding; neither cue occurs by itself. Our design 
therefore offers a more sensitive test for differentiating between our Continuous and Binary conditions, and hence a more sensitive test 
of the causal-invariance view against alternative views. 

3.2.3. Results 
Participants’ mean ratings for the likely occurrence of an allergic reaction following each cue are depicted in Fig. 2. As the figure 

shows, participants’ ratings varied substantially between cues. However, the ratings for the cues across the two groups were quite 
similar with the exception of cue X, the cue of interest. In particular, the similar ratings between groups for ragweed pollen and cue A 
confirm that the maximal outcome level was perceived similarly across groups. 

To examine the overall pattern of results, a 2 (Condition: Continuous vs. Binary, between-subjects) by 4 (Cue: A, B, X vs. Y, within- 
subjects) mixed analysis of variance was conducted. Because Mauchly’s test of sphericity indicated a significant violation, χ2(5) =
56.41, p < .001, degrees of freedom were corrected (lowering them) using Greenhouse-Geisser (ε = 0.63). The analysis revealed a 
significant main effect of cue, F(1.9, 87.4) = 331.6, MSE = 243.3, p < .001, η2

p = 0.878. There was not a significant main effect of 
condition, F(1, 46) = 1.79, MSE = 268.8, p = .19, η2

p = 0.037, consistent with the cues in general (including our control cues) being 
rated similarly across conditions. Neither was there a significant overall interaction between cue (including controls) and condition, F 
(1.9, 87.4) = 2.33, MSE = 243.3, p = .11, η2

p = 0.048. 
Recall that only the causal invariance view predicts that participants who receive continuous pre-training will produce stronger 

“blocking” of critical cue X than those who receive binary pre-training. Specifically, this prediction means that, comparing causal- 
strength ratings between the two groups, 1) cue X would receive lower causal-strength ratings from participants in the Continuous 
group, 2) the difference in ratings for cue X and the control cue Y would be smaller in the Continuous group, and 3) the difference in 
ratings for X and the control cue A would be larger in the Continuous group. Because these three predictions are all directional, we 
conducted one-tailed planned comparisons for each hypothesis using Welch’s independent t-tests with α = 0.05 (unless otherwise 
noted; 95% CIs for cell means were always computed two-tailed). 

In support of our first prediction, we found that participants who received continuous pre-training gave significantly lower ratings 
for critical cue X (M = 27.08, SD = 21.67, 95% CI = [17.96, 36.21]) than participants in the Binary group (M = 40.21, SD = 23.29, 95% 
CI = [30.40, 50.02]), t(45.8) = 2.02, p = .025, ds = 0.58. This difference can be seen between the two groups’ mean ratings in the X 
column of Fig. 2. (All other cues were predicted by all accounts to be equal between groups; all two-tailed t’s less than 1.46, p’s greater 
than 0.15.) 

To further evaluate the lower mean causal-strength rating of cue X in the Continuous than in the Binary group, our next two 
hypothesis tests examine cue-by-condition interactions, comparing across groups the difference scores for participants’ causal-strength 
ratings for critical cue X compared to their ratings for control cue Y and for control cue A, respectively. Recall that higher ratings for 
cue X than cue Y indicate incomplete blocking of cue X, a prediction made by the causal-invariance view for the Binary group alone. 
Confirming this predicted interaction, the difference between the ratings for cues X and Y was significantly larger in the Binary group 
(M = 23.96, SD = 34.67, 95% CI = [9.35, 38.57]) than the Continuous group (M = 8.29, SD = 27.33, 95% CI = [-3.22, 19.81]), t(43.6) 
= 1.74, p = .045, ds = 0.50, as can be seen from comparing the X and Y columns of Fig. 2. Corroborating this observed interaction, one- 
tailed dependent t-tests for each group revealed that the effect of pre-training on the X-Y difference scores was driven by the Binary 
group alone demonstrating incomplete blocking––the rating for cue X in the Binary group (M = 40.21, SD = 23.29, 95% CI = [30.40, 
50.01]) was substantially and significantly higher than that for control cue Y (M = 16.25, SD = 21.82, 95% CI = [7.05, 25.45]), t(23) =
3.38, p = .001, dz = 0.69. By contrast, the rating for cue X in the Continuous group (M = 27.08, SD = 21.67, 95% CI = [17.96, 36.21]) 
was not significantly higher than that for control cue Y (M = 18.79, SD = 19.03, 95% CI = [10.78, 26.81]), t(23) = 1.49, p = .075, dz =

0.30, a pattern consistent with greater blocking. 
In support of our second hypothesized interaction, the differences between the ratings for cues A and X were significantly larger in 

the Continuous group (M = 68.54, SD = 22.82, 95% CI = [58.93, 78.15]) than the Binary group (M = 55.83, SD = 21.70, 95% CI =
[46.69, 64.98]), t(45.9) = 1.98, p = .027, ds = 0.57, as can be seen from comparing the A and X columns of Fig. 2. 
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In summary, all three planned comparisons converge to suggest that reasoners who received continuous pre-training produced 
stronger blocking, and those who received binary pre-training produced incomplete blocking. All between-group comparisons yielded 
Cohen’s ds effect sizes of 0.5 or greater. Note that whereas these observed differences between groups were predicted a priori by the 
causal-invariance view, none is explicable by any alternative views (e.g., Beckers et al., 2005; Rescorla & Wagner, 1972), including 
those based on empirically learned causal-integration functions (e.g., Griffiths & Tenenbaum, 2009; Lucas & Griffiths, 2010; Melchers 
et al., 2004; Mitchell et al., 2009). 

3.2.4. Discussion 
Experiment 1 tested our hypothesis that reasoners have analytic knowledge of the respective causal-invariance functions for binary 

and continuous outcome variables––knowledge essential for guiding search in the infinite space of representations. We manipulated 
participants’ interpretation of an outcome as binary or continuous without conveying information on how causal influences combine, 
while keeping all trials in the blocking paradigm and all other information identical across conditions. The information held constant 
included domain-specific knowledge of integration functions, the maximal intensity of the outcome, and the range of the intensity of 
the outcome. Our results show that participants who received information conveying that the outcome was continuous rather than 
binary showed a greater blocking effect, confirming all three differences predicted by our hypothesis. Empirically learned causal- 
integration functions––acquired either before or during our study––predict no difference between conditions, because all experi
ence involving cue combinations was kept constant across randomly-assigned conditions. Similarly, the empirical-verification 
explanation (e.g., Beckers, et al., 2005, 2006; De Houwer et al., 2005; Lovibond et al., 2003; Mitchell et al., 2009; Mitchell & Lovibond, 
2002) predicts no blocking for either condition: because the outcome during blocking training occurred at the maximal observed level 
for all participants, none had information available to verify that adding a second causal cue would have raised the level of the 
outcome. Our results provide support for our causal invariance hypothesis. 

A logical implication of the empirical-inferential account (e.g., Beckers et al., 2005; Mitchell et al., 2009) is that the blocking effect 
should not occur in the standard blocking design. In the standard “A+, AX+” blocking design (Kamin, 1968), the outcome occurs at a 
single intensity whenever it does occur (e.g., the experimenter sets a shock to either occur or not) — the outcome therefore occurs at 
the maximal experienced strength in the A+ phase and there is no information for verifying that a higher intensity can occur. However, 
the blocking effect has been demonstrated across multiple species (e.g., Couvillon, Lianne Arakaki, & Bitterman, 1997; Merchant & 
Moore, 1973; Rodrigo, Chamizo, McLaren, & Mackintosh, 1997; Sahley, Rudy, & Gelperin, 1981). These findings are inexplicable by 
the empirical-inferential account, but consistent with our causal-invariance account if the outcome variable type is perceived to be 
continuous. We return to this issue in the general discussion. 

A result we had not expected was that the mean rating for control cue Y was clearly higher than that for cue B, the noncausal control 
cue. The difference was observed in both conditions, t(23) ≥ 2.87, p < .01; for the Continuous condition, M = 17.13, SD = 19.63, 95% 
CI = [9.27, 24.98], and for the Binary condition, M = 12.92, SD = 21.21, 95% CI = [4.43, 21.40]. To demonstrate our predicted 
differences, the unexpectedly high rating for cue Y requires that Cue X in the Binary condition show a more robustly higher rating than 
would have been necessary otherwise. This requirement would have been a problem for our conclusion if it had led to a failure to 
obtain a) the predicted higher rating for cue X than cue Y in the Binary Condition, or b) a significantly larger difference in mean rating 
between cue X and cue Y in the Binary condition than in the Continuous condition. However, as reported, we did observe both pre
dicted first- and second-order differences. Our conclusion therefore remains fully valid. 

The non-zero rating for cue Y in our B− , BY− condition may reflect uncertainty about its causal status. Because cue Y, like cue X, 
was never presented alone, uncertainty about its causal status exists. Multiple possibilities might have come to a participant’s mind, for 
example, Cues B and Y interact, Cue B is preventive, etc. 

