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In this chapter, we describe four psychological phenomena that offer clues

to how untutored people infer causal relations. We contrast the predictions

for these phenomena, all involving asymmetries in causal inferences,

according to two psychological approaches—an associationist approach

(e.g., Cheng and Novick 1992; Jenkins and Ward 1965; Pearce 1987;

Rescorla and Wagner 1972; Van Hamme and Wasserman 1994), and a

causal approach (e.g., Cheng 1997, 2000; Novick and Cheng 2004). Our

analysis reveals that each phenomenon is inexplicable by associationist

models but follows coherently from a causal theory. What distinguishes

these approaches is that the causal theory has the goal of explaining the oc-

currence of a target event by the potentially independent influences of can-

didate causes and other (background) causes. This goal has no analogue in

associationist models. To arrive at a coherent explanation, the causal ac-

count creates a theoretical construct of causal power (Cartwright 1989)—

the probability with which a cause influences an effect. According to this

account, reasoners search for, or define, candidate causes with the goal of

arriving at causes that influence a target effect independently of the back-

ground causes. In other words, they seek causes whose powers are (ideally)

invariant regardless of how frequently the background causes occur (see

Woodward 2003, for a discussion of the degree of invariance and depth of

explanation; also see Haavelmo 1944, for a discussion of causes varying on

degree of autonomy).

By ‘‘cause,’’ we mean both simple causes that consist of a single element

and conjunctive causes that consist of a combination of two or more ele-

ments acting in concert; we also mean a direct cause in the sense that, for

the purpose of analysis, intermediate causes that lie on the path between

the candidate cause and the effect are ignored or treated as part of the



candidate. In our view, causal explanation occurs within a hypothesis-

testing framework in which predictions based on various sets of assump-

tions are evaluated to reach the goal of a satisfactory explanation. This

testing begins with simpler hypotheses unless there is evidence refuting

them. Any processing system that cannot simultaneously evaluate all possi-

ble hypotheses needs an ordering bias; two reasons supporting a simplicity

bias are: (1) simple causes are an inherent part of the definition of conjunc-

tive causes (Novick and Cheng 2004), and (2) they are the elements in more

complex networks. We restrict our discussion to causes and effects that are

represented by binary variables with a present value and an absent value;

this type of cause and effect, compared with the type represented by con-

tinuous variables, more clearly reveals the function of causal constructs. As

will become clear, for situations that are well represented by binary vari-

ables of this type, associationist accounts do not allow for the possibility

that the occurrence of the effect is the result of the independent influences

of causes.

Psychology is not the only discipline that has inherited associationism.

Some commonly used normative statistical measures—for example, the

chi-square test and the cross-product ratio—are also associationist. Given

that the asymmetry phenomena are manifestations of a coherent explana-

tion of the occurrence of a target effect when causal assumptions are made,

but only when such assumptions are made, a question arises: do these phe-

nomena point to a basic problem that permeates both psychological and

normative associationist models? When applied to test causal hypotheses,

are associationist measures coherent? Before presenting the four phenom-

ena, we first give a brief account of the two psychological approaches.

Alternative Psychological Accounts of Causal Learning

An Associationist Model

For brevity, we illustrate the pitfall of associationism primarily using only

one such model, the DP model, which was independently proposed in phi-

losophy (Salmon 1965) and in psychology (e.g., Jenkins and Wards 1965;

Cheng and Novick 1992). It is the dominant associationist model of causal

learning in the psychological literature; it makes the same predictions as

Rescorla and Wagner’s (1972) model—the dominant connectionist model

of conditioning and causal learning—at equilibria if the two parameter
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values of the effect in question in the latter model are assumed to be

equally salient (e.g., Danks 2003). Other associationist models (e.g., Pearce

1987; Rescorla and Wagner 1972; Van Hamme and Wasserman 1994), de-

spite their greater flexibility due to added parameters, are nonetheless un-

able to account for some robust psychological findings, including those to

be discussed here (for more extended evaluations of these models, see

Buehner, Cheng, and Clifford 2003; Cheng, Park, Yarlas, and Holyoak

1996; and Novick and Cheng 2004). The only exception is if Rescorla and

Wagner’s model is modified to become consistent with the explanatory

causal construct just mentioned (see the noisy-OR and noisy-AND-NOT

modifications in Danks, Griffiths, and Tenenbaum 2003).

According to the DP model, the strength of a causal relation between can-

didate cause i and effect e is estimated by the difference in the probability of

e given i and given not-i:

DPi ¼ Pðe j iÞ � Pðe j iÞ: ð1Þ

If DPi is noticeably positive, reasoners are predicted to conclude that i

causes e; if DPi is noticeably negative, they are predicted to conclude that i

prevents e; and if DPi is not noticeably different from 0, they are predicted

to conclude that i has no influence on e. We interpret equation 1 under the

assumption that alternative causes are ‘‘controlled’’ (i.e., held constant);

this interpretation is sometimes called the probabilistic contrast model

(Cheng and Novick 1992).

The Causal Power Theory of the Probabilistic Contrast Model

The causal power theory of the probabilistic contrast model (Cheng 1997,

2000; Novick and Cheng 2004) instantiates an approach to causal learning

that adds an explanatory layer to associationist models. Causal power is the

theoretical probability with which a cause influences an effect e when the

cause is present (Cartwright 1989); this influence can be generative (i.e.,

the cause produces e with a certain probability) or preventive (i.e., the cause

prevents e with a certain probability). According to this causal power

theory (Cheng 1997), to evaluate the power of a candidate cause i to influ-

ence e, reasoners partition all causes of e into candidate i and the composite

of (known and unknown) causes of e alternative to i, labeled a here, and

they explain covariation defined in terms of observable frequencies by the

unobservable hypothetical causal powers of i and a. The partitioning of all
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causes of e into i and a is the simplest possible conception of the causes of e

that would still explain covariation between i and e.

The assumptions underlying the derivation of simple causal power are:

1. i and a influence e independently,

2. causes in a could produce e but not prevent it,

3. the causal powers of i and a are independent of their occurrences (e.g.,

the probability of a both occurring and producing e is the product of the

probability of a occurring and the power of a), and

4. e does not occur unless it is caused.

Assumptions 1 and 2 are merely ‘‘working hypotheses’’ for the reasoner;

they are adopted until the reasoner perceives evidence against them. If

they are dropped, they are replaced by weaker assumptions, and alternative

models apply (e.g., Cheng 2000; Novick and Cheng 2004).

