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Theories of skill acquisition have made radically different predictions about the 

role of general problem-solving methods in acquiring rules that promote effec- 

tive transfer to new problems. Under one view, methods that focus on reaching 

specific goals, such as means-ends analysis, are assumed to provide the basis for 

efficient knowledge compilation (Anderson, 1987). whereas under an alternative 

view such methods are believed to disrupt rule induction (Sweller, 1988). We sug- 

gest that the role of general methods in learning varies with both the specificity 

of the problem solver’s goal and the systematicity of the strategies used for 

testing hypotheses about rules. In the absence of a specific goal people are more 

likely to use a rule-induction learning strategy, whereas provision of a specific 

goal fosters use of difference reduction, which tends to be a non-rule-induction 

strategy. We performed two experiments to investigate the impact of goal specif- 

icity and systematicity of rule-induction strategies in learning and transfer within 

a complex dynamic system. The results of Experiment 1 indicated that during free 

exploration of a problem space, greater learning occurred if participants adopted 

more systematic strategies for rule induction, and that participants come to favor 

such strategies. Experiment 2 revealed that participants who were provided with 

a specific goal performed well on the initial problem but were impaired on a 

transfer test using a similar problem with a different goal. Instruction on a 

systematic rule-induction strategy facilitated solution for both the initial and 

transfer problems, but participants’ use of this strategy declined if they had a 

specific goal. Our results support Sweller’s (1988) proposal that general problem- 

solving methods applied to a specific goal foster acquisition of knowledge about 

an isolated solution path but da not provide an effective way of learning the 

overall structure of a problem space. We interpret these results in terms of dual- 

space theories of search through problem space. 
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INTRODUCTION 

A central problem in knowledge acquisition is to identify the relationship 
between problem solving and learning. People can learn from solving prob- 
lems, but it is unclear exactly how learning takes place or what is learned. 
People sometimes seem to learn little from a problem-solving episode except 
a specific solution to a particular problem; yet on other occasions, people 
acquire more general knowledge that can be applied to a wide range of 
related problems. What is the difference? 

Impact of Goal Specificity on Learning 
A particularly intriguing possibility is that some solution methods may be 
effective for finding solutions to specific problems, but relatively ineffective 
in promoting abstraction of knowledge of the structure of the problem that 
would support transfer to novel but related problems. A case of particular 
theoretical interest concerns the role of general problem-solving methods 
(often termed “weak methods”) in learning. One such general method is 
means-ends analysis, which involves difference reduction (removing the 
largest difference between the current state and goal state), combined 
with subgoaling (recursively solving the subproblem of getting from the cur- 
rent state to that which satisfies the preconditions of required operators). 
Some theories of learning have claimed that means-ends analysis, while 
itself a weak problem-solving method used primarily by novices, is nonethe- 
less a valuable stepping stone toward expertise. According to this view, 
solutions first generated by means-ends analysis are subsequently compiled 
into rules that allow more efficient solutions to be found for problems 
similar to the original one (e.g., Anderson, 1987; Larkin, 1981). 

Other theorists, however, have argued that means-ends analysis and 
similar problem-solving methods can actually impede the acquisition of 
general rules (e.g., Mawer & Sweller, 1982; see Holyoak, 1991, for a brief 
review). Means-ends analysis can be applied to problems with well-defined 
operators and a specific goal; however, its immediate product is not knowl- 
edge of the rules that govern the problem, but simply a solution path that 
achieves the immediate goal. We will term a strategy that achieves a specific 
goal without necessarily yielding rules a goal-oriented strategy. In contrast, 
other learning strategies can operate on ill-defined problem situations that 
lack a specific goal. In the absence of a specific goal, free exploration of a 
problem space may yield rules about state transitions, which can later be used 
to achieve a relatively wide variety of goals, thus promoting transfer to a 
family of similar problems. Such exploratory strategies may be effective for 
rule acquisition, in contrast to goal-oriented strategies which may be most 
effective for achievement of a specific goal. We consider a goal to be non- 
specific if the focus is other than towards reaching a solution state. In the 
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absence of such a specific goal we assume that people will be more likely to 
focus on learning a concept or a rule that describes the structure of the 
problem. 

Sweller and coworkers found evidence that people with a nonspecific 
goal gained more knowledge about a task than did people with a specific 
goal (e.g., Mawer & Sweller, 1982; Sweller, 1988). These investigators have 
examined goal specificity with a variety of different problems: the Tower of 
Hanoi problem (Sweller, 1983, Experiment l), maze learning (Sweller, 1983, 
Experiment 2; Sweller & Levine, 1982), geometry (Sweller, 1988; Sweller, 
Mawer, & Ward, 1983, Experiments 4, 5, 6, 7), mathematics (Mawer & 
Sweller, 1982; Sweller, Mawer, & Howe, 1982), and kinematics (Sweller et 
al., 1983, Experiments 1,2, 3). They have interpreted their results as evidence 
that people apply different learning strategies depending on the specificity 
of the stated goal. For example, participants in one experiment involving 
solving geometry problems were provided with partial information about 
the angles and sides of a triangle and were asked either to calculate all possi- 
ble angles and sides (nonspecific goal) or to calculate a particular angle 
(specific goal); however, these problems were designed so that all angles had 
to be calculated in order to achieve either type of goal. Participants given a 
specific goal appeared to form subgoals (finding which angles and sides 
were necessary to calculate the unknown angle) and to solve the problem by 
means-ends analysis, a goal-oriented strategy. In contrast, participants 
given a nonspecific goal appeared to use a strategy suitable for inducing 
rules. Participants who received the nonspecific goal were subsequently 
more successful in solving problems. 

By what mechanism could the specificity of a goal affect one’s strategy? 
A number of theorists have argued that people can perform search in multi- 
ple problem spaces (e.g., Dunbar, 1993; Klahr & Dunbar, 1988; Simon & 
Lea, 1974). Klahr and Dunbar (1988) applied a dual-space framework to 
hypothesis testing. In their model, effective hypothesis testing consists of 
coordinated search through two different spaces: hypothesis space and 
experiment space. Search of hypothesis space consists of generating and 
modifying hypotheses about the structure of the system. Predictions derived 
from rules are than tested by experiments based on search of the experiment 
space. Klahr and Dunbar’s model was an extension of that proposed by 
Simon and Lea (1974), who claimed that problem solving and induction can 
be contrasted as searches of different spaces. Simon and Lea defined two 
different types of problem spaces: instance space and rule space. Instance 
space is a problem space in which it is possible for the new state to be 
directly tested agains the goal state (e.g., checking if all disks in a Tower of 
Hanoi problem are on the destination peg). Klahr and Dunbar’s experiment 
space is roughly equivalent to instance space. Rule space has the property 
that a state (i.e., a possible rule) cannot be tested against a goal in that same 
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space; instead, rules must be tested by experiments that generate states in 
instance space. Rule space is thus roughly equivalent to Klahr and Dunbar’s 
hypothesis space. 

Simon and Lea (1974) defined a problem-solving task as one that only 
requires search of instance space, whereas an induction task requires an 
interaction between search of both instance space and rule space. The nature 
of the task, thus, dictates the type of strategy that will be used: A strategy 
effective for searching the instance space will be used with problem-solving 
tasks; strategies suitable for searching rule space will be necessary for induc- 
tion tasks. The dual-space framework also provides a way of understanding 
the distinction between specific and nonspecific goals. A specific goal is a 
state in the instance space. A nonspecific goal is the absence of a goal in in- 
stance space. Because they lack direction as to how to search instance space, 
learners who do not have a specific goal may use exploration of rule space 
to direct their search of instance space. If the specificity of goals affects 
whether a problem is seen primarily as search of one space or the other, then 
this factor may affect what types of strategies are used. 

