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Causal Models and the Acquisition of Category Structure
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This article proposes that learning of categories based on cause-effect relations is guided by
causal models. In addition to incorporating domain-specific knowledge, causal models can be
based on knowledge of such general structural properties as the direction of the causal arrow
and the variability of causal variables. Five experiments tested the influence of common-
cause models and common-effect models on the ease of learning linearly separable and
nonlinearly separable categories. The results show that causal models guide the interpreta-
tion of otherwise identical learning inputs, and that learning difficulty is determined by
the fit between the structural implications of the causal models and the structure of the
learning domain. These influences of the general properties of causal models were ob-
tained across several different content domains, including domains for which subjects
lacked prior knowledge.

Tasks as apparently diverse as classical conditioning,
category learning, and causal induction often require the
learner to combine multiple cues in order to elicit a re-
sponse. The cues may be conditioned stimuli (in condition-
ing), features of category instances (in category learning), or
possible causes (in causal induction). Numerous learning
models have been proposed in each of these areas, and a
great deal of theoretical interest has focused on the extent to
which common learning mechanisms may operate across
these formally similar tasks. Most of these theories model
learning as a domain-general process, bottom-up and basi-
cally associative in nature, that applies across diverse do-
mains. Recently, more top-down or theory-based ap-
proaches have been proposed, which view learning as
guided by domain-specific theories. In the present article we
outline a position that is intermediate between these two
views. We claim that a major subset of learning situations—
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those that the learner interprets as involving cause-effect
relationships—are guided in part by domain-general knowl-
edge, based on people's tacit understanding of causal rela-
tions. Learning proceeds by integrating top-down knowl-
edge at different levels of generality with the bottom-up
information provided by the environmental input to the
causal induction process. Our view concurs with associa-
tionist theories in postulating sensitivity to domain-general
properties of learning tasks. However, we also show that
learning is guided by top-down knowledge about causal
relations in ways that are not captured by current theories of
associative learning. In this respect we agree with the focus
of the domain-specificity view on the importance of top-
down influences from prior knowledge.

Our testing ground is the ease of learning different types
of category structures. We argue that the causal-model
theory we propose can account for otherwise puzzling vari-
ations in the ease with which people learn categories on the
basis of feature correlations that give rise to configural
properties. We briefly review general associationistic mod-
els, as well as theories focusing on domain-specific knowl-
edge, that have been proposed to account for learning of
different category structures. We then describe our causal-
model theory and report the results of five experiments that
test its predictions.

Configural Learning

In multiple-cue contingency learning, the categories to be
acquired are linearly separable (LS) if the optimal response
can be generated as a linear function of the weighted cues
(Minsky & Papert, 1969). For nonlinearly separable (NLS)
categories, in contrast, the optimal response depends on
relationships between cues, rather than on individual cues.
The classic example of a nonlinearly separable task is the
"exclusive-or" (XOR) problem (see Rumelhart, Hinton, &
Williams, 1986). Here the system has to learn to generate
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one response when one of two input cues is present (0,1 or
1,0) and another response when both are present or absent
(1,1 or 0,0). There is no set of weights for two such cues that
could make the system generate a positive response with
each single cue but suppress such a response when both
cues are jointly present. To learn an XOR problem, a system
would have to be sensitive to the configural property of two
cues being positively or negatively correlated within each of
the two categories. An important limitation of simple two-
layer connectionist networks is that they are unable to learn
NLS category structures (Minsky & Papert, 1969).

The relative difficulty of LS versus NLS categories ap-
pears to depend on a variety of factors related to the task and
learning material used. Research on animal conditioning has
revealed the greater difficulty of NLS tasks than of corre-
sponding LS tasks (e.g., Bellingham, Gillette-Bellingham,
& Kehoe, 1985; Rescorla, 1972, 1973). Similarly, research
on multiple-cue probability learning in which participants
had to learn to combine several presented cues to generate
a response has generally shown that participants have a
harder time with configural predictors than with linear cue-
outcome relations (see Brehmer, 1969; Edgell & Castellan,
1973; Mellers, 1980). By contrast, research on categoriza-
tion presents a mixed picture. Whereas in some studies
HNLS categories proved to be harder to learn than LS
categories (Estes, 1986), other studies did not yield clear
differences (Medin & Schwanenflugel, 1981). A classic
study by Shepard, Hovland, and Jenkins (1961) found that
an NLS category structure with two relevant features (Type
II problem) was easier to learn than an LS structure with
three relevant features (Type IV problem). Type II problems
represent an XOR structure with an additional irrelevant
feature. Type IV categories can be separated using a simple
linear two-out-of-three rule: The presence of at least two of
the three features indicates one of the two categories; oth-
erwise the exemplar belongs to the other category. Shepard
et al.'s results are particularly relevant in the present context
because Experiments 1, 3,4, and 5 use categories with Type
II and Type IV structures. Difficulty of learning categories
generally increases with the number of relevant features
(Estes, 1986; Shepard et al., 1961). Linear separability is not
the sole factor that influences ease of learning and may not
be the major factor.

Associative Models

The inconsistencies in the empirical evidence concerning
the relative difficulty of LS and NLS categories in human
categorization have contributed to a proliferation of alter-
native learning models. Independent-cue models clearly
cannot account for those results that show greater ease of
learning NLS Type II problems than LS Type IV problems.
Exemplar theories, which view classifications as being de-
termined by similarity to stored exemplars, can account for
Shepard et al.'s (1961) ordering of categorization difficulty
when the models are augmented by parameters reflecting
the degree of selective attention to the different category
dimensions (Medin, 1975; Medin & Schaffer, 1978; Nosof-
sky, 1984, 1986).

Recently, a number of associationistic theories that model
the actual process of acquiring categories have been pro-
posed. Gluck and Bower (1988b) suggested that a two-layer
connectionist network can provide a model of human cate-
gorization, with input units representing potential cues
(such as symptoms of a disease observed in a patient) and
output units representing classification responses (such as
diagnoses of alternative diseases). The weights on associa-
tive links are learned incrementally using the least-mean-
square learning rule (Widrow & Hoff, 1960). A similar
model has also been proposed by Shanks and Dickinson
(1987) for the learning of causal relations. They view causal
learning as an associative learning process in which the cues
represent potential causes and the responses are predictions
of potential effects (see also Wasserman, 1990). The incre-
mentally learned associative weights correspond to the per-
ceived strength of the relationships between causes and
effects.

Because a simple two-layer network is unable to learn
NLS categories, Gluck and Bower (1988a) extended their
adaptive network model. In their configural-cue model, they
kept the simple least-mean-square learning rule but added
explicit configural cues to the input layer, an assumption
similar to the earlier proposal of Rescorla (1972, 1973).
Gluck and Bower (1988a) showed that this model predicts
that Type II problems are easier than Type IV problems, at
least at the learning asymptote. One problem for configural-
cue models is the potentially explosive growth of input
nodes as the number of simple cues increases. Gluck,
Bower, and Hee (1989) therefore suggested restricting the
size to pairwise conjunctions of features. This restriction is
empirically inadequate, however, because people can learn
to classify items based on at least triples of features (Wald-
mann & Holyoak, 1990). Connectionist networks with hid-
den layers overcome the problem of exponential increase in
network size, but at the cost of having to adopt more
complex learning rules (e.g., back-propagation). Kruschke
(1992) simulated learning with different types of back-
propagation networks and found that NLS problems prove
to be more difficult than LS categories. However, he could
achieve a relatively good fit to Shepard et al.'s (1961)
results by using an exemplar-based, connectionist learning
model with additional weights that represent selective at-
tention to the input dimensions. These weights are subject to
learning, as are the other weights, and therefore are depen-
dent on the structure of the stimulus-response mappings.

Although there are many important differences among the
above models of learning (e.g., some stress abstraction of
feature-category correlations, whereas others stress mem-
ory for specific instances), they are all domain-general,
bottom-up, and associative in nature. Selective attention,
which is assumed to be governed by the stimulus-response
mappings in a bottom-up fashion, or by varying salience of
cues, has typically been held responsible for the diverging
empirical findings concerning configural learning. Unlike
bottom-up models that focus on causal induction per se
(e.g., Cheng & Novick, 1992; Kelley, 1967), none of the
associative learning models is sensitive to the structurally
distinct roles of causes and effects. The associative models
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treat causal induction as simply a special case of contin-
gency learning in general and therefore do not predict any
influence of causal interpretations on the learning process.

Theory-Based Models

Associative models, which treat learning as a bottom-up
process moderated by selective attention mechanisms, can
be contrasted with a more mentalistic approach to learning,
which claims that world knowledge guides the induction
process. This view, which has a long history, has recently
been resurrected in an influential article by Murphy and
Medin (1985). Murphy and Medin contrasted similarity-
based categorization theories, which view concepts as mere
collections of features, with the theory-based view that
concepts embody knowledge in which individual features
are interconnected within a rich relational structure, partly
based on unobservable causal factors. Research by Malt and
Smith (1984) revealed that natural categories are distin-
guished not only by correlations between individual features
and category membership (e.g., the property "can fly" is
more likely to be true of birds than of mammals) but also by
salient within-category correlations between features (e.g.,
among birds, those that live near the ocean are most likely
to eat fish; see also Medin & Shoben, 1988). Murphy and
Medin argued that such within-category co-occurrence re-
lations between features may be based on specific, explicit
causal knowledge (e.g., that being close to water is a pre-
condition for catching fish; see also Murphy & Wisniewski,
1989).

Wattenmaker, Dewey, Murphy, and Medin (1986) inves-
tigated acquisition of different real-world categories to test
how prior knowledge affects the difficulty of LS and NLS
categories. In one set of experiments, they found that pro-
viding participants with a theme that encouraged the addi-
tive integration of features greatly facilitated learning of LS
categories. For example, giving participants the hint that a
category is related to the question of whether an object is
suitable for use as a hammer encouraged the summing up of
relevant features such as "easy to grasp" and "made of
metal," which without the hint seem rather unrelated. As a
consequence, a group that received the hint learned the task
much more readily than did a control group without the hint.

In addition to supporting additive integration of features,
prior knowledge may also support the use of interproperty
relationships to predict category membership. In another
experiment, Wattenmaker et al. (1986) compared the NLS
Type II structure with the LS Type IV task. Participants had
to learn to decide whether various persons were house-
painters or construction workers. Without any further hint,
the LS task proved easier than the NLS task. In the LS
arrangement the participants simply had to add up features
that were characteristic either of painters or of construction
workers. However, the relative difficulty was reversed when
participants received a hint that painters may be interior or
exterior housepainters. This hint made participants sensitive
to the correlation of the features "works inside" and "works
year round" (interior housepainters) and "works outside"

and "doesn't work in winter" (exterior housepainters). With
this hint, the NLS Type II arrangement, which embodied
this correlation, seemed more natural. (Also see Watten-
maker, in press.)

Other studies have also shown that the ease or difficulty
of learning categories with various structural properties can
be influenced by contexts that evoke prior explicit causal
knowledge (Medin, Altom, Edelson, & Freko, 1982; Medin,
Wattenmaker, & Hampson, 1987; Nakamura, 1985; Paz-
zani, 1991). In general, those studies yielded two major
results: (a) People use prior knowledge about relations
between specific entities in learning situations in which
these specific entities are involved. For example, people
who know that stretching balloons makes it easier to inflate
them use this knowledge when categorizing balloons with
respect to their inflatability (Pazzani, 1991). (b) People are
generally insensitive to feature correlations unless prior
knowledge about direct causal connections between these
features is available (Medin et al., 1987).

Such studies have demonstrated that people are able to
map their prior specific world knowledge to a learning task
in a way that makes feature configurations more salient. An
associationist might argue, however, that in such cases
learners do not start with random or zero weights, but rather
use previously learned associative links that are transferred
to provide initial settings of the associative weights. Even
though the details of this transfer process are far from clear,
this approach does not seem incompatible with an associa-
tionistic learning paradigm (see Choi, McDaniel, & Buse-
meyer, 1993). In the present study we show that there are
other types of knowledge-based influences that would be
much more difficult to accommodate within associationist
models.

Causal-Model Theory of Learning

Causal-model theory assumes that people will preferen-
tially learn cause-to-effect relations, rather than effect-to-
cause, cause-to-cause, or effect-to-effect relations. Focusing
on cause-to-effect relations will reduce the cognitive com-
plexity that would be involved in learning a complete matrix
of covariation among all factors while still enabling predic-
tive and diagnostic inferences (cf. Pearl, 1988). Causal-
model theory shares with other theory-based approaches to
categorization the assumption that people bring to bear prior
knowledge on the learning task. But unlike previous ac-
counts of this process, causal-model theory postulates that
people derive top-down expectations not only from knowl-
edge about specific causal relations (e.g., prior knowledge
that stretched balloons are easier to inflate) but also from
more general structural characteristics of causal relations. In
the present article our focus is on two general properties that
can guide the construction and use of causal models in
learning a category: the direction of the causal arrow and the
variability of the causal variables.

The most fundamental of these properties is the direction
of the causal arrow. People assume that causes precede their
effects and often observe this causal order, as when the start
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of a fire is seen to precede the smoke it produces. Conse-
quently, the causal arrow points from cause to effect and not
the other way around. Observation of a known cause can
trigger a predictive inference to the expected effect. How-
ever, people are often confronted with effect information
that requires a diagnostic inference to an initially unob-
served cause, as when observing smoke triggers the infer-
ence that there must be a fire. A fundamental assumption of
causal-model theory is that, regardless of the temporal order
in which we receive causal information, the underlying
mental representation of the situation honors the cause-to-
effect direction. The preference of people to learn in the
cause-to-effect direction has been demonstrated in a number
of studies (e.g., Eddy, 1982; Tversky & Kahneman, 1980;
Waldmann & Holyoak, 1992; see also Einhorn & Hogarth,
1986).