Cue Y serves well as a control cue for X because its rating represents a baseline uncertainty about a cue only observed as part of a 
compound. Notably, neither our theory nor any of the other causal-learning theories in the psychological literature predicts our 
observed rating for Y. Our participants, being students in a psychology course, might have been especially sensitive to this uncertainty 
due to their common training on “no confounding” as a pre-requisite for causal inference. What is crucial, again, is that overlaying the 
inherent uncertainty that likely contributed to the ratings for both cues X and Y, the difference between the ratings for X and Y was 
nonetheless significantly greater in the Binary than in the Continuous condition—an interaction predicted by the causal-invariance 
account alone. 

3.2.4.1. Relation to previous studies. Our paper tests the causal-invariance hypothesis qualitatively, but the quantitative predictions of 
the causal invariance function for a binary outcome have been supported by other studies across multiple labs (see Lu et al. 2008 for a 
review and additional discriminating tests). Simulation findings from Lu et al.’s (2016) sequential Bayesian modeling of experimental 
results from previous human and nonhuman blocking studies suggest that participants assumed additivity or the noisy-OR, respec
tively, depending on whether the outcome variable was continuous or binary. Our results are consistent with these findings, and go 
further by providing an explanation for what unites the mathematically different functions conceptually. Because the simulations are 
based on studies that varied in multiple ways—in participants’ species and prior experiences, experimental tasks, instructions, and 
other factors––the findings do not warrant the interpretation that these integration functions were used in their role as causal 
invariance. By solely manipulating the perceived outcome as binary or continuous within a species, Experiment 1 provides the first 
empirical evidence for the causal-invariance interpretation of those functions. 

The work supporting the empirical-inferential reasoning account manipulated participants’ empirical knowledge of how specific 
causes combined their influences. Domain-specific knowledge was conveyed variously by prior familiarity with a particular domain (e. 
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g., Blanco, Baeyens, & Beckers, 2014), verbal instructions on how causes combine their influences on the same outcome (e.g., Mitchell 
& Lovibond, 2002), or a pre-training phase in which participants received different exposures to how causes in a domain or context 
combined their influences (e.g., Beckers et al., 2005, 2006; Lovibond et al., 2003). Previous studies never manipulated perceived 
outcome-variable type while keeping all experiences constant.6 Because manipulations of empirical knowledge of integration func
tions fully explain participants’ knowledge of these functions across conditions, these studies have not tested whether reasoners have 
analytic knowledge of causal-invariance functions. 

A set of experiments by Beckers et al. (2005, Experiment 1; Beckers et al., 2006, Experiment 3) illustrates the support for their 
empirical-inferential account. The experiments manipulated whether the highest intensity of the outcome during a pre-exposure phase 
was higher than the outcome during subsequent blocking training. The outcome during blocking training was presented either at the 
maximal level experienced during pre-exposure or at a submaximal level. Beckers et al. explain the greater blocking effect observed in 
the submaximal group by this group’s prior experienced higher level of the outcome, enabling empirical verification of the failure of 
cue X to increase the level of the outcome over that produced by cue A alone. 

More generally, all studies by Beckers et al. (2005, 2006), Blanco et al. (2014), Collins and Shanks (2006), and Lovibond et al. 
(2003) showed no difference between conditions in the blocking effect unless there was either a manipulation of 1) experienced 
outcome maximality, or 2) empirical knowledge regarding the integration function prior to blocking training. In contrast, our 
experiment obtained a difference in the blocking effect between conditions without either manipulation. The observed difference is 
instead explained purely by the disambiguation of the continuous or binary nature of the outcome variable, and hence the respective 
analytic knowledge of causal-invariance integration functions. As explained in Section 2.2, prior empirical learning cannot account for 
the adoption of these respective functions. 

Turning to a different aspect of previous related studies, we note that they have often focused on the additivity assumption. Beckers 
et al. (2006, p. 98), for example, considered additivity as a default assumption, noting that it “might … explain why many contem
porary associative models, in which additivity is a hardwired feature of associative learning … have been so successful in explaining 
the bulk of conditioning phenomena.” Researchers tested additivity (e.g., Collins & Shanks, 2006; Soto et al., 2009) in elemental 
associative models (e.g., Rescorla & Wagner, 1972; Van Hamme & Wasserman, 1994) against configural models (e.g., Pearce, 1987, 
1994), or made use of pre-training on additivity or subadditivity to challenge associative models (Beckers et al., 2006; De Houwer, 
Beckers, & Vandorpe, 2005, Lovibond et al, 2003). 

As a result of the focus on additivity, the discussion has often been in terms of methodological constraints that might have pre
cluded support for the additivity assumption. For example, Collins and Shanks (2006, p. 1533) write, “it appears that those previous 
findings [against additivity] may have been a function of the fact that the outcome values assigned to the stimuli were binary and 
maximal, and participants were unable to give a magnitude response.” Their studies eliminated several of these potentially con
straining factors and showed support for additivity. Likewise, Lovibond et al. (2003, p. 134) write, “the design of most laboratory 
causal judgment tasks imposes … a ceiling on effect magnitude, because they present the effect as binary”. The binary nature of the 
outcome seems to be viewed as a methodological shortcoming. 

Our framework shifts the focus of discussion from additivity per se to the more general concept of causal invariance, and introduces 
a distinction between whole causes and their interacting components. In our framework, additivity should not be adopted as a default 
at the whole-cause level for binary outcomes, because it does not denote causal invariance for such outcome variables. However, we do 
agree with previous researchers that—in the context of a blocking paradigm involving deterministic causal relations, as is typical and 
as was the case in Experiment 1— the binary nature of the outcome does impose a methodological constraint, as we explain presently. 

3.2.4.2. Support for causal invariance using the blocking paradigm across and within conditions in Experiment 1. The greater blocking 
effect observed in our Continuous-outcome than Binary-outcome condition is inexplicable by the use of one single integration function 
for both outcome variable types. For a continuous outcome, the event pattern “A+, AX+” is consistent with A being causal and X being 
noncausal, with additivity as the invariance integration function. It is inconsistent with X being causal. In contrast, for a binary 
outcome, the event pattern “A+, AX+” allows for the possibility that both cues are causal, and they combine their strengths in an 
invariant manner as described by Eq. 1. 

However, the event pattern for a binary outcome is also consistent with a positive causal interaction between two cues. This 
ambiguity stems from two features of the blocking paradigm: 1) it does not independently vary two stimulus cues (i.e., X never appears 
alone), and 2) its event patterns are deterministic. Given these features, a participant who judged cue X to be causal on its own may 
nonetheless assume that the two cues interact. A positive interaction in this case would not further boost the probability of the binary 
outcome, because that probability was already 1.0 in our deterministic design. Although explaining “A+, AX+” assuming an inter
action seems unlikely when causal invariance provides a simpler explanation, the more complex explanation cannot be ruled out. In 
other words, while our results are consistent with participants in our Continuous and Binary conditions adopting the appropriate 
causal-invariance function for the respective outcome-variable types, it is logically possible that while some participants in the Binary 
condition defaulted to assuming the invariance of two causal cues according to Eq. 1, others defaulted to assuming a positive 

6 Lu et al (2016) erroneously reported that Mitchell and Lovibond (2002) gave participants instructions indicating a binary or a continuous 
outcome. Mitchell and Lovibond in fact conveyed that the outcome was a continuous variable for both their “additive” and “non-additive” con
ditions: At the beginning of their experiments prior to the manipulations, all participants were instructed to vary the intensity level of the shock they 
would receive (the unconditioned stimulus) to select a level that was “definitely uncomfortable, but not painful” to them (p. 314–315). The 
adjustment of intensity levels should have conveyed to all participants that the outcome variable was continuous. 
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interaction between two causes of a binary outcome (Novick & Cheng, 2004). 
The deterministic feature of our blocking design is necessary due to our experimental-design requirement to hold the blocking trials 

constant across the Continuous and Binary conditions. The strength of a cue to produce an outcome is signified differently for the two 
outcome types: it is signified by the probability of a binary outcome versus the magnitude of a continuous outcome. The only situation 
in which the blocking trials in our two conditions can be kept identical (for the purpose of testing people’s spontaneous interpretation) 
is when the cue-outcome pairings are deterministic: a cue is either always paired with an outcome occurring with a constant magnitude 
(7 dots on the face) or never paired with it. 

To disambiguate support for the assumption of causal invariance as the default for a binary outcome, Experiment 2 presented 
participants with a scenario involving two independently varied candidate causes of a binary outcome, with the causes producing the 
outcome probabilistically in one condition and deterministically in another. In the probabilistic condition, causal invariance and 
deviation from it would be distinguishable. Experiment 2 thus complements our test of causal invariance in Experiment 1. 

3.3. Experiment 2 

Our primary goal in Experiment 2 is to provide converging evidence to disambiguate the support from Experiment 1 for the default 
status of causal invariance (rather than causal interaction) for binary outcomes in hypothesis revision. To serve this goal, Experiment 2 
employed the overexpectation paradigm involving two independently varied candidate causes of a binary outcome (Kremer, 1978; 
Rescorla & Wagner, 1972), extending it by manipulating whether the causal relations in question are deterministic or probabilistic. 
When two probabilistic causes are independently varied, the requisite information for judging whether or not the causes interact with 
each other is available. Judgment of interaction is precluded in the blocking paradigm, in which one of the two candidate causes in 
question (the blocked cue, X) never occurs alone. 