By Simon and Lea’s (1974) definition, in a pure problem-solving task 
there is no need to generate hypotheses; rather, all that is required is move- 
ment through instance space by the application of operators. Insofar as a 
task is amenable to well-defined, goal-oriented strategies that are effective 
for searching the instance space, such as means-ends analysis or difference 
reduction, it will be possible to achieve goals defined in instance space. But 
the more a task requires the generation and evaluation of rules (i.e., move- 
ment through rule space), the less beneficial will be a strategy that only 
searches instance space, and the more useful will be a strategy that searches 
rule space. Means-ends analysis, like any goal-oriented strategy, compares a 
current state to a goal state in the same space, and thus it is only applicable 
to search of instance space. Means-ends analysis may support hypothesis 
testing by providing an efficient strategy for testing rules, but as standardly 
interpreted, it is not a strategy for generating rules. One might claim that 
means-ends analysis could be used to generate rules if we allow nonspecific 
goals such as “find rule” to be considered specific solution states within 
rule space; however, this usage is quite different from the standard form of 
means-ends analysis as it is applied in instance space. 

Simon and Lea (1974) pointed out that the same task can often be treated 
as either an induction task or a problem-solving task, depending on the 
space people search. For example, the widely studied problem-solving task, 
the Tower of Hanoi, can be treated as a hypothesis-testing task in which a 
general procedure for accomplishing the movement of disks is induced. 
Usually, however, participants only search instance space in their efforts to 
solve the problem. Most problem-solving tasks are probably in fact a mix- 
ture of induction and problem solving; however, the degree to which partic- 
ipants will search both spaces, rather than instance space alone, may vary 



GOAL SPECIFICITY 79 

with the goals of the participant. In order to investigate the impact of goal 
specificity on learning, this study examined the performance of participants 
on the same basic task, which could be treated as either a hypothesis-testing 
or a problem-solving task. Participants with a nonspecific goal should be 
more likely to treat it as a hypothesis-testing task and use an appropriate 
strategy which will lead them to gain more knowledge about the structure of 
the task. 

Impact of Systematicity on Effectiveness of Strategies 
People differ in the degree of systematicity with which they formulate and 
test their hypotheses, and those who formulate hypotheses in a task-appro- 
priate and testable way generally gain more knowledge (e.g., Dunbar, 1993; 
Klahr & Dunbar, 1988; Klahr, Fay, & Dunbar, 1993). Tschirgi (1980) iden- 
tified different strategies for testing hypotheses about the influence of 
multiple factors on one or more dependent variables. One highly systematic 
strategy is the VOTAT (Vary One Thing At a Time) strategy, in which one 
factor is varied while the others are held constant. VOTAT contrasts with 
less systematic strategies such as changing all factors haphazardly (CA, for 
Change All). (Similar strategy classifications have been suggested by Branke, 
1991, and Putz-Osterloh, 1993.) As Tschirgi pointed out, the VOTAT strategy 
allows the logical disconfirmation of alternative hypotheses, and thus it is 
central to experimental design in science. Tschirgi found that VOTAT was 
the most common strategy employed by adults when they encountered 
negative outcomes. In a study of hypothesis generation and evaluation, 
Klahr et al. (1993) found that participants who changed only one aspect of 
the task at a time (i.e., used VOTAT) were more successful at identifying 
correct rules than were those who varied multiple aspects at once. 

Although previous work implicates both goal specificity and systematicity 
of strategies as important determinants of what is learned during problem 
solving, prior research has not investigated the relationship between these 
factors. This study seeks to measure and manipulate both factors in order to 
investigate the influence of goal specificity and systematicity of learning strat- 
egies on the acquisition and transfer of knowledge about a complex dynamic 
system. We suggest that although these are distinct factors, they will have 
similar effects on a complex problem-solving task because each alters the ex- 
tent to which the task is treated as hypothesis testing, thus encouraging use 
of a strategy appropriate to searching rule space. Accordingly, each factor 
should have an impact on problem solving and transfer performance through 
improvements in learners’ knowledge. The learning domain, biology-lab 
(description follows), was chosen because it is especially suitable for investi- 
gating the interrelationships between problem solving and hypothesis test- 
ing, and because it makes it possible to measure the quality of learners’ 
knowledge in multiple ways. 
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Figure 1. Structure of the system for biology-lab. 

Biology-Lab: A Dynamic Problem Environment 
Since the early 198Os, researchers have used computer-simulated scenarios 
to study complex problem solving (for a review, see Funke, 1991). These 
tasks are relatively complex, as multiple variables have to be manipulated in 
order to achieve multiple goals simultaneously. In this study, we used a 
computer-driven dynamic problem environment we termed biology-lab, 
constructed using the shell DYNAMIS (Funke, 1991). In our cover story, 
participants were told that they were in a biology lab in which there is a tank 
with four species of sea animal (crabs, prawns, lobsters, sea bass). These 
species are affected by four input variables (temperature, salt, oxygen, cur- 
rent). The structure of the environment, illustrated in Figure 1 (which was 
never shown to our participants), was such that two of the outputs (prawns 
and crabs) are relatively simple to manipulate because each is influenced by 
only one input. The other two outputs are more complex, because each is in- 
fluenced by two factors. One output (sea bass) is affected by two inputs, 
and the other (lobster) is affected by a decay factor (marked as a circle con- 
nected to the output) in addition to a single input variable. The decay factor 
was implemented by multiplying the output by a constant factor (less than 
1) on each trial. Decay is a dynamic aspect of the system, because it yields 
state changes even if there is no input (i.e., all inputs are set to zero). The 
system is thus complex in that it involves multiple input variables that must 
be manipulated to control multiple output variables, and dynamic in that 
the state of the system changes as a joint function of external inputs and in- 
ternal decay. 

To calculate the new value for each output value i on trial t, the following 
formula was applied: 

output;, t = (I-Aj)outputi, I-J + C WC inputj, t 
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where xi is the decay factor, inputj is the number entered for input unit j, 
and WV is the weight on the link between input unitj and output unit i. Note 
that an input variable represents change, so that setting an input to zero 
means that the variable is not responsible for any change in the system. 

The biology-lab task can be approached in two different ways. It can be 
treated as a problem-solving task in which the participant tries to bring the 
system to a goal state. Reaching a specific goal could be accomplished by 
manipulating the pattern of inputs in order to reduce the difference between 
the current output state and the goal state, thus searching the instance 
space. Alternatively, the biology-lab can be treated as a hypothesis-testing 
task in which a participant tries to discover the rules that govern the 
behavior of the system, which is a nonspecific goal, and to test these rules 
by setting inputs to see if the predicted outputs are generated. Such an 
approach involves search of both rule space and instance space. The biology- 
lab allows us to assess the amount of knowledge that participants induce 
both by such indirect measures as transfer performance, as previous studies 
have done, and by more direct measures of their knowledge of specific 
regularities. 