The fact that order of observation can be decoupled from
temporal precedence within the causal model provides the
basis for our experimental dissociations between associa-
tionistic accounts and causal-model theory. In associative
theories, learning typically implies updating of weights
from inputs to outcomes. All associative theories, regardless
of whether they see associative learning as a low-level
process (e.g., Gluck & Bower, 1988b) or as modification of
higher order beliefs (Shanks & Dickinson, 1987), share the
assumption that the input corresponds to information ob-
tained prior to outcomes. In a causal model, however, mul-
tiple input cues may be interpreted either as possible causes
of initially unobserved effects (a common-effect model) or
else as possible effects of initially unobserved causes (a
common-cause model).

In a common-cause situation multiple effects are pro-
duced by a common cause (see Figure 1A). For example,
symptoms of a disease might result from a common cause,
such as a virus. In common-effect structures (see Figure IB)
the causal directions are reversed. Here multiple causes

jointly converge on a common effect. For example, a num-
ber of individually causally insufficient facial cues might
jointly be sufficient to produce an emotional response in an
observer. Causal-model theory claims that causal connec-
tions will always tend to be acquired in the cause-to-effect
direction, regardless of whether the nominal inputs (the cues
for the required response) are interpreted as causes or as
effects.

Levels of Causal Knowledge

Presenting identical learning tasks in the context of dif-
ferent causal models provides the basis for testing the pre-
dictions of causal-model theory against associationistic ac-
counts of learning. An additional goal of ours in the present
studies is to provide evidence for the use of domain-general
causal knowledge. Causal situations can be represented on
different levels of abstraction. On the most specific level,
causal relations can be viewed as associations between
specific event types. We know, for example, that high blood
pressure is correlated with heart disease. On this level, the
activated knowledge is tied to specific events (e.g., increase
in blood pressure and onset of heart disease) within a
specific domain (cardiovascular diseases). On a more ab-
stract level, the same knowledge can be represented as
involving a case of a cause and an effect. Here knowledge
about causal directionality comes into play. Unlike domain-
related knowledge about relations between two specific
event types, knowledge about causal directionality is do-
main-general. On this more abstract level, high blood pres-
sure is simply a particular token of the general class of cause
events, and heart disease is a concrete manifestation of
effect events. This abstract type of knowledge does not
involve specific events; rather, knowledge about structural
properties of causal structures is activated. For example,

B
Common Cause Common Effect

Ci C3

Figure 1. Common-cause structure (A) versus common-effect structure (B). Only the common-
cause structure formally implies a spurious correlation (dotted curves) among effects.
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regardless of how the two models in Figure 1 are instanti-
ated, common-cause models imply spurious correlations
among the effects, whereas common-effect models do not
imply such correlations (as discussed in detail in the next
section).

Previous research that has demonstrated the impact of
prior knowledge on learning is ambiguous with respect to
the level of causal knowledge that was actually used by
participants. Typically, these studies investigated the effect
of extra-experimental knowledge about specific correlated
event types (e.g., changes in blood pressure and heart dis-
ease) on learning or categorizing (e.g., Medin et al., 1987;
Pazzani, 1991). Although it may well be the case that the
participants in these experiments activated abstract causal
knowledge about causes and effects along with more spe-
cific knowledge about the particular events, the results of
these studies are compatible with the more parsimonious
hypothesis that learning was guided solely by specific
knowledge. In the framework of associationist theories, the
greater ease of learning about familiar events could simply
be due to the fact that prior associative weights between
specific events were transferred to a learning situation that
involved those very same events. It does not appear neces-
sary to invoke representations of abstract causal events or
causal directionality in order to explain such empirical
findings.

Given that domain-general causal properties are necessar-
ily implemented within specific situations, how can do-
main-general knowledge experimentally be decoupled from
more specific knowledge about causal relations? Our strat-
egy in the following experiments was to present participants
with situations for which they did not possess prior (extra-
experimental) knowledge about causal relations. We then
provided them with alternative instructions suggesting dif-
ferent patterns of causal directionality (common-cause ver-
sus common-effect models). For example, in Experiment 4
one group of participants read instructions indicating that
magnets may affect the orientations of some surrounding
iron compounds, whereas the instructions for a second
group suggested that some of the iron compounds may
causally affect the magnets. Previous work within the the-
ory-based approach would predict sensitivity to correlations
between magnets and compounds with both instructions. As
in previous studies, this sensitivity may be due to knowl-
edge about specific events that was acquired by means of
the instructions, or it may be due to more general causal
knowledge. Thus, sensitivity to the correlations among
these particular events (e.g., magnets and compounds) is
still ambiguous; it may be domain-specific. However, our
goal was to show that participants are sensitive to additional
aspects of the situations, which can be derived from causal
models using knowledge about causal directionality and
variability. Because in our experiments the causal models
typically involved identical events (e.g., magnets and com-
pounds), sensitivity to these additional aspects cannot be
due simply to associative relations between these events;
rather, such sensitivity would arise as a side effect of the
representation of the direction of the causal arrow connect-
ing these events and of the structure of the causal model.

Our goal is thus to demonstrate that people go beyond
using direct causal knowledge about specific event types.
We attempt to show that people also represent the direction
of the causal arrow connecting these events, which is the
basis for distinct patterns of interconnectivity among the
events embedded in causal structures. In particular, we will
show that participants are differentially sensitized to spuri-
ous correlations that have not been explicitly mentioned in
the instructions but are nonetheless implied by some of the
causal models. Because the participants had no prior extra-
experimental experience with the causal situations de-
scribed in the instructions, sensitivity to these additional,
implicit aspects of the causal models cannot be attributed to
participants' having had the opportunity to directly experi-
ence these properties. Rather, participants would have to
derive such expectations from the more domain-general,
structural characteristics of causal models. Our aim is to go
beyond previous research (e.g., Medin et al., 1987) by
demonstrating that causal models sensitize participants to
feature correlations that are not supported by direct causal
relations.

Our studies also differ from previous work in that we
presented participants only with assumptions about poten-
tial causal relations. Participants had to use the learning
input to test which of the suggested causal relations actually
occurred; they could not simply transfer previous knowl-
edge directly to the learning situation. The relation between
knowledge and learning input is thus interactive (see also
Wisniewski & Medin, 1994): Knowledge of potential
causes guides the interpretation of the learning input, which
in turn specifies or modifies the initial knowledge during the
ongoing process of constructing a more accurate causal
model.

Structural Implications of Common-Cause Versus
Common-Effect Models

Reichenbach (1956) was one of the first philosophers to
discuss the distinctions between different causal structures
(see also Salmon, 1984). He postulated a principle of the
common cause, which states that apparent coincidences too
improbable to be attributed to chance can be explained by
reference to a common antecedent cause. A famous example
involves a group of actors who suddenly become ill after
dining together. Even though there is a small chance that the
actors contracted diseases independently of each other, it is
more plausible to postulate food poisoning as a common
cause. As Reichenbach pointed out, coincidences may be
explained by a common cause, but not by a common effect.

In the present article we focus on situations in which
causes and effects are psychologically continuous, that is,
varying in intensity along some dimension. For example, it
is easy to imagine a viral infection that can vary in intensity
and trigger symptoms that also vary in intensity. People may
represent such situations, in which a causal relation mani-
fests itself in a correlation among quantitative variables, in
terms of a common-cause model based on continuous vari-
ables. We assume people will bring to bear domain-general
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knowledge that the strength of a cause typically covaries
with the strength of its effects. With the formal apparatus of
statistical causal-model theory, a common-cause model can
be expressed in terms of structural equations (Bolles, 1989;
Cartwright, 1989; Irzig & Meyer, 1987). For example, it
may be the case that a virus C, which varies in intensity,
independently affects the strengths of the symptoms El, E2,
and E3 (as in Figure 1A). Thus, assuming standardized
causal variables, when the virus is strong the three symp-
toms tend to be strong, and when it is weak the symptoms
tend to be weak. The strengths of the three symptoms will
clearly be correlated in spite of the fact that there are no
direct causal connections between individual symptoms.
The correlation is due solely to the influence of the common
cause C. The following three equations formalize such a
common-cause situation with three effect variables, £1; E2,
and £3, and the common cause variable C:

E2 = w2 • C + U,

£3 = W3 • C + U,

(1)

(2)

(3)

where w1; w2, and vv3 are causal weights expressing the
strength of each causal relation, and U denotes an uncorre-
lated random error component. When the weights are non-
zero, these three equations imply a spurious correlation
between £j, E2, and E3 as an implicit side effect of a causal
structure that is fundamentally linear. Thus if response
categories are defined by presence of the cause (in any
degree) versus absence of the cause, and the cause takes on
multiple values within the positive (i.e., cause-present) cat-
egory, then a correlation among the effects within the pos-
itive category is predicted. An example of such a situation
would be a learning task in which participants have to
diagnose persons with a disease (Category A) against per-
sons who did not contract the disease (Category B). The
disease (Category A) is caused by a strong or weak virus.
Accordingly, participants should expect to see patients with
strong symptoms (£1; E2, and E3 are strong) and they should
expect to see patients with weak symptoms (E^ E2, and E3

are weak) within the group with the disease (Category A).
The expected strengths of the symptoms will therefore be
correlated within Category A, which is defined by the
presence of the disease. Of course, participants will have to
use the learning input to infer which of the potential causal
relations suggested in Equations 1-3 actually occur. We
refer to the above representation as a common-cause model
with a varying cause.

It is important to note that the common-cause model
predicts a within-category correlation only in the case with
a varying cause. A common-cause situation with a constant
cause, in which the common cause takes on only one value
within each response category, can also be represented in
terms of Equations 1-3. The cause may be constant if it is
discrete rather than continuous (the case discussed by
Reichenbach, 1956), so that a causal factor is either present
(Category A) or absent (Category B). Similarly, even if a
causal factor takes on multiple levels that approximate

continuous variation, only one level may be associated with
each response category. For binary response categories the
cause would be either at Level 1 (Category A) or Level 2
(Category B). An example of a common-cause model with
a constant cause would involve a task in which participants
have to classify patients into one of two disease categories,
where Category A is produced by a strong form of a virus
and Category B by its weak form. When the virus (C) is
strong, Equations 1-3 yield a pattern in which the symptoms
are strong, whereas when the virus is weak, the symptoms
would be expected to be weak. It follows that in both types
of common-cause models the case with the strong forms of
the symptoms should be expected to occur within Category
A. The case with the weak symptoms should be expected in
Category A only when participants use a model with a
varying cause; the same case should be expected in Cate-
gory B when participants use a model with a constant cause.

In general, when the cause within each category is con-
stant, no within-category correlation among the effects is
implied by the model; however, each such effect will be
correlated with a particular level of the causal factor (a
cue-to-category correlation). Thus, common-cause models
with constant causes should favor acquisition of category
structures that embody such cue-to-category correlations.

The structural implications of a common-effect model, in
which the causal direction is reversed as in Figure IB, differ
from those of the common-cause model with a varying
cause. We will consider the symmetrical situation in which
both cause and effect variables are continuous, but now the
cues play the role of independent continuous causes con-
verging in a linear fashion on an effect variable. If we have
three cues, C1; C2, and C3, producing the effect E, the
situation can be described in Equation 4:

E = + w2 ' C2 + w3 • C3 + U. (4)

Whereas common-cause models with varying or constant
causes imply different category structures, common-effect
models with varying or constant effects both imply cue-to-
category correlations, but not within-category correlations.1

An example of a common-effect model with a varying
effect would be a task in which one of the effect categories
included both strong and weak intensities of magnetism and
the cues represented continuously varying causes of mag-
netic strength. Similarly, a common-effect model with a
constant effect would be constructed if one effect category
was defined as high-intensity magnetism and the other as
low-intensity magnetism. (Effects that must exceed a
threshold to be observable will often approximate the case
of a constant effect.) The crucial structural property of
common-effect models is that they do not imply a within-
category correlation between the causes, for the basic reason

1 In some common-effect situations participants may have a
tendency to average the influence of multiple causes (see Down-
ing, Sternberg, & Ross, 1985). One can transform Equation 4 into
an averaging model by dividing each weight by the sum of the
weights. Note that common-effect models do not imply within-
category correlations between the causes, regardless of whether
participants are biased to add or to average the causal influences.
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that effects do not influence their causes. Because in the
simple network underlying Equation 4 the effect E does not
itself cause anything, whether E is interpreted as constant or
varying is irrelevant to any predictions regarding intercor-
relations of the cues. Regardless of whether the three causes
embodied in Equation 4 converge toward an effect varying
in intensity within each response category or converge to
produce multiple values of the effects across response cat-
egories, no interactions between the causes are implied by
the model.

In a common-effect model, correlational relations among
the causes would have to be formalized by explicitly pos-
tulating additional components that express types of inter-
actions among the causes (e.g., w4-Cl'C2, as an example of
a two-way interaction between the causes C1 and C2).
Interactions among causes do, of course, occur in the real
world. However, in such cases the underlying causal model
would have to be elaborated with configural features to
explicitly code the interactive relations between the causes
and the effect. The need for explicit configural features
would be expected to increase the difficulty of learning.2

Thus in common-effect models, sensitivity to correlated
causes will require explicit representations of interactive
features; whereas in a common-cause model with a varying
cause, such sensitivity can emerge implicitly from a causal
network based solely on links from individual causes to
individual effects.