With respect to assumption 1, independent causal influence is defined as

follows: let us consider a simple case in which i and j, two causes of an ef-

fect e, are both present ( j is different from a in that a, which includes

unknown or unobserved causes, typically cannot be constrained to be pres-

ent). If the generative causal power of i with respect to e is qi (i.e., i produces e

with probability qi when i is present), and the generative causal power of j

with respect to e is qj, then if i and j influence e independently, the proba-

bility that e is produced both by i and by j would be qi � qj. Under the same

assumptions, the probability that e is produced by i or by j would be

qi þ qj � qi � qj. This function relating the probability of e occurring (in the

presence of i and j in this simple case) to the theoretical probabilities of e

due to each constituent cause, is sometimes referred to as a noisy-OR gate

(Glymour 2001).

When DPi b0, reasoners evaluate the hypothesis that i produces e and

estimate qi. To do so, they allow the possibility that i produces e, and ex-

plain Pðe j iÞ by the probability of the union of two events: (1) e produced

by i, and (2) e produced by a if a occurs in the presence of i. That is, they

reason that when i is present, e can be produced by i or by a if a occurs in

the presence of i. Likewise, they explain Pðe j iÞ by how often e is produced

by a alone when a occurs in the absence of i.

Figure 1.1 illustrates these explanations of the two conditional probabil-

ities by Euler circles. The dashed and undashed circles in the figure, respec-

tively representing e produced by i and e produced by a, are both unobservable;
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they are theoretical constructs. What can be observed is the shading—the

white and shaded areas respectively representing e occurring and e not occur-

ring; and the two boxes—respectively representing exposure to i and no expo-

sure to i. Now, e occurring in the presence of i—the white area in the left box

representing the union of the dashed and undashed circles—can be decom-

posed theoretically into the sum of the area of the dashed circle and that of

the undashed circle, minus their overlap (see top equation in the figure).

The relative size of the dashed circle in the left box (i.e., how often e is pro-

duced by i when i is present) depends on how often i occurs (always in this

situation) and its causal power, qi (i.e., how often i produces e when i is

present). The undashed circle can be similarly explained. (See bottom two

equations in the figure.) Likewise, the white area in the right box (when i

is absent) can be analogously explained, in this case by how often e is pro-

duced by a in the absence of i (see middle equation). These explanations of

e set up equations relating the observable quantities to the various theoret-

ical variables.

For situations in which DPi a0, there are analogous explanations for

evaluating preventive causal power. The only difference in the preventive

case is that reasoners evaluate the hypothesis that i prevents e rather than

produces it. This difference implies that when reasoners evaluate whether i

prevents e, they explain Pðe j iÞ by the probability of the intersection of two

Figure 1.1

Euler diagrams illustrating the explanation of covariation in Cheng’s (1997) theory

of simple causal power (from Novick and Cheng 2004).
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events: (1) e produced by a if a occurs in the presence of i, and (2) e not

stopped by i. That is, they reason that when i is present, e occurs only if it

is both produced by a and not prevented by i. This function is sometimes

referred to as a noisy-AND-NOT gate (Danks et al. 2003). The explanation

of Pðe j iÞ remains as before.

The goal of these explanations of Pðe j iÞ and Pðe j iÞ is to yield an estimate

of the (generative or preventive) power of i from observable frequencies

alone, even though it may be impossible to observe the influence of i in

isolation. For figure 1.1, this goal corresponds to estimating the size of the

whole of the (invisible) dashed circle relative to the size of the left box

(when i is present). These explanations show that, under some conditions

but not others, covariation implies causation. One of the necessary condi-

tions is ‘‘no confounding’’—the independent occurrence of a and i. This

condition is necessary when causal inference makes use of a probabilistic

contrast, as we explain later.1 In the figure, this condition corresponds to

requiring that the undashed circles in the two boxes have the same size

relative to their respective boxes. Whether one assumes that this condition

is satisfied depends on perceived evidence for or against it.

When a and i do not occur independently (i.e., when there is confound-

ing), one equation with four unknowns results, and there is no unique so-

lution for qi. But, in the special case in which a occurs independently of i

(i.e., when there is no confounding), these explanations yield equations

with only one unknown, the causal power of the candidate. Equation 2

gives an estimate of qi when DPi b0:

qi ¼
DPi

1 � Pðe j iÞ
; ð2Þ

and equation 3 gives an estimate of pi, the preventive simple power of i,

when DPi a0:

pi ¼
�DPi

Pðe j iÞ
: ð3Þ

The two equations are logically related in that replacing e with not-e in one

equation will yield the right-hand-side (RHS) of the other equation. That is,

generating e is equivalent to preventing not-e.

Note that the RHS’s of equations 2 and 3 require observations regarding

i and e only (intermediate terms involving a drop out under no-

confounding), implying that qi and pi can be estimated without observing

6 P. W. Cheng et al.



a. Also note that when DPi ¼ 0, both generative and preventive powers can

be evaluated; otherwise, the type of power to evaluate depends on the

observed sign of DPi. Finally, note that causal power has a well-defined

meaning in terms of frequencies of events in the world (see Novick and

Cheng 2004, for a contrast with associationist models in this regard). For

example, qi ¼ 1 means that i is estimated to produce e in every entity, and

qi ¼ 0 means that i is estimated to never produce e in any entity (i.e., to be

noncausal). The values of pi have analogous interpretations in terms of pre-

venting e.

Myriad findings on psychological causal judgments that are inexplicable

by associationist accounts are explained by this causal theory (see Buehner,

Cheng, and Clifford 2003; Cheng 1997; Lien and Cheng 2000; Novick and

Cheng 2004; White 2004; Wu and Cheng 1999). We discuss four such find-

ings in the following sections.

Phenomenon 1: An Asymmetry between Cause and Effect

Empirical Finding

This asymmetry is revealed in a comparison across three figures, all taken

from a psychological experiment on judgments of causal strength con-

ducted on college students (Buehner, Cheng, and Clifford 2003). First, con-

sider the pattern of information in figure 1.2. For this and similar figures,

the subjects were told that the figure depicts the outcome of a fictitious ex-

periment testing a medicine on allergy patients. The medicine was said to

be effective for relieving the symptoms of allergies, but its unintended

effects were undocumented; the study was conducted to evaluate one such

possible side effect—headache. To encourage the no-confounding assump-

tion, the patients were said to be randomly assigned to two groups—a

group that did not receive the medicine (the top panel, the control group),

and a group that did (the bottom panel, the experimental group). Each face

in the figure represents a patient. A frowning face represents that the pa-

tient has a headache; a smiling face represents that the patient does not

have a headache.