The biology-lab task contrasts with the tasks used by Sweller and 
coworkers (Mawer & Sweller, 1982; Sweller, 1983, 1988; Sweller & Levine, 
1982; Sweller et al., 1982; Sweller et al., 1983) in that the tasks used by them 
were not dynamic and were less complex. Their problem-solving tasks in- 
volved a small number of well-defined operators, and the tasks required dis- 
covering how to use the operators. Thus, their tasks were simple in that 
their behavior was governed by a small number of known rules. In biology- 
lab, by contrast, the rules are unknown and the major aim is to discover 
what the rules are. This rule space is very large as participants must discover 
which variables are linked, the nature of these links (linear or multiplicative), 
and the magnitudes of the weights on these links, in order to discover how 
the whole system works. The number of operators is large, as any real 
number can be entered as the value for each input variable; and the instance 
space is also large as it consists of all possible combinations of values for the 
output variables. In complex tasksin which discovering the rules is very dif- 
ficult, using strategies that explore only instance space by generating new 
states may help learners move closer to the goal, even if they do not discover 
the rules governing the system’s behavior. This possibility is illustrated by 
the work of Berry and Broadbent (1987), who found no relationship between 
a participants’ performance in a complex dynamic-system task and his or 
her explicit knowledge of that system. In complex tasks, participants may 
show similar performance in reaching goals but do so via different methods, 
either problem solving or hypothesis testing. It follows that in complex 
dynamic tasks participants may achieve performance of equivalent quality 
in terms of reaching a goal specified from the beginning, but those taking a 
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hypothesis-testing approach should show better transfer to a task involv- 
ing a new goal. The biology-lab task, which has the requisite complexity and 
dynamic quality, may allow us to distinguish when learning is due to one or 
the other of these approaches. 

We used the biology-lab task to test the influence of goal specificity on 
participant’s knowledge of the system, their accuracy in solving a specific 
initial goal, and their ability to transfer their knowledge to similar problems 
with different goals. We predicted that participants given a specific goal 
would learn enough to achieve the given goal but have a poorer knowledge 
of the structure of the task than participants given a nonspecific goal. The 
more complete representation of the system attained by the latter group was 
expected to lead to more effective transfer to other biology-lab problems 
with altered goals. 

We also manipulated systematicity of participants’ hypothesis-testing 
strategies. Our hypothesis was that a systematic strategy, VOTAT, would be 
more effective than less systematic strategies for acquiring general structural 
knowledge about the domain, resulting in more knowledge and more effective 
problem-solving performance. In Experiment 1, we examined participants’ 
spontaneous use of strategies when given a nonspecific goal, in attempting 
to validate our assumption that VOTAT would be an effective strategy for 
learning about the system. In Experiment 2, both goal specificity and syste- 
maticity of learning strategy were experimentally manipulated in order to 
investigate their individual and joint effects. 

EXPERIMENT 1 

Experiment 1 was designed to explore the strategies participants would 
spontaneously use when presented with a nonspecific goal in the learning 
phase of the biology-lab task. The biology-lab system requires relatively 
complex induction as rule space is quite large, in that there are four input 
and four output variables with unknown connections. At the simplest level 
of hypotheses about what is linked to what, every possible connection 
between an input and an output variable (16 in total) and four possible 
decays constitute possible hypotheses. Moreover, it is necessary not only to 
learn the basic connections between inputs and outputs (e.g., oxygen has an 
influence on crabs), but also to test hypotheses about the nature of the link 
(linear, multiplicative, or some type of interaction) and to discover the 
magnitude of the influence of each connection (e.g., the input of oxygen is 
multiplied by 2 and added to the total number of crabs). Only after observ- 
ing that a specific input variable influences a specific output variable can 
people begin to formulate a hypothesis and induce a rule. 

The task consisted of two parts, a learning phase and a specific problem- 
solving phase. During the learning phase, participants were expected to con- 
struct a representation of the dynamic system. Then in the problem-solving 
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phase, they were expected to use their mental representation of the problem 
space to bring the system to a specified goal state. Depending on the strategy 
adopted during the learning phase, we expected different representations to 
be formed. Given that the goal was nonspecific, we expected most partici- 
pants to treat the task as hypothesis testing and, thus, to employ a systematic 
strategy. Our analyses, therefore, focused on the systematicity of the strate- 
gies that emerged. Participants who use a systematic strategy such as VOTAT 
should have more knowledge of the rule space than those who adopt less 
systematic strategies such as CA, because an appropriate systematic strategy 
should be most effective for rule induction. More complete knowledge of 
the system should help participants to reach the specific goal in the subse- 
quent problem-solving phase. Unlike previous studies of the impact of dif- 
ferent strategies on rule induction, Experiment 1 included relatively direct 
measures of the amount of knowledge that participants acquired during the 
initial learning phase. One of the aims of Experiment 1 was to validate our 
measures of knowledge. 

Method 

Participants 
Thirty-six undergraduate (16 female, 20 male) students at the University of 
California, Los Angeles, participated for course credit. 

Task and Procedure 
The biology-lab problem required participants on each trial to set the levels 
of the four input variables and observe the resulting values of the output 
variables (numbers of each of four species of sea animals). The underlying 
structure of the system was as depicted in Figure 1. Presentation of the 
problem and collection of participants’ responses was controlled by a 
microcomputer. Participants were first informed that their basic task was to 
discover how various water quality factors influence the reproduction of sea 
animals. The experimenter explained the interface and demonstrated how to 
manipulate the input variables and to observe how the output variables 
changed after every trial. A trial consisted of participants assigning inputs 
for each water quality factor. These inputs could be any number, positive or 
negative, including zero. Participants were informed that the number of one 
of the species was reduced on each trial by a decay factor. They were not 
told which species was affected by decay (it was lobster) or that another 
species was affected by two input factors (sea bass; see Figure 1). On each 
trial, participants could manipulate as many input variables as they wanted 
by entering any real number for each input variable. Each series of six trials 
was defined as a round. Each round (both learning and problem solving) 
started with the system initialized at the same number of each species 
(namely, 100 crabs, 200 prawns, 1,000 lobsters, 500 sea bass). Participants 
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received four initial learning rounds followed by a fifth round in which they 
were asked to produce a specific goal state (namely, 50 crabs, 400 prawns, 
900 lobsters, and 700 sea bass). This final round was called the solution 
round. 

After each round of the learning phase (Rounds l-4), participants com- 
pleted a structure diagram, in which they indicated how they believed the 
input variables affect the output variables. They were provided with a dia- 
gram showing the inputs and outputs as in Figure 1, but with all links omitted. 
Their task was to draw links between variables that they believed to be depen- 
dent and also to assign weights indicating how strong they felt was the influence 
of the input variable. The concept of a weight between an input and an out- 
put variable was explained using the data participants generated to illustrate 
a possible weight from the input oxygen to the output crabs. The special 
symbol for decay (a loop from an output variable to itself) was also explained. 

In the fifth round, the participants were presented with a specific goal 
state, which they had to reach in as few trials as possible and then try to 
maintain. After concluding the fifth round, participants answered 10 pre- 
diction questions such as, “If you have 100 crabs in your system and you set 
oxygen = 20, how many crabs do you have afterwards?” Success in answer- 
ing the prediction questions provided another index of participants’ knowl- 
edge of the overall problem space. The entire experiment took about 1 hour. 