How Causal Models Guide the Acquisition of
Category Structures

One of our major goals in this article is to provide
evidence that people are sensitive to the underlying causal
structure of the learning domains. In particular, we are
interested in whether participants make use of the implicit
implications of causal models. We demonstrate this by
showing that participants are differentially biased to learn
different category structures when different causal interpre-
tations are imposed on otherwise identical learning material.
We vary category structure mainly by manipulating the
property of linear separability in a particular way. Our
choice of this manipulation does not imply, however, that
the syntactic distinction between LS and NLS category
structures provides a psychologically basic dichotomy be-
tween categorization tasks. Whether an LS or an NLS task
is hard or easy to learn will, according to causal-model
theory, depend on whether the particular category structure
embodies a causal model that matches the assumptions
made by learners. In principle, it is possible for a common-
cause model with a varying cause to fit a category structure
in which both within-category and cue-to-category correla-
tions are present (a type of LS structure). However, present-
ing the within-category correlation in the context of NLS
categories (as in Type II problems) has the methodological
advantage that the within-category correlation is not redun-
dant, but rather provides crucial information for learning the
categories. Accordingly, in the present experiments we fo-
cus on differential learning of LS and NLS structures.

Two general assumptions of causal-model theory, which
apply to situations in which participants have no relevant
prior specific causal knowledge, are the basis for predicting
the relative ease of learning different category structures: (a)
Causal models structurally imply different causal situations.
Thus, categories should be relatively easy to learn when
they contain exemplars that match the expectations implied
by the causal models, (b) The relation between causal mod-
els and the learning input is interactive. The learning input
may lead participants to specify or modify their causal
models. Categories requiring less change of the causal
model that participants initially use to interpret the data
should be easier to learn. Wisniewski and Medin (1994)
recently demonstrated such tight couplings of theory and
data in a different context. The above two assumptions
imply that the fit between causal models and categories may
vary in a continuous fashion. An assessment of the relative
ease of learning two category structures therefore needs to
be based on a comparison of their relative fit to the expected
initial causal model. Even if both structures deviate from the
predictions implied by the activated causal model, one may
have a closer fit than the other.

The two category structures used in the present experi-
ments may serve as an example of how the fit between
category structures and causal models may be determined.
One structure exhibited an LS cue-to-category correlation,
the other an NLS within-category correlation. These two
structures were special cases of Shepard et al.'s (1961)
Types IV and II, respectively. Table 1 shows the assign-
ments of eight exemplars, with Cases 1 to 4 corresponding
to correct "yes" responses. Each case either has a high (H)
or low (L) value on each of three dimensions. In Experiment
1, for example, these cases represent different persons, and
the dimensions represent body signs of these persons that
could vary in intensity (H or L). In the LS arrangement, high
values of the three dimensions are more typical for the
positive set, and low values are more typical for the negative
set. For both sets, each dimension has one exceptional
value, so that the dimensional values are only probabilisti-
cally related to the sets. However, a simple linear rule
distinguishes the two sets: If a case has at least two out of
three high values on the three dimensions, then the case
belongs to the positive set. This linear rule leads to a
clear-to-category correlation between the individual dimen-
sions and the categories. High values of the dimensions tend
to occur for positive instances ("yes" responses), whereas
low values tend to occur for negative instances ("no" re-
sponses).

In the NLS condition, neither high nor low values are
more or less typical for the positive or negative set. For each
dimension, there are two cases with high values and two
cases with low values in each set. There is no linear rule to

2 Of course, these biases against interacting causes may be
overridden by specific world knowledge when material from fa-
miliar domains is used. However, as pointed out by Dawes (1988),
disordinal interactions are rare in our ecology, which may be why
people do not expect them unless they have been prepared by
specific knowledge.
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Table 1
Structure of Item Sets in Experiments 1, 3, 4, and 5

Positive
exemplars

Case
Case
Case
Case

Case
Case
Case
Case

1
2
3
4

1
2
3
4

Dimensions

1

H
H
H
L

H
H
L
L

2 3

Linearly
H H
H L
L H
H H

Negative
exemplars

separable
Case 5
Case 6
Case 7
Case 8

Nonlinearly separable
H H Case 5
L H Case 6
H L Case 7
L L Case 8

Dimensions

1

L
L
H
L

H
H
L
L

2

L
H
L
L

H
L
H
L

3

H
L
L
L

L
L
H
H

Note. Positive exemplars are correct "yes" responses; negative
exemplars are correct "no" responses. H = high-intensity value on
a dimension; L = low-intensity value on a dimension.

separate the two sets. In this category structure, the intensity
of the dimensions is not correlated across the category
boundaries: High and low values occur equally often on
both sides. The only way to distinguish the two sets is to
notice the positive correlation between the first and the third
dimension within the positive set, which differs from the
negative correlation in the negative set. The middle dimen-
sion is irrelevant for the classification. Thus, there is a
perfect within-category correlation between the two rele-
vant dimensions.

Let us now consider how each type of causal model
would apply to the two category structures. It is possible to
use Equations 1-4 to derive ordinal predictions about both
the overall difficulty of the category structures and the
relative difficulty of individual items. The item predictions
are summarized in Table 2. The basic assumption is that
item difficulty will be inversely related to the degree to
which the relevant causal model predicts the correct re-
sponse to an item. Each model generates clear predictions
about the expected classification of the two extreme in-
stances, HHH and LLL, which we term prototypes. The

common-cause model with a varying cause (Equations 1-3)
predicts that both HHH and LLL will be positive (i.e.,
cause-present) instances. In contrast, both the common-
effect model (Equation 4) and the common-cause model
with a constant cause (Equations 1-3) predict that HHH will
be positive but LLL will be negative. We assume that to the
degree an item is similar to a prototype and requires the
response expected under the applicable causal model, it will
be learned with few errors; conversely, to the degree that an
item is similar to a prototype but requires the response
opposite to that expected, it will yield more errors. (For the
present category structures, these two influences are always
in agreement with one another.)

As Table 2 indicates, this analysis yields from two to four
clusters of items at different ordinal levels of predicted
difficulty, depending jointly on the causal model and the
category structure. The common-cause model with a vary-
ing cause influencing the positive items can be more readily
fit to the NLS structure than to the LS structure, as discussed
earlier. In Experiment 1, for example, participants in the
common-cause condition were told that the dimensions
represented potential effects influenced by a virus that could
vary in intensity. Three clusters of items at distinct levels of
difficulty are predicted. The HHH and LLL prototypes
should be easiest because they are correctly expected to be
positive. The HLH and LHL items each differ by one
feature from a prototype and require the same response as
predicted for the prototype (positive). The remaining four
items also each differ by one feature from a prototype but
require the opposite response (negative). The model sug-
gested in the instructions to participants specifies only the
positive set and hence is compatible with various kinds of
negative exemplars, including one in which all the cases
have normal values on each dimension (a situation that
would correspond to an LS structure with a within-category
correlation in the positive set). In our NLS structure, the
negative exemplars are similar to the positive cases. In fact,
before participants determine the irrelevancy of the second
dimension, the negative cases and the positive cases HLH
and LHL deviate equally (by one feature) from the two

Table 2
Predicted Difficulty of Individual Items in Each Category Structure as a Function of Causal Model
(Experiments 1, 3, 4, and 5)

Model Prototypes

Order of item difficulty (from least to most difficult)

NLS category LS category

Common-cause model with HHH and LLL are
a varying cause positive

Common-effect model HHH is positive,
LLL is negative

Common-cause model with HHH is positive,
LLL is negative

(HHH+, LLL+)
IHLH+, LHL+j
(LHH_, LLH_, HLL_, HHL_

HHH+
{HLH+, LLH_, HLL_)
{LHL+, LHH_, HHL_)
LLL+
Same as for common-effect

model

HHH+
{HLH+, HHL+, LHH+)
)LLH_, LHL_, HLL_)
LLL_
(HHH+, LLL_)
(HLH+, HHL+, LHH+, LLH_, LHL_, HLL,

Same as for common-effect model
a constant cause LLL is negative model

Note. Subscripts indicate items that are actually positive or negative. H = high-intensity value on a dimension; L = low-intensity value
on a dimension. NLS = nonlinearly separable; LS = linearly separable.
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positive prototypes. Accordingly, the NLS structure should
initially be rather hard to grasp even with the help of the
common-cause model. Because our instructions asked par-
ticipants to identify the exemplars of the positive set (i.e., to
diagnose the persons with the disease), we expected that
participants would focus on the positive set. They should
therefore try to fit the causal model to the positive cases,
leaving the negative cases as the implicitly defined comple-
ment of the positive set.

The same model (common-cause model with a varying
cause) is more difficult to fit to the LS structure, for which
four levels of item difficulty are predicted. Prototype HHH
is correctly predicted to be positive; items HLH, HHL, and
LHH each differ by one feature from a prototype and
require the expected response (positive); items LLH, LHL,
and HLL differ by one feature from a prototype but are
negative; and prototype LLL is unexpectedly negative. The
initial causal model would have to be modified in order to
be compatible with the learning input. One possibility
would be to drop the assumption that the common cause is
varying within the positive set, instead assuming that the
three causal links express probabilistic relations between a
constant cause and its three effects.

In the common-effect condition, the same dimensions
were presented as in the common-cause condition. In this
condition the three continuous dimensions were described
as potential causes of a continuously varying common ef-
fect. In Experiment 1, for example, we told participants that
the appearance of some persons may cause an emotional
response in their observers. This description was designed
to induce a common-effect model (Equation 4). Given that
common-effect models based on individual causes do not
imply interactions among causes, it follows that the NLS
structure, which embodies a disordinal interaction, should
be particularly hard to learn: The most dissimilar persons
each cause the emotional response, whereas the intermedi-
ate persons do not cause it at all (i.e., the model predicts that
the LLL prototype should be negative but it is positive
instead). Four levels of item difficulty are predicted. Proto-
type HHH is positive as expected; the next cluster includes
an item that differs by one feature from HHH and is positive
(HLH), plus two items that differ by one feature from LLL
and are negative (LLH and HLL); the next includes an item
that differs by one feature from LLL and is positive (LHL),
plus two items that differ by one feature from HHH and are
negative (LHH and HHL); finally, prototype LLL is unex-
pectedly positive.

For the LS structure, the common-effect model provides
a much more satisfactory fit. The model predicts just two
difficulty levels: HHH is positive as expected and LLL is
negative as expected; all of the remaining six items either
differ by one feature from HHH and are positive or else
differ by one feature from LLL and are negative.

The common-cause model with a constant cause predicts
the same ordering of relative item difficulty as does the
common-effect model. If a common-cause model with a
constant cause is assumed from the outset, the model would
span both the positive and the negative category. Partici-
pants should start with the expectation that the HHH case is

a member of the positive set, produced by a cause of high
intensity, whereas the LLL case should belong to the neg-
ative set, within which the cause is expected to be at its low
intensity. The latter expectation is better matched by the LS
than the NLS structure. Fitting the model to the NLS struc-
ture would require major structural changes, such as forma-
tion of explicit configural features. It follows that the NLS
structure should be harder to learn than the LS structure if
participants initially apply a common-cause model with a
constant cause.

In Experiments 4 and 5, we used instructions that sug-
gested a common-cause model with either a varying or a
constant cause. The instructions and materials of Experi-
ments 1 and 3 were relatively ambiguous between the two
variants. In such situations, we expected participants to use
the learning input as the basis for selecting the appropriate
variant of the general class of causal models suggested by
the instructions.

We now report the five experiments in which we tested
specific predictions derived from causal-model theory. All
of the experiments used continuous variables. In the first
four experiments we focused primarily on comparisons be-
tween contexts that should evoke common-cause versus
common-effect models with varying causal variables, be-
cause these are the causal models that yield the most dis-
tinguishable predictions regarding the relative ease of
learning LS versus NLS structures. In Experiment 5 we
examined the case of common-cause models with constant
causes.

Experiment 1

In Experiment 1 we used a multiple-cue learning task in
which participants received descriptions of fictitious per-
sons. In the common-cause situation, the features used for
the descriptions were characterized as potential effects (i.e.,
symptoms) of a disease caused by a virus. Both the symp-
toms and the virus could vary continuously in intensity. In
the common-effect context, the same features, also intro-
duced as varying in intensity, were redefined as potential
causes of an emotional response in observers of the de-
scribed person. Both the virus and the emotional response
were characterized as potentially continuous. Because par-
ticipants in both conditions saw identical stimuli and had to
learn isomorphic responses, associative learning theories
would predict identical learning rates.

The manipulation of participants' causal models was
crossed with two types of category structures. These two
structures correspond to the LS and NLS category structures
displayed in Table 1. The dimensional body signs that de-
scribed the appearance of the persons could be in one of
two states, high in intensity (H) or low in intensity (L).
The four cases displayed on the left side of Table 1 corre-
sponded to the positive set, that is, persons with the dis-
ease or persons who elicited the emotional response in
their observers.

In the common-cause condition, participants were told
that the three dimensions represented effects (i.e., symp-
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toms), the intensities of which were potentially affected by
a common cause, also varying in intensity, such as a viral
infection. Depending on whether the common-cause context
leads to an interpretation of the likely underlying causal
structure in terms of a common-cause model with a varying
or constant cause, participants could prove sensitive to
either the within-category correlation embodied in the NLS
structure or to the cue-to-category correlation embodied in
the LS structure. One possibility was that participants might
be led to think that only the positive set describes patients
who contracted the disease, whereas the negative set de-
scribes persons with no disease or diseases caused by other
viruses. Because the main task in the experiment was to
diagnose the new virus, participants would be expected to
focus on the positive set. Furthermore, because they were
told that the virus varies in intensity, they might expect a
stronger and a milder form of the disease within this posi-
tive set. This interpretation leads to a common-cause model
with a varying cause, in which a single continuously varying
cause generates the positive instances and the negative
instances are defined only indirectly as cases in which the
cause is absent. These expectations are better matched by
the NLS structure than by the LS structure, which would
give the former structure an advantage during learning.