Our secondary goal is to demonstrate the causal nature of the causal-invariance assumption, specifically, to demonstrate that the 
causal-invariance function is used in a causal rather than merely associative manner. Findings on the use of integration functions to 
combine multiple influences have often been explained in causal terms. The empirical-inferential reasoning account, for example, is 
framed causally (e.g., Beckers, et al., 2005; Blanco et al., 2014; De Houwer et al., 2002; Lovibond et al., 2003; Mitchell et al., 2009; 
Mitchell & Lovibond, 2002), as seen in the passage in Beckers et al. quoted earlier. It is possible, however, that reasoners in fact do not 
interpret integration functions causally, but instead use them purely as mathematical functions. Moreover, the verification argument in 
this account applies to mere association as well as causation. For example, two effects (e1 and e2) of a common cause C are associated 
with each other, but merely so since neither effect causes the other. Now, if another cause D occurs on every trial and produces e2 at a 
maximal level (the analog of A+ trials in the blocking paradigm), the association between e1 (the analog of cue X) and e2 (the analog of 
+) would be impossible to verify. Regardless of whether e1 occurs, e2 occurs. 

Participants in Experiment 2 were given outcome-frequency information on various (fictitious) proteins called “endomins” in blood 
serum and asked to judge whether each variant of these proteins causes hypertension. We assessed the causal nature of the integration 
function in three related ways: whether participants judged the causal status of these proteins by 1) choosing subsets of events that 
honor the “no confounding” condition, a prerequisite for causal inference, 2) using the additive integration function without heeding 
the “ceiling effect” (e.g., as does the Rescorla-Wagner model, 1972), and 3) revising their hypothesis due to a deviation from additivity 
rather than from causal invariance. 

Our extension of the overexpectation paradigm with a deterministic (ceiling) versus probabilistic (non-ceiling) manipulation en
ables the pursuit of a third goal: to show that a binary outcome need not be an obstacle to demonstrating qualitative additivity (e.g., 
Beckers et al., 2005, 2006), contrary to what sometimes seems to have been assumed (e.g., Lovibond et al., 2003; Collins & Shanks, 
2006; Soto, Vogel, Castillo, & Wagner, 2009). Because a binary outcome by definition occurs at a maximum level whenever it occurs, it 
is tempting to treat such outcomes as imposing a ceiling condition. But Eq. 1 specifies varying probabilities of a binary outcome over 
the entire range from 0 to 1.0, and only the extreme values (i.e., causal determinism) impose a ceiling condition. Thus, as we explain 
presently, analytic knowledge of Eq. 1 predicts whether or not the phenomenon of overexpectation occurs depending on whether the 
cues in the paradigm produce the binary outcome at a ceiling or non-ceiling level (i.e., with a probability of 1.0 or less, respectively). 
Crucially, causal invariance and additivity coincide in their qualitative predictions in the non-ceiling case (both predict over
expectation), but not in the ceiling case (causal invariance predicts no overexpectation). 

Fig. 3 schematically summarizes the stimulus–response pairings in the standard (deterministic) overexpectation paradigm, which 
we adopted for our ceiling situation (Experiment 2B). In the figure, the letters A and B represent stimulus cues, and a bar above A or B 
indicates the absence of the cue. The paradigm has two phases. The design for Phase 1 is represented in the top contingency tables in 
the figure, for the Experimental and Control groups, respectively. The Experimental group’s stimulus pattern is A+, B+: namely, when 
either cue A or B is present while the other is absent, the outcome always occurs (indicated by a “+” in the corresponding cell in the 
table); otherwise, when both cues are absent, the outcome does not occur (indicated by an “O”). Cues A and B do not simultaneously 
occur in Phase 1 (as indicated by the empty cell). For the Control group (see the upper-right table), the design is A− , B+ . The presence 
of Cue A by itself is paired with the absence of the outcome (see upper right cell). This is the only difference from the Experimental 
group. 
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To facilitate explaining the various model predictions, we constructed the bottom row of tables in Fig. 3 to represent the cumulative 
stimulus-outcome pairings across Phases 1 and 2. (In other words, the bottom tables repeat the pairings from Phase 1 along with the 
additional pairings in Phase 2.) In Phase 2, the design is AB+ for both the experimental and control groups: namely, when both cues A 
and B occur at the same time, the outcome always occurs, and when neither cue occurs, the outcome does not occur (represented by the 
“þ” and “O” cells in the diagonal of the bottom contingency tables). 

The phenomenon of overexpectation––a reduction in the estimated causal strengths of the elemental cues from Phase 1 to Phase 2 for 
the Experimental group, compared to the Control group––has been observed with this design in animal conditioning studies (Kremer, 
1978; Rescorla & Wagner, 1972) and in human causal learning (Collins & Shanks, 2006) when the causal relations are deterministic. 

Experiments 2A and 2B presented events fitting the overexpectation paradigm in the non-ceiling and ceiling situations, respec
tively. Experiment 2B adhered to the deterministic paradigm just described. Experiment 2A involved a non-ceiling situation in which 
the outcome occurs––in those cells with “þ”s in the figure ––with a constant intermediate probability that is clearly less than 1 and 
clearly greater than 0. (That is, Fig. 3 describes the design for this situation if the “þ”s now indicate the intermediate probability.) If 
Cues A and B are individually shown to be probabilistic causes of the outcome in Phase 1, then the expected probability of the outcome 
given the combination of A and B in Phase 2 can be inferred assuming their individual causal powers remain invariant in the context of 
the other cause. This enables an assessment of a deviation of the observed probability from the expected probability. The ceiling 
situation in Experiment 2B (determinism) precludes such an assessment. 

Below we first report the experimental method for the two situations, then explain our various model predictions. Our key pre
dictions concern participants’ revision at the end of Phase 2 of their initial hypotheses at the end of Phase 1, depending on their 
assessment of whether there is a deviation from invariance across the two phases. Some readers are likely to find our results for the two 
situations intuitively obvious. We tested the situations nonetheless because the difference in responses across situations provides a 
discriminating test of the causal invariance hypothesis against alternative accounts. 

Fig. 3. Contingency tables representing the occurrence of effect e in the overexpectation design. The letters A and B represent stimulus cues, and a 
bar above a letter indicates the absence of the cue. A dashed ellipse in a table encloses the subset of events that satisfies the “no confounding” pre- 
requisite for computing the causal power of critical cue B; the universal set violates this pre-requisite in all except the bottom right table. 
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3.3.1. Experiments 2A and 2B: Non-ceiling and ceiling situations 

3.3.1.1. Method 
3.3.1.1.1. Materials, design, and procedure. For both experiments, college students were presented with a cover story in which they were 

asked to infer what proportion of patients who have various “newly discovered” (fictitious) proteins called “endomins” in their bodies would 
have hypertension. Trials consisted of individual patients. Hypertension, the outcome in question, was presented as a binary variable.7 

The procedure was identical across experiments. In each experiment, participants were randomly assigned to either an Experi
mental or a Control group. They were presented with two successive learning phases, with the information presented on a desktop 
computer. On each learning trial, participants saw a “hospital record” listing an individual patient’s initials, along with information 
about the presence or absence of three endomins in the patient. Some patients’ bodies produce some of the endomins, and different 
patients’ bodies produce different patterns of endomins. On each trial, participants pressed a button to indicate whether they thought 
the patient with that record had hypertension, after which they received feedback on their prediction and whether the patient indeed 
had hypertension, along with their cumulative prediction accuracy. 

We adapted the standard overexpectation design to enable a comparison between our ceiling and non-ceiling situations. In Phase 1, 
the patients displayed four types of endomin patterns: R only, S only, T only, or no endomins. Endomins R and S map onto cues A and B 
respectively in Fig. 3; endomin T is a manipulation check and not represented in the figure (we explain its role presently). Because all 
relevant comparisons are between groups, the labels of the endomins were not counterbalanced. In Phase 2, the patients displayed 
three types of patterns: the RS compound (i.e., R and S together), T only, or no endomins. Tables 1 and 2 list the presented proportions 
of patients with hypertension for each endomin pattern in each phase for the Experimental and Control groups of Experiments 2A and 
2B, respectively. For both experiments, within each phase, participants viewed records of 24 patients with each of the endomin 
patterns in that phase, interleaved within a block in a different random order for each participant. 

For Experiment 2A (as shown in Table 1), in the Experimental group the proportion of patients with hypertension in Phase 1 was 
0.75 for both endomins R and S individually. Endomin T has a higher proportion, 0.92, and was added to the standard overexpectation 
paradigm to provide a manipulation check confirming that a probability of 0.75 was perceptibly below a (near) ceiling level. In Phase 
2, the proportion was 0.75 for the RS compound and 0.92 for T. None of the patients without endomins had hypertension in either 
phase. 