Results and Discussion 

Classification of Hypothesis-Testing Strategies 
For each of the four learning rounds, participants were classified into three 
groups on the basis of the hypothesis-testing strategies they spontaneously 
adopted. The three categories were (a) varying only one input variable at a 
time while setting the others to zero (VOTAT), (b) changing all variables in a 
haphazard way (CA), and (c) the heterogeneous collection of all other strat- 
egies (HT). A round was coded as reflecting the use of the VOTAT or CA 
category if four of the six trials of that round exhibited the relevant pattern. 
For example, if on four trials of a round, the participant varied all four 
input variables, then the strategy for that round was classified as CA. Any 
strategy that could not be classified as VOTAT or CA was coded as HT. 
These heterogeneous strategies exhibited varying degrees of systematicity. 
In some cases, participants tended to hold one variable constant while 
varying the others; in other cases, they varied two variables at a time. Use of 
a HT strategy was also recorded if all four variables were changed but the 
change was systematic so that rule induction was possible (e.g., one variable 
was set negative and three positive, or one variable was set to a large value 
and three to small values). The frequencies of these HT strategies were 
individually too low to warrant more fine-grained analyses; however, it is 
reasonable to view this category as comprising strategies of systematicity 
intermediate between that of VOTAT and CA. 
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Dependent Variables 
Three dependent variables were analyzed to provide evidence of learning 
and transfer. 

(1) Structure score. The structure diagram completed by all participants 
after each of the four learning rounds was used to derive a score reflecting 
degree of knowledge of the underlying structure of the system. This struc- 
ture score was computed by finding the proportion of correct specifications 
for each of the three elements of the structure-links, directions, and weights- 
adjusted for guessing by subtracting the proportion of all possible incorrect 
elements given (see Woodworth & Schlosberg, 1954, p. 700). The structure 
score is the sum of these three adjusted proportions. Because the structure 
score after Round 4 was most relevant to participants’ knowledge at the end 
of the initial learning phase, this score was used in all analyses reported 
here. 

(2) Solution error. Solution error in reaching the specific goal state dur- 
ing the solution round (Round 5) was computed for each of the four output 
variables as the absolute difference between the target value and the obtained 
value. As this measure produced a skewed distribution, the variance was 
corrected by applying a logarithmic transformation. Some participants 
reached the goal states exactly, but as zero cannot be transformed logarith- 
mically, one was added to the error scores of every participant. Solution 
errors were computed for each of the six trials that comprised Round 5, in 
order to determine how quickly participants were able to approach the target 
goal. In most analyses, a single solution error score was used, obtained by 
summing the error for the four output variables and taking the mean over 
the six trials of the solution round. For analyses of variance, however, the 
individual error scores for each trial and output variable were included as 
factors. 

(3) Prediction score. The third dependent variable was the number of 
correct predictions (out of 10) regarding the influence of specified inputs on 
specified outputs. 

Development of Strategies 
Figure 2 depicts the percentage of participants classified as using each of the 
three types of strategies for each of the four learning rounds. In Round 1, 
most of the participants (67%) used the unsystematic strategy of changing 
all four input variables at once (CA), whereas just 19% began by using 
VOTAT. By Round 2, 47% of the participants used CA, and another 47% 
used VOTAT. By Round 4, only 22% still used CA, whereas 56% tested 
their hypotheses with VOTAT. The percentage of participants using HT 
strategies remained relatively low across the four rounds, never exceeding 
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1 2 3 4 

Figure 2. Percentage of participants using each of the three types of strategies over the 

four learning rounds of Experiment 1. 

22%. The trend towards use of VOTAT is very clear. Between Rounds 1 and 
4, 15 participants (42% of total sample) changed between VOTAT and one 
of the other strategies, and all except 1 of these participants changed to 
VOTAT rather than away from it. 

As a measure of the extent to which participants used systematic strategies 
over the course of the learning phase, a strategy systematicity score was cal- 
culated by assigning to each round a score of 0 for use of the CA strategy 
for the round, a score of 1 for using a HT strategy, and a score of 2 for 
using VOTAT. The means of these scores increased monotonically over the 
four rounds (Round 1: 0.53 [SD = 0.811; Round 2: 1 .OO [SD = 0.981; Round 
3: 1.28 [SD = 0.851; Round 4: 1.33 [SD = 0.82]), showing a significant linear 
trend, F(1, 35) = 23.00, p c .OOl, and a quadratic trend, F( 1, 35) = 4.49, 
p< .05. An alpha level of .05 was used for all statistic tests reported in this 
article. 

The observed pattern of strategy development thus indicates that partici- 
pants spontaneously progressed to more systematic strategies over the 
course of the learning phase. Only 1 or 2 participants per round regressed to 
a less systematic strategy, whereas many participants eventually shifted 
from using CA to using VOTAT. 

Analyses of Structure Scores 
Participants’ structure scores increased monotonically across the four learn- 
ing rounds: M= 0.88, SD = 0.87; M= 1.40, SD = 0.98; M= 1.78, SD = 0.82; 
and, M= 1.79, SD = 0.81; respectively, for Rounds l-4. Across the four rounds 
there was a significant linear trend in scores, F(l, 35) = 40.79, p < .OOl, but 
also a significant quadratic trend, F(l, 35) = 4.60, p < .05. Scores appeared 
to improve at a diminishing rate across rounds, with minimal improvement 
between the final two learning rounds. It thus appears that three rounds 
were sufficient for participants to acquire most of what they were capable 
of learning about the system. 
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We analyzed the relationship between strategy in Round 4 and the struc- 
ture score for Round 4, because participants’ knowledge at the end of the 
learning phase would be expected to have the closest relationship to subse- 
quent problem-solving performance. Final structure scores differed across 
the three strategy groups, F(2, 33) = 19.03, pc .OOl. Pairwise Newman- 
Keuls tests indicated that participants who used VOTAT (M= 2.25, SD = 0.47) 
had higher structure scores than those who used HT (M= 1.64, SD= 0.76) 
strategies, who had higher structure scores than did those who used CA 
(M= 0.78, SD = 0.59). Another measure of this relationship is provided by 
the high correlation between the summed strategy systematicity scores (summed 
over the four rounds) and the structure score, r= .76, p< .OOl, indicating 
that the greater the extent to which participants used a systematic strategy, 
the better their knowledge of structure. Thus, greater systematicity of strat- 
egies was associated with acquisition of more accurate knowledge of the 
problem space. 

Analyses of Solution Error 
Solution error tended to be higher for participants who used CA (M= 4.80, 
SD = 0.42) than for those who used HT strategies (M= 4.11, SD = 1.34) or 
VOTAT (M= 3.87, SD = 1.47), although not significantly, F(2, 33) = 1.49, 
p > . 10. However, the overall extent to which participants’ used systematic 
strategies was associated with problem-solving success, as the strategy system- 
aticity score correlated negatively with solution error, r= - .32, pc .05. 

Collapsing across the strategy variation, participants’ solution errors 
were not correlated with structure scores, r = - .05, p> .25. However, exam- 
ination of the scatter-plot revealed 3 clear outliers who had the three highest 
solution errors, but reasonable structure scores. When data from these 3 
participants were eliminated, a significant negative correlation of solution 
error with final structure scores was obtained, r= - .54, pc .Ol. 