Alternatively, participants might view the positive set
("yes") as describing persons with a strong form of the virus
and the negative set ("no") as persons with a weaker form of
the virus. According to this model, all persons are affected
by the virus, but the patients with the disease were probably
exposed to its stronger form. This interpretation leads to a
common-cause model with a constant cause, in which the
two intensity levels of the cause are interpreted as a binary
distinction between a level that probabilistically yields pos-
itive instances and one that yields negative instances. Par-
ticipants who use such a common-cause model with a
constant cause should be prepared to learn a category struc-
ture very similar to that embodied in the LS condition.3

The two variants of a common-cause structure thus re-
spectively imply a within-category correlation within the
positive set (as in the NLS structure) or a correlation be-
tween individual features and the optimal response (as in the
LS structure). If the instructions are relatively neutral be-
tween the two interpretations, people may use the input to
refine their basic common-cause model so as to best fit the
observations. For example, if participants are told that case
LLL requires a "yes" response (NLS condition), the com-
mon-cause model with a varying cause would seem more
appropriate; whereas if they are told that LLL requires a
"no" response (LS condition), the variant with a constant
cause would seem more plausible. Assuming that people
can use the input to adapt their common-cause model so as
to best match the structure that is actually presented, it
follows that participants in the common-cause condition
should be able to learn either structure relatively effectively.

In the common-effect condition, the same features were
presented as in the common-cause conditions. However,
these features were introduced as potential causes of a
continuously varying common effect, the emotional re-
sponse of an observer. As pointed out in the Introduction, it

was expected that common-effect models would not imply
interactions among their causes. Thus, the NLS structure
should be hard to learn relative to the LS structure, which
corresponds to a linear causal situation with three indepen-
dent, probabilistic causes.

Method

Participants. The participants were 40 undergraduates from
the University of California, Los Angeles. Half of the participants
were assigned to the common-cause condition and half to the
common-effect condition. Half of each of these groups received
the LS structure and half received the NLS structure. Assignment
of participants to conditions was random.

Material. The stimuli were descriptions of people belonging to
one of the two categories. The description consisted of three binary
dimensional features: weight, pallor, and perspiration. On the basis
of informal interviews, we tried to choose dimensions for which
participants did not have prior knowledge about specific intercor-
relations, which could sensitize them to correlations in the learning
material. Each stimulus person had either high or low intensity
values on each of these dimensions. The high values were "an-
orexic body," "ghostly white skin," and "sweating on face"; the
corresponding lower values were "underweight," "pale skin," and
"perspiring on forehead." Thus, unlike earlier studies (e.g., Medin
et al., 1982) that used bipolar dimensions, we used features that
were located on the same side of a neutral point. We selected such
features in order to make the presented relation between the virus
and each individual symptom more plausible. It seems more nat-
ural to assume that a virus varying in intensity will affect a
dimensional symptom in a single direction, rather than cause
opposite symptoms (e.g., being either underweight or overweight).

The eight possible cases were arranged in either an LS structure
or an NLS structure. Table 1 shows the assignments of the eight
cases, with Cases 1 through 4 corresponding to correct "yes"
responses. Dimensions 1, 2, and 3 correspond to weight, pallor,
and perspiration, respectively. Sixteen sets of these eight cases
were prepared. Every description was typed on an index card. Each
index card contained "Name" as a header followed by individual
initials for each described person. By using different initials for
each card, we led participants to believe that they were presented
with a large sample of individual cases, rather than a small number
of repeated cases.

Procedure. Participants were run in individual sessions. The
material was arranged in a pile containing 16 blocks of the eight
cases. The block structure of the material was not transparent to the
participants. Within each block the cases were randomly ordered.
Participants received index cards one at a time until they said "yes"
or "no." After each response the experimenter gave "correct" or
"incorrect" as feedback. Each description remained displayed for
about 2 s after corrective feedback was given. Training continued
until no errors were made on two consecutive blocks or until 16
blocks were completed.

3 Because of the deterministic nature of the category/pattern
assignments, the LS structure does deviate slightly from the nor-
mative output of a probabilistic common-cause model. In a truly
probabilistic case, the negative cases (e.g., LLL) should in some
rare instances also be produced by the strong form of the virus.
However, we are only interested in the relative fit between causal
models and the two tested category structures. Of course, there are
other category structures selectively compatible with either of the
causal models.
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Participants in the common-cause condition were told that they
were going to learn about a new disease caused by a new type of
virus. They were told that the virus cannot be observed directly but
that scientists are sure that it is a cause of observable body signs.
Then the participants were told they were going to see descriptions
of different patients and that half of the patients had contracted the
new disease. We pointed out that not every body sign included in
the descriptions was necessarily relevant for diagnosing the dis-
ease. Participants were instructed to try to get a general impression
of the disease and its symptoms. Finally, we mentioned that the
virus was not equally strong for all patients and that some patients
were exposed to a very strong, very potent type of the virus so that
they exhibited a relatively strong form of the disease, whereas
other patients were only exposed to a weak type of the virus so that
they were less strongly affected by the disease.

In the common-effect condition participants were told that in a
series of psychological studies on interpersonal perception it had
been found that people who observe other people sometimes react
with a new emotional response to the physical appearance of the
observed people. Participants were told that this emotional re-
sponse is not directly observable but can be detected with a new
psychophysical measuring instrument. Participants were then told
that they were going to see descriptions of various body signs of
different persons and that half of these persons trigger the new
emotional response in observers. Participants were instructed to
form a general impression of the causes of the emotional response,
and we pointed out that not every mentioned body sign was
necessarily relevant for predicting the emotional response. We also
mentioned that the emotional responses could vary in intensity and
thus that some people's appearances could trigger relatively strong
responses, whereas other people could trigger relatively weak
responses in the observers. Note that, despite this general hint
about intensity variations, participants did not receive any feed-
back regarding the intensity level of the disease or the emotional
response. Rather, participants were only given feedback concern-
ing whether the outcome was obtained, regardless of its intensity.

Results and Discussion

The mean total errors and the mean errors per item are
shown in Table 3. A 2 (causal contexts) X 2 (structure of
item sets) X 8 (items) X 16 (trial blocks) analysis of
variance was computed, with decision error as the depen-
dent measure. As predicted, the causal cover story inter-
acted with the structure of the item set, F(l, 36) = 7.55,p <
.01, MSB = 2.10. The LS and NLS structures were learned
about equally easily in the disease context, which was
expected to evoke a common-cause model, f(36) < 1. This
equality is in accord with our assumption that bottom-up
processing of the instances readily selects either the con-
stant cause (LS) or varying cause (NLS) variant of the
common-cause model. In contrast, in the emotional-re-
sponse condition, which was expected to evoke a common-
effect model, the LS set was easier to learn than the NLS
set, r(36) = 3.67, p < .01. The advantage of the LS over the
NLS structure for the common-effect model supports the
assumption that people find linear main-effect models sim-
pler to learn than models that code causal interactions.
Overall, the LS set was learned with fewer errors than was
the NLS set, F(l, 36) = 5.95, p < .05, MSE = 2.10.

Table 3 also displays the mean errors for the individual
items. The relative difficulty of the eight item types varied

Table 3
Mean Errors for the Eight Stimulus Types in Experiment
1 as a Function of Category Structure and Causal
Context

Learning exemplars
Common

cause
Common

effect

Linearly separable
Positive items

HHH
HLH
HHL
LHH

Negative items
LLL
LLH
LHL
HLL

Average total errors

Positive items
HHH
HLH
LHL
LLL

Negative items
HHL
HLL
LHH
LLH

Average total errors
Note. H = high-intensity value
sity value on a dimension.

1.50
6.10
3.20
4.80

2.60
3.70
4.40
4.60

30.90

Nonlinearly

3.30
4.10
3.00
2.60

4.30
3.70
4.50
3.80

29.30
on a dimension

1.00
2.80
2.30
1.80

0.80
2.90
2.80
3.00

17.40

separable

1.90
4.70
4.90
8.20

6.70
3.20
9.70
5.00

44.30
; L = low-inten-

significantly as a joint function of causal context and cate-
gory structure, F(l, 252) = 3.00, p < .01, MSE = 0.48. For
each of the four conditions, we used planned contrasts to
test the significance of the predicted linear trend in mean
errors across the item clusters derived from the theoretically
relevant causal model, which were summarized in Table 2.
For the common-cause condition, the constant-cause variant
was the model predicted to be applicable to the LS structure.
The mean numbers of errors per item for cases at the two
predicted levels of item difficulty (ordered from easy to
hard) were 2.05 and 4.47, respectively, ?(252) = 3.38, p <
.01. The varying-cause form of the common-cause model
was predicted to be applicable to the NLS structure. The
mean errors per item increased across the three predicted
levels from 2.95 to 3.55 to 4.08, although the trend fell short
of significance, t(252) = 1.48, p < .20. The item compar-
ison between the LS and NLS structures for the common-
cause conditions supports the hypothesis that the structure
of the learning input triggers an appropriate causal model.
Such bottom-up influences are most apparent in the pattern
of performance for the critical LLL item. Learning that the
LLL item belongs to the negative set in the LS condition
proved just as easy as learning that it belongs to the positive
set in the NLS condition (mean of 2.60 errors in each case).
The structure of the learning input, and in particular the
initial feedback for the LLL item, appears to have fostered
generation of a common-cause model with either a constant
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cause (LS condition) or a varying cause (NLS condition),
based on general common-cause instructions.

For the common-effect condition, two ordinal levels were
distinguished for the LS structure. These were ordered as
predicted with mean errors per item of 0.90 and 2.60,
respectively, /(252) = 2.37, p < .05. Finally, the common-
effect condition predicted four levels of item difficulty for
the NLS structure, which respectively yielded mean errors
per item of 1.90, 4.30, 5.37, and 8.20, f(252) = 5.27, p <
.01. Overall, then, the predicted ordering of item difficulty
was observed in each of the four conditions.

Six participants in the LS common-cause condition versus
2 participants in the corresponding NLS condition, and 1
participant in the LS common-effect condition versus 5
participants in the corresponding NLS condition, did not
reach the learning criterion within 16 blocks. As can be seen
in Figure 2, the learning curves show systematic improve-
ment across blocks of practice, F(15,540) = 22.9, p < .001,
MSB = 0.17. Inspection of Figure 2 reveals that superiority
of the LS over the NLS structure is roughly constant
throughout learning for the common-effect condition. For
the common-cause condition, however, a crossover of the
learning curves was observed. The NLS structure produced
more errors than the LS structure on the first block, but after
several blocks the relative difficulty of the two structures
reversed. We statistically assessed the crossover by using
orthogonal contrasts to evaluate the influence of causal
context and stimulus structure for the first block of learning
trials only. For Block 1, the NLS structure yielded more

errors overall than did the LS structure, f(540) = 3.25, p <
.01, with no interaction involving the common-cause and
common-effect conditions, t < 1.

Why did the NLS condition start out as more difficult
than the LS condition even within the common-cause con-
text? One possible answer to this question makes use of our
hypothesis that common-cause models can be generated for
both category structures. A common implication of the
common-cause models with constant or varying causes is
that the HHH pattern should yield a positive response. As
pointed out in the Introduction, participants may use the
general heuristic with all causal models that the strength of
the cause covaries with the strength of the effects. Using the
HHH pattern as an initial prototype is more successful in the
LS condition, in which at least two out of three dimensional
values are high for each item within the positive set, than in
the NLS condition, in which none of the three dimensions is
individually predictive. In addition, even participants in the
NLS common-cause condition who expect the HHH and the
LLL cases to be affected with the disease should initially be
at chance with the other cases because they do not yet know
that one of the dimensions is irrelevant. The crossover
suggests that the learning input guided construction of the
appropriate causal model.

The crossover also rules out the possibility that the ob-
served error pattern is due solely to differential initial biases
concerning the association of individual items to correct
responses, because the final pattern of item difficulty was
not obtained in the initial learning block. The results there-

LS/CC
LS/CE
NLS/CC
NLS/CE

14 15 16
"I 1 1 ! r

1 2 3 4 5 6

Figure 2. Learning curves in Experiment 1. Mean absolute error as a function of learning block,
structure of item set, and causal context (maximum = 8 errors/block). LS = linearly separable;
NLS = nonlinearly separable; CC = common cause; CE = common effect.
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fore suggest that causal models guided the induction process
beyond the initial learning block.

Experiment 2

In Experiment 2 we focused on an NLS structure. In order
to better approximate correlations with continuous variables
in testing our theory against associationist alternatives, we
used category structures based on two variables with four
intensity values each. A common-cause model with a vary-
ing cause predicts sensitivity to correlations regardless of
the number of values within each dimension, because struc-
tures with corresponding relative ordinal positions of the
values of each dimension produce the special case of a
perfect positive correlation. In contrast, associative config-
ural-cue models, in which each cue represents an arbitrary
conjunction of feature values, do not capture the monoto-
nicity involved in a correlation of continuous variables.
Configural-cue models predict that there is no special ad-
vantage for a situation in which corresponding ordinal val-
ues define a category, as opposed to other more arbitrary
configural structures. In addition, the number of configural
cues required by such models grows as a power function of
the number of levels. Causal-model theory predicts greater
sensitivity to within-category correlations within a com-
mon-cause context (with a varying cause) than within a
common-effect context, a prediction that cannot be moti-
vated by associative learning theories even if they incorpo-
rate configural cues.

In addition to examining learning with more clearly con-
tinuous variables, in Experiment 2 we addressed the ques-
tion of whether participants really need explicit information
about the fact that the virus (the common cause) may vary
in intensity. Even though capturing the positive correlation
within the positive set requires the assumption of a contin-
uously varying common cause, participants might be able to
infer this property of the cause by observing the learning
items. If the effects are clearly continuous (as was the case
for our materials), this may encourage the assumption that
the underlying cause is also continuous, rendering the overt
hint unnecessary. Such a result would provide further sup-
port for the view that formation of causal models is partly
guided by properties of the learning input.

