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ABSTRACT 

We describe a computational model o f  how analogs are retrieved from memory using simultaneous 
satisfaction o f  a set o f  semantic, structural, and pragmatic constraints. The model is based on 
psychological evidence suggesting that human memory retrieval tends to favor analogs that have 
several kinds of  correspondences with the structure that prompts retrieval: semantic similarity, 
isomorphism, and pragmatic relevance. We describe ARCS, a program that demonstrates how these 
constraints can be used to select relevant analogs by forming a network o f  hypotheses and attempting 
to satisfy the constraints simultaneously. ARCS has been tested on several data bases that display both 
its psychological plausibility and computational power. 

1. Introduction 

Analogy is ubiquitous in human thinking, in diverse areas that range from 
practical problem solving to scientific explanation to literary embellishment. 
This paper addresses one of the central questions related to understanding 
analogy: How can relevant analogs be retrieved from memory for potential 
use? Numerous computational models have been proposed for analog retrieval 
(sometimes also called access or recognition) using mechanisms such as similari- 
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ty matching, causal indexing, and spreading activation. We see merit in all of 
these proposals, bu'~ contend that each has only partially captured how relevant 
analogs can be efficiently retrieved from memory. We propose instead a theory 
according to which analogs are retrieved from memory using a combination of 
semantic (meaning-related), structural (configural), and pragmatic (goal- 
related) constraints. Simultaneous satisfaction of multiple constraints can be 
naturally implemented using connectionist networks: ARCS (analog retrieval by 
constraint satisfaction) is a program that constructs and uses a localist connec- 
tionist network to retrieve relevant analogs. ARCS has been tested on several 
data bases designed to test it as a psychological model and to evaluate its 
computational power. 

We begin this paper with a review of the uses of analogy and a description of 
the role of retrieval in these uses, and then present a constraint-satisfaction 
theory of retrieval and describe its implementation in ARCS. We compare ARCS 
with other computational models of analogical retrieval and describe its 
applications. Our conclusion is that analog retrieval can plausibly be viewed as 
a process of parallel satisfaction of multiple constraints. 

1.1. The ubiquity of analogy 

A theory of analog retrieval should be broad enough to cover the rich diversity 
of kinds of analogical thinking. In cognitive science, most attention has been 
paid to analogical problem solving, in which a stored source analog is used to 
suggest a solution to a posed target problem. Most psychological experiments 
have concerned cross-domain analogical problem solving, in which the source 
and target derive from different domains (e.g. [18, 21, 22, 33]). In contrast, 
much AI research has been restricted to the use of analogies within a single 
domain, often under the heading of case-based problem solving and planning 
[26, 391 . 

But problem solving is not the only purpose of analogy. For example, 
analogies are often used" in explanations, when we use a source analog to 
provide understanding of a target phenomenon [62]. Sometimes the source 
generates understanding without much modification, but in other cases the 
source is used to form new explanatory hypotheses, a process that Thagard [60] 
calls analogical abduction. Analogies can be used, not only to form hypotheses, 
but also to help evaluate them [61]. Analogies are often used in political, 
historical, and legal arguments, functioning to convince someone that a 
particular conclusion is warranted. For example, arguments that Nicaragua is 
in danger of becoming another Cuba are used to support US intervention, 
while arguments that it is in danger of becoming another Viet Nam are used to 
support a hands-off policy. Finally, literary analogies can have an evocative 
function, calling forth relevant emotional responses to past events or situations 
with established emotional content. 
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1.2. The problem of retrieval 

In common with many theorists, we decompose analogy into: 

(1) retrieval or selection of a plausibly useful source analog, 
(2) mapping between the source and the target, 
(3) transfer of information in the source for appropriate use with the target, 
(4) subsequent learning. 

Sometimes an analog is directly given, as when a student is told to think of a 
chemical bond as a kind of tug-of-war [62]. In such cases the use of analogy 
primarily requires mapping one analog onto the other. Our direct concern in 
this paper is only with (1), retrieval of an analog in the absence of any external 
guidance as to what information in memory is relevant. We have previously 
proposed ACME, a constraint-satisfaction model of analogical mapping [35]. 
Because there is evidence that the constraints on analogical access overlap in 
important ways with the constraints on analogical mapping, the ARCS model of 
retrieval proposed in the present paper shares many features with the ACME 
model of mapping, as will be discussed below. The output of the ARCS retrieval 
process can in fact serve as input to ACME simulations. 

Computationally, retrieval of analogs is a difficult problem. A computational 
system must have at least the following capabilities: 

(1) It must efficiently find relevant analogs. In a small data base, this can be 
trivial, since exhaustive search can be applied. But in a large data base, 
exhaustive search will be too slow. 

(2) The system must be able to screen out analogs that are less relevant, so 
that it does not get swamped by retrieving unusable numbers of cases. 
Some sort of comparative mechanism must ensure that the most relevant 
analogs are selected over others. 

(3) If the system is intended to be a psychological model, the analogs it 
retrieves and the processes by which it does so should correspond to 
human performance as exhibited in controlled psychological experi- 
ments. Our project is to model human cognition, but we acknowledge 
the possibility of AI models aimed more at engineering adequacy than 
cognitive modeling. At  least in the present state of A1, cognitive and 
engineering aims seem highly convergent,  as a system that successfully 
emulated human analog retrieval would clearly surpass the performance 
of current AI models of analogy. 

To put it simply, the problem of analog retrieval is how to get what you want 
from memory without getting more than you can use. Indeed,  this is the core 
problem of memory retrieval in general. The present proposal by no means 
constitutes a complete model of human memory;  many crucial aspects of the 
human memory system, such as the effects of processing limitations in working 
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memory,  have been set aside. Nonetheless, the present model shares some 
basic general features with most current conceptions of human long-term 
memory. In particular, the model assumes an organized store of concepts to 
which representations of particular episodes are linked. Representations of 
episodes are viewed as decomposable into more elementary elements, which 
provide multiple potential retrieval cues. The memory system is content 
addressable, in that any element of a stored representation can potentially 
serve as a basis for access to the entire representation. Retrieval is an 
essentially parallel process that involves comparison of the target analog to 
representations of potential source analogs in memory. 

As we will see, however, our model of analog retrieval goes beyond current 
theories of general memory retrieval in its sensitivity to configural information 
concerning the relational structure of the analogs. The distinctive characteristic 
of the retrieval of analogs, as opposed to simple associative retrieval, is that the 
basis for retrieval is not simply shared elements, but also comparable patterns 
of elements. The nature of these relational patterns will be described below. 
The present model provides a mechanism for integrating Gestalt-like sensitivity 
to relational patterns into an associative memory. 

Whereas the process of analog retrieval is viewed as involving parallel 
comparisons to multiple representations in memory,  mapping and transfer are 
apparently more restricted, in that people generally use one analog at a time 
when engaged in the mapping and transfer stages of problem solving, explana- 
tion, and argument. It is therefore important that the retrieval process be 
designed so as to tend to select only the most promising potential analogs as 
candidates for more detailed subsequent analyses. 

2. A Constraint-Satisfaction Theory 

In our paper on mapping [35], we identified three major kinds of constraints 
that have been proposed to govern how parts of two analogs can be placed in 
correspondence with each other: semantic similarity, isomorphism, and prag- 
matic centrality. These constraints were treated not as absolute requirements 
on successful mappings, but rather as pressures that operate to some degree 
[29]. We argued that all three types of constraints are involved in analogical 
mapping. Here we will briefly review the distinctions among these three classes 
of constraints and the psychological evidence regarding their impact on the 
retrieval of analogs. 

2.1. Semantic similarity 

Two analogs are semantically similar to the extent that the predicates used in 
the representations of the two analogs are semantically similar. We use the 
term "semantics" here in the lexical sense [10], not in the formal, model- 
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theoretic sense. Two predicates are semantically similar if they are identical or 
if they participate in lexical relations such as synonymy, hyponymy (represent- 
ing things of the same kind) and meronymy (representing things similar with 
respect to part-whole relations). Section 3.1 describes our use of semantics 
modeled after WordNet, an electronic lexical reference system based on 
psycholinguistic theories of the organization of human lexical memory [43]. For 
example, "dog"  is similar to "cat ,"  because dogs and cats are both kinds of 
animals and kinds of pets; and "hand"  is similar to "foot"  because they are 
both parts of the body. 

Numerous psychological experiments indicate that retrieval of analogs by 
humans is very sensitive to the degree of semantic overlap between the target 
analog that provides retrieval cues and the source analog to be found in 
memory [19, 21-23, 33, 48, 50-52]. Such overlap depends on the semantic 
similarity of the concepts used to represent the analogs. For example, Holyoak 
and Koh [33] found that subjects given a problem of finding a way to use an 
X-ray to destroy a tumor were much more likely to retrieve an analogous 
problem concerning using a laser to fuse a filament in a light bulb than they 
were to retrieve an analogous problem concerning using ultrasound to fuse a 
filament. This difference appeared to reflect the fact that X-ray devices are 
more like lasers than like ultrasound devices. Other similar studies using 
analogs that lacked any apparent similar elements (e.g., a source analog 
involving use of an army to capture a fortress) have found that people are often 
unable to retrieve dissimilar analogs, even though such analogs could readily 
be used to aid in problem solving once the person was reminded of their 
relevance by the experimenter [8, 21, 22, 58]. 