The subjects were asked to judge, based on the data in the figure, whether

each medicine causes, prevents, or has no influence on headaches. If the

medicine was judged to have an influence, a follow-up question asked them

to rate the strength of the influence. For example, if subjects indicated that
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a medicine causes headaches, they were asked to estimate, out of 100 al-

lergy patients (selected from the same pool) who do not have headaches,

the number who would get a headache if the medicine were given to

them. Likewise, if subjects indicated that a medicine prevents headaches,

they were asked to estimate, out of 100 allergy patients (from the same

pool) all of whom have headaches, the number who would no longer

have a headache if the medicine were given to them. A presentation of the

information about individual patients in verbal, instead of pictorial form;

patient-by-patient, in a sequence, instead of simultaneously as in our figures;

produced the same pattern of psychological findings that we illustrate here.

For figure 1.2, most subjects indicated that medicine D causes headaches.

They further estimated that if the medicine had been given to 100 allergy

Figure 1.2

Stimulus material for Condition D from Buehner, Cheng, and Clifford (2003, Experi-

ment 2) depicting the results of an experiment testing the side effect of a medicine.
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patients who did not have headaches, 50 would get a headache from the

medicine.

Next, consider the evaluation of the medicine in figure 1.3. The outcome

pattern depicted in this figure results from changing each frowning patient

in figure 1.2 into a smiling one, and vice versa (and grouping the resulting

frowning patients and shifting them to the left). In other words, figure 1.3

transposes the two values of the outcome in figure 1.2. For this figure, most

subjects answered that medicine G prevents headaches and estimated that

about 50 out of 100 patients with headaches would no longer have head-

aches if given the medicine. Thus, from figure 1.2 to figure 1.3, there is a

change in causal direction—from producing to preventing headaches—but

no change in the magnitude of the strength of the causal relation.

Figure 1.3

Stimulus material for Condition G from Buehner, Cheng, and Clifford (2003, Experi-

ment 2).
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Finally, consider figure 1.4. The outcome pattern in this figure is identical

to that in figure 1.2 except that now, for every patient, the two values of

the candidate cause are transposed; in effect, the top and bottom panels

are switched. For this figure, most subjects responded that medicine J pre-

vents headaches and estimated that it would do so in all 100 of the patients

given the medicine. Note that in contrast to figure 1.3, the transposition of

values doubled the estimated causal strength, from 0.5 to 1. These three fig-

ures illustrate that transposing the values of the effect (figure 1.3 vs. figure

1.2) has a consequence different from that of transposing the values of the

candidate cause (figure 1.4 vs. figure 1.2).

Associationist models are unable to explain the different consequences of

the two transpositions. Although the DP model correctly predicts a change

in causal direction for each transposition, it gives the same absolute magni-

Figure 1.4

Stimulus material for Condition J from Buehner, Cheng, and Clifford (2003, Experi-

ment 2).
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tude of strength, namely, 0.5, for all three figures. As an examination of

equation 1 will show, the two variables in the equation (i and e) behave

the same way when their values are transposed: for both variables, the two

values are symmetrical in the sense that transposing them yields a DP that

has the opposite sign but the same absolute value. Similarly, the commonly

used chi-square test (e.g., Feinberg 1980) would yield the same w2 value

when given data sets that are transformations of each other in the two

ways just described. This test neither distinguishes between cause and effect

variables, nor between the values of each variable; the values of each vari-

able therefore have an identical status, as do the variables themselves,

resulting in the symmetric treatment of all three figures.

Let us briefly illustrate how an associationist model with added parame-

ters still fails to explain the pattern of results. For example, one could gen-

eralize equation 1 by adding weights to the conditional probabilities (e.g.,

Lober and Shanks 2000), so that weighted-DP ¼ wi � Pðe j iÞ � w2 � Pðe j iÞ. To

fit the modal judgments for figures 1.2 and 1.4 (corresponding to an esti-

mated weighted-DP of 0.5 for figure 1.2, and �1 for figure 1.4), the only so-

lution is to set w1 ¼ 1 and w2 ¼ 2. This pair of weights, however, would

predict a strength of �1.5 for figure 1.3, thus failing to explain the observed

constant magnitude of causal strength across figures 1.2 and 1.3. As should

be clear, post-hoc values for w1 and w2 that can explain the judgments for

any two of the three figures will inevitably fail to explain the judgment for

the third.

In contrast, the observed difference between the two transformations of

figure 1.2 is explained by the causal power theory of the probabilistic con-

trast model (Cheng 1997, 2000). Recall that by the definition of causal

power, a cause exerts its influence when it is present; it does nothing

when it is absent. It therefore should be not be surprising that transposing

the present and absent values of the candidate cause would yield different

estimated causal strengths. For figure 1.2, instantiating equation 2 yields

qi ¼ 0:5; for figures 1.3 and 1.4, instantiating equation 3 yields pi ¼ 0:5

and pi ¼ 1, respectively. These predictions are parameter-free.

An Incoherent Definition of Independent Causal Influence under the

Associationist Approach

Our three ‘‘medicine’’ figures illustrate a basic problem with the associa-

tionist approach when applied to causal situations: it does not allow a co-

herent definition of independent causal influence. Consider figures 1.3 and
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1.4 again, but now treat medicines G and J as the same medicine. Under

the DP model, the outcome patterns in the two figures are consistent

with the medicine having no interaction with the background causes: the

strength of the medicine according to the model remains invariant (�0.5

for both figures) across different levels of the background causes (as indi-

cated by different proportions of patients having a headache in the control

group).

Concluding independent causal influence based on the invariant DP

value in the two figures, however, results in a contradiction in the concept

of independent causal influence: the probability with which a cause

changes an effect varies depending on the how often other causes of the

effect occur, even as the causes are supposedly independent causes of the

effect. As mentioned, the two figures show different contexts in which

the medicine acted. In figure 1.3, as can be inferred from the control group

(top panel) under the ‘‘no confounding’’ condition, generative causes of

headaches occurred and produced headaches in every patient. In figure

1.4, it can be analogously inferred that generative causes of headache

occurred and produced headaches in only half of the patients. Now, con-

sider the probability with which the medicine prevented or relieved head-

ache for an individual patient in the experimental group (bottom panel).