Method

Participants. The participants were 40 undergraduates from
the University of California, Los Angeles. Half of them were
assigned to the common-cause condition and half to the common-
effect condition. Half of each of these groups received a hint that
the common cause might vary in intensity, whereas the other half
did not. Assignment of participants to conditions was random.

Material and procedure. Stimuli were similar to the ones used
in Experiment 1. The two dimensions of weight and pallor, with
four intensity values each, were chosen for the descriptions of
persons. The intensity variation again was restricted to one side of
a neutral point. The four levels for weight were "slightly under-
weight" (Level 1), "underweight" (2), "seriously underweight" (3),
and "anorexic body" (4). The levels for pallor were "mildly pale"

(1), "moderately pale" (2), "very pale" (3), and "ghostly white"
(4). Only an NLS structure was used. In the positive set ("yes"),
which consisted of four different items, these two variables were
perfectly positively correlated (i.e., values 4 4, 3 3, 2 2,1 1). In the
negative set ("no"), which also comprised four cases, the variables
were negatively correlated (i.e., values 4 1, 3 2, 2 3, 1 4). These
eight items were used for the learning task.

The procedure was similar to that used in Experiment 1. The
disease instruction was again used for the common-cause condi-
tion, and the emotional-response instruction was used for the
common-effect condition. The only difference was that in Exper-
iment 2 it was pointed out to the participants that they were going
to get information about two body signs, "the degree the person is
pale, and the degree the person is underweight." For half of the
participants the final hint that the virus or emotional response
could come in different degrees of intensity was deleted from the
instructions. The learning procedure was identical to that used
previously, with the exception that participants received a maxi-
mum of 24 blocks of index cards.

Results and Discussion

The mean total errors and the mean errors per item are
shown in Table 4. The manipulation of the causal context
again proved effective. The NLS category structure was
learned much more readily in the common-cause context
than in the common-effect context. A 2 (causal contexts) X
2 (intensity hints) X 8 (items) X 24 (blocks) analysis
of variance yielded a reliable effect of causal contexts,

Table 4
Mean Errors for the Eight Stimulus Types in Experiment
2 as a Function of Causal Context and Prior Information
About Variability of the Intensity Level of Common Cause

Learning exemplars
Common

cause
Common

effect

Without intensity hint
Positive items

Item 44
Item 33
Item 22
Item 11

Negative items
Item 41
Item 32
Item 23
Item 14

Average total errors

Positive items
Item 44
Item 33
Item 22
Item 11

Negative items
Item 41
Item 32
Item 23
Item 14

Average total errors

1.30
2.20
4.50
3.90

2.20
3.50
4.50
3.90

26.00

With

0.90
2.50
2.50
4.00

1.60
4.10
3.10
2.80

21.50

0.30
4.30
9.10
8.90

5.40
7.10
5.90
4.40

45.40

intensity hint

0.10
2.70

10.30
8.60

3.80
8.80
6.90
5.50

46.70
Note. In item labels, numbers correspond to intensity values of
weight and pallor.
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F(l, 36) = 7.34, p < .025, MSB = 3.53. Omitting the hint
that the cause (virus) or the effect (emotional response)
could vary in intensity did not significantly impair partici-
pants' performance (F < 1, for both main effect and inter-
action). The impact of causal models on learning an NLS
structure thus generalizes to more continuous dimensions.
Participants seem to be able to infer a continuously varying
common cause on the basis of an observed correlation
among continuous variables. This finding provides further
support for the hypothesis that properties of the learning
input influence the way the causal model is instantiated.

An alternative explanation of the results of Experiment 2
might be based on the assumption that participants generally
assume variability of the causal variables within categories
regardless of the properties of the input. One implication of
this assumption would be that participants always infer a
common-cause model with a varying cause, even when the
variant with the constant cause is suggested in the initial
instructions. In Experiment 5 we tested (and rejected) this
prediction.

Table 4 also displays the mean errors for the individual
items. The relative difficulty of the eight item types varied
significantly as a function of causal context, F(7, 252) =
6.18, p < .01, MSB = .34. The specific item predictions
derived in Table 2 for stimuli with binary-valued features do
not apply to the stimuli used in Experiment 2, which have
more continuous dimensions. In this experiment partici-
pants did not receive information about the number of levels
of the causal variables and therefore had to induce their
variability on the basis of the learning exemplars. Accord-
ingly, predictions of the relative difficulty of items would be
dependent on processes that go beyond the level of detail at
which causal-model theory has yet been specified.

Nevertheless, the qualitative pattern of item difficulty was
similar to that observed in Experiment 1. As in Experiment
1, the item with the strongest correlated features (here Item
44) was relatively easy to learn in both conditions. How-
ever, participants found it much easier to learn that the items
with weak but correlated features (Items 22 and 11) were
positive when the instructions established a common-cause
rather than a common-effect context.

In the conditions without the intensity hint, 1 participant
from the common-cause condition and 3 participants from
the common-effect condition failed to reach the learning
criterion within 24 blocks. The respective numbers for the
conditions with the intensity hint were 1 for the common-
cause context and 2 for the common-effect context.

Experiment 3

Medin et al. (1987) argued that people are sensitive to
feature correlations only when they can bring to bear prior
knowledge about specific causal links between these fea-
tures. However, the results of the previous two experiments
suggest that people can be sensitized to within-category
correlations that are only implicitly coded with a common-
cause model, even when they do not have prior knowledge
of specific causal links. It remains unclear, however, how

general these common-cause structures really are. We have
proposed that causal models are based on structural prop-
erties of causal relations, such as causal directionality and
monotonicity between causal strength and effect magni-
tude, that are relatively domain-general. So far, however,
we have used only diseases as examples of common-
cause structures. Although the results obtained in the
common-effect conditions demonstrate that our partici-
pants did not have specific prior knowledge about direct
correlations among the dimensions we chose in our exper-
iments, it remains possible that participants made use of a
domain-specific "disease schema." That is, it is possible
that people generally know that symptoms tend to be cor-
related in the context of a disease, even when they do not
have any further knowledge about a specific disease and
its associated symptoms.

In order to bolster our hypothesis that people can repre-
sent novel learning situations in terms of causal models
based on general structural properties, rather than just as
instantiations of a more specific schema for diseases and
their symptoms, in Experiment 3 we attempted to replicate
the results of Experiment 1 using learning materials selected
to be less familiar to participants. In this experiment partic-
ipants learned about fictitious "moon stones." In the com-
mon-cause condition the stones were said either to have or
not have a new substance called "zork" inside, whereas in
the common-effect condition they were said either to elicit
or not elicit pupil dilation in squirrels watching the stones.

The results of Experiment 1 suggested that when the
instructions are relatively neutral between the variants of
the basic common-cause model with constant or varying
causes, participants can adopt whichever variant best fits the
input, whether the input is an LS or an NLS structure. In this
experiment the instructions specified more information sug-
gestive of a varying cause, so that the NLS arrangement
should have been easier to learn than the LS arrangement
for participants in the common-cause condition. Participants
were presented with continuously varying effect cues and
were told that the common cause was present only within
the positive set (the stones with zork). However, because the
instructions did not mention that the amount of zork could
vary within the positive set, some aspects of the instructions
were also compatible with a common-cause model with a
constant cause. We again expected that the learning input
would help participants decide which variant of this causal
model was more appropriate.

Method

Participants. Eighty undergraduates from the University of
California, Los Angeles, participated in this experiment. The par-
ticipants were randomly assigned to the four conditions, which
resulted from crossing the causal context factor (common cause vs.
common effect) and the structure of the item set factor (LS vs.
NLS).

Material and procedure. Descriptions of fictitious moon
stones were typed on index cards. As in Experiment 1, the de-
scription used three dimensions with two intensity values each.
The dimensions used were color, size of spots on the surface, and
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texture, which were typed in that order one below the other on the
index cards. The high values were "dark blue," "large spots," and
"very smooth"; the low values were "light blue," "small spots,"
and "slightly smooth." To obscure the fact that the pile of cards
consisted of repetitions of eight types, we headed each index card
by the label "Stone Identifier" with individual initials for each
stone. The eight resulting item types were again arranged in either
an LS or an NLS structure. These category structures were iden-
tical to those used in Experiment 1 (see Table 1).

In the common-cause condition, participants were told that
American astronauts brought back a sample of stones from a recent
excursion to the moon. Most of these stones were gray, had no
spots on the surface, and had a rough texture. (We introduced the
normal appearance of the stones in order to characterize the stones
to be studied as abnormal, so that the critical dimension values
would be interpreted as falling on one side of a neutral point, as did
the features used in the previous experiments.) The instructions
went on to say that in one area of the moon the astronauts found
stones that looked different. Participants were told that scientists
who studied these stones discovered that some of the stones had a
core that contained a new type of substance, which they termed
zork and were very interested in analyzing. Unfortunately, it was
very difficult and expensive to find out which stones contained
zork by breaking them, because they were extremely hard. How-
ever, researchers found that the zork affected the appearance of the
stones containing it. The participants' task was to learn to judge
whether or not the appearance of a stone was caused by the
presence of zork.

The instructions in the common-effect condition were similar.
But here the scientists were said to discover that the appearance of
some of the stones had an interesting effect on squirrels: Whenever
squirrels watched these stones, their pupils would dilate. In this
condition, the participants' task was to learn to judge whether or
not each stone caused dilation of squirrels' pupils. In both condi-
tions, the three dimensions were mentioned in the instructions,
which pointed out that not every feature included in the description
of the stones was necessarily relevant to the classifications. As in
Experiment 2, no hint or feedback was given regarding possible
intensity variations of either zork or pupil dilation.

The learning task was identical to the ones used in the previous
experiments. The upper limit of learning blocks in Experiment 3
was 20 blocks.

Results and Discussion

Table 5 displays the major results of Experiment 3. Most
important, the NLS structure was again learned much more
readily in the common-cause condition than in the common-
effect condition. A 2 (causal contexts) X 2 (structure of item
sets) X 8 (items) X 20 (blocks) analysis of variance with
decision errors as the dependent variable yielded a reliable
interaction between causal condition and category structure,
F(l, 76) = 8.82, p < .01, MSB = 2.78. As in Experiment
1, within the common-effect condition the LS task proved
easier than the NLS task, ?(76) = 2.08, p < .05. Unlike the
results of Experiment 1, the interaction obtained in Exper-
iment 3 took the form of a clear crossover, because within
the common-cause condition the NLS structure proved eas-
ier than the LS structure, f(76) = 2.11, p < .05. This
advantage for the NLS common-cause structure is in accord
with the fact that the instructions in Experiment 3, more
clearly than those in Experiment 1, favored initial use of a

Table 5
Mean Errors for the Eight Stimulus Types in Experiment
3 as a Function of Category Structure and Causal
Context

Learning exemplars

Positive items
HHH
HLH
HHL
LHH

Negative items
LLL
LLH
LHL
HLL

Average total errors

Positive items
HHH
HLH
LHL
LLL

Negative items
HHL
HLL
LHH
LLH

Average total errors

Common
cause

Linearly

2.95
4.10
5.05
3.65

2.25
5.25
4.30
5.45

32.95

Common
effect

separable

1.80
3.65
3.45
4.20

2.40
4.05
3.95
4.50

28.05

Nonlinearly separable

1.90
2.55
2.65
1.60

2.50
2.75
2.60
2.20

18.80

3.40
5.50
4.75
5.50

5.60
6.25
5.80
5.10

41.90
Note. H = high-intensity value on a dimension; L = low-inten-
sity value on a dimension.

common-cause model with a varying cause, which is more
compatible with the NLS than the LS structure.

Table 5 also displays the mean errors for the individual
items. Overall, the pattern was quite similar to that observed
in Experiment 1. For each of the four conditions, we used
planned contrasts to test the significance of the predicted
linear trend in mean errors across the item clusters derived
from the theoretically relevant causal model, which were
summarized in Table 2. For the common-cause condition,
the varying-cause form of the common-cause model was
predicted to be applicable to the NLS structure. The mean
errors per item across the three predicted levels were 1.75,
2.60, and 2.50, respectively, a trend that fell short of sig-
nificance, f(532) = 1.51, p < .20. In the case of the LS
structure it is less clear which variant of the common-cause
model would apply. The instructions were intended to en-
courage initial application of the varying-cause interpreta-
tion; however, given that some aspects of the instructions
were more compatible with a constant-cause model, it is
possible that at some point the stimulus structure would lead
participants to shift to the more appropriate constant-cause
variant. The main difference between the two variants at the
level of individual items is that under a varying-cause model
it should be especially difficult to classify the LLL item as
negative, whereas this item should be relatively easily clas-
sified as negative under a constant-cause model. The data
presented in Table 5 clearly favor the latter variant, because
mean errors were low for both the HHH and LLL items
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(2.58) and uniformly higher for the remaining items (4.63).
As was the case for the comparable condition in Experiment
1, the trend test derived from the constant-cause variant was
highly significant, f(532) = 4.31, p < .001, whereas that
derived from the vary ing-cause version was not, t < 1. The
item analyses thus suggest that even if the common-cause
instructions initially weakly encouraged a varying-cause
interpretation, participants succeeded in switching to the
constant-cause version under the bottom-up influence of the
LS structure.

For the common-effect condition, the four predicted lev-
els of item difficulty for the NLS structure yielded mean
errors of 3.40, 5.62, 5.38, and 5.50, respectively. Although
only the HHH item was notably easier than the others, the
overall trend was significant, f(532) = 2.23, p < .05. For the
LS structure the two predicted levels yielded mean errors of
2.10 and 3.97, respectively, a highly reliable difference,
f(532) = 3.70, p < .01.