For the Control group, the sole difference was that Endomin R alone was not paired with hypertension in Phase 1. Recall that 
Endomin R maps onto cue A in Fig. 3. Note that Endomin S (cue B in the figure) in the Control group is the critical cue for comparison 
with Endomin R or S in the Experimental group. 

For Experiment 2B, the materials, design, and procedure were identical to those of Experiment 2A, with the exception of the 
conditional probabilities of hypertension (see Table 2): Specifically, the proportion of patients with hypertension was 1 in Experiment 
2B whenever it was non-zero in Experiment 2A. 

After each block in both phases, all participants were asked to judge the relative frequencies of hypertension for each of 5 patterns 
of endomins: the three individual endomins, the RS compound, and no endomins. Participants were asked, “Out of 100 patients with 
this pattern of endomins, how many do you think have hypertension?” Their answers for the individual endomins are estimates of the 
elemental causal strengths of the endomins. Their answers for the RS compound in the two phases allow us to evaluate whether 
participants did expect a higher frequency for the compound based on their observations in Phase 1 (before the compound had 
appeared), compared to their estimate based on observations in Phase 2. A higher expectation for the RS compound would confirm that 
the deviation from this expectation was indeed the reason for a reduction in the causal estimates of the individual cues R and S from 
Phase 1 to Phase 2. 

To collect data efficiently, the computer program monitoring the experiment stopped for participants who gave unusually poor 
estimates of the relative frequencies of the 4 presented stimulus patterns in Phase 1: Specifically, Phase 2 proceeded only when the 
participant’s estimates were within 20 points (out of 100) of the actual proportions, and an estimate for T that was at least one point 
higher than those for R alone and S alone. Participants were given a maximum of 3 blocks of trials to reach the criterial accuracy. 

To reduce unnecessary noise in the data, our cover story encouraged one interpretation of the source of any perceived conflict 
between phases: Every participant in both experiments was told at the start of Phase 2 that there may or may not have been some 
inaccurate diagnoses of patients whose records they viewed in Phase 1, but that the diagnoses of the patients whose records they were 
going to see from then on were certainly accurate. They were told that if unexpected trends appeared, there must have been some 
errors in the earlier records, but that if there were no unexpected trends, the earlier records must have been all correct. Importantly, 
our instructions left it entirely to the participants to judge whether or not there was a deviation from expectation. 

3.3.1.2. Model predictions. We derive predictions based on four dominant learning models, with tests of the hypothesis – that causal 
invariance is the default integration function – as our goal and focus. (Model fitting is not our goal.) Below we first explain the pre
dictions according to the causal-invariance integration function for binary outcomes for the non-ceiling and ceiling situations. Toward 
our goal of demonstrating the causal nature of this integration function, we contrast this function’s predictions with those according to 
three non-causal models: 1) an elemental associative model that uses additivity as the mathematical integration function regardless of 

7 Although the cover story technically involved an observational study, the wording in our story and our questions encouraged a causal inter
pretation of the data. 
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its interpretation as causal invariance (e.g., as in Rescorla & Wagner, 1972), 2) a configural associative model that generalizes based on 
similarity (Pearce, 1987, 1994), and 3) a contingency model (Jenkins & Ward, 1965), which estimates associative strength based on 
the entire set of events presented, rather than on a subset that satisfies the “no confounding” prerequisite. 

Prediction of overexpectation (a reduction in causal-strength estimates in Phase 2) by every model depend on whether there is a 
deviation from the expected outcome across the two phases––a conflict that warrants a resolution. But, only the expected outcome 
according to the causal view predicts the intuitively obvious pattern: there should be overexpectation when the endomins individually 
are only sometimes paired with the binary outcome (the non-ceiling situation), but not when they are always paired with the outcome 
(the ceiling situation). As will become clear, such a pattern of hypothesis revision is inconsistent with assuming an interaction between 
stimulus cues as the default. 

3.3.1.2.1. Causal invariance. The causal power theory (Cheng, 1997) explains why only when a candidate cause is “not 
confounded” (e.g., when alternative causes are held constant) is the generative causal power (i.e., capacity or strength) of candidate 
cause C to produce effect E inferable, as specified in Eq. (2). The theory assumes causal invariance (Eq. 1). Tables 1 and 2 list the 
predicted causal strengths according to the theory. Subsets of events in which the “no confounding” prerequisite holds, and hence Eq. 
(2) applies, are termed focal sets (Cheng and Novick, 1992). Dashed lines in Fig. 3 circle the focal sets for estimating the strength of 
critical cue B. 

3.3.1.2.1.1. Predictions for the non-ceiling situation 
Consider the Experimental group. In Phase 1 of this group (see top-left contingency table in Fig. 3), for cue B, the only focal set is the 

circled set in the contingency table, where the only alternative cause is the constantly present “background” (cue A is absent in this set). 
Applying Eq. (2) to this focal set yields a causal power of 0.75 for cue B. The same value results for cue A (in both the ceiling and non- 
ceiling situations, cues A and B in the Experimental group are symmetrical). We also see that––under the assumption that A and B each 
retains their causal power regardless of whether the other cue is present (Eq. 1) –– the estimate of the proportion of patients with 
hypertension resulting from the AB compound (unseen in this phase) should be higher than estimates for either cue alone. Specifically, 
an invariance-assumed estimate for the AB compound is 0.75 + 0.75 – (0.75 × 0.75) = 0.9375 (Eq. 1). 

In Phase 2 (recall that the design was AB+), for the Experimental group, the only focal set for cue B in this phase is one that ac
cumulates information across the two phases (the circled set in the bottom left table of Fig. 3), in which cue A is constantly present. In 
this set, according to Eq. (2), pB = 0; that is, cue B’s causal power is now 0. The same logic applies to cue A. Therefore, for both cues, an 
inconsistency should appear between their causal powers inferred in the two phases (0.75 versus 0). This does not occur for the Control 
group8, for whom consistently across phases cue B’s causal power is 0.75 and cue A’s causal power is 0. 

Recall that for all participants, in between Phases 1 and 2, our cover story conveyed that the observations in Phase 1 may contain 

Table 1 
Actual Proportion of Cases (Out of 24) with Hypertension and Participants’ Estimated Proportion of Cases (Out of 100) with Hypertension in Each 
Phase for Experiment 2A (Non-ceiling Situation). Standard deviations for the estimated number of patients out of 100 are enclosed in parentheses; 
95% confidence intervals for the estimated number of patients out of 100 are enclosed in square brackets.   

Phase 1 Phase 2  

Experimental Group Control Group Experimental Group Control Group  

Actual Estimated Actual Estimated Actual Estimated Actual Estimated 

R .75 .76 (10.5) [71.2, 80.8] 0 .01 (.02) [0.08, 1.92] — .68 (16.9) [60.2, 75.8] — .02 (.09) [1.96, 2.04] 
S .75 .78 (9.5) [73.6, 82.4] .75 .74 (13.0) [68.1, 80.0] — .68 (16.4) [60.5, 75.6] — .72 (9.5) [67.6, 76.4] 
T .92 .90 (8.4) [86.1, 93.9] .92 .92 (8.3) [88.2, 95.8] .92 .90 (9.5) [85.6, 94.4] .92 .89 (10.6) [84.1, 93.9] 
R&S — .90 (9.3) [85.7, 94.3] — .70 (13.6) [63.7, 76.3] 75 .70 (19.1) [61.2, 78.8] .75 .71 (12.4) [65.3, 76.7] 
none 0 .00 (0) [.00, .00] 0 .00 (0)[.00, .00] 0 .00 (0) [.00, .00] 0 .00 (0) [.00, .00]  

Table 2 
Actual Proportion of Cases (Out of 24) with Hypertension and Participants’ Estimated Proportion of Cases (Out of 100) with Hypertension in Each 
Phase for Experiment 2B (Ceiling Situation). Standard deviations for the estimated number of patients out of 100 are enclosed in parentheses; 95% 
confidence intervals for the estimated proportions are in square brackets.   

Phase 1 Phase 2  

Experimental Group Control Group Experimental Group Control Group  

Actual Estimated Actual Estimated Actual Estimated Actual Estimated 

R 1.0 1.0 (0) [100.0, 100.0] 0 .01 (2.4) [-0.5, 2.5] — 1.0 (0) [100.0, 100.0] — .0 (0) [0.00, 0.00] 
S 1.0 .99 (2.4) [97.5, 100.5] 1.0 .99 (2.4) [97.5, 100.5] — 1.0 (0) [100.0, 100.0] — 1.0 (0) [100.0, 100.0] 
T 1.0 1.0 (0) [100.0, 100.0] 1.0 1.0 (0) [100.0, 100.0] 1.0 1.0 (0) [100.0, 100.0] 1.0 1.0 (0) [100.0, 100.0] 
R&S — 1.0 (0) [100.0, 100.0] — 1.0 (0) [100.0, 100.0] 1.0 1.0 (0) [100.0, 100.0] 1.0 1.0 (0) [100.0, 100.0] 
none 0 .0 (0) [0.0, 0.0] 0 .0 (0) [0.00, 0.00] 0 .0 (0) [0.00, 0.00] 0 .0 (0) [0.00, 0.00]  

8 For the Control group in Phase 2, because cue A has been established non-causal in Phase 1, the state of this cue makes no difference to the 
causal assessment of cue B in Phase 2. Thus, there is no need to select a subset of events for the assessment of cue B. 
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inaccuracies but that observations in Phase 2 are to be trusted. Returning to the Experimental group, under this cover story, for a 
reasoner in the non-ceiling condition who assumes causal invariance, reducing the estimate of the causal powers of the two cues from 
0.75 to 0.50 would resolve the apparent inconsistency across the two phases (because by Eq. 1, 0.5 + 0.5 – (0.5 × 0.5) = 0.75). This 
resolution implies that participants in the Experimental group, but not those in the Control group, should show overexpectation, that 
is, give lower estimates of hypertension in patients with cue B (Endomin S) after seeing Phase 2. 