It is important to distinguish semantic similarity, as we use the term in our 
models of mapping and retrieval, from conceptions of "surface," "literal" or 
"superficial" similarity that have been employed in the analogy literature (e.g. 
[33, 51]). Surface similarity has been characterized as similarity based on 
one-place predicates, or attributes [16]; another sense of surface similarity 
involves similarity based on features of the analogs unrelated to goal achieve- 
ment [33]. In contrast, semantic similarity is simply overlap in meaning. 
Concepts can be semantically similar regardless of whether they involve 
attributes (e.g., "dog"  and "cat") ,  or relations of any level of internal 
complexity (e.g., "push" and "shove,"  or "know" and "understand") .  Seman- 
tic similarity also has no necessary relationship to goal relevance, which we 
treat as a separate constraint of pragmatic centrality. 

We view the role of semantic similarity in analog retrieval as simply a special 
case of its dominant role in general memory retrieval processes in humans. 
Because semantic links typically provide fundamental retrieval pathways, we 
would expect that positive similarity between at least one pair of elements in a 
target and source analog will be a necessary (but not sufficient) precondition 
for retrieval. We know of no cases of human analog retrieval in which the 
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analogs had no semantic similarity. In contrast there are special cases of 
mapping between pairs of analogs that depend only on isomorphism, for 
example mapping abstract relations of number addition with abstract relations 
of set union [35]. The problem of mapping two given analogs is different from 
the problem of selecting an analog for a single given target from a large 
memory that contains numerous potential analogs. Our model treats semantic 
similarity as the dominant constraint on retrieval, but not the only one. 

2.2. Isomorphism 

The overwhelming evidence that semantic similarity plays a major role in 
analog retrieval has contributed to the relative neglect of configural effects on 
reminding. We contend that an analog is more likely to be retrieved the greater 
the degree of isomorphism it has with the structure that initiates the retrieval. 
Informally, isomorphism is a matter  of having the same configuration. A more 
exact notion can be developed by assuming that structures can be represented 
by propositions consisting of predicates and arguments. Then two structures 
are isomorphic if there is a one-to-one correspondence between them that 
preserves structural consistency, where structural consistency requires that if 
two propositions are mapped, then their constituent predicates and arguments 
should also map [12, 13, 16]. For example, let F(a, b) be a sample proposition 
of one structure asserting that the relation F holds between a and b, and let 
G(c, d) be a sample proposition of another structure. A condition on the two 
structures being isomorphic is that if these two propositions correspond to each 
other,  then F corresponds to G, a corresponds to c, and b corresponds to d. 
Isomorphism is conceptually distinct from semantic similarity, in that two 
structures can be perfectly isomorphic even though they share no identical or 
similar elements [35, 45]. Two structures can fail to be isomorphic because the 
best correspondence between them is not one-to-one or does not preserve 
relational structure. Mathematically, isomorphism is an all-or-none matter,  but 
we speak of degree of isomorphism informally as the extent to which the best 
correspondence between two structures is one-to-one and structurally consis- 
tent. Like Falkenhainer et al. [13], our notion of structural consistency includes 
higher-order relations such as "cause" that can take propositions as arguments. 
For example, if a proposition cause(p, q) stating that p causes q is to be placed 
in correspondence with cause(r, s), then the predicates and arguments of p and 
q should correspond, respectively, to the predicates and arguments of r and s. 

Sensitivity to isomorphism has been a crucial component  of virtually all AI 
models of analogical mapping (e.g. [6, 12, 13, 35, 39, 66]). It is clear that 
people are indeed sensitive to isomorphsim of analogs in mapping. For 
example, Gentner  and Toupin [20] found that children had difficulty mapping 
two situations if similar characters played different roles in the two analogs. 
Such cross-mapping leads to conflicting interpretations. Studies by Holyoak 
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and Koh [33] and Ross [51, 52] have also provided evidence that structural 
consistency affects ease of mapping. 

But what about the retrieval stage? Theorists have often failed to clearly 
address the question of whether retrieval is sensitive to isomorphism. Consider 
the following mini-story: 

The dog bit the boy and the boy ran away from the dog. 

We conjecture that this story will be more likely to remind a person of past 
stories of dogs biting boys who run away than of past stories of boys biting dogs 
or of dogs running away. The structural issues become clearer when such 
stories are represented in predicate calculus: 

Analog 1: 
dog (Fido), 
boy (John), 
bite (Fido, John), 
run-away-from (John, Fido). 

Analog 2: 
dog (Rover), 
boy (Fred), 
bite (Rover, Fred), 
run-away-from (Fred, Rover). 

Analog 3: 
dog (Rover), 
boy (Fred), 
bite (Fred, Rover), 
run-away-from (Rover, Fred). 

Analog 4: 
dog (Rover), 
boy (Fred), 
bite (Rover, Fred), 
run-away-from (Rover, Fred).  

Notice that analogs 1 and 2 are isomorphic, and we conjecture that this will 
make analog 2 more easily retrieved given analog 1 as a cue than are either 
analogs 3 or 4, which are just as semantically similar but can be made 
isomorphic to 1 only by cross-mapping dog to boy and boy to dog. 

There is some evidence from studies of analogy that retrieval is indeed 
sensitive to isomorphism. Experiments reported by Gentner [17, 19] primarily 
showed the effects of semantic similarity on retrieval, but they found that 
higher-order relational commonalities also promote access. Holyoak and Koh 
[33] found evidence that both structural consistency and semantic similarity 
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affect the probability that a source analog will be spontaneously retrieved and 
used. The materials they used were various versions of the lightbulb and tumor 
analogs discussed earlier. One variation in the source lightbulb stories involved 
the reason a single large force could not be used to fuse the filament: either 
because the force would break the delicate glass surrounding the filament, or 
because no single large force was available. In both versions the successful 
solution was to use multiple converging weak forces. The former "similar 
constraint" version was more structurally consistent with the tumor problem, in 
which a single strong laser could not be used because it would damage healthy 
tissue surrounding the tumor. Holyoak and Koh found that subjects were more 
likely to spontaneously apply the similar-constraint version of the source 
analog. (The term "constraint" here refers to the specific constraint on the 
problem solution in the experimental materials, and should not be confused 
with the general analogy constraint of isomorphism.) 

Ross [52] performed a series of experiments in which subjects had to apply 
probability principles that were initially illustrated by a single concrete word 
problem. Subjects were then asked to solve transfer word problems. Ross 
varied whether the overall cover stories of the source and target problems were 
highly similar (e.g., two problems involving the IBM motor pool) or dissimilar 
(e.g., a motor-pool problem and a nursery-school problem). This manipulation 
of semantic similarity of the analogs was crossed with a variation in degree of 
structural consistency. In the consistent conditions, similar types of entities 
mapped onto corresponding variables in the relevant equations (e.g., people 
mapped to people, artifacts to artifacts), whereas in the inconsistent conditions 
the required mappings were crossed (people to artifacts and artifacts to 
people). Ross found that inconsistent mappings impaired access to the source, 
but only when the overall cover story was similar. Thus relatively high semantic 
similarity was a necessary condition for obtaining an effect of structural 
consistency. As we will see, this type of interaction between semantic and 
structural constraints on retrieval is predicted by the ARCS model. 

Note that structural consistency, like semantic similarity, must be dis- 
tinguished from other similar terms that have been used in the analogy 
literature. In particular, Holyoak and Koh [33, 32] and Ross [51], following the 
usage in the problem-solving literature, used the term "structural" features to 
refer to those that are relevant to the goals of a problem. In contrast, structural 
consistency is a purely formal constraint on the relations between structures; 
we use the term in the same sense as Falkenhainer et al. [12]. The goal-related 
sense of "structural" corresponds to our third type of constraint, pragmatic 
centrality. 

2.3. Pragmatic centrality 

As we suggested in Section 1.1, analogies have various purposes. The purpose 
of an analogy in problem solving is to help accomplish the goals of the 
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problem. Clearly, a retrieval system attuned to increase the retrieval of analogs 
relevant to goal accomplishment would contribute more to problem-solving 
effectiveness than a retrieval system that lacked sensitivity to goals. We 
therefore postulate that one of the constraints on analog retrieval is pragmatic 
centrality: stored structures that are potentially important to a system's goals 
are more likely to be retrieved than irrelevant ones. Numerous AI theorists 
have argued that causal relevance to goal accomplishment should influence 
retrieval [6, 7, 16, 39, 55, 66, 67]. Many of these proposals make the claim that 
causal indexing is the main way in which analogs are stored and retrieved. A 
major hypothesis is that failures of goal achievement are especially likely to be 
indexed, so they can play a role in avoiding similar future failures. 

Psychologists have only begun to establish experimentally that people's 
analogical access is sensitive to pragmatic constraints. Part of the problem is 
that it is difficult to distinguish effects of goals that reflect a special pragmatic 
constraint from effects that can be interpreted as consequences of other general 
constraints involving semantic similarity and structural consistency. In general, 
if a representation of a structure is augmented with goal information, the 
augmented structure will therefore be more semantically similar to, and more 
structurally consistent with, other structures containing similar goal informa- 
tion. Nevertheless, some studies have demonstrated the importance of task 
goals in eliciting remindings. Seifert, McKoon, Abelson and Ratcliff [56] and 
Faries and Reiser [14] have shown that people are sensitive to the solution- 
relevant aspects of previously solved problems. 