Out of the 20 participants in each group, 6, 4, 3, and 1 did
not reach the learning criterion in the LS common-cause,
NLS common-effect, LS common-effect, and NLS com-
mon-cause conditions, respectively. Figure 3 displays the
mean errors in each condition across the learning blocks. All
groups improved their performance with practice, F(19,
1444) = si.o, p < .001, MSE = 0.15, and the pattern of the
learning curves was qualitatively similar to that observed in
Experiment 1. Inspection of Figure 3 suggests that superi-
ority of the LS over the NLS structure was roughly constant
throughout learning for the common-effect condition. For

the common-cause condition, however, the NLS condition
produced more errors than the LS condition on the first
block, but after two blocks a crossover of the learning
curves was observed. As in Experiment 1, orthogonal con-
trasts performed only on data for Block 1 revealed that
significantly more errors were made for the NLS than the
LS structure, f(1444) = 3.27, p < .01, with no significant
interaction involving causal context, t < 1.

Experiment 4

In Experiment 3 we replicated the results of Experiment
1 using more unfamiliar learning material, which provides
further support for the view that participants are able to
form causal models based on general structural properties
when learning about new categories. However, even though
we kept the learning cues constant in the different condi-
tions, the experiments so far still do not completely rule out
the possibility that participants brought some form of rela-
tively general but nonetheless domain-specific knowledge
to bear on the situation at hand. In the previous experiments,
the two causal structures were always implemented in dif-
ferent content domains, so that it still can be argued that
sensitivity to the different category structures was somehow
attributable to prior assumptions about these different do-
mains. It might be claimed, for example, that participants
generally prove more sensitive to within-category correla-
tions in the context of biological categories (e.g., diseases)

LS/CC
LS/CE
NLS/CC
NLS/CE

7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 3. Learning curves in Experiment 3. Mean absolute error as a function of learning block,
structure of item set, and causal context (maximum = 8 errors/block). LS = linearly separable;
NLS = nonlinearly separable; CC = common cause; CE = common effect.
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than in the context of social contexts (e.g., emotional re-
sponses; cf. Wattenmaker, in press). This hypothesis would
be consistent with the pattern obtained in the first two
experiments. Of course, such a claim is considerably weak-
ened by the fact that essentially the same pattern of results
was obtained in Experiment 3, in which the common-effect
condition was realized within a biological domain. Never-
theless, stronger support for the causal-model theory could
be obtained by comparing conditions in which different
causal models are implemented within the same content
domain. Ideally, all the entities used in the experiment
should be identical except for the causal structure imposed
on these entities. In that way possible content effects could
be maximally controlled because the postulated causal
models are manipulated by instructions. Waldmann and
Holyoak (1992) presented an experiment (Experiment 3)
that met these criteria but that did not manipulate category
structure. In the present Experiment 4 we replicated the
design of Experiments 1 and 3 using materials that con-
trolled for content domain.

In contrast to the previous experiments, we used pictorial
stimuli in Experiment 4. Participants were presented with
pictures of fictitious stones brought back from Venus. Fig-
ure 4 shows one example of the learning stimuli, which
displayed stones in the middle of dishes surrounded by
colored iron compounds. Participants in all conditions re-
ceived the same pictures and had to learn to judge whether
or not the stone in the picture was a magnet by basing
their decision on the orientations of the surrounding iron
compounds.

In the common-cause context participants were told that
scientists had discovered that some of these stones were
either strong or weak magnets. In order to find out more
about these stones, the scientists put the stones in dishes
along with iron compounds. They found out that stones that

Figure 4. Example of the learning material from Experiments 4
and 5 (the HHL case): a potential magnet surrounded by iron
compounds (compounds were blue, red, and green in the original
set of learning items).

were magnetic changed the orientation of some of the iron
compounds placed in the dish. In the common-effect con-
ditions, the same material was used but the direction of the
causal connection between stones and compounds was re-
versed. Here participants were told that scientists had found
out that some of the iron compounds emitted strong or weak
magnetic waves that might magnetize the stones. The in-
tensity of the magnetic waves was based on the orientation
of the compounds.

Even more explicitly than in Experiment 3, we attempted
to provide instructions that would clearly favor a common-
cause model with a varying rather than a constant cause,
thus making the NLS arrangement easier to acquire than the
LS arrangement within the common-cause condition. Par-
ticipants were told that the common cause was present only
within the positive set (the magnets) and varied in intensity
within this set. They were also told how strong versus weak
magnets affected the orientations of the surrounding com-
pounds but that it was not necessarily the case that all of the
compounds were affected by the stones. In addition it was
pointed out that before the stones were placed in the dishes,
the compounds were in a random orientation. (This implied
that the orientation of compounds that were not affected by
magnets was due to random factors.) We expected that these
explicit instructions would favor a causal model for the
common-cause condition in which a continuously varying
cause was restricted to the positive set of stones. Thus, in
the present experiment the instructions were designed to
rule out a common-cause representation with a constant
cause that would be compatible with the LS structure. More
than in the previous experiments, these explicit instructions
should diminish the potential role of the learning input in
specifying the appropriate variant of the common-cause
model. Experiments 1, 3, and 4 thus used instructions that
increasingly specified aspects of the common-cause model
with a varying cause.

The instructions for the common-effect condition were as
parallel as possible. In the latter condition participants were
told that there were strong and weak forms of the magnets
(both to be judged "yes") and that there were stones that
were not transformed into magnets ("no"). Participants were
also instructed that not all of the compounds were neces-
sarily causally effective and that the compounds were put in
the dishes in a random orientation before the stones were
placed in the middle.

Method

Participants and design. Forty undergraduates from the Uni-
versity of California, Los Angeles, participated in this experiment.
They were randomly assigned to one of four conditions compara-
ble to those used in Experiments 1 and 3.

Material and procedure. Participants received a series of index
cards, each with a drawing of one stone placed on a dish in the
middle of the card. Each stone was surrounded by three iron
compound bars, represented by colored (green, red, or blue),
narrow rectangular shapes. Each compound either had one of its
ends pointed to the stone or had one of its sides facing the stone.
Because different compounds could be identified by their colors,
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they could occur in various positions on the index cards across
learning trials. Also, even though the characterization of the ori-
entations was binary, these orientations were defined relative to the
stone in the middle so that the orientation relative to the index card
could vary depending on the position of the compound. This
display ensured that participants had to actively encode the mean-
ing of the orientations of the compounds. (Pilot experiments in
which we used dark or light colors in fixed positions had shown
that with such material many participants seemed to resort to
alternative visual learning strategies, such as memorizing the ob-
viously restricted set of patterns.)

Sixteen sets of eight patterns were prepared for this experiment.
As in Experiments 1 and 3, the LS arrangement of the eight
patterns was compared with the NLS arrangement (see Table 1).
Compounds with ends that pointed to the stones represented the
high-intensity value, and compounds with sides facing the stones
represented the low value. Figure 4 shows an example of an HHL
case because two of the three compounds point to the stone. Within
the NLS conditions, three counterbalancing groups varied which
two of the three compounds (green, red, or blue) were correlated
(with the 10th participant in each cell being randomly given one of
these three assignments).

In the common-cause condition, participants received written
instructions in which they were told that American astronauts
brought back samples of stones from Venus. The instructions
stated that back on earth, physicists discovered that some of these
stones were magnetic in a way different from magnets found on
earth. Participants were told that in order to find out which stones
were magnetic, the physicists put individual stones in flat dishes
along with different types of iron compounds. Also the instructions
pointed out that before the stones were placed in the dishes, the
compounds were in a random orientation. Believing that most
types of iron compounds would be affected by the magnetic stones,
the scientists tested dozens of different compounds on the stones.
The research showed that stones that are magnetic are either strong
or weak magnets. Strong magnets turn the magnetized compounds
so that their ends point to the stone, weak magnets turn the
magnetized compounds so that their sides face the stone. The
instructions also stated that although most compounds are affected
by magnets from Venus, not all compounds are affected. Finally,
participants were told that they were going to see index cards,
each with a different stone in the middle of the dish and the ori-
entations of three randomly selected compounds represented by
the colors green, red, and blue. Participants were asked to say
"yes" when they thought the stone was a strong or weak magnet
and "no" when they thought the stone was not a magnet. Before
learning started, the task was summarized by the experimenter,
who showed an example card with a stone and one brown com-
pound. She explained how a strong or weak magnet would af-
fect this compound and that the compound would simply stay in
its random orientation if the stone was not a magnet or the com-
pound was not sensitive to magnets from Venus. As a final test,
participants were asked what the different orientations of the ex-
ample compound could mean. They were encouraged to use this
knowledge during learning.

The common-effect condition was closely modeled after the
common-cause condition. The only difference was that partici-
pants in this condition were told that some of the stones from
Venus could be transformed into strong or weak magnets. Re-
search was said to show that the stones were magnetized by iron
compounds. Iron compounds with their ends pointing to the stone
send out strong magnetic waves, and iron compounds with their
sides facing the stone send out weak magnetic waves to the stone.
However, not all of the studied iron compounds turned out to be

able to emit magnetic waves, and not all stones are affected by the
compounds. Participants again were informed that they were going
to see three arbitrarily selected compounds that had been placed on
dishes in random orientations before the stone was placed in the
middle. Their task was to say "yes" when they thought the stone in
the middle of the dish had turned into a strong or weak magnet and
"no" when the stone was not a magnet. Oral instructions and test
questions were as similar as possible to those used in the common-
cause condition. As in all previous experiments, participants did
not receive any feedback regarding the intensity levels of either
causes in the common-cause condition or effects in the common-
effect condition.

The learning task was identical to those used in the previous
experiments. The upper limit of learning blocks in Experiment 4
was 16 blocks.

Results and Discussion

Table 6 displays the results of this experiment. A 2
(causal contexts) X 2 (structure of item sets) X 8 (items) X
16 (blocks) analysis of variance with decision errors as the
dependent variable again yielded a reliable crossover inter-
action between causal condition and category structure, F(l,
36) = 11.4, p < .01, MSE = 2.82. Whereas the LS structure
was significantly easier to learn than the NLS structure
within the common-effect condition, f(36) = 3.22, p < .01,
the trend was in the opposite direction for the common-
cause condition, f(36) = 1.55, p < .20. As in Experiment 3,
we apparently succeeded in biasing participants toward ini-

Table 6
Mean Errors for the Eight Stimulus Types in Experiment
4 as a Function of Category Structure and Causal
Context

Learning exemplars
Common

cause
Common

effect

Linearly separable
Positive items

HHH
HLH
HHL
LHH

Negative items
LLL
LLH
LHL
HLL

Average total errors

Positive items
HHH
HLH
LHL
LLL

Negative items
HHL
HLL
LHH
LLH

Average total errors

1.30
3.60
3.80
3.90

5.00
3.60
4.20
4.00

29.40

Nonlinearly

0.10
2.80
3.50
0.10

2.80
2.30
2.40
2.20

16.20

0.20
0.20
0.40
1.10

0.50
1.70
1.20
2.20
7.50

separable

1.50
4.80
4.60
3.20

6.50
4.00
6.10
4.20

34.90
Note. H = high-intensity value on a dimension; L = low-inten-
sity value on a dimension.
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tially using a common-cause model with a varying cause,
which fits the within-category correlation embodied in the
NLS structure (by emphasizing that the cause, magnetism of
the stone, only generated the positive and not the negative
instances). The interaction between causal context and cat-
egory structure observed in Experiment 4 cannot be ex-
plained by possible content biases, because the two con-
trasting causal models were implemented within the same
domain. These results greatly weaken an alternative expla-
nation of the results of previous experiments based on the
hypothesis that participants rely on some kind of general
content-bound knowledge of causal structures.

Table 6 also displays the error rates for the individual
items. We again used planned contrasts to test the signifi-
cance of the predicted linear trend in mean errors across the
item clusters derived from the theoretically relevant causal
model, as summarized in Table 2. For the common-cause
condition, the varying-cause form of the common-cause
model was predicted to be applicable to the NLS structure.
The mean errors per item cluster across the three predicted
levels were 0.1, 3.15, and 2.43, respectively, which yielded
a significant linear trend, f(252) = 3.70, p < .01, by a trend
test. The main difference in item difficulty was the greater
ease of learning the two positive prototypes, HHH and LLL.
For the LS condition, the item analysis provided additional
evidence that the instructions used in Experiment 4 favored
the varying-cause version of the common-cause model more
heavily than the constant-cause version. The former variant
predicts four levels of difficulty, which yielded mean errors

of 1.30, 3.77,3.93, and 5.0, respectively, f(252) = 3.70,p <
.01, by a linear trend test. Most notably, the LLL item was
especially difficult to classify as a negative case. Thus,
unlike the comparable conditions of Experiments 1 and 3,
the common-cause instructions used in Experiment 4 appar-
ently not only biased participants to initially assume a
varying-cause model but also led them to persist in applying
this variant even in the LS condition in which the stimulus
structure would be better fit by the constant-cause variant.

For the common-effect condition, the four predicted lev-
els of item difficulty for the NLS structure yielded mean
errors of 1.50, 4.33, 5.73, and 3.20, respectively. Although
the error rate for the positive LLL item was lower than
expected, the overall linear trend was significant, f(252) =
2.51, p < .025. For the LS structure the two predicted levels
yielded mean errors of 0.35 and 1.13, respectively. This
difference, although in the predicted direction, fell short of
significance, t(252) = 1.36, p < .20. The item analyses thus
again provided partial support for the predictions derived
for the common-effect condition.