Regarding our manipulation check, observing a higher causal rating for Endomin T alone than Endomin S alone would confirm that 
Endomin S is correctly perceived to occur at a non-ceiling level. 

3.3.1.2.1.2. Predictions for the ceiling situation 
The causal-invariance view predicts no overexpectation in the ceiling situation (the “þ”s in Fig. 3 now indicate hypertension 

occurring with a probability of 1). For the Experimental group in Phase 2, cues A and B each has an undefined causal-power value due 
to pA = pB = 0/0 (Eq. (2)). Therefore, continuing to believe that these cues have the same causal power as in Phase 1 does not result in 
any conflict, and participants should have no reason to change their causal assessment of the cues. For the Control group, consistently 
across Phases 1 and 2, pA = 0 and pB = 1, also resulting in no deviation from invariance. Hence, there should be no overexpectation in 
either group in the ceiling situation. 

In summary, finding the just-explained difference in overexpectation between the ceiling and non-ceiling situations would support 
the causal-invariance hypothesis. Because our cover story about endomins was identical for all participants, prior knowledge of the 
domain cannot account for the difference. 

3.3.1.2.2. Rescorla and Wagner’s (1972) model. Here we explain the predictions according to the additive integration function of 
Rescorla and Wagner’s (1972) model. Given that the outcome occurs with the same probability across the two phases, in the ceiling as 
well as in the non-ceiling situation, the arithmetic sum of the associative strengths of cues A and B after Phase 1 “overpredicts” the 
outcome associated with the AB compound in Phase 2 in both situations. This deviation from expectation in Phase 2, according to this 
model, should result in overexpectation for both cues A and B, for both the ceiling and non-ceiling situations. 

3.3.1.2.3. Pearce’s (1987) model. The associative learning rule incorporated in Pearce’s (1987) model differs from that in Rescorla 
and Wagner’s model in two ways. First, the layer of nodes that serves as input to the learning rule consists of configural units (the third 
layer in Pearce’s network) rather than elemental units representing the stimuli. Each stimulus pattern, including those that consist of a 
single cue, is represented by its respective configural unit. Second, on each trial, the associative strength of only one configural 
unit––the one representing the cue combination present––will be updated. 

Applying this model to the overexpectation design, we see that the configural units respectively representing A alone and B alone 
will not have their associative strengths updated in Phase 2, because these stimuli are not presented alone in this phase. The lack of 
strength revision implies there will be no strength reduction in these units. In other words, unlike Rescorla and Wagner’s (1972) model, 
Pearce’s (1987) model predicts no overexpectation for either cue A or cue B, for either the ceiling or non-ceiling situation. 

3.3.1.2.4. The “no confounding” prerequisite often absent in associative models. “No confounding” is not a prerequisite for noncausal 
learning models. A reasoner who does not seek the “no confounding” condition may default to using the entire set of events presented. 
We make use of the ΔP model (Jenkins & Ward, 1965), which treats the universal set as input, to test predictions for the omission of this 
prerequisite. This model predicts causal strength by ΔP, the difference in the probability of effect E in the universal set when candidate 
C occurs and when C does not occur: 

ΔP = P(e = 1|c = 1) − P(e = 1|c = 0) (3) 

First, note that for the Experimental group (the left contingency tables in Fig. 3), the ΔP value for neither cue A nor cue B changes 
across Phases 1 and 2 for either the ceiling or non-ceiling situation. Accordingly, this model predicts that reasoners should perceive no 
conflict across phases. Thus, like Pearce’s (1987) model, ΔP predicts that reasoners should show no overexpectation for either 
situation. 

A second consequence of omitting the “no confounding” prerequisite concerns the strength estimate for cue B in Phase 1 (see top 
tables in Fig. 3). In this phase, the ΔP value for cue B is lower in the Experimental than in the Control group. This is because P(e = 1|b =
0) is higher for the Experimental group (in the absence of cue B in this group, cue A is paired with the outcome). Thus, cue B should 
receive a lower estimate in the Experimental group than in the Control group. This prediction holds for both the ceiling and non-ceiling 
situations. In contrast, honoring the “no confounding” prerequisite yields the prediction that the causal power of cue B in Phase 1 
should be the same across the two groups (see circled sets in the top contingency tables) for both situations. 

3.3.2. Experiment 2A: The Non-ceiling situation 

3.3.2.1. Method 
3.3.2.1.1. Participants. Based on the variability in a pilot study, we a priori chose to collect data until 20 participants complete the 

experiment in each of the two conditions. Forty-seven undergraduates at the University of California, Los Angeles (UCLA) were 
recruited to participate in the experiment to satisfy a course requirement. None of the participants had been exposed to formal 
probability theory. Four and 3 participants, respectively, from the Experimental and Control groups did not reach the criterial accuracy 
described in 3.3.1.1.1 and no test-phase data were collected from them. After excluding these participants, there were 20 participants 
in each group. 

The design, materials, and procedure were as explained earlier. 
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3.3.2.2. Results and discussion. Table 1 presents the results of Experiment 2A. The table also lists the actual proportions of patients 
with the various endomin patterns who have hypertension presented in each phase. Participants’ mean causal estimates shown in the 
table –– the estimated proportions of patients with given endomin patterns who have hypertension after the last block of each phase –– 
are in accord with the predictions of both the causal power theory (1997) and Rescorla and Wagner’s (1972) model, but contradict the 
predictions of Pearce’s (1987) model and the ΔP model (Jenkins & Ward, 1965). 

A 2 (Group: Experimental vs Control; between-subjects) by 2 (Phase: Phase 1 vs Phase 2; within-subjects) by 5 (Evaluation Cue 
Pattern: Endomin R, S, T, Endomins R + S, no endomin; within-subjects) mixed analysis of variance shows the three-way interaction 
predicted by causal invariance and Rescorla and Wagner’s model, F(4,152) = 10.5, MSE = 44.8, p < .0001, η2 = 0.22. The reduction of 
causal estimates for particular cue patterns across phases differed across groups. There were main effects of Group (Experimental M =
63.0 vs. Control M = 47.0), F(1,38) = 80.6, MSE = 318.4, p < .001, η2 = 0.68; Phase (57.1 vs 52.8), F(1,38) = 13, MSE = 141.1, p <
.001, η2 = 0.26; and Cue Pattern (35.8, 72.8, 90.7, 75.5, vs 0), F(4,152) = 992.3, MSE = 108.9, p < .001, η2 = 0.96. There were also 
two-way interactions between Group and Phase, Group and Cue Pattern, and Phase and Cue Pattern, F(1,38) = 9.1, MSE = 141.1, p =
.005, η2 = 0.20, F(4,152) = 179.3, MSE = 108.9, p < .001, η2 = 0.83, and F(4,152) = 6.8, MSE = 44.8, p < .001, η2 = 0.15, respectively. 

To further examine the pattern of results, planned one-tailed t-tests were conducted for all predicted directional differences. Recall 
that, for participants in the Experimental group, the causal invariance view and Rescorla and Wagner’s (1972) model both predict that 
1) estimate for the unseen RS (AB) compound during Phase 1 should be higher than for R or S alone, and 2) individual estimates for R 
(A) and S (B) should decrease in Phase 2 (i.e., overexpectation should occur). Moreover, this decrease in the individual estimates for R 
and S across phases in the Experimental group should be greater than that in the Control group. 