Note that this group would have been like its control counterpart before

the medicine was administered. In figure 1.3, a medicine that relieves head-

ache with a probability of 0.5 for an individual patient would be expected

to yield the bottom panel of the figure. But, in figure 1.4, to yield its bot-

tom panel, the analogous probability for the medicine would have to be 1;

individual patients are the units to consider because the pill that went into

each patient cannot ‘‘look’’ across patients to obtain a desired overall out-

come. Thus, the same medicine that relieved headache with a probability of

0.5 in figure 1.3 now relieved headache with a probability of 1, contradict-

ing the DP assumption that the medicine acts independently of the back-

ground causes. It is as if the medicine, to maintain the same DP value,

‘‘knew’’ in figure 1.4 that it should bypass the patients who did not have a

headache, and ‘‘concentrate’’ its influence on the half who did so as to ar-

rive at a constant DP value of �0.5.

In summary, our analysis reveals that no model that treats figures 1.3 and

1.4 as symmetric patterns is coherent, given the asymmetry between the

two values of a candidate cause. Adopting associationist models amounts
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to assuming a specific form of interaction between the medicine and the

background causes—the stronger the background generative causes, the

weaker the preventive effect of the medicine—even while the medicine and

the background causes are assumed to exert independent influences on

headache. Such models violate the principle of invariance with respect to

the basic concept of independent influence (Woodward 2003). The causal

approach circumvents this problem by adopting the only coherent defini-

tion of independent causal influence.

Phenomenon 2: Causal-Reasoning Analogues of the Necker Cube

This section concerns an asymmetry between generative and preventive

causes in situations in which DP ¼ 0 and there is no confounding. Recall

that for such situations, both generative and preventive power may be eval-

uated. The general rule is to infer that the candidate is noncausal, regardless

of whether generative or preventive power is evaluated. There are two

exceptions, however, both of which are causal-reasoning analogues of the

Necker Cube. Just as the Necker Cube, which results in a single visual in-

put, can be interpreted in two ways perceptually, the exact same data set

can yield two inferential interpretations. In the first analogue, if e always

occurs, with or without i (see figure 1.5a), someone evaluating whether i

prevents e would indeed infer that i is noncausal, but someone evaluating

whether i produces e would allow the possibility that i produces e. Under

the latter interpretation, even if i is a strong producer of e, there would be

no room to show its influence on e because of the constant presence of e

due to alternative causes; no conclusion, therefore, regarding whether i

produces e can be drawn. This situation is referred to as the ‘‘ceiling effect’’

in experimental design.

A second analogue of the Necker Cube appears at the other extreme

probability, when e never occurs, with or without i (see figure 1.5b). In

that case, one would infer that i does not produce e; at the same time, i’s

preventive power cannot be evaluated—there would be no room to show

the preventive influence of i on e, no matter how strongly i prevents e.

This situation is the preventive analogue of the ceiling effect; it is so

exceedingly intuitive that it is, as far as we know, never discussed in text-

books on experimental design. Thus, each of two clear-cut cases of statis-

tical independence is interpreted differently depending on the direction of
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causality to be evaluated, and the interpretations for the two causal direc-

tions are reversed from one case to the other (for experimental evidence of

this pattern of inference in college students, see Wu and Cheng 1999).

The differences in interpretation and the reversal in interpretation across

the two cases are easy to overlook as crucial tests between associationist and

causal accounts: being psychologically compelling rather than counterin-

tuitive, the phenomena may suggest to some researchers that there is noth-

ing interesting to explain. In fact, these phenomena pose unmet challenges

to all associationist models, psychological or normative, and to some causal

models as well; the compelling rationality of the pattern of judgments

should render the gap in these accounts all the more conspicuous.

Associationist measures, such as the DP model and the chi-square test,

always yield a single value for a data set; they therefore cannot yield two

values for a ceiling situation. Some Bayesian network models make infer-

ences regarding causal structure based on qualitative patterns of statistical

independence and dependence (e.g., Spirtes, Glymour, and Scheines 1993/

2000; Pearl 2000); these models would therefore also make the same infer-

ence, or set of inferences, for the same independence pattern. Some Baye-

sian network models and a version of the chi-square test exclude from

Figure 1.5

Two inferential Necker cubes: Data patterns indicating the ceiling effect and its pre-

ventive analog. Each cell entry is the P(column value j row value).
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analysis data sets with extreme probability values; these models would be

unable to explain why (under some conditions) it is actually fine to infer

at PðeÞ ¼ 1 that pi ¼ 0 and at PðeÞ ¼ 0 that qi ¼ 0.

In contrast, these inferential Necker cubes are readily explained by equa-

tions 2 and 3 from the causal theory. If e occurs all the time, with or with-

out i, qi cannot be assessed (i.e., has the undefined value of 0/0 according

to equation 2), as there are no remaining entities in which i can possibly

manifest its generative power. But in this case, pi would have a value of 0

according to equation 3—i never prevents e on the occasions when there

is an opportunity to do so. Conversely, if e never occurs, pi cannot be

assessed (has the undefined value of 0/0 according to equation 3), because

there are no entities in which i can possibly manifest its preventive power.

But in that case, qi would have a value of 0 according to equation 2.

Phenomenon 3: An Asymmetry between the ‘‘Present’’ and ‘‘Absent’’

Values of a Candidate Cause in Conjunctive Causal Inference

Implications for Inferring a Simple Cause versus Inferring a Conjunctive

Cause

Recall that under our causal approach, a cause exerts its influence when it is

present and does nothing when it is absent. At first glance, intuition may

seem to blatantly contradict this assumption. There is no doubt that under

some conditions people do speak of, and probably think of, the absence of

factors as causes. For example, someone who is trying to quit smoking cig-

arettes might say, ‘‘The absence of nicotine is causing my withdrawal

symptoms;’’ and someone who is separated from a loved one might say,

‘‘Absence makes the heart grow fonder.’’ But presence and absence are

complementary concepts—what is expressible in terms of one can be simi-

larly expressed in terms of the other. For example, ‘‘The absence of nicotine

causes withdrawal symptoms,’’ is formally equivalent to, ‘‘The presence of

nicotine prevents withdrawal symptoms,’’ although the two expressions

may have different connotations. The choice of representation in the case

of a simple cause does not affect whether one infers a causal relation.