Analyses of Prediction Scores 
Strategy variations in Round 4 had a pronounced relationship with perfor- 
mance on the prediction task that followed the solution round. The mean 
number of correct predictions (out of 10) was 4.40 (SD= 3.00) for par- 
ticipants using VOTAT, M= 2.75, (SD= 2.92) for those using HT strate- 
gies, and none at all for those using CA, F(2, 33)= 8.00, p< .Ol. Pairwise 
Newman-Keuls tests indicated that participants using CA had significantly 
fewer correct predictions than those using VOTAT or HT strategies. Consis- 
tent with this finding, strategy systematicity scores were positively cor- 
related with prediction scores, r= .43, p< .Ol. In addition, participants’ 
prediction scores were positively correlated with their final structure scores, 
r = .82, p< JO1 . 
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In summary, the results of Experiment 1 revealed that the systematicity 
of participants’ spontaneous hypothesis-testing strategies predicted their 
success in learning the structure of the biology-lab problem space. Those 
who used the least systematic strategy, CA, were significantly impaired in 
providing links and weights in the diagram task (structure score) and in 
making predictions about outputs for new input levels (prediction score). 
Overall, use of more systematic strategies tended to be associated with lower 
solution errors in the solution round, in which participants were asked to 
generate a specific goal state for the output variables. The results of Experi- 
ment 1 served to validate the diagram task as a measure of participants’ 
knowledge of the problem space, and provided preliminary evidence that 
learning is influenced by the systematicity of problem-solving strategies. 
Although the strategy classification was somewhat imprecise, most partici- 
pants eventually adopted the most systematic strategy, VOTAT, and the 
more they used it, the better they tended to perform. However, even those 
using the VOTAT strategy generally did not solve the problem completely, 
as the mean number of correctly identified weights (uncorrected for guess- 
ing) for such participants was only 2.0 out of 6.0. Participants clearly find 
the biology-lab task to be difficult. 

Experiment 1 provided evidence that VOTAT is an effective strategy for 
learning about the biology-lab system, and that participants come to favor 
this strategy. This result provided the foundation for Experiment 2, in 
which we sought to more precisely test the hypothesized linkage between 
strategy and learning by directly manipulating participants’ strategies. 
Experiment 1 was limited in that the learning phase always involved a non- 
specific goal, which would be expected to maximize use of systematic strategies. 
Experiment 2 was performed to assess learning and transfer while manipul- 
ating both systematicity of strategies and goal specificity. 

EXPERIMENT 2 

Experiment 1 established that the biology-lab task is suitable for investiga- 
ting the relationship between strategies for hypothesis testing and sub- 
sequent problem-solving performance. Whereas Experiment 1 examined 
spontaneous strategy use, Experiment 2 manipulated the strategies that 
participants used both by direct instruction and by varying the specificity of 
their goals during the learning phase. If Sweller (1988) was correct in his 
analysis of the impact of goal specificity, we would expect a specific goal to 
encourage use of a goal-oriented strategy. Such a strategy can be expected 
to yield good performance in solving a problem based on that particular 
goal, but relatively poor knowledge of the overall structure of the problem 
space. In contrast, a nonspecific goal will encourage use of systematic strat- 
egies such as VOTAT, which was shown in Experiment 1 to be an effective 
strategy for discovering the structure of a task. Therefore, a nonspecific 
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goal should lead to greater knowledge of the rule space and hence superior 
transfer performance. Our test of transfer was a task with the same struc- 
ture, but different goal. Although this may appear to be a trivial transfer 
task, it will only be trivial if the participants’ knowledge is of the structure 
of the task. If, as a consequence of trying to reach a specific goal, what 
participants learn is specific to that goal, then transfer performance to a 
new goal should be degraded. In addition, if participants often fail to use 
VOTAT spontaneously (as was the case in Experiment l), then instruction in 
its use may be necessary to achieve superior learning from a free exploration 
phase. 

Method 

Participants 
Sixty undergraduate students (22 female, 38 male) at the University of 
California, Los Angeles, participated for course credit. Data were discarded 
from an additional 5 participants (distributed across all four conditions) 
who told the experimenter that they had no idea how to learn anything 
about the system. 

Design and Procedure 
The experiment included four between-subject conditions, defined by the 
factorial combination of two levels of goal specificity (specific vs. non- 
specific) and two levels of strategy instruction (instruction to use VOTAT 
vs. no instruction). Fifteen participants served in each condition. As in 
Experiment 1, participants received an initial learning phase (three rounds, 
rather than four as in Experiment 1) followed by a solution round (Round 4) 
in which they were asked to produce a specific goal state (namely, 50 crabs, 
400 prawns, 900 lobsters, and 700 sea bass). A fifth round was then pro- 
vided in which all participants were asked to solve an additional transfer 
problem (reaching the goal state of 250 crabs, 200 prawns, 1,000 lobsters, 
and 350 sea bass). 

Before starting to manipulate the system on the computer, all partici- 
pants received general instructions about the task. All participants were told 
that they should explore the system so as to learn as much as possible, but 
the four groups of participants were distinguished by instructional manip- 
ulations of how they approached the initial learning phase. Participants in 
the nonspecific goal groups were not given any specific goal until Round 4. 
In Rounds 1 through 3, these participants were simply asked to set inputs 
and observe outputs in order to figure out how the system works, just as 
was the case for participants in Experiment 1. In particular, participants 
in the specific-goal groups were informed of the goal for the solution round 
from the outset of Round 1; thus, they were exposed to the goal for four 
rounds, although they too were told that they should explore the system so 
as to learn as much as possible. 
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Participants in the strategy-instructed groups were given written instruc- 
tions explaining that the optimal strategy (VOTAT) was to vary just one 
variable at a time, setting the remaining variables to zero. The VOTAT strat- 
egy was first explained using an example from science: If scientists wish to 
test different medicines that may cure a disease, they do not give all the 
medicines to each patient; rather, they test one medicine at a time to deter- 
mine the separate influence of each. The strategy was then illustrated with 
an example from the biology-lab task: To learn about the effect of tempera- 
ture, it would be necessary to manipulate this input variable in isolation. 
Strategy-instructed participants were directed to use the strategy described 
to them in exploring the system. In contrast, the strategy-uninstructed 
groups received no advice on how to explore the system, although they were 
told that during the first three rounds their aim was to explore the system. 

The identical biology-lab task as had been used in Experiment 1 was also 
used in Experiment 2 (see Figure 1). After each round of the learning phase 
(Rounds l-3), participants completed a structure diagram in the same manner 
and with the same instructions as in Experiment 1. In the solution round 
(Round 4), all participants were presented with a specific goal state, which 
was the same as the specific-goal groups had had throughout the learning 
phase. In the transfer round (Round 5), all participants were asked to achieve 
a different goal state, one which was new to participants in all conditions. 
Performance on this new goal provided a measure of the degree to which 
learning over Rounds 1 through 4 yielded transfer to a novel problem drawn 
from the same problem space. Time to complete each of the five rounds was 
recorded. However, response times of Round 1 are not meaningful as they 
include the time used to explain the task before participants started to 
manipulate the system. Finally, a prediction task similar to that used in 
Experiment 1 was administered to all participants. As in Experiment 1, 10 
questions were used, such as, “If you have 100 crabs in your system and you 
set oxygen= 20, how many crabs do you have afterwards?” However, 
rather than asking for an open-ended answer as in Experiment 1, a four- 
alternative multiple-choice format was used. For this example, the choices 
were 40, 60, 140, and 180. The entire experiment took 1 hour to complete. 