Out of the 10 participants in each group, 4, 2,1, and 5 did
not reach the learning criterion within 16 learning blocks in
the LS common-cause, NLS common-cause, LS common-
effect, and NLS common-effect conditions, respectively.
Figure 5 depicts the mean error rates in each condition
across blocks. The error rates for all groups decreased with
practice, F(l,540) = 15.25, p < .001, MSE = 0.13. As in
Experiments 1 and 3, the NLS structure yielded more errors
overall in the first learning block than did the LS structure,

LS/CC
LS/CE
NLS/CC
NLS/CE

Figure 5. Learning curves in Experiment 4. Mean absolute error as a function of learning block,
structure of item set, and causal context (maximum = 8 errors/block). LS = linearly separable;
NLS = nonlinearly separable; CC = common cause; CE = common effect.
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f(540) = 2.40, p < .05, with no significant interaction
involving causal context, f(540) = 1.32, p > .20. By the
second block the NLS common cause was easier than the
LS common-cause condition, an advantage maintained
across the rest of the learning blocks.

Experiment 5

We have argued that a common-cause model can be
biased either toward a within-category correlation, as is
embodied in the NLS structure shown in Table 1 (common-
cause model with a varying cause), or to cue-to-category
correlations between individual features and presence of a
constant cause, as in the LS category structure (common-
cause model with a constant cause). In previous experiments
comparing these two conditions, the instructions were either
neutral (Experiment 1) or designed to in some degree favor
a common-cause model with a varying cause consistent
with the NLS structure (Experiments 3 and 4). In Experi-
ment 4 we used particularly explicit instructions to bias
participants to form a common-cause model compatible
with a within-category correlation. As we noted in the
Introduction, we primarily focused on the common-cause
model with a varying cause because it is this variant that
yields a pattern of predictions (greater ease of learning of
the NLS than the LS structure) that clearly differs from the
predictions derived from a common-effect model. Experi-
ment 5, however, was designed to test a further prediction of
causal-model theory—that the relative difficulty of LS and
NLS structures can indeed be reversed by manipulating
expectations of the variability of the cause.

Accordingly, in Experiment 5 we modified the instruc-
tions so as to bias participants to generate a common-cause
model with a constant cause, which should be compatible
with the LS structure. We simply changed the mappings
between the states of the continuous common cause and the
two categories, so that the cause was set to a constant value
within each category. The participants' task in Experiment
4 had been to say "yes" when they saw a strong or weak
magnet and "no" when they saw stones that were not
magnets. This task description should lead participants to
expect both the HHH case (caused by the strong magnet)
and the LLL case (caused by the weak magnet) to be in the
positive set, an expectation that is better matched by the
NLS than the LS condition. In Experiment 5, participants
instead were instructed to say "yes" when they thought the
stone was a strong magnet and "no" when they thought it
was not a strong magnet, indicating that the two differing
levels of the causal factor respectively generated positive
and negative instances. This should lead participants to
expect the HHH case and similar cases to be in the positive
set (where the cause is strong) and the LLL case and similar
cases to be in the negative set (where the cause is not
strong). This expectation is better matched by the LS con-
dition than the NLS condition, and therefore we expected
the LS condition to be easier than the NLS condition in the
present experiment. Thus whereas the common-cause in-
structions in Experiment 4 led participants to interpret the

two intensity levels of magnets as approximations to a
continuously varying cause operating on the positive in-
stances, those in Experiment 5 led participants to interpret
the intensity levels as a binary distinction between a level
that produces positive instances and a level that produces
negative instances. In other respects the instructions and the
learning material were identical to those of Experiment 4.
The common-cause model with a constant cause that par-
ticipants were led to construct in Experiment 5 implies that
strong magnets should cause compounds to be in their
high-intensity orientation (e.g., HHH), whereas weak mag-
nets should cause the affected compounds to be in their
low-intensity orientation (e.g., LLL). This expectation
matches the cue-to-category correlations embodied in the
LS structure but is at odds with the NLS structure.

In Experiment 5 we also tested whether it was necessary
to give participants prior information about the specific
meanings of the orientations of compounds to obtain the
predicted effects. In one condition, in which we adopted the
procedure from Experiment 4 as closely as possible, partic-
ipants were told which orientation signaled strong magnetic
influences and which orientation signaled weak influences.
In contrast, participants in a second condition were not
given prior information about these assignments. We ex-
pected that these prior assignments would not prove neces-
sary for participants to learn the LS condition, because the
feedback should readily inform them about the meanings of
the different orientations (because participants would as-
sume that the orientations associated with "yes" responses
corresponded to the higher intensity levels). However, pro-
viding information about assignments might be more im-
portant in the NLS condition, in which both orientations
occurred equally often within both categories, so that the
learning feedback did not provide participants with suffi-
cient information to determine which orientation signaled a
strong as opposed to a weak magnet. Of course, because the
common-cause model with a constant cause that partici-
pants were encouraged to form would not match the NLS
structure in any case, knowing the intensity levels associ-
ated with the orientations might still convey little or no
benefit.

Method

Participants and design. Forty undergraduates from the Uni-
versity of California, Los Angeles, participated. All received com-
mon-cause instructions. Half of the participants were randomly
assigned to the condition with LS categories and half to the
condition with NLS categories. Half of each of these groups
received prior information about the meanings of the orientations
of compounds, and the other half did not receive such prior
information.

Material and procedure. The material and procedure were
virtually identical to those used in Experiment 4. The only differ-
ence was that in the present experiment participants were told that
all stones were magnets and that they had to learn to say "yes"
when they saw a strong magnet and "no" when they saw a magnet
that was not strong. Again, participants were told that the com-
pounds were randomly selected from a set that also contains
compounds not affected by the magnets, and they were told that
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before the stones were placed in the dish the compounds were in
a random orientation. Participants who received prior information
about the orientation of compounds were told that strong magnets
turn magnetized compounds so that their ends point to the stone,
whereas weak magnets turn magnetized compounds so that their
sides face the stone. In contrast, participants who did not receive
prior information were told only that strong magnets turn magne-
tized compounds in one particular direction and that weak magnets
turn them in another particular direction. The assignments of the
two orientations to strengths of magnets were counterbalanced in
the conditions without prior information. Which two compounds
were correlated in the NLS conditions was also counterbalanced
(as in Experiment 4). The upper limit of learning blocks was again
16 blocks.

Results and Discussion

As can be seen in Table 7, the subtle changes in the
instructions for Experiment 5, relative to the comparable
conditions in Experiment 4, produced a massive switch in
the relative difficulty of the LS and NLS conditions. A 2
(causal contexts) X 2 (intensity hints) X 8 (items) X 16
(blocks) analysis of variance revealed that the LS condition
generated substantially lower error rates than the NLS con-
dition, F(l, 36) = 56.2, p < .001, MSB = 1.89. This
reversal of the difficulty of the two category structures was
solely attributable to the different causal models participants
were encouraged to bring to bear on the task in the two

Table 7
Mean Errors for the Eight Stimulus Types in Experiment
5 as a Function of Category Structure and Prior
Information About the Assignments of Intensity
Levels to Orientation of Compounds

Learning exemplars
With prior
assignment

Without prior
assignment

Positive items
HHH
HLH
HHL
LHH

Negative items
LLL
LLH
LHL
HLL

Average total errors

Linearly

0.00
0.50
0.30
0.10

0.00
0.90
0.70
0.10
2.60

separable

0.40
1.20
0.90
0.40

1.10
1.00
1.20
1.20
7.40

Nonlinearly separable
Positive items

HHH
HLH
LHL
LLL

Negative items
HHL
HLL
LHH
LLH

Average total errors

1.00
4.40
6.40
5.90

7.40
6.00
7.30
5.40

43.80

4.70
5.40
6.00
3.30

5.30
4.30
5.70
5.30

40.00

experiments, and not to differing learning experiences. Par-
ticipants in both experiments received identical cues and
identical feedback. (Recall that in Experiment 4 participants
did not receive feedback about the strength of the magnets.)
The results of Experiment 5 also serve to refute the possi-
bility (discussed in connection with Experiment 2) that
participants invariably assume a varying cause regardless of
instructions.

No significant overall differences were obtained between
the two information conditions; however, information con-
dition interacted jointly with category structure and individ-
ual items, F(7, 252) = 2.39, p < .025, MSB = 0.33.
Inspection of the error rates for individual items revealed
uniformly low errors within the LS condition (see Table 7),
so that cellar effects precluded finding any differences
among classes of items. Regardless of whether prior infor-
mation was given, all items could relatively soon be as-
signed to their correct categories. The NLS conditions
yielded a different pattern. As can be seen in Table 7, the
HHH item proved relatively easy in the condition with prior
information about the assignment of intensity level to com-
pound orientation, but not in the condition without prior
information. This difference is in accord with the fact that
responding "yes" to HHH patterns is consistent with the
common-cause model with a constant cause that partici-
pants were biased to use. In the condition without prior
information, the experimenter's feedback did not provide
sufficient evidence to assign orientations to intensity levels,
so participants could not possibly know which of the items
represented the HHH pattern. Thus, this item could be
uniquely identified in the LS but not in the NLS condition.
For the condition with prior information, the common-cause
model with a constant cause predicted four levels of item
difficulty, which yielded mean errors of 1.0, 5.27, 7.03, and
5.9, respectively, r(252) = 3.02, p < .01, by a trend test.
The much greater ease of classifying the HHH item (mean
of 1.0 errors) versus the LLL item (5.9 errors), both of
which are positive in the NLS structure, provides evidence
that participants applied a constant-cause version of the
common-cause model, rather than the varying-cause version
(which predicts equal ease of classifying both prototypes).

Learning clearly improved with practice, F(15, 540) =
13.09, p < .001, MSE = 0.14. All participants in the LS
condition learned the categories within 16 blocks, whereas
6 and 4 participants in the NLS condition with and without
prior information, respectively, did not reach the learning
criterion within 16 blocks.

General Discussion

Summary

Note. H = high-intensity value on a dimension; L = low-inten-
sity value on a dimension.

The results of the present study indicate that providing
people with very general structural information about po-
tential causes and potential effects—information about
causal directionality, continuity of causal variables, and the
variability of the causal variables—allows them to construct
causal models of the learning situation, which they then use
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to induce the actual causal relations. A common-cause
model with a continuously varying cause that generates only
positive instances is compatible with a within-category cor-
relation as embodied in an NLS structure; a common-cause
model with a constant cause in which different levels of the
cause generate positive and negative instances is compatible
with cue-to-category correlations, as embodied in an LS
structure. If the instructions are neutral between the two
variants of the basic common-cause model, then the struc-
ture of the stimulus set appears to encourage generation of
the appropriate variant. Using instructions that favored a
common-cause model with a varying cause, we were able to
show sensitivity to within-category correlations for contin-
uous causal dimensions with more than two values. In two
experiments, results indicated that participants can infer that
a hidden cause was continuously varying on the basis of the
observed instances of its effects, even without any explicit
hint by the experimenter (see also Waldmann & Holyoak,
1990, Experiment 3).

In the first two experiments we used diseases as common-
cause domains and emotional responses as common-effect
domains. In Experiment 3, we were able to replicate the
basic findings of the other experiments using less familiar
learning material. In Experiment 4 we succeeded in repli-
cating the same pattern yet again, using learning material in
which the alternative causal models were implemented
within a single content domain. These extensions support
the view that people are able to utilize causal models, rather
than only schemas that apply to more limited domains, such
as diseases or biological entities.

In the present study we were able to show that the variants
of the basic common-cause model with varying or constant
causes favor acquisition of different types of category struc-
tures. An obvious question is whether such distinct variants
could also be identified for common-effect models, which in
the present experiments were invariably more compatible
with the LS than the NLS arrangement. Could some form of
common-effect model, in the absence of specific prior
knowledge about causal links, favor an NLS structure?
Within the range of simple one-step causal networks of the
sort used in the present study, the answer appears to be no.
As we noted in the Introduction, for a terminal effect in a
causal network (i.e., one that does not causally influence
some other factor being modeled), it is irrelevant whether
the effect is constant or varying with respect to the response
categories, because it has no causal impact. In this respect
causal-model theory predicts an asymmetry between com-
mon-cause and common-effect models.

It is certainly possible, however, that some type of more
specific prior knowledge could lead to generation of a
common-effect model compatible with an NLS structure.
For example, prior knowledge that encourages including
explicit configural causes in a causal model (e.g., knowl-
edge that drinking alcohol and taking a prescription drug
may causally interact) could aid acquisition of an NLS
structure within a common-effect model (see Footnote 2), as
could prior knowledge that overrides the default assumption
that cause-effect relations will be monotonic (e.g., knowl-
edge that extremes on some dimension, such as body

weight, may sometimes have similar causal consequences).
It is also the case that interesting variants of common-effect
models may emerge in the context of more complex causal
situations involving causal chains and loops, in which the
effects of initial causes can in turn have their own causal
consequences. In general, much more work will be required
to explore the range of causal models that people can
construct on the basis of different types of information and
the impact of different models on the ease of acquiring
different types of category structures.

Causal Versus Noncausal Categories

Our main focus in this article has been on categories that
lend themselves to causal representations. The presented
experiments show that participants, even when they do not
have specific world knowledge, may use more abstract
types of knowledge that guide learning in a top-down fash-
ion. Associative learning theories (including exemplar-
based or prototype theories) are unable to explain these
results because they generally focus on data-driven learning
processes.

Nosofsky, Gluck, Palmeri, McKinley, and Glauthier
(1994) recently presented a replication of Shepard et al.'s
(1961) seminal study with artificial, geometric stimuli as
learning material. Their results correspond to the results we
obtained within the common-cause condition, with the LS
Type IV problem turning out to be harder to learn than the
NLS Type II problem. As these investigators show, this
result is anticipated by a number of current categorization
models including the configural-cue model (Gluck &
Bower, 1988a), ALCOVE (Kruschke, 1992), and Ander-
son's (1991) rational model. One may speculate that this
striking correspondence may be due to these models' being
implicitly tailored toward natural kind concepts, which tend
to embody common-cause models with a varying cause. For
example, Anderson (1991) explicitly developed his theory
of categorization with respect to "living objects."