Although empirical evidence is still limited, the computational argument that 
pragmatic constraints on retrieval are useful for narrowing the search for 
analogs leads us to include such constraints in the ARCS model. We view 
relevance to the purposes of the analogy (including explanation and argumen- 
tation, not just problem solving) as an important factor in retrieval, although 
not the dominant factor suggested by some AI theorists. Problems and plans 
have explicit purposes that should play a role in retrieval; similar pragmatic 
constraints could also operate in the case of stories and other structures with 
less specific purposes. As in the A C M E  mapping model, we treat pragmatic 
centrality as an additional pressure to semantic similarity and structural 
consistency. If an element of the target is relevant to the goal, the pressure of 
pragmatic centrality will favor retrieval of analogs that allow the important 
target element to be mapped. 

2.4. Parallel constraint satisfaction 

We propose, therefore, that retrieval of analogs from memory is determined by 
simultaneous satisfaction of the constraints of semantic similarity, structural 
consistency, and pragmatic centrality. When a target analog is presented in the 
form of a problem to be solved, an explanation to be given, or a conclusion to 
be reached, search for potentially useful source analogs in memory proceeds by 
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searching memory  for analogs that look promising for semantic, structural, and 
pragmatic reasons. Search is massively parallel, so that many different analogs 
can be simultaneously examined for potential  relevance. But to prevent  the 
system from being swamped by too many analogs of lesser relevance, search is 
competit ive,  in the sense that the retrieval of one analog tends to suppress the 
retrieval of other analogs. We will now describe how these ideas can be 
implemented computationally,  Later  we will provide more detailed com- 
parisons with other computat ional  models that implement  only some of the 
constraints. 

3. ARCS: A Connectionist Program for Analogical Retrieval 

ARCS (analog retrieval by constraint satisfaction) is a COMMON LISP program 
that retrieves analogs using multiple constraints. In brief, the program operates  
as follows. Retrieval is initiated from a probe  structure and is intended to find 
structures in memory  that are analogous to the probe.  Search for analogs of the 
probe proceeds initially using the predicates in the probe,  looking for predi- 
cates that are in some degree semantically similar to them. ~ If a predicate that 
is semantically similar to a predicate in the probe structure occurs in a stored 
structure, then there is a possibility that the stored structure is analogous to the 
probe structure. Many stored structures, however,  are likely to have some 
semantic overlap with the probe structure, and the principle task of ARCS is to 
pick out the ones that are most relevant according to the constraints of 
semantic similarity, structural consistency, and pragmatic centrality. As poten- 
tially analogous structures are noticed, ARCS sets up a constraint network to 
compare  their relevance to the probe structure. Once this constraint network 
has been built, ARCS uses a standard parallel connectionist relaxation algorithm 
to settle into a state that indicates the relative correspondence of the various 
stored structures to the probe  structure. The memory  structure underlying 
these processes is described in the next section. 

Figure 1 provides a rough picture of how the retrieval process works. The 
probe structure at the bot tom contains five dots corresponding to predicates 
used in representing the probe.  Each of these predicates is linked to an 
associated conceptual structure, indicated by the dots outside the probe 
structure. Each of these concepts in turn has access to numerous other 
concepts that are semantically similar to it, and predicates corresponding to 
these concepts occur in various stored analogs S1-$5. Of  these, $2 and $5 have 
greater  semantic overlap than the others with the probe by virtue of multiple 
semantic links, so these two stored structures are prime candidates for analog- 
ical retrieval. However ,  determination of the optimal apparent  analog will 

~The term "probe" is used rather than "target" because when discussing retrieval of stored 
structures from memory it is confusingly natural to think of them as targets, although in our 
standard terminology for analogs they are potential sources for use with a target structure. 
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$3 

$4 

PROBE i 
............................................................................... J 

Fig. I. Probing from a structure into long-term memory via conceptual links. The large circles 
represent structures stored in memory. The dots represent concepts; the lines connect semantically 

similar concepts. 

depend on structural and pragmatic  constraints in addition to the semantic 
links that initially suggested possible relevance. Thus retrieval has two broad 
steps: 

(1) finding semantically associated structures in memory ,  
(2) assessing these initial candidate structures in terms of the full set of 

constraints. 

Now let us examine in greater  detail how the retrieval process operates.  

3.1. Input to ARCS 

Three kinds of knowledge representat ion are used in ARCS for different 
purposes: 

(1) Structures representing probe  and stored analogs consist of propositions 
in predicate calculus. 

(2) The semantic information used in making judgments  of semantic simi- 
larity is stored in frame-like structures attached to predicates. We call 
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these structures "concepts ."  We thus distinguish the predicates used to 
represent analogs from concepts, the more complex structures that carry 
semantic information. In our implementation, predicates are LISP atoms, 
whereas concepts are LISP atoms with their property lists. The concepts 
are organized into hierarchies by virtue of kind-relations and part- 
relations. 

(3) The constraint network used to select the most relevant analog or 
analogs consists of units representing correspondences between struc- 
tures and parts of structures. 

The first two kinds of representation are used for long-term memory,  
whereas the third is created during a retrieval task. The first corresponds 
roughly to what psychologists call episodic memory,  while the second corre- 
sponds roughly to what they call semantic memory [64]. The constraint network 
itself can be viewed, not as a memory store, but as a temporary computational 
representation of the pattern of correspondences between a retrieval cue and 
information in long-term memory.  We shall now describe each kind of repre- 
sentation in greater detail. 

Figure 2 displays a sample analog structure, representing the problem of 
using an X-ray to destroy a tumor,  to be discussed in Section 5.1 below. The 
structure is divided into two fields, representing the starting conditions and the 
goals of the problems. If the problem were solved, it would have a third field 
describing its solution. Other kinds of structures have different fields; for 
example, the fables discussed below consist of a story and a moral, while the 
plays consist of a list of characters and a story. Although fields are used in the 
mapping program ACME to restrict possible mappings, ARCS does not disqualify 
any source on the basis of field organization. ARCS does, however, use fields in 
its implementation of the pragmatic constraint described in the next section. 

Each field consists of a set of propositions of the form: 

(predicate arguments truth-value proposition-name) 

Incorporating the truth value into the proposition makes it unnecessary to use 
a predicate NOT. For predicates like IF and CAUSE, the arguments can be 
propositions, as in the following proposition S1-3, which states that proposition 
SI-1 refers to an event that causes the event referred to by proposition S1-2: 

(cause ($1-I S1-2) true S1-3) 

Representation of if-then statements is a bit more complicated, since we need 
to be able to say, for example, that if $1-1 is true then S1-2 is false: 

(if (($1-1 true) (S1-2 false)) true S1-3) 

The extra truth value embedded in IF statements is necessary to allow the 
expression of counterfactual conditionals, such as "If  Dukakis had won the 
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Starting conditions: 
(doctor (obj-doctor) true tp-1) 
(patient (obj-patient) true tp-2) 
(tumor (obj-tumor) true tp-3) 
(malignant (obj-tumor) true tp-4) 
(have (obj-patient obj-tumor) true tp-5) 
(treat (obj-doctor obj-tumor) unknown tp-6) 
(must (obj-doctor (tp-6 true)) true tp-7) 
(die (obj-patient) unknown tp-8) 
(if ((tp-7 false) (tp-8 true)) true tp-9) 
(desire (obj-doctor (tp-8 false)) true tp-10) 
(remove (obj-tumor) false tp-ll)  
(cannot (tp-ll true) true tp-12) 
(ray (obj-ray) true tp-13) 
(ray-source (obj-ray-source) true tp-39) 
(produce (obj-ray-source obj-ray) true tp-40) 
(radiation (obj-ray) true tp-14) 
(dosage (obj-dosage obj-ray) true tp-15) 
(high (obj-dosage) unknown tp-16) 
(if ((tp-16 true) (tp-18 true)) true tp-17) 
(destroy (obj-ray obj-tumor) unknown tp-18) 
(tissue (obj-tissue) true tp-19) 
(healthy (obj-tissue) true tp-20) 
(surround (obj-tissue obj-tumor) true tp-21) 
(destroy (obj-ray obj-tissue) unknown tp-22) 
(if ((tp-16 true) (tp-22 true)) true tp-23) 
(if ((tp-22 true) (tp-8 true)) true tp-24) 
(low (obj-dosage) unknown tp-25) 
(if ((tp-25 true) (tp-18 false)) true tp-26) 
(if ((tp-18 false) (tp-8 true)) true tp-27) 

Goals: 
(become-true (tp-18) true tp-36) 
(survive (obj-patient) true tp-37) 
(become-false (tp-22) true tp-38) 

Fig. 2. Predicate-calculus representation of the radiation problem. 

election, then taxes would have been raised," where the antecedent is false. 
Moreover, in fables and plays it is often necessary to represent propositional 
attitudes of characters, for example that Hamlet believes proposition $2-1 or 
that Macbeth orders Lady Macbeth to do an act represented by proposition 
$3-1: 
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(believes (Hamlet  $2-1) true $2-2) 
(orders (Macbeth Lady-Macbeth $3-1) true $3-2) 

ARCS' data bases now include, respectively, 5 radiation problems, 5 Karla the 
hawk stories, 100 fables, and synopses of 25 plays. 