Results and Discussion 

Classification of Learning Strategies 
We examined participants’ patterns of settings for the four inputs during 
the initial learning phase in order to determine their strategy on each round. 
Participants were coded as using the strategies of VOTAT, CA, and HT, 
using the same criteria as in Experiment 1. In addition, participants given a 
specific goal could also be coded as using a difference-reduction (DR) strategy, 
a goal-oriented strategy that focused directly on attaining the specific goal 
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state. Participants were classified as using the DR strategy when two criteria 
were met during a round: (a) at least one of the four output states for the 
specific goal was reached; and (b) for at least one such input, on four out of 
the six trials, participants generated incrementally closer approximations to 
the goal state. The DR category did not arise in Experiment 1, because that 
study did not introduce a specific goal during the learning phase. 

Dependent Variables 
Five dependent variables were analyzed to provide evidence of learning and 
transfer. 

1. 

2. 

3. 

4. 

5. 

Structure score. The structure score was computed as in Experiment 1. 
Only the score for the final learning round (Round 3) was used in the 
reported analyses. 
Solution error. Solution error in round 4 was computed as in Experi- 
ment 1 (i.e., mean over six trials for the summed log-transformed 
absolute errors for the four output variables). Also as in Experiment 1, 
trial and output variables were included as factors in analyses of variance. 
Transfer error. Transfer error was computed for the novel problem 
introduced in Round 5 in the same manner as solution error in Round 4. 
Prediction score. For each of the 10 multiple-choice questions, partici- 
pants received 2 points for selecting the correct answer and 1 point for 
selecting an alternative consistent with the correct sign of the relevant 
weight. The sum out of 20 points constituted the prediction score. 
Response time. The time required to complete each round was analyzed 
separately for the three phases (learning, solution, transfer). 

Analyses of Learning Strategies 
Analyses were performed to assess whether our manipulation of learning 
strategy by instructions was successful. Figure 3A shows how the goal con- 
ditions influenced the percentage of strategy-instructed participants using 
each strategy on each round. Eighty percent of all participants in the strategy- 
instructed conditions followed the VOTAT strategy in the first round. Most 
strategy-instructed participants in the nonspecific-goal condition continued 
with the VOTAT strategy through Round 3. However, those strategy-instructed 
participants who were in the specific-goal condition exhibited a strong 
tendency to switch from the VOTAT strategy to a DR strategy which focuses 
directly on reaching the stated goal. 

Figure 3B shows the comparable strategy analysis for strategy-uninstructed 
participants. In the absence of strategy instructions, most participants did 
not spontaneously use the VOTAT strategy. If the specific-goal group and 
the nonspecific-goal group in Figure 3B are compared, it is apparent that 
giving participants a goal to reach did have an effect on strategies. Many 
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Figure 3. Percentage of strategy-instructed (Panel A) and strotegy-uninstructed (Panel B) 

particiants using alternative strategies over the three initial rounds in Experiment 2. 

(SG=specific gool, NSG=nonspecific goal). 

participants with a specific goal either never used VOTAT or switched to DR 
even if instructed on VOTAT. 

For participants with the nonspecific-goal it was again possible to calcu- 
late strategy systematicity scores in the same way as in Experiment 1. Strategy- 
instructed participants (A4= 1.73, SD = 0.34) had higher scores than strategy- 
uninstructed participants (M= 1.31, SD = 0.66), F(l, 28) = 4.86, p < .05. 
There was no significant effect of round, F(2, 56) = 0.07, nor any interac- 
tion between round and strategy instruction, F(2, 56) = 1.33, p> .25. 

The strategy systematicity score could not be used for goal participants 
as the option of using a DR strategy had been introduced. (By definition, 
nonspecific-goal participants could not use DR, and it is extremely unlikely 
that the criteria for DR could be met randomly.) Although DR is a systematic 
strategy, it is of a completely different type than VOTAT. Therefore, to 
analyze specific-goal participants we gave them a score of 1 for each round if 
they used VOTAT or 0 if they did not. Mean scores over the three rounds 
were then calculated. While VOTAT was used by strategy-instructed partici- 
pants (M= .49, SD = 0.33) more than by strategy-uninstructed participants 
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(M= 0.20, SD = 0.28), F(l, 28) = 6.76, p < .025, these strategy-instructed 
participants had a strong linear trend away from use of VOTAT, F( 1, 14) = 
21 .OO, p< .OOl. The strategy-uninstructed participants, who were much less 
likely to start by using VOTAT, also showed a linear trend away from 
VOTAT, but this was only marginally significant, F(l, 14) = 3.50, p< .lO. 
By scoring DR as 1 (used) or 0 (not used), both specific-goal groups displayed 
strong linear trends towards increased use of DR: strategy-instructed, 
F(l, 14)= 28.00, p< .OOl; strategy-uninstructed, F(l, 14)= 7.98, p< .025. 

It thus appears that our strategy instruction was indeed effective in pro- 
moting use of the VOTAT strategy, but that providing a specific goal created 
a strong pressure to employ a DR strategy, even for those told to use VOTAT. 

Relationship Between Structure Scores and Performance 
Analyses were performed to determine whether the measure of participants’ 
representations based on structure scores for the diagram-completion task 
predicted success on the various problem-solving and prediction tasks. If 
the structure score derived from their structure diagrams after the final 
round of initial learning (Round 3) provides a valid assessment of what they 
had learned about the system, then the structure score would be expected to 
correlate inversely with solution error measured on Round 4 and transfer 
error on Round 5. This was indeed the case. Participants with higher struc- 
ture scores produced lower solution error when they had to reach the goal 
state in Round 4, r= - .57, p< .OOl, as well as lower transfer error in 
Round 5, r= - .65, p< .OOl. In addition, structure scores were correlated 
with degree of success on the prediction task, r = .62, p < .OOl . These results 
confirm the comparable findings from Experiment 1, again validating our 
structure score as a measure of the quality of participants’ knowledge of the 
rule space. 

Influence of Goal Specificity and Strategy on Learning and Transfer 
Participants achieved higher structure scores when given a nonspecific-goal 
(M= 2.35, SD= 0.63) rather than a specific goal (M= 1.69, SD= 0.71), 
F(l, 56) = 15.50, p< .OOl, and when given instruction in the VOTAT strategy 
(M= 2.22, SD = 0.70) rather than no strategy instruction (M= 1.82, SD = 0.76), 
F( 1, 56) = 5.87, p < .025. The interaction between goal specificity and strat- 
egy instruction as determinants of structure score was not significant. For 
solution error scores a 2 x 2 x 4 x 6 repeated measures ANOVA was run with 
goal specificity and strategy instruction as between-subjects factors, and 
output variable and trial as within-subject factors. As summarized in Table 1, 
participants instructed in the use of the VOTAT strategy achieved marginally 
lower solution error than uninstructed participants (M= 2.28, SD = 1.40; and 
M=2.81, SD= 1.02; respectively) in the solution round, F(l, 56)=3.23, 
p< .lO. Solution error did not differ as a function of goal specificity, F(l, 56) = 
0.12, and there were no significant interactions. Although participants in 
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TABLE 1 

Means and Standard Deviations (in Parentheses) 

for Each Learning Condition on Each Dependent Variable in Experiment 2 

Structure Solution 

Score Error 

Transfer 

Error Predictions 

Uninstructed/Specific Goal 1.53 (0.73) 2.93 (0.96) 3.15 (1.28) 13.00 (3.53) 

Uninstructed/Nonspecific Goal 2.10 (0.70) 2.70 (1.09) 2.47 (1.13) 16.13 (2.56) 

Instructed/Specific Goal 1 .B4 (0.70) 2.26 (1.14) 2.46 (1.23) 15.07 (3.33) 

Instructed/Nonspecific Goal 2.61 (0.46) 2.29 (1.40) 1.83 (1.17) 15.87 (4.47) 

the nonspecific-goal condition achieved greater overall knowledge of the 
system structure, those in the specific-goal condition had three additional 
rounds of practive in attaining the goal set for all participants in Round 4. 
Both possible approaches to this task, learning the rules governing how the 
system works or concentrating on finding a path to the specific goal, should 
help participants reach the goal. Which is the most effective may depend on 
the specific system. Therefore, it is conceivable that even if participants 
were using quite different approaches, both approaches could lead to equi- 
valent performance in reaching the goal. 