Of course, learning is influenced not only by knowledge
but also by properties of the learning input and by the
learning strategies participants use. Many additional factors
undoubtedly determine the relative difficulty of learning
different category structures. Particular learning strategies,
such as memory-based learning, may also sometimes pre-
dict sensitivity to category correlations (Wattenmaker,
1991, 1992, 1993). In addition, the characteristics of the
cues may determine the semantic interpretation of the task.
In the present experiments we mainly manipulated partici-
pants' causal models by providing different initial learning
instructions, holding the cues constant across the different
conditions. It is quite possible, however, that properties of
category dimensions may influence the representation of the
learning material in a way selectively compatible with dif-
ferent models. For example, although different causes that
vary in intensity can easily be mapped to a common-effect
model in which additively integrated intensity levels of the
causes influence the effect, arbitrary values of artificial
noncausal categories (e.g., square vs. circle) are less likely
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to be plausible candidates for a model in which the features
are integrated additively. Identical category structures may
thus be represented differently depending on the character-
istics of the features assigned to the categories. Within a
memory-based or hypothesis-testing learning strategy, an
LS category with three arbitrary features (a Type IV struc-
ture) may turn out to be harder to learn than an NLS
category with two relevant features (a Type II structure),
whereas the opposite may be true for features that can be
integrated. More generally, the relative difficulty of differ-
ent category structures can be expected to depend both on
the semantic and pragmatic context of the task and on the
learning strategies that people use.

Causal Models Versus Attention Weights

The results of the present experiments present problems
for associative learning theories, because in all associative
theories whatever information is first received is coded as
cues on an input layer, which then triggers responses on an
output layer. Accordingly, in predictive learning situations
the cues always correspond to causes (e.g., Shanks & Dick-
inson, 1987), whereas in diagnostic learning situations the
cues are mapped to effects (e.g., Gluck & Bower, 1988b;
Shanks, 1991). This characteristic insensitivity to causal
direction is the crucial feature of associative learning that
the present results appear to refute. These models predict
identical learning in situations with identical cues and out-
comes regardless of whether the cues represent causes or
effects. Insensitivity to causal direction is a property not
only of simple associative learning theories but also of more
complex connectionist theories (e.g., back-propagation net-
works) and concept theories of the similarity-based variant
(exemplar or prototype theories).

One response to the present results, as well as to other
recent evidence that causal directionality influences learn-
ing (Waldmann & Holyoak, 1992), is to develop network
models in which the causal interpretation of events guides
the assignment of information to layers of the network. That
is, cues that are interpreted as "causes" could be assigned to
the "input" layer, and cues that are interpreted as "effects"
could be assigned to the "output" layer, regardless of the
temporal order in which the cues are overtly presented (see
van Hamme, Kao, & Wasserman, 1993). Links would then
be interpreted as directed causal connections. For example,
the causal networks proposed by Pearl (1988) and Peng and
Reggia (1990) have this general character. Of course, the
generation of responses then becomes much more compli-
cated than in standard associative networks, because the
responses could not simply be elicited by the input infor-
mation, as in a standard feed-forward connectionist archi-
tecture. Rather, in diagnostic tasks the inputs would have to
be mapped to the output level of the causal network. The
activation pattern on the output layer would then have to be
interpreted as being caused by an unseen input, which
would have to be induced by diagnostic learning. Although
it may well be possible to develop a network model of
causal learning along these lines, it should be clear that
some nontrivial problems must be solved to account for

learning within diagnostic contexts. Such models would go
well beyond simple associationism and in fact would in-
stantiate the causal-model theory we are advocating.

Is there some way in which associative learning theories
could accommodate our evidence of differences in learning
rates for isomorphic learning structures without explicitly
incorporating a causal semantics (which would render them
equivalent to the causal-model approach)? As our earlier
review indicated, inconsistent results concerning the rela-
tive difficulty of different stimulus structures have emerged
from previous research (even though researchers have typ-
ically focused on one paradigm while ignoring contradic-
tory results in others). For example, animal learning exper-
iments and studies of human multiple-cue probability
learning have typically shown a learning advantage for LS
structures, whereas categorization research presents a mixed
picture, with some studies even finding an advantage for
NLS structures over LS ones. Within associative theories,
variations in learning difficulty have typically been ex-
plained by fitting attention or learning-rate weights associ-
ated with configural cues to the results at hand. These
models have treated such weights as being regulated by
properties of the input—that is, they view the selection of
weights as strictly governed by bottom-up influences. An
obvious tack one could take, given results such as those
presented here, is to introduce top-down influences on
weight selection. In particular, one might postulate higher
weights for configural cues within common-cause structures
with a varying cause than within common-effect structures.
(Of course, this idea is considerably weakened by the fact
that common-cause models with constant causes would then
require the assumption of relatively low weights for config-
ural cues.) It is hard to see how such a move can be
motivated without resorting to a formal analysis of the
different structural implications of causal structures, which
is outside the realm of current associationistic theories.

In a different set of studies, we have collected converging
evidence for causal models that cannot be explained by
postulating arbitrary changes in attention or learning-rate
weights (Waldmann & Holyoak, 1992). In these experi-
ments, we used a blocking paradigm. Blocking experiments
typically make use of a two-phase learning design (e.g.,
Kamin, 1969). In Phase 1, participants learn to predict an
outcome on the basis of a single valid cue. In Phase 2, a
second redundant cue is constantly paired with the already
established valid cue. All current theories of associative
learning predict that participants should afterward be reluc-
tant to predict the outcome when confronted with the second
cue alone, even though it is perfectly correlated with the
outcome within Phase 2 of the learning task. The Rescora-
Wagner or least-mean-square learning rule, for example,
predicts only an updating of weights when something un-
predicted occurs. Because during Phase 1 participants
learned to predict the event perfectly on the basis of the
valid initial cue, no further learning should occur to the
redundant cue in Phase 2. Note that this prediction holds
regardless of how large or small the learning rates or atten-
tion weights for the cues are set. Thus even a "causally
enriched" theory of associative learning, which postulates
regulation of such weights by a front-end causal theory,
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would predict blocking for common-cause as well as com-
mon-effect structures. However, Waldmann and Holyoak
(1992) found cue competition only when the cues corre-
sponded to causes (i.e., when instructions encouraged par-
ticipants to form a common-effect model), not when they
corresponded to effects (i.e., when instructions encouraged
a common-cause model), which supports the prediction of
causal-model theory (see also Melz, Cheng, Holyoak, &
Waldmann, 1993). As in the present set of studies, these
predictions of causal-model theory can be derived from the
assumption that participants form causal models that are
directed from causes to their effects. Part of the reason for
the asymmetry of cue competition in the diagnostic and
predictive tasks is the fact that multiple effects of a common
cause do not interact, whereas there is a potential interaction
between multiple causes of a common effect.

What Is General in Causal Models?

The theory-based view of categorization (Murphy & Me-
din, 1985) has emphasized the importance of domain-spe-
cific causal knowledge in guiding category induction (e.g.,
Medin et al., 1987). Prior knowledge of specific causal
relations, when it is available, is clearly an important influ-
ence on subsequent learning. However, a complete model of
causal induction must be able to specify how novel causal
relations can be acquired even when specific prior knowl-
edge is lacking. Causal-model theory, we believe, helps to
close the gap between learning based on transfer of specific
prior knowledge and learning based on bottom-up analysis
of the current input. As noted earlier, one can potentially
transfer specific prior knowledge to a new learning task by
biasing the initial weights for particular cause-effect links
within a causal model. However, the present study provides
evidence that even in the absence of such specific prior
knowledge, people can use more general structural infor-
mation to form a causal model that implicitly biases the
causal induction process in predictable ways. Participants in
the common-cause condition of Experiment 4, for example,
had no prior knowledge to allow them to predict which of
the iron compounds would respond to the magnetism of
stones from Venus. Nonetheless, the instructional context
conveyed that (a) magnets had a causal influence on the
orientation of some of the compounds, rather than the re-
verse, (b) the degree of magnetic influence could vary
continuously, and (c) the orientations could vary even when
no magnet was present. This information proved to be
sufficient to allow participants to set up a common-cause
model with a varying cause. Once this model was formed,
sensitivity to the sort of within-category correlation em-
bodied in the NLS stimulus structure naturally emerged.
The causal mode provided a partially specified top-down
framework within which bottom-up induction could oper-
ate for the acquisition of knowledge about specific causal
connections.

The analyses of the learning curves obtained in Experi-
ments 1, 3, and 4, which proved strikingly similar, suggest
that causal models interacted with the learning input during
the induction process. If participants had simply made use

of prior knowledge about specific interproperty correla-
tions, these biases presumably would already have been
evident during the first learning block. Instead, the obtained
learning curves revealed reliable crossovers in the difficulty
of the LS and NLS structures for the common-cause con-
dition, which suggests that the causal models provided only
tentative hypotheses about the general form of causal rela-
tionships, leaving the specific causal relations to be induced
through bottom-up analyses of the inputs. This result can be
interpreted as an example of a "tight coupling" between the
knowledge component and the learning component, similar
to effects found by Wisniewski and Medin (1994). These
investigators have shown that learning models that separate
an associative learning component from a knowledge com-
ponent are implausible, because these two components
seem to interact during the entire induction process. In their
experiments, Wisniewski and Medin demonstrated that the
interpretation of category features is crucially dependent on
the type of intuitive theory participants bring to bear on the
task.

One of the most important computational advantages of
models based on causal networks is that the statistical
interdependencies between the elements of the networks do
not all have to be coded explicitly (cf. Pearl, 1988). Given
a model that encodes only direct causal links, it is possible
to use its structure to derive information about conditional
independence and about indirect interdependencies (e.g.,
spurious correlations based on a common cause, or corre-
lations between factors separated by multiple links in a
causal chain). Previous research on the effect of prior
knowledge on categorization has focused on demonstrations
of the use of knowledge about direct, explicit causal rela-
tions. For example, Medin et al. (1987) showed that people
are often insensitive to statistical correlations between fea-
tures unless they can bring to bear explicit knowledge about
a direct underlying causal relation. In a task involving
construction of categories, people were more likely to rec-
ognize and make use of a correlation between dizziness and
earache, for which they had prior causal knowledge, than a
correlation between sore throat and skin rash, for which no
such knowledge was readily available (for similar demon-
strations see Murphy & Wisniewski, 1989; Pazzani, 1991;
Wattenmaker, 1992; Wattenmaker et al., 1986). Our study
extends such findings by demonstrating that people are also
sensitive to within-category correlations that are indirect
side effects of a more complex causal structure. For exam-
ple, in Experiment 4 participants received instructions only
about potential causal relations between the magnets and the
orientation of individual compounds. Nonetheless, the
learning data showed that this information sensitized them
to the within-category correlation between effects implied
by the structure of a common-cause model with a varying
cause.

What is general about causal models, from the present
perspective, is the generative use of information about a
relatively small number of general structural properties to
construct causal models tailored to particular learning situ-
ations. The properties on which we have focused in the
present article are causal directionality, continuity of causal
factors, and the variability of the causal variables. Candi-
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dates that might be added to this list would include whether
causes are expected to be deterministic or probabilistic, and
the form of the function integrating the influence of multiple
causes (e.g., summation vs. averaging). Although we be-
lieve the number of such general structural properties,
which provide the building blocks for causal models, will
prove to be relatively small, it should be readily apparent
that the number of distinct causal models that could be
constructed by forming combinations of such properties is
enormous. It is this combinatorial richness that helps enable
human causal induction to cope with the acquisition of
novel causal structures, even without the benefit of prior
knowledge about specific causal connections.

Causal-model theory thus leads us to reject the idea that
human causal induction is based on a small number of
relatively monolithic causal schemas. Nor would we expect
our inductive apparatus to be tailored to purely syntactic
distinctions such as linear separability (cf. Holland,
Holyoak, Nisbett, & Thagard, 1986). In seeking theoretical
generality within the theory-based view, some researchers
have sought to identify ties between variations in linear
separability and general content domains. For example,
Wattenmaker (in press) reported a series of experiments on
category sorting and learning that suggests that social cat-
egories (e.g., introverted vs. extroverted, active vs. passive,
cautious vs. noncautious) generally lead to biases favoring
LS categories, whereas object categories (e.g., furniture,
animals, or vehicles) tend to be more compatible with NLS
categories. Wattenmaker found biases of this sort when he
used familiar materials; however, such differences might be
attributed to use of specific world knowledge, rather than to
more general differences between the structure of social and
object categories. Wattenmaker also examined the acquisi-
tion of categories based on arbitrary social features. If social
categories comprise a natural domain in which acquisition
of LS structures is favored, then such structures should be
learned relatively quickly given that a social context is
established, even in the absence of more specific prior
knowledge. However, Wattenmaker found no advantage for
the LS arrangement in either of two experiments that used
arbitrary social categories. Thus while Wattenmaker's (in
press) results provided additional evidence that specific and
explicit prior knowledge can mediate the ease of learning
different category structures (cf. Wattenmaker et al., 1986),
they provided no evidence that social or object domains per
se serve as a basis for organizing causal learning.

It is possible that certain content domains are in fact
strongly correlated with particular causal models (although
in the absence of a systematic survey of the ecological
frequency of different causal structures, there is no strong
basis for positing such general correlations for social or
object categories). If this was the case, then domain-related
differences would not be caused by the different semantic
contents of the learning material but rather by different
underlying causal structures that are specified in a domain-
general fashion. For example, the greater ease of NLS
structures within the object domain may be due to the fact
that common-cause models happen to occur more often in
this domain than in other domains. Causal-model theory
predicts that it is the underlying causal structure, rather than

more superficial characteristics of the specific content do-
main, that primarily determines the representation of rela-
tions among features in causal categories.
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