In order to find concepts that are semantically similar to the concepts in a 
probe structure, we need to encode semantic information. ARCS' semantic 
structures are modeled after WordNet,  an electronic lexical reference system 
based on psycholinguistic theories of the organization of human lexical memory 
[43, 44]. In WordNet,  a concept is represented by a set of synonyms, and 
synonym sets are organized by means of kind, par t -whole ,  and antonymy 
relations. Kind and par t -whole  relations are fundamental to the organization 
of the lexicon because they generate hierarchies. For example, a whale is a 
kind of cetacean, which is a kind of mammal, which is a kind of animal, which 
is a kind of living thing; a toe is part of a foot, which is part of a leg, which is 
part of a body. WordNet now includes more than 60,000 entries, including 
verbs and adjectives as well as nouns. One advantage of working on such a 
large scale is that the differences between the kinds of lexical items become 
readily apparent. Kind and par t -whole  hierarchies apply well to nouns, but 
adjectives are primarily organized into antonymic clusters, such as that posed 
by the extremes wet-dry. According to the WordNet researchers, verbs have 
entailment hierarchies rather than par t -whole  hierarchies, and their kind 
hierarchies seem to differ from the kind hierarchies of nouns in ways that are 
still under investigation. The input to ARCS includes semantic information for 
each predicate in each structure. ARCS' semantics now includes entries for 
more than 1200 words. 

A major advantage of using WordNet is that it allows us to establish 
semantic structures in relative independence from the particular analogs we 
wish the program to retrieve, thus providing a stronger test of the model. ARCS 
uses the same semantic information for all its data bases. Approximately two 
thirds of the entries derive directly from WordNet.  The WordNet entries 
themselves were generated from many different sources, especially dictionaries 
and thesauruses. Our own supplemental entries derive largely from Roget's 
International Thesaurus (4th ed.), and Webster's Ninth New Collegiate Dic- 
tionary. 

Here are some samples of our lexical information, for a noun, an adjective, 
and a verb. 

ANIMAL 
SUPERORDINATES: organism living-thing 
SUBORDINATES: prey person child mammal primate reptile am- 

phibian fish bird insect vertebrate invertebrate game 
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PARTS: voice tooth tail claw-of-claw antler 
PLURAL: animals 
SYNONYMS: beast creature fauna 
ANTONYMS: plant flora 

AFRAID 
SYNONYMS: afraid-of fearful dreading alarmed frightened 

apprehensive anxious uneasy apprehensive 
scared terrified worried 

ANTONYMS: unafraid confident secure 

ABDICATE 
TENSES: abdicates abdicated abdicating 
SYNONYMS: resign vacate relinquish cede renounce 

Because a mammal is a kind of animal, the predicate ANIMAL has MAMMAL as 
a subordinate and MAMMAL has ANIMAL as a superordinate. (In our terminolo- 
gy, if A is a kind of B, then A is a subordinate of B, and B is a superordinate of 
A.) WordNet is still under development,  and the 1988 version we used did not 
include verb subordinates and superordinates that have been added to later 
versions. Moreover ,  the lists of synonyms, superordinates, and subordinates 
have been pruned considerably in recent versions. Ideally, the lists of superor- 
dinates and subordinates should include only immediate links, so that ANIMAL 

would be directly linked only to MAMMAL and not to PERSON. A full theory of 
semantic decomposition might make it possible to derive synonyms, rather 
than taking them as given, but we follow WordNet in simply listing them. We 
have added plurals and tenses to this data base so that structures that use 
variants of the same predicates can be retrieved. 

The WordNet-style semantic information enables ARCS to make judgments 
of the semantic similarity of any two predicates based on the kinds of semantic 
relations between them. The greatest degree of semantic similarity holds 
between identical predicates, with synonymy constituting a lesser degree. Still 
lower degrees of similarity derive from kind relations (subordinate and 
superordinate) and part relations. The algorithm used by ARCS to compute 
semantic similarity is stated below. 

3.2. Algorithms of ARCS 

Given the permanent  memory store consisting of analog structures and hierar- 
chically organized concepts, ARCS executes retrieval from a probe structure in 
four stages: 

Stage 1. Using information about the semantic similarity of predicates, the 
program creates a constraint network representing possible correspondences 
between objects, predicates, propositions, and structures. Because of their 
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ubiquity and context independence,  the following predicates are not used as 
retrieval cues: CAUSE, IF, CONJOIN-OBJECT, CONJOIN-EVENT, BECOME-TRUE, 
BECOME-FALSE. If a stored structure that is a potential source contains one or 
more other predicates that are semantically similar to the predicates in the 
probe, then it is considered as a potential analog. Units representing corre- 
spondences are created and links between units are set up to indicate corre- 
spondences between the probe and source that support each other. The most 
important units are the ones that hypothesize that a source structure in 
memory is analogous to the probe structure. Such units receive names of the 
form PROBE=SOURCE. (Here  " = "  means "corresponds to ,"  not identity.) If 
the probe is P1 and the stored source is S1, then the unit created to represent a 
correspondence between them will be PI=S1.  If P1-1 is a proposition in P1 
that corresponds to proposition SI-1 in source S1, then the unit P I - I=SI -1  that 
hypothesizes a correspondence between the propositions will have an excita- 
tory link with the unit PI=S1.  Moreover ,  units are created putting in corre- 
spondence the predicate and arguments of PI-1 with the predicate and 
arguments of SI-1, and these units receive excitatory links with the unit 
PI-1--SI-1. Excitatory links are also set up from a special semantic unit to 
predicate-predicate units based on the degree of semantic similarity of the 
predicates. The special semantic unit, like the special pragmatic unit of Stage 3, 
is a unit whose activation level is always kept at the maximum value of 1. 
Hence it serves to pump activation to all units that are linked to it. 

Stage 2. Inhibitory links are constructed between units representing incom- 
patible hypotheses, for example, between PI=S1 and PI=S2.  These links 
make retrieval competitive, in that the retrieval of one structure will tend to 
suppress the retrieval of an alternative. 

Stage 3. Pragmatic constraints are implemented by noting that certain 
elements (predicates, objects, or propositions) are IMPORTANT and that certain 
correspondences are PRESUMED to hold. Information about presumed corre- 
spondences is provided by the programmer,  just as a teacher trying to get a 
student to retrieve a problem similar to a given one might explicitly provide a 
hint relating part of the new problem to part of the old. Excitatory links are set 
up from the special pragmatic unit to all units involving IMPORTANT elements, 
and to all units representing PRESUMED correspondences. Depending on the 
purpose of the analog, elements can be marked as IMPORTANT automatically. 
For example, if the probe structure is a problem to be solved, its fields include 
starting conditions and goals. Each of the predicates in the goals is marked as 
IMPORTANT, as is each predicate in the starting conditions occurring in a 
proposition that is determined to be relevant to the goals by virtue of CAUSE or 
IF relations or by propositional attitudes. 

Stage 4. The network is run by setting the activation of all units to a minimal 
initial level, except for the semantic and pragmatic units for which activation is 
clamped at 1. Then the activation of each unit is updated by considering the 
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activations of those units to which it has links. Cycles of activation adjustment 
continue until all units have reached asymptotic activation, which typically 
takes fewer than 150 cycles. 

Figure 3 provides a very simple illustration of how this process works, using 
a probe analog P1 consisting of only two propositions, PI-1 and P1-2, and two 

Probe analog Stored analogs 

P1 Sl $2 

PI-1 A(a,b) Sl-1 M(m,n) S2-1 M(n,m) 

P1-2 B(b,a) S1-2 N(n,m) $2-2 R(n,m) 

A and M are semantically similar; B and N are semantically similar. 

A is important. 

unit~ragmatic // ( semantiCunit 

Fig. 3. An example of a network constructed by ARCS. Ellipses are units representing possible 
correspondences. Solid lines indicate excitatory links while dotted lines indicate inhibitory ones. 
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stored analogs $1 and $2 each of which consists of only two propositions. 
Figure 3 depicts these propositions and the constraint network that is created 
by probing from P. The units PI=S1 and PI=S2 indicate the possibility of 
retrieving both S1 and $2 from P1. These possibilities arise because the 
semantics for the predicates A and B in P indicated that A is semantically 
similar to M and B to N. A structure $3 that did not contain any predicates 
semantically similar to M or N would not be considered. The semantic 
similarity of M to N also gives rise to the possible proposition correspondence 
P I - I = S l q  and the possible object correspondences a = m  and b = n .  These 
correspondence hypotheses all support each other, as is shown by the solid 
lines, which indicate symmetric excitatory links between pairs of units. Also 
shown are the excitatory links from A = M  to PI=S1 and PI=S2, and from 
B = N  to PI=S1. The dotted lines indicate inhibitory links between pairs of 
incompatible units. Running the network consists of adjusting the activation of 
all the units based on their inputs from the units to which they are linked. In 
this case, we would expect the unit PI=SI to become active and suppress the 
activation of PI=S2, because the former is supported by two proposition 
correspondences and indirectly by two predicate correspondences, whereas the 
latter is supported by only one. This example network has only 13 units and 26 
links, but below we will describe ARCS networks with many hundreds of units 
and many thousands of links. Note that Fig. 3 displays a constraint network of 
hypotheses about correspondences, not a network of concepts such as A and 
M; it therefore differs from Fig. 1 whose nodes represent concepts. 

For full generality, the algorithms used by ARCS are outlined in Figs. 4-8. 
Figure 4 describes the algorithm for finding the predicates semantically similar 
to a given predicate, and Fig. 5(B) shows how ARCS computes the degree of 
semantic similarity between two predicates. Identical predicates are judged to 
be more similar than synonyms, which in turn are more similar than predicates 
that have superordinate and subordinate relations. The numerical values used 
for the various types of relations reflect our judgment about the comparative 
similarity of predicates; the specific values have no empirical justification, but 
sensitivity analyses reported in Section 6.3 show that program behavior is not 
dependent on these particular values. 