The most crucial results concern transfer performance on Round 5, when 
a goal that was novel to all participants was introduced. These results are 
shown in Table 1. A similar ANOVA to that used for solution error was used 
for transfer error and revealed the same pattern as that observed for the 
structure score: Strategy-instructed participants could better solve the trans- 
fer round than uninstructed participants, F(l, 56) = 4.67, p c .05, and non- 
specific-goal participants could better reach the goal in the transfer round 
than those with a specific goal, F(1, 56) = 4.43, p< .05. None of the inter- 
actions was significant. To confirm the differences between the effects of 
the manipulations on the solution round and the transfer round, we ran a 
similar repeated measures analysis to that run for solution and transfer 
rounds individually, but now with round (solution vs.transfer) as an addi- 
tional within-subject factor. This analysis revealed an interaction between 
goal specificity and round, E’( 1, 56) = 11 .OO, p c .005, whereas there was no 
interaction between strategy instruction and round, F(1, 56) =0.65. From 
the means (Table l), it is evident that participants with a goal during the 
learning rounds performed well in the solution round but deteriorated in the 
transfer round, whereas participants without a specific goal improved 
slightly in the transfer round. Thus, although participants given a specific 
goal (who predominantly used a DR strategy) were able to effectively achieve 
that specific goal, they were relatively poor in transferring their knowledge 
to a similar problem with a new goal. 

We also examined the effects of goal specificity and strategies on response 
time for the initial learning phase (Rounds 2 and 3 combined; response 
times from Round 1 could not be analyzed because they included the time 
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used to explain the task before the start of the round) and the solution phase 
(Round 4). The strategy manipulation did not significantly influence response 
time in either phase, either as a main effect or as an interaction. However, 
goal specificity influenced response time in different ways in each phase, 
F(1, 56)= 20.54, p< .OOl. During the learning phase, participants given a 
specific goal took more time to manipulate the input variables (M= 421s/ 
round, SD = 131) than did those with a nonspecific goal (M= 341 s/round, 
SD = 148), F(l, 56) = 4.98, p < .05. The longer times associated with having 
a specific goal are consistent with Sweller’s (1988) claim that goal-oriented 
strategies are more cognitively demanding than are strategies used for in- 
ducing rules. This response-time pattern also demonstrates that the superior 
transfer performance observed for participants in the nonspecific-goal con- 
dition who received VOTAT instructions cannot be attributed to greater 
initial study time. 

In the solution phase, on the other hand, solution time was significantly 
faster for participants in the specific-goal condition (M= 396 s, SD = 171) 
than for those in the nonspecific-goal condition (M= 598 s, SD= 238), 
F(1, 56) = 14.48, pc .OOl. This difference is consistent with the fact that the 
former group was solving the same problem as they had received in Rounds 
1 through 3, whereas the latter group was receiving it for the first time. The 
two goal-specificity conditions did not differ significantly in response time 
on the transfer problem in Round 5, F(l, 56)= 1.86, p >.lO, which was 
novel for all participants (M= 394 s, SD = 154, for the specific-goal condi- 
tion, M=445 s, SD= 135, for the nonspecific-goal condition). 

Participants with a nonspecific goal obtained higher scores on the predic- 
tion task than did those who had a specific goal (see Table l), F(1, 56) = 
4.64, p< .05. However, neither the main effect of strategy instruction nor 
the interaction between strategy and goal specificity approached signifi- 
cance. A possible explanation is that the multiple-choice task was too easy, 
making it relatively insensitive to differences between groups in knowledge. 

GENERAL DISCUSSION 

The aim of this study was to test alternative theories of the relationship 
between problem solving and acquisition of rules. The biology-lab, a com- 
plex dynamic system involving multiple input variables that must be mani- 
pulated to control multiple output variables, provided a rich environment in 
which to explore the influence of goal specificity and hypothesis-testing 
strategies on learning and transfer. The results of Experiment 1 indicate that 
people who spontaneously adopt more systematic strategies for rule induc- 
tion during free exploration acquire more complete knowledge of the rule 
space and are more successful at subsequent tasks that tap this knowledge. 

Experiment 2 manipulated both learning strategies and goal specificity 
during the learning phase. We found that providing participants with a 
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specific goal from the outset of learning produced a strong tendency to use a 
goal-oriented strategy. The predominant strategy for such participants was 
a difference-reduction strategy that focused on incrementally reducing the 
difference between obtained outputs and the specific goal. This strategy was 
adequate for eventually solving the particular goal but was suboptimal as a 
vehicle for discovering the overall structure of the system. As a result, pro- 
vision of a specific goal impaired eventual transfer to a new problem drawn 
from the same problem space but involving a different goal state. 

Acquisition of the structure of the system was fostered both by using a 
nonspecific goal and by providing explicit instruction in a systematic strat- 
egy, VOTAT, which involves varying a single factor while holding other 
factors constant at zero. However, participants who were given a specific 
goal tended to abandon the VOTAT strategy over the course of the learning 
session, shifting to a goal-oriented strategy. Participants who were not taught 
the VOTAT strategy tended to use either a goal-oriented strategy (if a specific 
goal was provided) or some other suboptimal strategy (if no specific goal 
was provided). Thus, optimal transfer performance required a combination 
of a nonspecific goal coupled with instruction in use of a systematic strategy. 

We have assumed that participants given a nonspecific goal tried to induce 
the rules governing the behavior of the biology-lab. Our results tend to 
support this assumption, as participants with nonspecific goals learned more 
about the structure of the system; however, we cannot be sure that they 
actually set themselves goals such as learning the rules. Future studies using 
protocol analysis might provide more direct evidence regarding people’s 
goals, and whether they explicitly explore both instance and rule space. 

Our results run counter to theories of skill acquisition that stress the 
importance of learning from weak problem-solving methods as a means of 
inducing general rules (e.g., Anderson, 1987; Larkin, 1981). It is certainly 
possible that people sometimes learn general rules in the aftermath of solv- 
ing problems by variants of means-ends analysis or other goal-oriented 
strategies; however, at least in the absence of prior knowledge of the domain, 
this approach does not appear to provide an optimal path toward either 
general knowledge of the stucture of a complex system or successful trans- 
fer to problems with an altered goal. Rather, acquisition of system structure 
is fostered to a greater extent by free exploration of the problem space. 