The observed causal estimates support these predictions. First, in the Experimental group at the end of Phase 1, the mean estimated 
proportion with hypertension for the unseen RS compound (0.90) was significantly higher than that for R and S individually, t(19) =
5.72 and 4.77, respectively, p < .001 for each, d = 1.28 and 1.07 respectively, in accord with use of either the additivity or noisy-OR 
function. Moreover, confirming that the probability of hypertension given the presence of R or S alone was perceived to be below 
ceiling, the estimated proportion for either endomin R (0.76) or S (0.78) was significantly lower than that for endomin T (0.90), t(19) 
= 5.58 and 4.69, respectively, p < .001 for both, d = 1.25 and 1.05, respectively. Critically, the pattern of estimated proportions 
obtained after Phase 2 confirmed the phenomenon of overexpectation: A reduction in the estimate for the critical endomin S relative to 
Phase 1 was observed in the Experimental group. In this group, the mean estimate for endomin S significantly decreased by 0.10 (from 
0.78 to 0.68) across the two phases, t(19) = 4.75, p < .001, d = 1.06. The corresponding reduction in the Control group was 0.02 and 
not statistically significant, t(19) = 0.97, p = .34. Moreover, the mean reduction in the estimate for S in the Experimental group was 
significantly greater than the corresponding difference observed in the Control group, t(38) = 2.56, p = .005, d = 0.81, consistent with 
the Group by Phase interaction.9 

Analyzing the number of participants who did or did not show a reduction in their estimate for cue S indicates the same pattern of 
results. Fifteen participants in the Experimental group showed a decline in their estimate for S from Phase 1 to Phase 2, and 5 did not 
(of these, 4 gave equal estimates in the two phases and 1 showed an increase). The reverse pattern occurred in the Control group: 5 
participants showed such a decline, and 15 did not (of these, 10 gave equal estimates and 5 showed an increase), and the frequency of 
decline differed across groups, X2 (1, N = 40) = 10.0, p = 0016. To summarize, more participants in the Experimental group reduced 
their estimates, in line with the causal-invariance predictions and Rescorla and Wagner’s (1972) model. 

Recall that Pearce’s (1987) model and Jenkins and Ward’s (1965) contingency model predict no overexpectation. The observed 
pattern of overexpectation disconfirms both models and supports the causal nature of reasoners’ inferences: reasoners honor the “no 
confounding” prerequisite for causal inference. Our participants’ responses indicate that they spontaneously selected subsets of events 
in which alternative causes occur independently of the candidate cause. 

A second result corroborates the honoring of this prerequisite. Despite the lower unconditional contrast for cue S in the Experi
mental than Control group, the groups did not significantly differ in their estimates of S in Phase 1 (0.78 vs 0.74 respectively), t(38) =
1.41, p = .45. There is therefore no support for a noncausal contingency interpretation of the event frequencies. 

In conclusion, our results obtained in Experiment 2A strongly favor both the causal power theory (1997) and Rescorla and 
Wagner’s (1972) model over Pearce’s (1987) and Jenkins and Ward’s (1965) models. We now turn to the ceiling situation to test 
predictions that distinguish the causal invariance view from Rescorla and Wagner’s. 

3.3.3. Experiment 2B: Ceiling situation 
Recall that for the ceiling situation, the causal invariance view predicts no overexpectation (participants should perceive no conflict 

in estimated causal power across the two phases), whereas Rescorla and Wagner’s (1972) model continues to predict overexpectation. 

3.3.3.1. Method 
3.3.3.1.1. Participants. Based on the variability in a pilot study, we determined a priori to collect data from 24 participants 

9 The same pattern of results obtained using the average of the individual R and S estimates for each participant rather than their estimate for S 
alone in our analysis. We note that although the reduction is different between groups, the mean reduction in the Experimental group is smaller than 
what would be required to fully resolve the conflict if participants remembered the experimental instructions at the beginning of Phase 2 about the 
possible inaccuracy of the initial set of medical records (the fully invariant estimate would be a reduction to 0.5). The discrepancy could be due to 1) 
some participants’ failure to remember the instructions by the end of Phase 2, 2) inaccurate estimates of the deviation from expectation, or 3) a 
tendency for early evidence to influence causal judgments more than does later evidence (Marsh & Ahn, 2006). 
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randomly assigned to the Experimental and Control conditions. Twenty-five UCLA undergraduates served in Experiment 2B to satisfy a 
course requirement, one more than planned due to experimenter error. They were randomly assigned to two groups, 12 to the 
Experimental group and 13 to the Control group. No participant was excluded on the basis of the stopping criteria. 

3.3.3.1.2. Materials, design, and procedure. Experiment 2B presented participants with a ceiling situation, in which hypertension 
occurs with a probability of 1 whenever it occurs (i.e., causal determinism). The materials, design, and procedure were as explained 
earlier. 

3.3.3.2. Results. Table 2 presents the actual and estimated proportions of patients with hypertension for the Experimental and Control 
groups. In contrast to the non-ceiling situation tested in Experiment 2A, participants’ estimates for the critical endomin S in Experi
ment 2B were unchanged across phases (ranging from 0.99 to 1.0) in both the Experimental and Control groups. All differences be
tween groups were far from statistical significance, two-tailed t(23) ≤ 0.64, p ≥ 0.52 for all comparisons between groups. The number 
of participants who did or did not show a reduction in their estimate for endomin S corroborates the absence of overexpectation. None 
of the participants in either the Experimental or the Control group showed a reduced estimate for endomin S: 11 participants in each 
group gave equal estimates across phases, and respectively 1 and 2 participants in the Experimental and Control groups showed a small 
increase (by less than 0.09). 

At the end of Phase 1, consistent with the absence of overexpectation, and notably as predicted by reasoners’ use of analytic 
knowledge of binary outcomes, the Experimental group estimated that the proportion for the unseen RS compound was 1.0 (not 
different from the group’s estimates for the individual endomins), rather than greater than 1.0. The latter is analytically impossible (by 
reason, there cannot be more patients with hypertension than there are patients), but it is predicted by the additivity function in 
Rescorla and Wagner (1972). 

In conclusion, in support of the predictions of the causal invariance view and Pearce’s (1987) model, but contradicting those of 
Rescorla and Wagner’s (1972) model, our results from both phases in a ceiling situation indicate that the Experimental group did not 
show overexpectation. 

Comparing across Experiments 2A and 2B, the frequency of participants showing (vs. not showing) a reduced estimate for critical 
endomin S in Phase 2 relative to Phase 1 of the Experimental condition was greatly and significantly larger in Experiment 2A than in 
Experiment 2B, X2 (1, N = 32) = 16.9, p < .0001. Corroborating this difference predicted by the causal invariance view alone, an 
analysis of variance across the two experiments shows the expected 3-way (Experiment by Group by Phase) interaction for endomin S, 
F (1, 76) = 4.6, p = .035, η2 = 0.055. The two experiments were conducted under highly similar conditions. 

3.3.3.3. Discussion. In summary, using an otherwise identical experimental design, we observed overexpectation in a non-ceiling 
situation (Experiment 2A) but not a ceiling situation (Experiment 2B). This pattern of results is as predicted by the causal- 
invariance function for binary outcome variables (Cheng, 1997), but not by explanations based on either the use of an additive 
integration function (Rescorla & Wagner, 1972) or the use of a contingency criterion without satisfying the “no confounding” pre
requisite for causal inference (Jenkins & Ward, 1965). A configural associative model that generalizes based on similarity (Pearce, 
1987; 1994) likewise fails to explain the pattern. The inferential reasoning account (e.g., Beckers et al., 2006; Mitchell et al., 2009) 
does not explain why participants’ causal-strength estimates were based on spontaneously selected subsets of events that satisfied the 
"no confounding" prerequisite. Neither does it explain previous quantitative findings in support of use of the noisy-OR and noisy-AND- 
NOT causal-invariance functions for a binary outcome (e.g., for a review, see Lu et al., 2008). In addition to clarifying the causal and 
analytic nature of reasoners’ use of a causal-invariance function, our findings demonstrate that an outcome being binary is not an 
obstacle to testing whether people detect a deviation from additivity. Finally, by ruling out an assumption of interaction between 
causes of a binary outcome that was left ambiguous in Experiment 1, Experiments 2A and 2B add converging support for the causal- 
invariance hypothesis. 

4. General discussion 

4.1. Summary 

Our paper addresses the age-old challenge of understanding the causal-induction problem that biological intelligent agents evolved 
to solve: how generalizable causal knowledge is possible when our only access to reality is via our observations in terms of represented 
entities and relationships. It explains why causal invariance across the learning and application contexts is a necessary aspiration in a 
rational agent’s construction of a useable causal representation of the world. 

In addition to explicating this computational-level question (Marr, 1982) about the goal of causal learning (Cheng & Lu, 2017), our 
paper presents converging empirical support for causal invariance as an aspiration. In particular, our experiments tested whether 
intuitive causal learning in humans is equipped with analytic knowledge of the respective causal-invariance functions for two outcome 
variable types common in everyday encounters. In Experiment 1, we found that––while holding constant participants’ domain 
knowledge of how causes combine their influences, blocking paradigm trials, and the experienced maximal outcome––merely 
encouraging the interpretation of the outcome variable as either continuous or binary was sufficient to invoke the appropriate causal- 
invariance function for combining multiple causal influences for the two outcome-variable types. Our exclusion of experience of 
integration functions, both prior to and during our experiment, as a possible explanation for our results argues for the availability of 
analytic knowledge of the causal-invariance functions for these outcome-variable types. 
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In Experiments 2A and 2B, the pattern of cue-competition effects on a binary outcome involving two independently varied stimulus 
cues provides converging evidence for the causal-invariance explanation, over the causal-interaction explanation, of the reduced 
blocking of critical cue X in the Binary condition of Experiment 1. The pattern of effects also highlights the causal nature of the 
integration function for binary outcomes. 