In contrast, for conjunctive causes, whether someone forms the category

of a conjunctive cause (i.e., whether one judges that the component causes

interact) does depend on which value (presence or absence) of the compo-

nent simple candidates is believed to be causal (Novick and Cheng 2004).
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People’s intuitions regarding conjunctive causes differ from the predictions

of normative associationist models such as the chi-square test or the cross-

product ratio, which would not yield different output values if the two

values of each candidate factor are transposed (Novick and Cheng 2004).

Neither would our associationist extension of the DP model to describe

conjunctive causation (Cheng and Novick 1992). For both causal and asso-

ciationist accounts, the respective symmetry properties of simple causes

carry over to conjunctive causes because the latter are estimated on the

basis of deviation from the independent influences of simple causes.

Let us illustrate the dependence of conjunctive causation on the causal

value of a component factor. We will consider judgments on causal interac-

tion in four patterns of outcomes, treating presence as a cause and absence

as a cause in turn. For the next three figures, assume the following cover

story:

Scientists working for a company that raises a particular type of lizard for sale as pets

are investigating factors that may influence the skin color of these lizards. In their

natural habitats, lizards of this type have been found to have skin that is either yel-

low or black. These scientists have conducted an experiment to test the influence of

two minerals, mineral i and mineral j, on the lizards’ skin color. For each of four

months, twelve lizards were exposed to mineral i, mineral j, neither mineral, or

both minerals. At the beginning of each month, the lizards were given time to re-

cover to their natural color before the relevant experimental manipulation began.

All other influences on skin color were held constant throughout. The states of the

lizards at the end of each month are depicted in the figure (with yellow represented

by the lighter shade and black represented by black). Assume that the results are ac-

curate and reliable, and suspend whatever prior knowledge you may have about liz-

ards’ skin colors.

Consider outcome pattern 1 (see figure 1.6). The four panels in this figure

show the colors of the twelve lizards when the lizards were—respectively,

from the top—exposed to neither mineral, exposed to mineral i alone,

exposed to mineral j alone, and exposed to both minerals. A dominant in-

terpretation of this pattern of outcomes is that the presence of the minerals

independently causes some lizards to turn black (Liljeholm and Cheng

2005). Mineral i turned two lizards black; mineral j turned three other

lizards black; and when exposed to both minerals, a lizard that was turned

black by either mineral stayed black. This interpretation follows the princi-

ple of superimposition that is consistent with Novick and Cheng’s (2004)

theory of conjunctive causes: when two unlike values of an outcome are
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superimposed in an entity (e.g., when the varied outcomes in the second

and sixth lizards from the top three panels are combined in the bottom

panel), the value that wins (blackness) is the one that the entity newly

adopted when a cause was introduced (i.e., when a mineral changed from

being absent to being present).2

Pattern 2 (see figure 1.7) is identical to pattern 1 except that all twelve

lizards are black in the bottom panel. For this pattern, the minerals each

individually cause blackness as before, but they also interact to cause

more blackness than would be expected if the minerals had operated

independently.

Now, let us consider patterns that are ‘‘absence’’ analogues of patterns 1

and 2. Imagine two patterns, patterns 3 and 4, that are respectively iden-

tical to patterns 1 and 2 except that the exposure-condition labels (but not

the lizards) for the top and bottom panels are reversed, so that the progres-

sion through the panels by convention specifies the removal rather than

the addition of the individual minerals. Because the reversal focuses atten-

tion on the removal of the minerals, it should encourage the representation

of the absence of a mineral as causal. It should be clear that pattern 3, being

an absence analogue of pattern 1, should convey no causal interaction if

absence is the causal value. This pattern should still indicate no interaction,

Figure 1.6

Outcome Pattern 1: An illustration of outcomes that show the independent influence

of minerals I and J on the color of the lizards.
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however, if presence is the causal value. In that case, mineral j turned two

lizards yellow, mineral i turned three other lizards yellow, and when both

minerals were present, their influences superimposed, turning five lizards

yellow. Figure 1.8 shows pattern 4, the absence analogue of figure 1.7 (the

background shadings that redundantly represent the exposure conditions

are correspondingly shifted). If the absence of a mineral is perceived to

cause blackness, pattern 4 should show an interaction of the absence of

the two minerals to cause blackness, as does pattern 2 in terms of the pres-

ence of these minerals. Do reasoners spontaneously infer that the absence

of the minerals interact in this case? In a similar vein, do reasoners infer

that drugs that one is not taking interact with each other? We think not.

Our lizard figures were constructed to show that if only the ‘‘present’’

value of a candidate factor can be causal, pattern 4 would convey no causal

interaction. Under this representation, the minerals each cause ‘‘yellow-

ness.’’ Considering the panels in figure 1.8 from the bottom up, the pres-

ence of mineral j turned nine lizards ‘‘yellow,’’ the presence of mineral i

turned ten lizards ‘‘yellow.’’ When both minerals were present, every lizard

that was turned yellow by one or the other mineral, remained yellow (thus,

all twelve lizards in the top panel were yellow). In other words, following

Figure 1.7

Outcome Pattern 2: An illustration of outcomes that show an interaction between

Minerals I and J on the color of the lizards.
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the same principle of superimposition as before—the value that wins is one

that an entity newly adopted when a cause was introduced—the lighter

shade now wins, and the pattern of superimposition (from the bottom up)

conveys independence. Thus, the present and absent values of a causal fac-

tor are asymmetric, and judgments on causal interaction depend on this

asymmetry.3 Recall that, in contrast, predictions regarding causal interac-

tion in associationist models are not dependent on the labeling of the two

values of a candidate factor (Novick and Cheng 2004).

Empirical Evidence

To test whether only one value is causal and to measure untutored rea-

soners’ default assumptions on the causal value, Liljeholm and Cheng

(2005) conducted an experiment on college students. One practical diffi-

culty to be overcome is that one cannot directly ask subjects about causal

interactions without first essentially defining the concept for them, and

potentially biasing their responses. To solve this problem, Liljeholm and

Cheng showed subjects the four patterns and asked them to rate the com-

plexity of the influences of the minerals; an interaction is more complex

than independent influence. Because the ordering of the exposure condi-

tions may contribute to complexity (e.g., the backwards ordering may feel

Figure 1.8

Outcome Pattern 4, the ‘‘absence’’ analogue of Pattern 2.
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more complex), the critical comparison is between two differences in sub-

jects’ complexity ratings:

1. that between patterns 1 and 2 (the latter should be more complex if

presence is considered causal); and

2. that between patterns 3 and 4 (the latter should be more complex if ab-

sence is considered causal).