Figure 5 also outlines the algorithm for setting up the network using the set 
of search predicates determined to be semantically similar to the predicates in 
the probe structure. Figure 5(D) describes how units and excitatory links 
between them are created to implement the part of the isomorphism constraint 
concerned with structural consistency. A unit postulating a correspondence 
between a proposition in the probe and a proposition in the target is created 
and linked to the unit postulating a correspondence between the predicates in 
those propositions. Similarly, units representing correspondences between the 
arguments of the two propositions are created and linked to the units repre- 
senting proposition and predicate correspondences. Finally, ARCS creates a 
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P is the probe structure that initiates the retrieval process. Get the 
list of search predicates seareh-preds by considering each proposi- 
tion propp,i in P, consisting of a predicate predp, i and arguments 
(argp,i, ~ . . . .  , argp, i,,,). There may be more than one occurrence of 
prede, ~ in P, each associated with different arguments, but search- 
preds lists a predicate only once. 

(A) If the predicate predpj is one of a select set of unmapped 
predicates (CAUSE, CONJOIN-EVENT, CONJOIN-OBJECT, IF, BE- 
COME-TRUE, BECOME-FALSE), discard it and do not continue 
the search. 

(B) If the predicate is a plural or an unusual tense, probe from the 
singular or the standard tense (first person singular) instead. 

(C) Collect all of the predicate's own superordinates, subordinates, 
parts, part-ofs, subordinates of direct superordinates, and 
either synonyms (if proposition has a " t rue"  truth value) or 
antonyms (if it is "false").  (This takes only immediate as- 
sociates, not the transitive closure.) 

Fig. 4. Algorithm for selecting semantically similar predicates from the predicates in a probe 
structure 

unit hypothesizing that the probe structure corresponds to the source structure 
containing the proposition and links this unit to the units representing proposi- 
tion and predicate correspondences. 

One-to-one correspondences are encouraged by the construction of inhibi- 
tory links described in Fig. 6. If two units represent incompatible hypotheses 
about which objects, predicates, propositions, or objects correspond to each 
other, then an inhibitory link is created between the units. The pressure toward 
one-to-one correspondences may be dominated by others. As in our mapping 
program ACME, it is possible that the best match will not be one-to-one; in 
contrast, the structure-mapping engine (SME) insists that all matches be 
one-to-one [13]. Excitatory links are set up with weight excit, whereas inhibi- 
tory links have weight inhib. 

To implement the constraint of pragmatic centrality, links to the pragmatic 
unit are set up in accord with the instructions in Fig. 7. For example, if a 
predicate occurs in the statement of a goal, it is marked as important, as are 
predicates in starting conditions whose relevance to the goal is evident because 
of higher-order IF or CAUSE relations. Links from the pragmatic unit to units 
involving important predicates will encourage correspondences involving those 
predicates over correspondences involving less relevant predicates. Sometimes, 
certain correspondences are indicated in advance, for example by a teacher 
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Start with the list of predicates search-preds found by the algorithm 
described in Fig. 4. For each member  search-predj of search-preds: 

(A) Create the unit predp,i=search-predj. 
(Here  predp, i is from the probe structure: see Fig. 4). 

(B) Connect this unit to the semantic unit with a weight based on 
the semantic relation between the two predicates. The weight 
is the result of multiplying a parameter  for maximum degree of 
excitation (typically 0.01) times: 

for identical predicates, 1; 
for synonyms, 0.6; 
for superordinates, 0.3; 
for coordinates, 0.25; 

(Note. If A and B are both kinds of C, then 
A and B are coordinates, i.e. subordinates of super- 
ordinates,) 

for subordinates, 0.2; 
for superordinates of superordinates, 0.2; 
for holonyms (part-ofs), 0.1; 
for parts, 0; 
for antonyms, -0 .4 .  

(See section 6.3 for discussion of these weights.) 
(C) Get  the list search-props of propositions in source structures 

that contain search-predj. (When the memory of analog struc- 
tures is loaded, ARCS notes for each predicate the names of the 
propositions that contain it, and notes for each proposition the 
structure that contains it.) 

(D) For each proposition propp, i in the probe P containing predp, j, 
and for each member  search-propk of search-props; 
(1) Create the unit propp,i=search-prop~. 
(2) Link this unit to predp.i=search-predj. 
(3) For each argument of the proposition, create units for 

argp,~,,.=the ruth argument of search-prop~: 
(a) Link each of these units to propp,i=search-prop~. 
(b) Link each of these units to predp,~=search-predj 

(weight = exc i t*number  of times this object corre- 
spondence occurs with these predicates), 

Fig. 5. Algorithm for creating a constraint network. In (D.2), as in the ACME mapping program, a 
link is increased in strength for each proposition that supports it. Thus if the probe contains two 
occurrences of a predicate, then links to units involving that predicate will double in strength. 

Except as indicated in (B), all excitatory links have weight set by the parameter excit. 
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(4) Find the source structure struc n which contains search- 
propk. (This is trivial, since when memory is loaded, the 
information about the structure that contains it is stored 
with each proposition name.) 

(5) Create the unit P=struc n, hypothesizing that the source 
structure is relevant to the probe structure. 

(6) Link this unit to the unit propp, i=search-propk and to 
pred p,s = search-predj. 

Fig. 5. Continued. 

After semantic similarity has been used to create the network of 
units, set up inhibitory links between pairs of incompatible hypoth- 
eses, considering: 

The competing source structure hypotheses; 
the competing predicate hypotheses; 
the competing proposition hypotheses; and 
the competing object hypotheses. 

Every hypothesis of the form A = B gets an inhibitory link to every 
hypothesis of the form A = C or C= B. 

Fig. 6. Algorithm for setting up inhibitory links. 

giving a hint, so some mappings can be presumed and the units representing 
them are linked to the pragmatic unit. 

Finally, Fig. 8 describes the algorithm for synchronously updating the 
activations of the different units. Note that this algorithm is fully parallel: once 
the network is set up, the adjustment of the activation of each unit can be done 
simultaneously. This parallelism has both conceptual and practical advantages. 
Practically, this means that on a computer with as many processors as the 
number of units and links, the amount of time it takes to update the entire 
network should be roughly constant despite dramatic increases in the size of 
the data base of stored analogs. Conceptually, the algorithm has the advantage 
of simultaneously determining the best way to satisfy as much as possible all of 
the constraints that underlie the construction of the network. The equation 
used for updating activation is that suggested by Grossberg [24]. The activation 
level of unit j on cycle t + 1 is given by: 

ai ( t  + 1) = aj(t)(1 - d )  + e n e t i ( m a x  - a j ( t ) )  + ine t ) (a~( t )  - m i n ) .  (1) 

Here d is a decay parameter, e n e t  i is the net excitatory input, and inet j  is the 
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(A) Note elements that are considered IMPORTANT, either from 
input statements, or as determined by the following analysis: 
(1) If the probe structure P is a problem, mark every predicate 

in a goal proposition as important,  as well as every predi- 
cate in a starting condition proposition that is determined 
to be goal-relevant by considering CAUSE, IF and SATISFIES 
relations, For example, if P1 is a start proposition in the 
probe P, and P1 causes P2 which is a goal proposition in P, 
then P1 is important. 

(2) If the probe structure P is an explanation, mark every 
predicate in a proposition to be explained as important,  as 
well as every predicate in a starting condition, using the 
same determination of relevance used in (1). 

(3) If the probe structure P is an argument, mark every 
predicate in the conclusion as important,  as well as every 
predicate in a premise proposition that has direct relevance 
to the conclusion as indicated by IF relations. 

(B) For each element E considered IMPORTANT, connect all units 
which contain hypotheses about E to the pragmatic unit with a 
weight pragl ,  typically 0.01, a parameter  for pragmatic excita- 
tion of hypotheses with important elements. 

(C) If any mappings are considered PRESUMED, connect the units 
representing the specified mappings to the pragmatic unit with 
a weight prag2, typically 0.1, a parameter  for pragmatic excita- 
tion of presumed hypotheses. 

Fig. 7. Algorithm for implementing pragmatic centrality. 

net inhibitory input (a negative number),  with minimum activation rain = - 1  
and maximum activation max = 1. Inputs are determined by the equations: 

enetj = ~ wijoi(t ) for wij > 0 ; (2) 
i 

inetj = ~, wiioi(t ) for wii < 0.  (3) 
i 

Here oi(t ) is the output of unit i on cycle t, set by: 

oi(t ) = max(a,(t) ,  0 ) .  (4) 

In ARCS, updating continues until all units have reached asymptote, that is, a 
cycle is reached at which the activation change of each unit is less than a 
specified value, typically 0.001. As shown by the experiments described below, 
these algorithms for setting up and adjusting networks are very effective for 
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(A) Running the network: 

Set all unit activations to an initial starting value (typically 
0.01), except that the special semantic and pragmatic units 
are clamped at 1. 

Update activations in accordance with (B) below. 
If no unit has changed activation more than a specified amount 

(usually 0.001), or if a specified number  of cycles of updating 
have occurred, then stop. 

(B) Synchronous activation updating at each cycle: 

For each unit u: 
calculate the new activation of u in accord with equations 
(1 ) - (4 )  in the text, considering the old activation of each unit 
u '  linked to u. 

Fig. 8. Algorithms for network operation. 

selecting relevant analogs. Activation levels become stable in a reasonable 
number  of cycles--typically less than 150--and ARCS works well over a wide 
range of parameter  values (see Section 6.3). ARCS currently runs serially on 
Sun workstations, and real run-times on a Sun 4 for the simulations described 
in Sections 5 and 6 range from half a minute to ahnost an hour for the largest 
network with over 60,000 links. 