It should be noted that the strategy used by many of our specific-goal 
participants, although goal directed, did not meet the technical definition of 
means-ends analysis (i.e., removing the largest difference between the current 
state and goal state, in the process recursively solving the subproblem of 
getting from the current state to that which satisfied the preconditions of 
required operators). Thus, our results do not directly show that the full 
means-ends strategy would fail to promote learning of overall problem 
structure. Nonetheless, the present strategy did involve difference reduction 
(i.e., search in which each step progresses closer to the specified goal), which 
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is a major component of means-ends analysis. Our theoretical analysis 
suggests that the key factor limiting acquisition of overall structure is focus 
on a specific goal, which tends to encourage search in the space of instances 
rather than the spaces of both rules and instances. It follows that as long as 
a specific goal is given, even full means-ends analysis should prove relatively 
ineffective in promoting learning. However, further research will be required 
to test this possibility. 

Another caveat concerning these findings relates to the fact that our study 
used a problem domain in which our participants were complete novices. A 
different pattern of results might emerge in a problem domain for which 
participants have a prior theory of the domain. In a more knowledge-rich 
domain, mechanisms of explanation-based learning (e.g., DeJong, 1986; 
Mitchell, Keller, & Kedar-Cabelli, 1986) might allow people to form gener- 
alizations of solutions initially obtained by weak methods, such as means- 
ends analysis. One direction for future work would involve manipulating 
domain knowledge together with participants’ learning strategies and examin- 
ing transfer performance in the aftermath of initial problem solving. 

These results are broadly in agreement with the findings of Sweller and 
his colleagues (Sweller, 1988; Mawer & Sweller, 1982), who also found that 
reduced goal specificity yields better performance. Our findings do not 
directly address Sweller’s (1988) explanation for these results, which is that 
participants perform more poorly with specific goals because having to 
monitor goals increases the cognitive load of the task, thus reducing the 
capacity available for deriving rules. The timing data from Experiment 2 is 
consistent with Sweller’s claim, in that a specific goal increased response 
times during the learning phase. However, other aspects of the present find- 
ings are less consistent with a capacity explanation. Participants in Experi- 
ment 2 who were given a specific goal and were instructed to use VOTAT 
tended to initially use VOTAT, but later to change to DR. According to 
Sweller’s assumptions, such a change implies that participants were volun- 
tarily choosing a task with a higher load, which seems implausible. Sweller’s 
model appears to predict that if the overall processing load on participants 
is increased (e.g., by increasing complexity of the system to be learned, or 
by adding a stressor), they should be more likely to use goal-oriented strat- 
egies, which are presumed to require less capacity. In contrast, a dual-space 
model appears to make the opposite prediction, assuming that representing 
two spaces should tend to place a higher load on the individual than repre- 
senting just the instance space. 

The present study increases the generality of Sweller’s (1988) goal-specifi- 
city results by demonstrating similar phenomena in the domain of a com- 
plex dynamic system, as opposed to the static mathematical domains primarily 
used in earlier studies. Whereas Sweller and colleagues have demonstrated 
the effect of goal specificity on knowledge using relatively indirect perfor- 
mance measures (e.g., response times), we were able to obtain a more direct 
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measure of participants’ knowledge (structure diagrams). With this method 
it was possible to provide evidence that the influence of the goal and strategy 
manipulations on performance was mediated by variations in the quality of 
participants’ knowledge of the system. In addition, this study goes beyond 
previous work in identifying the relationship between hypothesis-testing 
strategy and the impact of reduced goal specificity. In a complex task envir- 
onment such as the biology-lab, college students are not generally prepared 
to spontaneously make full use of an effective rule-induction strategy, even 
when they are given a nonspecific goal. It is therefore important to provide 
instruction in the use of such a strategy in order to allow maximum benefit 
from free exploration of the problem space. It is not enough to simply 
“wander” through a haphazard series of input-output relations; rather, 
effective learning depends on systematic investigation of controlled varia- 
tions in the inputs. Our results, thus, have important educational implica- 
tions for designing effective techniques for encouraging problem-based 
learning in complex domains. 

Finally, our results suggest explanations for other anomalous findings 
concerning learning and reasoning, which may be viewed as resulting from 
changes to the goals of the participants. For example, Berry and Broadbent 
(1984, 1987) examined complex problem solving and found only a weak or 
even negative relationship between knowledge and performance. They inter- 
preted this independence of explicit knowledge and performance as demon- 
strating that implicit (unconscious) knowledge was gained. However, in these 
studies, all participants had specific goals from the beginning. In experiments 
in which participants had no specific goal during the training phase (e.g., 
Funke & Miiller, 1988), the relationship between knowledge and performance 
was positive. Thus, goal specificity could be the factor that is responsible 
for the inconsistent results. 

Experiments using Wason’s (1966) 2-4-6 task have found that partici- 
pants tend to generate instances that would confirm the rule they have in 
mind (Klayman & Ha, 1987), However, Tweney et al. (1980) found that per- 
formance can be improved if instead of telling participants that a number 
triple conforms to the rule, an instance is labeled “DAX” if it fits the rule 
and “MED” if it does not. In our terms, this manipulation can be inter- 
preted as involving a change of the participants’ goals. Participants told 
that an instance was “right” or “wrong” must first generate a rule; they 
then appear to set themselves the goal of confirming their rule, and thus 
spend most of their time searching instance space. However, DAX/MED 
participants may accept a less specific goal, that of finding a rule that distin- 
guishes the two labels, and therefore focus on searching rule space. This 
increased focus on searching rule space may increase their success in finding 
the DAX rule. More generally, goal specificity and learning strategies may 
have important effects on many tasks involving reasoning, problem solving, 
and learning. 
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A Dual-Space Interpretation 
Our results are consistent with our theoretical framework that problem 
solving and hypothesis testing require search of a dual problem space: the 
space of rules, and that of instances. When participants were not given a 
specific goal, they appeared to be more likely to search rule space; if they 
had a specific goal, they appeared to be more likely to focus on search of 
instance space. Specific goals thus appeared to encourage use of non-rule- 
induction strategies, whereas nonspecific goals encouraged rule induction 
strategies that are efficient for searching rule space. 

Systematic rule-induction strategies may have an impact beyond allowing 
more efficient search of rule space: They may alter what is learned, not just 
how much is learned. Much like provision of a nonspecific goal, a systematic 
strategy may be important in encouraging the learner to venture into rule 
space; moreover, by facilitating successful induction, such a strategy may 
lead learners to continue to search rule space. This interpretation is consis- 
tent with our finding that providing participants with a systematic strategy 
had very similar effects on performance as did specificity of goals. Both 
manipulations fostered acquisition of more knowledge of a task’s structure, 
which could explain the superior performance on transfer tasks by strategy- 
instructed and nonspecific-goal groups. In addition, a systematic strategy 
appeared to help learners whose primary focus was on reaching a specific 
goal, perhaps by facilitating whatever search of rule space they may have 
performed. Even when learners have a specific goal, it is likely that they 
sometimes try to discover rules, especially when they first encounter an 
unfamiliar problem for which they initially lack adequate knowledge of how 
operators affect states. However, specific-goal participants showed a strong 
tendency towards use of non-rule-induction strategies, as the desire to reach 
a specific goal may have kept enticing such learners into instance space, which 
is where their specific goal was located. In contrast, participants in Experi- 
ment 1 with a nonspecific goal who were allowed to freely choose a strategy, 
spontaneously came to adopt the use of VOTAT, which appears to be a strat- 
egy effective for rule induction. The effects of goal specificity on problem 
solving may therefore be mediated by the differential strategy use encouraged 
by different types of goals. 
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