The two differences should be comparable if presence is not marked as

causal.

College student volunteers were randomly assigned to receive one of the

four outcome patterns along with the cover story. Each subject was asked

two related questions about the stimuli: ‘‘What explains the changes in

the lizards’ skin color across the four panels?’’; and, ‘‘Given your under-

standing of the minerals’ influences on the lizards, how complex do you

think are those influences?’’ Complexity, the dependent measure of actual

concern, was specified as follows: ‘‘If one panel—either the top or the bot-

tom one in particular—is different from what you would expect given the

influences of the minerals in the other three panels, the pattern would be

complex.’’

The subjects rated complexity on a numeric scale. If reasoners represent

the presence of a factor as the causal value, the critical prediction is that

the difference in complexity between patterns 3 and 4 would be smaller

than that between patterns 1 and 2. A pattern of complexity ratings consis-

tent with this prediction was observed: pattern 2 was (on average) rated

considerably more complex than pattern 1 (more than 30 points higher

on the 100-point scale); but patterns 3 and 4 were (on average) rated about

equally complex (within 3 points of each other). The difference between

the two differences was highly reliable. Recall that associationist models

such as the DP and the chi-square predict no difference between the two

differences.

In summary, at least in some situations, such as those in which the prev-

alence of the causal factors are unknown, the present value of a candidate

factor is the one that exerts an influence despite the focus on the removal

of the factor. The absent value does nothing, and the asymmetry between

the two values is critical to whether two component factors form a con-

junctive cause.
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Phenomenon 4: An Asymmetry Around P(e)F0:5 in Judgments of

Whether a Causal Relation Exists

Overview

Another asymmetry occurs for answers to the basic qualitative question of

whether a causal relation exists. When people are presented with data sets

that have the same positive DP and are asked to judge whether a candidate

cause produces an effect, and to rate their confidence in their judgment,

their responses differ for data sets that are equidistant in opposite directions

(i.e., symmetrical) around a 50/50 chance of the effect occurring. Consider

two such data sets for which DP is 0.33: for one data set, on eighteen occa-

sions on which c occurs, e occurs fifteen times; and on eighteen occasions

on which c does not occur, e occurs nine times. For the other data set, on

eighteen occasions on which c occurs, e occurs nine times; and on eighteen

occasions on which c does not occur, e occurs three times. People are more

confident that c causes e in the first data set than in the second (Liljeholm,

Cheng, and Ford 2005). The chi-square test, in contrast, gives the same w2

value of 4.5 for both data sets, with the associated p-value of 0.03.

This asymmetry is interesting because it brings into focus the relations

among structure learning, parameter estimation, and causal assumptions.

Tenenbaum and Griffiths and others have drawn a distinction between

structure learning and parameter estimation, and have characterized psy-

chological work previous to their ‘‘causal support’’ model as concerning

parameter estimation (Danks 2003; Griffiths and Tenenbaum, in press; Ten-

enbaum and Griffiths 2001). They write,

The DP and [causal] power models correspond to maximum likelihood parameter

estimates on a fixed graph (Graph1), while the support model corresponds to a (Baye-

sian) inference about which graph is the true causal structure. (Tenenbaum and Grif-

fiths 2001, caption for figure 1)

(See figure 1.9, below, for the graphs under consideration.) Griffiths and

Tenenbaum (in press) further explain,

Structure learning refers to identification of the topology of the causal graph, while

parameter estimation involves determining the parameters of the functional relation-

ships between causes and effects for a given causal structure. Structure learning is

arguably more fundamental than parameter estimation, since the parameters can

only be estimated once the structure is known.
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In focusing on the topics of structure learning and parameter estimation,

Tenenbaum and Griffiths have overlooked the causal assumptions that are

at the heart of the debate between the associationist and causal approaches

in the work on parameter estimation.

In fact, the causal assumptions that are critical to parameter estimation

are just as critical to structure learning. To make this argument, it is nec-

essary to begin with a description of Tenenbaum and Griffiths’ (2001;

Griffiths and Tenenbaum, in press) causal support model. (We limit our ar-

gument here to Bayesian inference, but a similar argument regarding causal

asymmetry applies to null hypothesis testing.) As we will show, a causal

variant of their model, which is consistent with the causal power theory,

correctly predicts the asymmetry just described; in contrast, the other vari-

ant, an associationist one that is consistent with the DP model, incorrectly

predicts symmetry. Ignoring the role of causal assumptions, Tenenbaum

and Griffiths allow both variants in their model.

The Causal Support Model

The causal support model addresses the question of whether a causal rela-

tion exists (Griffiths and Tenenbaum, in press; Tenenbaum and Griffiths

2001); specifically, it evaluates which of the two causal structures in figure

1.9, Graph1 and Graph0, receives more support from the data. In the figure,

C represents the candidate cause, and A represents alternative causes in the

background. The parameters wC and wA are respectively the causal strength

of C and of A to produce effect E. Graph1 receiving greater support means

that the evidence (the data) favors the existence of a causal relation be-

tween C and E. This model involves a comparison of the posterior probabil-

ities of the two structures given the data—specifically, it takes the log of the

Figure 1.9

Two candidate causal structures representing, respectively, that C is, and is not, a

cause of E.
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ratio of those probabilities—assuming that the structures have an equal

prior probability and that all values of causal strength are equally probable

prior to the consideration of the data, both for C and for A. Thus, in this

model, the assessment of whether a relation is causal involves assumptions

and computations regarding causal strength. The relevant data consist of

information on event frequencies such as that illustrated in our earlier fig-

ures on the side-effects of medicines.