Together, our findings offer initial evidence favoring our hypothesis—that people use their analytic knowledge of causal invariance 
to guide their causal hypothesis formation and revision—over alternative accounts of causal induction that have not addressed the 
challenge of this problem in the infinite search space of representations (e.g., Beckers et al., 2005; De Houwer et al., 2002, 2005; 
Gopnik et al., 2004; Jenkins & Ward, 1965; Lucas et al., 2014; Melchers et al., 2004; Mitchell et al., 2009; Pearce, 1994; Pearl, 2000; 
Rescorla and Wagner, 1972; Spirtes et al., 1993/2000). Our findings are what would be expected in view of the representation-de
pendent reality in the human mind. Causal invariance as a tacit aspiration gives a unified explanation of both qualitative findings 
(Experiments 1, 2A, & 2B; Liljeholm & Cheng, 2007; Wu & Cheng, 1999) and quantitative findings (e.g., Buehner et al., 2003; for a 
review, see Lu et al., 2008) testing the use of decomposition functions. 

In the remaining sections, we discuss five related issues: 1) the implication of our findings for explaining the puzzle of why the 
blocking effect sometimes occurred and other times not, in seemingly highly similar situations, 2) the implicit nature of analytic 
knowledge of causal invariance, 3) the relation between such knowledge and development work on invariances (Karmiloff-Smith, 
1992; Piaget, 1950, 1985), 4) the apparent tension between causal invariance as an aspiration and as a description (e.g., Griffiths & 
Tenenbaum, 2005; 2009; Lucas & Griffiths, 2010; Melchers et al., 2004; Wheeler et al., 2008; Urcelay & Miller, 2010), and 5) the 
dependency of invariance judgments on representation in visual perception (Cheng & Pachella, 1984). 

4.2. A potential explanation of the elusiveness of the blocking effect in rodents (Maes, Boddez, Alfei, Krypotos, D’Hooge, De Houwer, & 
Beckers, 2016) 

The robustness of the blocking effect has been challenged by a group of researchers who reported failures to replicate the effect in 
15 rodent studies despite the use of procedures that are highly similar or identical to those in published studies (Maes et al., 2016). 
Maes et al. conclude, “those failures raise doubts regarding the canonical nature of the blocking effect and call for a reevaluation of the 
central status of blocking in theories of learning” (p. 1). 

While recent emphases on replicability have unearthed many serious problems with reported psychological findings (Open Science 
Collaboration, 2015), our conjecture is that in this particular case, the apparent elusiveness of the blocking effect may in part be 
explained by the ambiguity of the outcome-variable type in the standard blocking training. In the typical paradigm, the unconditioned 
stimulus (US, e.g., an electric shock at a certain amperage) occurs at two levels: it either occurs or does not occur. There are two 
plausible interpretations of such an outcome. One is of course that the outcome is binary, and the only two possible values are the ones 
observed. A second is that the particular intensity level of the US that was experienced is incidental––merely a selected value along a 
continuum of possible values. This interpretation is viable in that the typical US causes pain, relieves hunger, or quenches thirst, and 
the animal has likely experienced these outcomes at varying levels of intensity prior to the experiment––due to similar causes that 
themselves may have varied in intensity. For example, a laboratory rat has bumped into obstacles that may have caused various in
tensities of pain, and background causes that affect the perceived intensity may have varied (e.g., variations in an experimenter’s 
handling). Thus, although the experimental outcome is designed to be binary by the researcher (the shock either does or does not 
occur), it may nonetheless be perceived by the animal as continuous. 

Experiment 1 may be regarded as a test of our explanation of the elusiveness of the blocking effect. When the outcome-variable type 
of the experimental materials is ambiguous, our causal invariance hypothesis implies that different causal-invariance functions will be 
used depending on a reasoner’s interpretation of the outcome variable. As a result, the blocking effect will appear or not appear, 
seemingly capriciously. Although our experiment was conducted on humans and cannot be directly compared with rodent studies, its 
results showing differing amounts of blocking as a function of the perceived outcome variable type are consistent with our explanation 
of the elusive blocking effect. 

4.3. Relation to related developmental work (Karmiloff-Smith, 1992; Piaget, 1950, 1985) 

Our analytic concept of causal invariance is complementary to the empirical concept of invariance discussed in developmental 
work (Karmiloff-Smith, 1992; Piaget, 1950, 1985). At a general level, these concepts share the core assumption that cognition has a 
goal of developing a stable representation of some aspect of the world that generalizes across variation in other aspects. Piaget’s (1950) 
use of the concept of invariance concerns the empirically acquired invariances of physical properties, and Karmiloff-Smith’s (1992) use 
concerns re-descriptions in children’s development of their understanding of the physical world, progressing from an implicit and less 
generalizable representation of a stable knowledge state to an explicit and more generalizable one. 

The shared core of the concept bolsters the basic premise of our work. Our concept differs from these developmental variants, 
however, in two complementary respects. First, both Piaget’s (1950) and Karmiloff-Smith’s (1992) concepts of invariance concern the 
resulting outputs, intermediate or final, of domain-specific empirical invariances, such as the invariance of the property of specific 
physical materials (e.g., the invariance of the volume of a liquid when it is poured from a wide glass into a narrow glass) or of an 
empirically acquired invariant law (e.g., the law characterizing how a balance beam can be made to stay horizontal by objects of 
different weights positioned on the two sides of the beam across a fulcrum). While their findings provide evidence that young children 
already show an aspiration toward obtaining invariant representations, such domain-specific knowledge are the outputs of the causal- 
learning process. In contrast, our analytic version of the concept is a domain-independent navigating device within the learning 
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process, directing the search toward those outputs. For children as for adults, what gets revised is the domain-specific knowledge. 
Causal invariance as a revision criterion and an aspiration is not revised. 

Second, the developmental processes characterized in Karmiloff-Smith (1992) and Piaget’s (1950) work differ both from each other 
and from ours. Karmiloff-Smith’s (1992) representational-redescription model describes “a process of ‘appropriating’ stable states to 
extract the information they contain, which can then be used more flexibly for other purposes” (p. 25). Notably, re-description occurs 
only when a stable successful state is achieved. It concerns cognitive changes in terms of re-descriptions of the same content state (e.g., 
the stable final understanding of balancing objects on a beam) at different levels of explicitness and abstraction. The re-description 
changes how explicit that understanding is, without changing its content. In contrast, the re-representation predicted by our 
concept of causal invariance occurs when the knowledge state is unstable, when there is a deviation from invariance, and does involve 
changing content (e.g., our fiber and metabolic syndrome example; the particle representation of photons versus the wave-particle 
duality of photons; see discussion in Cheng & Lu, 2017). These apparently opposite conditions of re-representation in fact do not 
contradict each other, because the accounts are about disparate aspects of invariance despite use of the same linguistic term. (Our next 
section addresses the implicit versus explicit nature of knowledge of the causal invariance function for a binary outcome.) 

Causal-knowledge revision due to deviation from analytic causal invariance may be regarded as a specific form of Piaget’s (1985) 
process of equilibration, in which knowledge revision towards equilibrium takes place when the system is in a state of disequilibrium. 
Equilibrium is a state of satisfaction, and disequilibrium is a state of discomfort and confusion that occurs when an individual’s current 
understandings are challenged, through new information or experiences. For example, disequilibrium may occur when a child’s belief 
that lions do not climb trees is corrected by a teacher. Piaget’s “disequilibrium” is a more general concept than deviation from causal 
invariance in that it need not concern causal knowledge. Our work extends Piaget’s in that: 1) we specify the mathematical criterion by 
which disequilibrium for causal knowledge would result, and 2) our framework explains why children, like scientists, aspire to 
construct representations that are stable and invariant. 

4.4. Implicit knowledge of the causal invariance function for a binary outcome 

People’s knowledge of the invariance functions for a binary outcome variable is likely to be in an implicit form only. In view of the 
challenge and the importance of adaptive causal induction, it seems unlikely that evolution would have left the solution up to the 
explicit reasoning of individual members of a species. People may not have explicit knowledge of the noisy-OR function because it is 
not typically taught in school. To measure whether people have explicit knowledge of the causal-invariance function for a binary 
outcome, we tested 31 UCLA undergraduate students from the same participant pool as our experiments on their use of the noisy-OR 
function in an explicit non-causal form. The participants were told that an urn has 8 blue dice and 2 red dice. A single die is randomly 
chosen from the urn and rolled. The die is then returned to the urn and the process repeats. When participants were asked about the 
probability of a conjunctive event, “What is the probability of picking a red dice and rolling a ‘4’?”, they all gave the correct answer (1/ 
30). But when they were asked about the probability of a disjunctive event, “What is the probability of picking a red dice or rolling a 
‘4’?”, only 10% answered this question correctly (the correct answer is 1/3).10 

The low level of performance for the non-causal “urn” version of the noisy-OR question is in stark contrast to the implicit use of the 
noisy-logicals in a causal setting. In numerous causal learning experiments (e.g., Buehner et al., 2003; Liljeholm & Cheng, 2007; Lu 
et al., 2008), the majority of participants estimated causal strength or judged causal structure as if they had correctly computed the 

Fig. 4. Left panel: Parallelograms varying orthogonally on angle and length of sides (with ratio of lengths of adjacent sides kept constant). Right 
panel: Parallelograms varying orthogonally on height and length of oblique sides (with length of horizontal sides kept constant). 
Source: Cheng and Pachella (1984, p. 284) 

10 No participant gave an answer (3/10) consistent with the “exclusive OR”. 

J. Park et al.                                                                                                                                                                                                            



probability of the analogous disjunctive event (a target outcome produced by cause A or by cause B). Thus, it seems that the analytic 
knowledge of the noisy-OR function used by participants in these causal-induction experiments is only in an implicit form. It is, of 
course, possible to explicitly teach the noisy-OR formula, but reasoners appear not to need to know the explicit form in order to reason 
with that analytic knowledge to estimate causal strength. 