To sum up, let us review how the algorithms of ARCS implement the three 
constraints discussed in Section 2. Semantic similarity is implemented by the 
algorithms described in Figs. 4 and 5(B). Isomorphism is implemented by the 
algorithms in Figs. 5 and 6: see Fig. 5(D) for structural consistency, and Fig. 6 
for one-to-one mapping. Figure 7 shows how pragmatic centrality is im- 
plemented in ARCS. The network of units and links embodies all three kinds of 
constraints. Finally, Fig. 8 shows how simultaneous satisfaction of all three 
constraints can be computed by updating activations of units in the network. 

It is important to be clear about what ARCS is n o t  doing. It does not compare 
the probe with every structure stored in memory,  but considers only those that 
have semantically similar predicates. Nor does it do a complete match between 
the probe and the source analogs whose potential relevance is indicated by 
semantic similarity. Unlike our mapping program ACME and Falkenhainer,  
Forbus and Gentner 's  SME, ARCS does not calculate a global map of the probe 
to the source, but only considers those propositions containing semantically 
similar predicates. Typically, in comparing the probe and the source, ARCS 
looks at much less of each structure than does ACME, which attempts to map 
predicates that are not semantically similar. In two of our retrieval runs, we 
found that ARCS created fewer than 5% of the units needed for a full ACME 
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comparison of two structures. Doing a full mapping between the probe and 
each possible source would increase the chance that the selected source is 
really the best possible, but the added computational load is not worth it if a 
simpler, semantics-driven retrieval system yields plausible potential sources, as 
seems to be the case for human psychology. Whereas ACME and SME compute 
a full set of candidate mappings, ARCS is restricted to correspondences 
suggested by semantic similarity. Finally, ARCS does not have a two-stage 
process in which the overall match between the probe and each source is 
computed and then compared. Rather,  the relative value of the source analogs 
is computed in parallel through the relaxation of the network of units. 

3.3. Computational complexity 

Holyoak and Thagard [35] showed that the space complexity of ACME, which 
produces a mapping between two structures, is at worst O(n4), where n is the 
number of propositions in the larger structure. This followed from the calcula- 
tion that the number of units was at worst on the order of n z, and there cannot 
he more links than there are units squared. Since ARCS, unlike ACME, only 
puts in correspondence concepts that are semantically similar, ARCS can do no 
worse than ACME when only the relation between the probe structure and a 
single stored structure is considered. Hence the number of units for ARCS can 
be no worse than k times the number for ACME, where k is the number of 
structures stored in memory.  The maximum number of units in an ARCS run is 
therefore O(kn2). Hence the maximum number of links and the overall space 
complexity of ARCS is O(k2rt4). Experiments reported in Section 6 show that 
the numbers tend to be much smaller, since ARCS does not put in correspond- 
ence propositions whose predicates are not semantically similar. 

Calculation of the time complexity of ARCS requires taking into account both 
the time to create the constraint network and the time for the network to 
settle. The complexity of network creation is the same as the space complexity, 
O(k2n4), assuming that a constant number of steps is required to create each 
unit and link. Unfortunately,  it is not possible to determine analytically 
whether c, the number of cycles it takes the network to settle, depends on the 
number and size of structures in memory.  Fortunately,  however, our experi- 
ments with both ACME and ARCS suggest that for larger networks the number 
of cycles required by a network to settle is roughly constant and independent of 
the size of the network (see Section 6). In principle, it is possible to implement 
all the units and links on separate processors, so that a parallel machine could 
reduce the time complexity of settling in ARCS to O(¢) .  

4. Comparison with Other Computational Models 

ARCS can usefully be compared with two sorts of computational models: other 
models of analog retrieval and memory,  and other connectionist models. A 
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fully comprehensive review is beyond the scope of this article, but we will 
contrast ARCS with models that are similar and different in interesting ways. 

4.1. Models of analog retrieval 

Many computational models of analogy have been proposed, as Hall [25] has 
comprehensively reviewed. Here  we will primarily compare ARCS with those 
models that are most similar in being concerned with retrieval of analogs. We 
will not discuss programs whose major  function is mapping between two given 
analogs [13]. 

The most distinctive features of ARCS are: it applies all of  the constraints of 
(1) semantic similarity, (2) structural consistency, and (3) pragmatic centrality; 
it (4) uses a parallel algorithm for determining the stored analogs that best 
satisfy these constraints; and it (5) uses competitive interactions among alterna- 
fives to screen out candidates. We will therefore consider whether other  
computational models of retrieval use each of the three kinds of constraints, 
parallel algorithms, and competition. This determination is not always 
straightforward, as previous models have seldom been explicitly described in 
terms of the five features that we view as basic to ARCS. Nonetheless, such 
comparisons are at least suggestive of the similarities and differences among 
extant models. 

We judge a model to use the semantic similarity constraint if it retrieves 
analogs that are related to the probe analog by having elements that are related 
semantically via synonyms, antonyms, kind relations, and /o r  par t -whole  rela- 
tions. Using identical predicates as matches can be understood as a limiting 
case of semantic similarity. We judge a model to use isomorphism if it is 
sensitive to argument order  differences, such as the difference between "dog 
bites boy"  and "boy bites dog."  A model is viewed as using the constraint of 
pragmatic centrality if it takes into account the goals and purposes for which 
the analog is intended to be used. We count an algorithm as parallel if it 
simultaneously evaluates the potential relevance of any number of stored 
analogs. Finally, we count a model as involving competitive retrieval if 
evidence favoring one potential source analog can be used to reduce the 
likelihood of retrieving another.  By competitive retrieval we mean more than 
simply that some candidates are selected as better  than others. Any retrieval 
program will be comparative; for example,  a program might simply calculate a 
degree of match between the probe and each source structure and report  the 
highest. By competitive retrieval we mean that during the process of retrieval 
the different source structures vie with each other to be the best match, with 
the claims of one tending to suppress the claims of the others. ARCS is 
competitive in this sense since the activation of one PROBE:SOURCE unit 
suppresses by means of inhibitory links the activation of all other 
PROBE=SOURCE units. After  the network has settled, the supremacy of the 
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most active PROBE=SOURCE unit reflects its having beaten out all the others. 
Competitive retrieval is most naturally done as part of a parallel process, but 
there are many ways of doing parallel retrieval that are not competitive 
because structures are retrieved completely independently of each other. Psy- 
chological studies of interference effects in human long-term memory provide 
evidence that human memory retrieval is in fact competitive (e.g. [2, 5]). 

Table 1 summarizes the results of our comparisons. In the table, "yes"  
means the model has the relevant feature; " + "  and " - "  signs indicate the 
model makes notably greater or lesser, respectively, use of the feature than 
does ARCS. Keep in mind that these comparisons solely involve retrieval 
mechanisms; many of these models have other features when they are applied 
to analogical mapping. 

Let us first compare the ARCS model with our own earlier work. Holyoak 
and Thagard [34] proposed an account of analogical problem solving within the 
context of the pI system [31, 60, 61]. PI solves problems by firing of production 
rules and spreading activation through a network of frame-like concepts. The 
program uses semantic similarity in a weaker way than does ARCS because 
activation spreads from a concept only to other concepts that are its superordi- 
nates and subordinates. Otherwise, activation spreads by rule firing, which 
involves both forward chaining and backward chaining from goals to be 
accomplished. This last feature shows that Pl does use pragmatic centrality to a 
limited extent. Pl differs from ARCS in that it does not consider structural 
consistency at all, and it considers semantic and pragmatic constraints in a 
much more limited way. Analogs are retrieved in P1 by means of summation of 
activation of the concepts with which they are stored, a parallel process, but Pl 
lacks a means for competitively selecting the best match in memory. That  is, Pl 

can pick the most active analog, but the analogs and their components do not 
inhibit each other,  so that there is no competition for activation as there is in 
ARCS. Another  major difference is that the spreading activation mechanism in 

Table 1 

Comparison of ARCS with other computat ional  models of analogical retrieval 

Semantic Isomorphism Pragmatic Parallel Competi t ive 
similarity centrality algorithm retrieval 

ARCS yes yes yes yes yes 
PI y e s -  no y e s -  yes no 
Anderson y e s -  no yes yes y e s -  
Carbonell  y e s -  yes yes+ no no 
Hammond y e s -  no yes+ no no 
Kolodner y e s -  no yes+ yes no 
Winston y e s -  no no no yes 
Lehnert  no yes no yes yes 

Note. yes+ indicates that a constraint is used to a greater degree than in ARCS~ while y e s -  

indicates that it is used to a lesser degree. See the text for references and names of programs. 
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el is controlled only by a decay parameter ,  so that large parts of the data base 
could eventually be activated through a wide variety of inferences and activa- 
tions. ARCS does a much narrower search into memory,  looking only at stored 
analogs that have some semantic overlap with the probe analog. 