Tenenbaum and Griffiths (2001) show that the DP and causal power

measures are each a maximum likelihood estimate of wC in Graph1 (see fig-

ure 1.9). These measures are consistent with two alternative functional rela-

tionships in the calculation of the likelihoods of the data given Graph1 in

the causal support model. The DP measure corresponds to a linear relation-

ship between the probability of e in a situation and the strengths of the

causes, with DP estimating wC; the probability of e in the control group

estimating wA; and the probability of e in the experimental group estimat-

ing wA þ wC. In contrast, causal power corresponds to a noisy-OR relation-

ship (as explained earlier), with wC corresponding to generative power, qC;

and wA corresponding to PðAÞ � qA, the probability of e produced by alter-

native causes. In this case, the probability of e in the experimental group

estimates wC þ wA � wC � wA. There is nothing in the Bayesian approach

adopted by the causal support model that inherently restricts it to either

functional relationship, provided that for the linear function values of

wA þ wC outside the ½0;1� interval are omitted.

The Role of Causal Assumptions

Tenenbaum and Griffiths’ (2001; Griffiths and Tenenbaum, in press) char-

acterization of the psychological debate as confined to different estimates

of parameters under a fixed graph, and their suggestion that issues concern-

ing parameter estimation are less fundamental than those concerning

structure learning, are misleading. It might be tempting to assume that

structure learning models such as Tenenbaum and Griffiths’, making use

of graphs such as those in figure 1.9 with their arrows so intuitively inter-

preted to depict causal relations, necessarily provide a causal analysis. A

more accurate characterization of the debate and of the relations among

the various proposed models (e.g., DP, causal power, and causal support),

however, is that both structure learning and parameter estimation models

are critically dependent on whether causal assumptions (such as those
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underlying simple causal power) or associationist assumptions (such as

those underlying DP) are made.

Even though the specific topic has been parameter estimation, the larger

psychological debate has centered on whether causal assumptions are

required, and the issues apply equally to structure learning. Like parameter

estimation, structure learning can be causal or associationist. This distinc-

tion between causal versus associationist assumptions is critical because

adopting the associationist linearity assumption implies that the structure

learning model inherits the incoherent concept of independent causal

influences discussed in the section on phenomenon 1.

The Asymmetry Revisited: Causal versus Associationist Predictions

As mentioned earlier, the assessment of whether a relation is causal in Ten-

enbaum and Griffiths’ model (2001; Griffiths and Tenenbaum, in press),

involves computations regarding the causal strengths of the candidate and

background causes. When their model adopts the noisy-OR function (and

corresponding causal assumptions) to combine causal strengths, it is able

to explain the asymmetry in observed confidence judgments regarding

whether a relation is causal mentioned at the beginning of this section;

when their model adopts the linear function (and hence no causal assump-

tions), it is incapable of explaining these asymmetries. Let us return to the

data sets that are symmetrical around the probability of 0.5, for which the

chi-square test yields the same value of association. When the causal sup-

port model adopts the linear function, with values of wA þ wC restricted to

the ½0;1� interval, the model gives the same support value, namely 1.85, for

both sets. In contrast, when this model adopts the noisy-OR function, it

gives support values of 1.89 and 1.38 respectively, in qualitative agreement

with observed human causal judgments (Liljeholm, Cheng, and Ford 2005).

Summary

The observed asymmetry around the probability of 0.5 of causal judgments

on whether a causal relation exists, is consistent with the asymmetries in

judgments of causal strength discussed earlier; the various asymmetries all

stem from the causal assumptions underlying the judgments. An associa-

tionist process, by definition, does not make causal distinctions—such as

the distinction between cause and effect, or the two values of a binary can-

didate cause—and thus gives rise to the various symmetric predictions;
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predictions that reflect contradictory assumptions regarding independent

causal influence. Thus, contrary to the view that assumptions about causal

strength become relevant only after causal structure has been determined,

these assumptions are in fact critical to a Bayesian evaluation of causal

structure. Without the causal assumptions that underlie both parameter es-

timation and structure learning, neither the use of graphs nor Bayesian in-

ference could constrain structure learning to be causal, or coherent.

The Appeal of Causal Representation: Coherence

The causal power theory (Cheng 1997, 2000; Novick and Cheng 2004)

shows that there is coherence underlying people’s intuitive causal judg-

ments across multiple tasks. Current associationist models fail to capture

this coherence in three related ways:

1. They do not allow for the possibility of independent causal influence.

2. They do not provide a parsimonious explanation of the four asymmet-

ries; even with post-hoc settings of their current parameters, these models

are still unable to account for the asymmetries.

3. They do not support the coherent derivation of other causal measures;

in that sense, they fail to be compositional.

In contrast, the causal power theory (Cheng 1997, 2000; Novick and Cheng

2004) provides a parameter-free explanation of all four asymmetries. This

unified explanation is a manifestation of the logical consistency and com-

positionality made possible by the causal assumptions under this approach.

A strong appeal of representing causal powers is that it allows the deriva-

tion of a variety of causal measures to answer different causal questions. We

illustrated this capability in passing in our earlier sections. For example: (1)

conjunctive causal power (Novick and Cheng 2004) is defined with respect

to simple causal powers, making use of deviation from simple-power pre-

dictions; (2) generative simple power (equation 2) is logically related to pre-

ventive simple power (equation 3); and (3) the coherent variant of causal

support (Tenenbaum and Griffiths 2001) incorporates the assumptions un-

derlying simple causal power. Similarly, this approach allows one to derive

answers to causal attribution questions; for example, what is the probability,

given that an event has occurred, that the event is due to a particular

candidate cause? Variants of attribution measures have appeared in the
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literatures in psychology, law, epidemiology, philosophy, and artificial in-

telligence (e.g., Cheng and Novick 2005; Pearl 2000; Salmon 1965; Stott,

Stone, and Allen 2004). The causal-power framework allows one not only

to see how and why causal strength and attribution measures are related;

but also to understand the conditions under which the measures hold,

for example, why the estimation of all of these measures requires no-

confounding. (For derivations of several attribution measures using causal

power, including the probability of the necessity of a candidate cause to

produce an effect, see Cheng and Novick 2005.) No-confounding, after all,

is not always a requirement for causal inference (e.g., Haavelmo 1943). In

this section, we give an intuitive illustration of these aspects of coherence

with three measures—causal power; a causal attribution measure; and an

interpretation of DP not as causal strength, as we have argued against, but

as the probability with which an effect is produced by a candidate cause i

alone when i is present.

We mentioned earlier the role of no-confounding in the derivation of

equation 2, the estimate of generative causal power (Cheng 1997). For an

intuitive translation of this role, consider the data illustrated in figure

1.10, from which one might wish to estimate the causal power of medicine

B. Recall that causal power is the probability that a candidate cause i pro-

duces an effect e when i is present. If one could wear lenses that allow one

to see the causes of an outcome, one would ‘‘see,’’ out of the patients in

the experimental group (when medicine B is present), how many had

headache caused by the medicine and arrive at the probability in question.