4.5. Whether or not features are invariant depends on the chosen representation: A perceptual example 

For a concrete example of how invariance is dependent on representation, let us consider the description of a parallelogram, with 
our percept as the target outcome (Cheng & Pachella, 1984). Parallelograms do not in themselves possess parameters that combine 
invariantly or interactively. A parallelogram can be specified by any three orthogonal parameters, such as the lengths of two adjacent 
sides and an angle, the lengths of one side and one diagonal and the height, and so on. These possible representations do not all produce 
perceptually invariant features. To keep our illustration simple, let us vary only two dimensions by fixing the third. 

The left panel of Fig. 4 depicts four parallelograms varying orthogonally along two dimensions: the acute angle and length of the 
sides, with the ratio of the lengths of adjacent sides fixed. This representation illustrates that shape is perceptually invariant across 
variations in size. As can be seen, despite variation in the size of the parallelogram due to variation in the length of the sides, par
allelograms with the same acute angle (compare A and B) are geometrically ‘similar’—they are invariant in shape, a perceptually 
salient feature. 

Now, what if we orthogonally vary the height of the parallelogram and the length of the oblique sides, with the length of the 
horizontal sides fixed? As illustrated in the right panel, parallelograms of a constant height (compare G and H) vary in both shape and 
size, as do parallelograms of a constant length of the oblique sides (compare E and G), depending on the value on the other dimension. 
In other words, these two physical dimensions interact psychologically. As Fig. 4 illustrates, whether two dimensions are “separable” 
or “integral” depends on the variables in the chosen representation. Returning to the causal analogs of this visual example, note that 
across domains, perceptual and conceptual, invariance or non-invariance across context depends on the reasoner’s constructed rep
resentations of reality. 

4.6. Resolving the roles of causal invariance as aspiration and as description in complex causes with multiple interacting causal factors 

The reader may have perceived a gap between causal invariance as an aspiration and as a description. After all, causes are often 
complex. Causal factors may interact in many possible ways, characterized by various integration functions. Treating causal invariance 
as an ideal may thus seem simplistic or wishful. Perhaps in part for this reason, the concept of causal invariance is not regarded as 
essential in the psychological literature, in Bayesian models (e.g., Griffiths & Tenenbaum, 2005; 2009; Lucas & Griffiths, 2010) or in 
propositional inference models (e.g., Beckers et al., 2006; Mitchell et al., 2009). Nor is it heeded in current mainstream statistics for 
testing causal hypotheses involving binary outcomes (e.g., Fienberg, 1980/2007; McCullagh & Nelder, 1989; Wickens, 1989). 

The description side of the apparent gap is well illustrated by Griffiths and Tenenbaum’s (2005) view on the appropriateness of an 
integration function. They write (p. 349), “We suspect that the appropriate parameterization for the relationship between a cause and 
its effects [i.e., the appropriate integration function] will depend upon an individual’s beliefs about the causal mechanism by which 
those effects are brought about. For some causal mechanisms, other parameterizations may be more appropriate than the noisy-OR.” 
Similarly, it has been argued that learning integration functions that relate the theory under construction to data allows “learners to 
flexibly identify a specific functional form for causal relationships in a given setting, instead of assuming a fixed functional form for all 
causal relationships,” (Lucas & Griffiths, 2010, p. 123), the fixed functional form being a causal-invariance function often assumed in 
the previous literature (e.g., Cheng, 1997). We of course agree that it is useful to learn descriptions of how specific types of causes 
combine their influences and to let that empirical knowledge guide the prediction of outcomes. 

Our framework closes the apparent gap between invariance as aspiration and as description. In our view, invariant whole causes are 
what a reasoner implicitly aspires toward, and the relation between a whole cause and its component factors is the resulting 
description that (ideally) meets the aspiration. Newton’s inverse square law is an exemplar of a whole cause aimed at invariance and 
defined by a description of interactive components. The descriptions are justified by experience, but they are not acquired in a purely 
bottom-up manner. Instead, they are guided by the top-down aspiration toward whole causes that combine with each other by causal- 
invariance functions that are justified by reason. 

A great appeal of a probabilistic conception of causal invariance as an aspiration is that it offers an adaptive advantage for causal 
learning: it enables the powerful problem-solving strategy of decomposition (decomposition in a different sense as that in “decom
position function”) to the learning of complex causes with multiple interacting factors. The probabilistic criterion of causal invariance, 
which generalizes the deterministic variant (e.g., Sloman, 2005), enables decomposing (in the problem-solving sense) the acquisition 
of a whole cause into more feasible incremental steps. Specifically, it enables the learning of a single component of a complex cause, 
even when the other components of the complex cause are unknown or missing––conditions that hinder learning under a deterministic 
criterion. Changing a single component within a “whole” cause can change the probability of the outcome. The resulting change 
justifies inferring the component as causal (assuming that other components of the whole cause occur at a constant non-zero rate and 
there is no confounding due to alternative causes, see Cheng, 2000). 

Another appeal of use of the criterion of causal invariance to form whole causes is that it enables the computation of the combined 
effect of any configuration of whole causes (once their individual influences are known), without the need to have observed the 
configuration (Carroll & Cheng, 2010). In other words, it enables compositionality. For example, according to Newton’s law, for any 
possible configuration of celestial bodies, the combined gravitational force on a celestial body x is the superposition of (i.e., the vector 

J. Park et al.                                                                                                                                                                                                            



sum of) the separate gravitational forces on x from all other celestial bodies in the configuration. Neptune’s discovery, for example, was 
made possible by explaining the discrepancy between the observed orbit of Uranus and its orbit predicted based on the superposition of 
gravitational forces from the Sun and the other known planets. Thus, in multiple ways, analytic causal-invariance functions enable the 
learning and use of empirically-based integration functions. 

To further understand the complementary nature of aspirations and descriptions, it may help to see some differences between an 
acquired integration function and a causal-invariance function. The former encodes domain-specific empirical knowledge, is subject to 
modification by further experience, and does not transfer to dissimilar domains (Lucas & Griffiths, 2010, Expt. 5; Melchers et al., 2004; 
Wheeler et al., 2008). Wheeler et al., for example, conducted a series of three experiments on rats investigating the boundaries for 
transfer of an acquired interaction-integration function across tasks. Their experiments tested the limits of the generalizability of an 
acquired “subadditive” integration function. They trained rats on a subadditive function in one learning task involving a continuous 
outcome variable, and measured transfer to a subsequent learning task involving the same outcome variable. For a continuous- 
outcome variable in the range where the scale is at least interval, additivity represents causal invariance and subadditivity in
dicates an interaction. They reported that the acquired subadditive function failed to generalize when the spatial or temporal char
acteristics of the environment or of the stimuli changed across the learning and transfer tasks. The generalization similar to that 
observed in a previous study (Beckers et al., 2006) also disappeared with a longer temporal delay between the two tasks. Based on these 
findings, Urcelay and Miller (2010) conclude that “prior experiences transfer to new experiences only when the two tasks share similar 
spatiotemporal contexts, at least in rats”. 

In contrast to empirical integration functions, causal-invariance functions encode formal knowledge that is neither limited to 
domains with similar perceptual or other content-specific features, nor subject to modification due to new data. Note that when there is 
deviation from the criterion of causal invariance in a data set, what is given up is only causal invariance as a description for the current 
representations of the current content. The aspiration of representing knowledge in terms of invariant whole causes and the causal 
invariance functions for each outcome-variable type are not given up. 

5. Conclusion

We have argued that only by knowing what to expect assuming causal invariance can one judge deviations from the goal of causal
invariance, and that to form that expectation one must have analytic knowledge of causal-invariance functions for outcome-variable 
types that are important for survival or for understanding. What if we humans do not have causal invariance as our goal in causal 
induction? The crucial role played by causal invariance in the construction of useable causal knowledge suggests that without it, we 
would be like Alice asking the Cheshire Cat for directions without knowing where she wants to go (Carroll, 1865/1998). Wouldn’t you 
agree with the cat, that which way she ought to go “depends a good deal on where you want to get to” (p. 89)? 
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