Anderson and his colleagues [3, 4, 46] have used spreading activation as a 
mechanism for retrieval. In the PUPS system [4] stored analogs are representa- 
tions of LISP functions describing their form and function. Neither PUPS nor 
ACT* [3] give semantic relations a special role, although they may be indirectly 
present in the propositions that are the sources of connections between nodes. 
In ACT*, any proposition involving two concepts C1 and C2 will give rise to a 
link between them. Since some of these propositions will encode semantic 
relations, such as the fact that a dog is a kind of animal, these relations will be 
among those that provide lines of spreading activation, although with no 
greater effect than a proposition stating that dogs have fleas. Structural 
considerations are not directly used in ACT*, although the form and function 
specifications in PUPS do have a structural role in mapping. ACT* allows goal 
elements to affect the spread of activation, giving it a pragmatic dimension. 
Spreading activation is a fully parallel process; however,  ACT* does not make 
use of inhibitory connections to produce competitive retrieval. Retrieval in 
ACT* is competitive in a weaker sense, however: for any node, outgoing 
activation along a link is proportional to the strength of that link relative to 
summed strengths of all links. Hence a receiving node will get less activation 
from a sending node if there are many other  nodes linked to the sending node. 

It is important to distinguish the notion of activation used for retrieval in 
ACT* and Pl from the very different notion of activation used in connectionist 
systems such as ARCS. In ARCS, the activation of a unit represents the 
plausibility of a hypothesis concerning a correspondence between a probe 
structure and a stored structure. Retrieval in ARCS works fundamentally by 
semantic elaboration of the probe and construction of a network of units 
representing correspondence hypotheses: activation of units is used simply to 
provide a simultaneous evaluation of the hypotheses. It is possible that a full 
model of human memory may need to include a looser process of spreading 
activation in addition to the tightly constrained retrieval process used by 
ARCS. Models influenced by Schank's [55] theory of reminding emphasize 
indexing of structures in /nemory on the basis of their causal relevance to the 
accomplishment of goals and avoidance of failures. Carbonell 's [6, 7] analogy 
systems, implemented in his ARIES program, use a similarity metric that heavily 
weights relevance to solution, so it seems to be primarily concerned with 
pragmatic centrality, although structural relations are also taken into account. 
The MEDIATOR system of Kolodner and Simpson [39] uses classifications of 
disputes as indexing cues. For  example, given the Sinai dispute as a probe, it 
retrieves the Korean conflict because the objects of dispute are classified as 
being of the same type and because they used the same type of force to achieve 
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a similar goal. This system therefore appears to use both semantic and 
pragmatic constraints; it does not appear to use a parallel algorithm for 
retrieval. Kolodner 's  [37] earlier memory model CYRUS, which used a sort of 
discrimination-net approach to selecting cases from a memory organized in 
terms of E-MOPS (episodic memory organization packets), has a natural parallel 
implementation. The hierarchical organization of memory used by ARCS is 
limited to its lexical semantics, in contrast to CYRUS which has all the E-MOPs 
arranged in a network. In ARCS, the only connections between source struc- 
tures are provided by the lexical semantics represented in individual concepts. 
In her most recent system, PARADYME, Kolodner [38] uses a set of preference 
heuristics to choose the best match from a set of partially matching cases 
retrieved by a parallel process. Unlike ARCS, which simultaneously satisfies its 
three constraints, PARADYME'S six heuristics are ordered and applied sequen- 
tially, with preference given first to cases that can help address the reasoner's 
current reasoning goal. 

The C H E F  system of Hammond [26] uses different kinds of memory organiza- 
tion for different purposes: successful plans, failures, modifications, and repair 
strategies. The memory for successful plans appears to be entirely organized in 
terms of goal accomplishment, and so is primarily pragmatic. Embedded in the 
goal hierarchies, however, are some semantic i~elations disguised as goal 
relations, such as the information that if you want to cook seafood you can 
cook shrimp. Hammond contends that work on memory has to consider the 
function of memory;  however, memory serves many functions besides problem 
solving, and therefore needs a more flexible organization than is found in 
CHEF. Neither CHEF nor the MEDIATOR system involves competitive retrieval. 

Winston's [66, 67] model of analogy is primarily concerned with mapping 
between analogs and learning, but he also discusses finding analogies by 
"classification-exploiting hypothesizing." His retrieval mechanism operates by 
moving down an annotated A-KIND-OF hierarchy of frames representing situa- 
tions, with the slots in the frames "voting" concerning their relevance to the 
probe situation. The voting mechanism appears to make retrieval competitive, 
since the degree to which the slots of a frame count in favor of the relevance of 
the potential source situation depends on slots in other frames that are also 
voting. The use of the A-KIND-OF hierarchy implies that retrieval is largely 
semantic, although Winston's mapping program also uses the constraints of 
isomorphism and pragmatic centrality. As implemented, the algorithm is serial, 
but traversal of the A-KIND-OF hierarchy would presumably not be hard to do 
in parallel. 

Finally, a comparison can be made with Lehnert 's  [40] system for retrieving 
word pronunciations. Like ARCS, her PRO system uses a parallel relaxation 
algorithm to select from memory the pronunciations most similar to a probe, 
and it does so in part by keeping track of structural relations. However,  since 
this domain is phonological, there is no relevant semantic or pragmatic 
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information to be used. The analogs that have been used to test the ARCS 
model are far more complicated both structurally and semantically than the 
strings of phonemes that constitute the cases in the PRO system. Stanfill and 
Waltz [59] also do parallel retrieval of word pronunciations from large data 
bases, but their approach is very different from Lehnert 's  or ours: they use an 
explicit metric to measure the similarity between a probe record and a stored 
record, then pick the most similar. Retrieval in their system is thus compara- 
tive, but not competitive. 

It is interesting to consider how it might happen in different systems that no 
structure gets retrieved, simulating the occasions in human thought when 
nothing comes to mind. In ARCS, a probe can fail to retrieve any structures if 
there are no structures in memory with any semantic overlap with the probe. 
An extreme example would be a probe consisting of nonsense words. More 
naturalistically, retrieval failures can arise if only a small degree of overlap 
exists between the probe and a structure stored in memory.  For example, if a 
story about computers is used as a probe into the data base of fables described 
in Section 6.1, no unit representing a computer  story to fable correspondence 
acquires activation much above 0, even if the story happens to mention a fox. 
The predicate FOX appears in numerous fables, but the different units repre- 
senting the relevant PROBE=FABLE mappings suppress each other and none 
become very active. Retrieval systems that use explicit metrics would presum- 
ably judge that nothing is retrieved if no stored structure surpasses some 
minimum threshold for similarity to the probe. 

To sum up, all the above models assume that analog retrieval involves some 
means of doing a partial similarity match against a host of analogs, but they 
differ primarily in what aspects they consider most relevant to similarity, and in 
how the comparison is actually executed. ARCS embodies the hypothesis that 
semantic, structural, and pragmatic similarity are all important,  and shows how 
to give an integrated parallel calculation of overall similarity. ARCS does not 
require an explicit similarity metric that is applied to various structures in 
memory,  judging each independently of other potential analogs. Rather,  a 
judgment about the relative similarity of potentially relevant stored analogs 
emerges from parallel competition for activation. ARCS differs from ACT*-style 
spreading activation in that the competit ion for activation is among hypotheses 
concerning correspondences,  not among structures representing analogs, so 
that ARCS can gracefully handle structural pressures as well as semantic and 
pragmatic ones. 

4.2. Connectionist and related models  

The ARCS model uses a connectionist relaxation algorithm to select analogs 
from memory,  but we do n o t  want to draw a strong distinction between our 
approach and traditional "symbolic" approaches. Our basic memory repre- 
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sentations of analog structures and concepts are quite traditional, being similar 
to predicate-calculus and frame-like representations. What is more novel in 
ARCS (and its sibling, ACME) is the use of a constraint network of units 
representing hypotheses about correspondences to select the best analogs. 
Feldman and Ballard [59] provide an introduction to the general approach. The 
correspondence units in ARCS are conceptually related to the "binding nodes" 
used in the parsing system developed by Cottrell [9]. 

Our approach should be distinguished from the more radical " P D P "  brand 
of connectionism that uses distributed representations. Common to connection- 
ist approaches is the use of units with excitatory and inhibitory links, but the 
interpretation of the units varies substantially. A unit can be used to represent 
a symbolic entry in memory such as a concept [57] or a proposition [61]. It is a 
mistake to describe such localist models as "nonsymbolic ."  In contrast, PDP 
(parallel distributed processing) theorists recommend that concepts and propo- 
sitions be distributed across numerous units, so that a symbolic entity corre- 
sponds to patterns of activation across numerous units [28, 54]. Among localist 
models, we can distinguish ones in which the units represent parts of perma- 
nent memory from ones in which the units and the connections between them 
are more ephemeral,  created on the fly for a particular task. The networks 
ARCS creates are ephemeral in this sense. Another  example of the use of 
ephemeral networks is in the frequently discussed example of the Necker cube 
[15], in which the units represent hypotheses concerning which of the parts of 
the cube are in front and which are in back. No one would claim that every 
hypothesis about reversing cubes is part of permanent memory. Kintsch [36] 
has proposed a connectionist model of discourse comprehension that includes 
ephemeral units constructed by a parser, as well as permanent iexical ones. 

To sum up, connectionists models can be local or distributed, and the local 
ones can use permanent  or ephemeral units; the networks in ARCS are local 
and ephemeral.  Although ARCS constructs a new network for every retrieval, 
we are currently building a cognitive architecture in which ARCS-style retrieval 
proceeds in an incremental fashion so that the constraint network, while still 
not permanent,  can persist and grow through a problem-solving episode. The 
ARCS constraint network should not be thought of as "working memory"  as 
this is normally understood by psychologists, since it represents processing at a 
much more unconscious level. ARCS's networks have roughly the same 
theoretical status as the RETE nets used to match the conditions of rules in 
production system models of cognition, although it should be noted that ARCS 
is adept at finding partial matches. Indeed, we are experimenting with a new 
cognitive architecture that smoothly integrates analog retrieval with rule-based 
reasoning, using ARCS-style networks to perform partial matches of the condi- 
tions of rules. 