Given the unavailability of causation lenses, some convoluted detective

work is required: one first estimates the proportion of patients in the exper-

imental group (the bottom panel) who would not have had a headache if

they had not taken the medicine; then one observes the proportion out of

this subgroup of patients who indeed have a headache, yielding the desired

estimate. These patients’ headaches must have come about as a result of

medicine B and no other causes. One can estimate the first proportion by

making use of the proportion of patients in the control group (the top

panel) who do not have a headache (this is the denominator in equation

2; in the figure, this proportion is 2/3). But it should be clear from the na-

ture of this estimate—in particular, from the use of the control group to

make an inference regarding a quantity in the experimental group—that

the estimate would be valid only if causes of headache other than the
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medicine occur equally frequently in the two groups. This explains the no-

confounding requirement for causal inference involving probabilistic con-

trast. In the figure, the second proportion—the proportion in the bottom

panel who have a headache, out of those who would not have had a head-

ache without the medicine—is 3/4. This is the generative causal power of

medicine B.

Now, consider the probability that an effect e can be attributed to a can-

didate cause i, given that e has occurred, but not knowing whether i has

occurred. (For psychological evidence for the use of this measure, see John-

son, Boyd, and Magnani 1994; and White 2004. For a more detailed expla-

nation of the derivation of this measure, see Cheng and Novick 2005.) Let

us denote this measure by Pði ! e j eÞ, where ‘‘i ! e’’ denotes that e is

Figure 1.10

Stimulus material for Condition B from Buehner, Cheng, and Clifford (2003, Experi-

ment 2).
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produced by i. It is easy to see how causal power can serve as a building

block for constructing this measure. Because e is caused by i with probabil-

ity PðiÞ � qi, the measure is simply

Pði ! e j eÞ ¼ PðiÞ � qi
PðeÞ ; ð4Þ

with qi as given by equation 2. Thus, the no-confounding condition

required for estimating qi is also required for Pði ! e j eÞ.
Although DP is incoherent as a measure of causal strength, it can be

interpreted instead as Pði-alone ! e j iÞ, the probability with which an effect

e is due to a particular cause i alone, knowing that i is present (but other

causes of e may be present as well). This interpretation is different from

causal strength in that it restricts attribution of e to i alone. The value of

the estimate is therefore dependent on how often alternative causes of e

occur in the context in question. Pearl (2000) refers to this as the probabil-

ity that a cause is both necessary and sufficient to produce an effect. Our

more explicit expression of the multiple relevant causal relations clarifies

the apparent contradiction that arises from speaking of necessity and suffi-

ciency in probabilistic terms.

As an estimate of Pði-alone ! e j iÞ, the DP expression can be derived

using causal power. Let us return to figure 1.1. In the left box (when i is

present), e is produced by i (as represented by the dashed circle) with prob-

ability qi. On some of these occasions, e is also produced by alternative

causes (as represented by the overlap of the two circles). The crescent part

of the dashed circle (the complete dashed circle minus the overlap area)

therefore represents the set of events in which e is produced by i alone. Re-

call that when there is no confounding, the undashed circle in this box,

representing Pða j iÞ � qa, is estimated by Pðe j iÞ. Thus, the desired probability

is:

Pði-alone ! e j iÞ ¼ qi � qi � Pðe j iÞ ¼ qi � ½1 � Pðe j iÞ� ¼ DP: ð5Þ

The simplification in the last step makes use of equation 2. Thus, the no-

confounding condition that is required for estimating qi is also required

for Pði-alone ! e j iÞ. It should be clear that, under this interpretation, the

DP value of a given candidate cause should vary depending on how large

the undashed circle (and hence the overlap) is; in other words, it is not an

invariant property of the candidate, as strength ideally should be. Other
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measures of attribution can be similarly derived using the causal powers of

candidate and alternative causes as elemental building blocks (Cheng and

Novick 2005).

Summary and Conclusion

The four compellingly intuitive psychological asymmetries, which may ap-

pear unrelated at first glance, are in fact coherent under an approach that

explains observable events by unobservable causal powers. Moreover, the

theoretical construct of causal power—the ideally invariant probability

with which a cause produces or prevents an effect—provides the building

blocks that support the derivation of a variety of causal measures in answer

to different causal questions, including:

1. measures for estimating the strength of simple causes and of conjunc-

tive causes,

2. measures for evaluating the existence of causal relations, and

3. measures for estimating various causal attributions.

The coherence underlying the asymmetries, as well as the compositional-

ity of causal power, reveals the incoherence of both psychological and nor-

mative associationist accounts. A central problem with the associationist

approach is that, unlike the causal power approach, it does not allow the

possibility of independent causal influence. The comparable problems that

beset common statistical procedures have practical implications. Statistical

inference is a cornerstone of science—and science distinguishes itself from

quackery by its rationality. If some widely used associationist statistical

measures suffer from a similar problem as their psychological counterparts

—namely, the lack of causal representation—it would seem that science

could benefit from a radical reassessment of associationist statistics when

applied to test causal hypotheses.
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Notes

1. No-confounding is not a necessary condition when there is information on more

than two variables. (See the literature on instrumental variables, e.g., Glymour 2001;

Haavelmo 1943; Pearl 2000; Spirtes, Glymour, and Scheines 1993/2000).

2. Note that the causal relations in pattern 1 do not satisfy the assumptions in Nov-

ick and Cheng’s (2004) theory of conjunctive causes: specifically, the influences of

the two component causes, minerals i and j, are not independent of the background

causes, but instead are mutually exclusive (if mineral i changes the color of a certain

lizard, mineral j does not, and vice versa). The pattern was so constructed as to allow

both it and its absence analogue, pattern 3, to indisputably convey the independent

influences of the two minerals. To explain the intuitive judgments, an extension of

Novick and Cheng’s theory that allows for an interaction between each candidate

cause and the background causes would be needed.

3. Although we have focused our discussion on presence as the causal value, the ab-

sent value being causal would simply be the other side of the same coin. As long as

only one value of a binary candidate factor is causal, the designation of the causal

value would make a difference to whether a given situation involves conjunctive

causation.
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