Thagard [61] distinguishes eight different approaches to understanding the 
nature of mind and intelligence: 
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(1) straight neuroscience, studying neurons or sections of the brain; 
(2) computational modeling of actual neurons in the brain; 
(3) connectionist models using distributed representations, so that a concept 

or hypothesis is a pattern of activation over multiple units; 
(4) connectionist models using localist representations, in which a single unit 

represents a concept or proposition; 
(5) traditional artificial intelligence models using data structures such as 

logical expressions, frames, and production rules; 
(6) cognitive-level psychological experimentation; 
(7) mathematical analysis; 
(8) theoretical speculation about the general nature of mind. 

ARCS is a hybrid model embodying approaches (4) and (5) (see Hendler [27] 
for a discussion of the advantages of hybrid approaches). A stark connectionist 
versus symbolist distinction is an impediment to conceptual progress for at least 
two reasons. First, a sharp distinction overlooks the existence of many interest- 
ing localist connectionist models and the presence in distributed models of 
symbolic inputs and outputs. Second, it threatens to block exploration of 
interconnecting aspects of what we see as compatible computational methods. 

We are not aware of any other connectionist models of analogy, but what 
such a model might be like is suggested by the model of distributed memory 
advocated by McClelland and Rumelhart [42, 53]. In their system, a mental 
state is a pattern of activation over the units that comprise permanent memory. 
Memory traces are changes in the weights between units. An experience 
produces a particular pattern of activation and an adjustment of the weights 
between units. Later similar experiences produce a similar activation pattern, 
amounting to retrieval of the earlier experience. This distributed approach is 
potentially an elegant implementation of semantic similarity, since experiences 
with a set of properties will be stored as patterns of activation that become 
activated by experiences with similar properties. We predict, however, that it 
will be much harder to implement the constraint of isomorphism, since it is not 
clear how a distributed representation can keep track of argument structure. In 
analogical reasoning, it is crucial to distinguish "boy bites dog" from "dog bites 
boy," since structural consistency is a key influence on the extent to which two 
structures correspond. (See Ratcliff and McKoon [47] for discussion of addi- 
tional difficulties encountered by models based solely on vector representations 
in accounting for human retrieval of rational information.) ARCS' implementa- 
tion of structural consistency depends on the use of units representing hypo- 
thetical correspondences involving propositions and parts of propositions, not 
just features. 

The Copycat project of Hofstadter and Mitchell [30] investigates analogy in a 
spirit similar to connectionist approaches. Using many small "codelets" inter- 
acting in parallel, Copycat solves analogy problems using letter strings. Given 
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the example that abc goes to abd, it comes up with a number of answers to the 
question of what pqr goes to. Copycat uses a network of concepts, called a 
Slipnet, to find correspondences between non-identical objects; this is roughly 
similar to ARCS' use of lexical semantics to find similar predicates. The 
processes by which Copycat finds correspondences differ, however, in two 
important respects from ARCS. First, Copycat is nondeterministic, since the 
codelets are chosen nondeterministically from a constantly changing pool. 
Second, Copycat's parallel search for correspondences varies in speed de- 
termined dynamically by moment-to-moment evaluations of the promise of 
each match. Copycat is better described as creating analogies rather than as 
retrieving them, and nondeterminism arguably increases the possibilities of 
creativity. Its use of the Slipnet can be construed as an implementation of the 
constraint of semantic similarity, but Copycat does not appear to implement 
the constraints of isomorphism or pragmatic centrality. 

5. Psychological Evaluation 

ARCS is intended to be a model of human cognition, so it is essential that it be 
consistent with the results of psychological experiments on analog retrieval. We 
will accordingly describe its performance in simulating the results of two sets of 
experiments done by Holyoak and his colleagues and by Gentner and her 
colleagues. Section 6 describes computational experiments concerning how well 
ARCS scales to larger data bases. 

5.1. Convergence problems 

As reviewed briefly above, Holyoak and his colleagues have done a series of 
experiments in which the target problem to be solved concerns using an X-ray 
to destroy a tumor deep inside a patient [21,22, 33] (see Duncker [11] for the 
original use of the tumor problem). Simply shooting the X-ray beams at the 
tumor is not an acceptable solution, because the beams, if shot at sufficient 
intensity to destroy the tumor, will also destroy intervening healthy tissue and 
kill the patient. A "convergence" solution is appropriate: using multiple beams 
weak enough not to hurt the patient, but aimed from several directions so that 
they converge on the tumor with enough intensity to destroy it. Very few 
subjects discover this strategy on their own, but they are more likely to 
formulate the convergence solution if they have first been provided with an 
analog. In the various expcrimcnts, analogs have been used with markedly 
different degrees of similarity to the tumor problem, and subjects' ability to 
retrieve them from memory and notice their relevance, without any hint from 
the experimenter, has varied accordingly. 

We cannot simulate the relevant experiments directly, since that would 
require constructing the full knowledge base of the various subjects and 
incorporating different stored analogs. However, since we are interested in the 
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relative retrievability of the different analogs, we can contrive a data base 
consisting of all of the analogs and see which ones ARCS prefers to retrieve. 
Our data base accordingly consists of the following five structures: 

- t h e  laser problem (version 1), in which a laser beam is used to fuse a 
filament in a lightbulb by convergence from several directions, avoiding 
breaking the bulb (high semantic similarity, high structural consistency); 

- t h e  laser problem (version 2), in which a laser beam is used to fuse a 
filament in a lightbulb, but where convergence is required because the 
original beam is too weak, not because of the danger of destroying the 
bulb (high semantic similarity, low structural consistency); 

- t h e  ultrasound problem (version 1), in which an ultrasound device is used 
to split apart a filament in a lightbulb by convergence from several 
directions, avoiding breaking the bulb (low semantic similarity, high 
structural consistency); 

- t h e  ultrasound problem (version 2), in which an ultrasound device is used 
to split apart a filament in a lightbulb, but where convergence is required 
because the original beam is too weak, not because of the danger of 
destroying the bulb (low semantic similarity, low structural consistency); 

- t h e  fortress problem, in which an army succeeds in attacking a fortress by 
dispersing its troops and attacking it from multiple directions; here the 
convergence solution is necessary because a frontal assault will lead to the 
destruction of the army. 

The first four of the above problems provide a factorial manipulation of 
degree of semantic similarity and degree of structural consistency, and their 
relative accessibility was assessed in a single experiment by Holyoak and Koh 
[33]. The fifth problem has been used in many other experiments [8, 21, 22, 
58]. To test the relative retrievability of these analogs, we translated the 
materials used by Holyoak and his colleagues into predicate calculus and added 
the relevant semantic information concerning the predicates used. An English 
version of the tumor problem is the following: 

Suppose you are a doctor faced with a patient who has a malignant 
tumor in his stomach. It is impossible to operate on the patient, but 
unless the tumor is destroyed the patient will die. There is a kind of 
ray that can be used to destroy the tumor. If the rays reach the 
tumor all at once at a sufficiently high intensity, the tumor will be 
destroyed. Unfortunately, at this intensity the healthy tissue that 
the rays pass through on the way to the tumor will also be 
destroyed. At lower intensities the rays are harmless to healthy 
tissue, but they will not affect the tumor either. What type of 
procedure might be used to destroy the tumor with the rays, and at 
the same time avoid destroying the healthy tissue? 
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the truncated asymptotic activations of the units. 
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Our predicate calculus translation used as the probe was given in Fig. 2. 
WordNet-style concepts were constructed for the 72 predicates used in the 
probe problem and in the five stored structures. 

We then used the tumor problem as a probe into the data base containing 
the other five problems. ARCS created a network of 100 units and 1104 links, 
and took 95 cycles to settle. Figure 9, derived from a graphics program that 
runs concurrently with ARCS, shows the connectivity of the unit 
TUMOR=LASER-FRAGILE, representing the hypothesis that the tumor problem 
corresponds most closely with the laser problem concerning not breaking the 
glass bulb. This laser problem is in fact most comparable to the probe tumor 
problem because it has greater structural consistency with it than does the laser 
problem in which the constraint is that the laser beam is not strong enough, 
and greater semantic similarity with it than do the ultrasound and fortress 
problems. It should also be noted that on the basis of the representation shown 
in Fig. 2, ARCS marks the propositions tp-18 and tp-22, along with their 
predicate DESTROY, as IMPORTANT since they are mentioned in the goals of the 
problem. These propositions do not, however, appear in Fig. 9, because they 
do not correspond to any propositions in the representation of the laser-fragile 
problem. Figure 10 depicts a graph, also produced by ARCS, of the activations 
of the five units representing hypotheses about the appropriateness of retriev- 
ing each of the stored structures. Each graph charts the activation of a unit (the 
range of the y-axis is from 1 to -1 ,  with the horizontal line indicating 0) over 
100 cycles of updating. 

The results correspond quite well with the degree of retrievability observed 
in the psychological experiments. Table 2 compares (1) the percent of subjects 
in the experiments who were able to generate the convergence solution without 
any hint with (2) the activation of the unit representing the correspondence 
between the probe tumor problem and the stored analog. For the four versions 
of the lightbulb problems, the order of activations corresponds to the empirical 

TUMOR=FORTRESS2 
TUMOR=LASER-FRAGILE 

TUMOR=LASER- INSUFFICIfiNT 
TUMOR=ULTRASOUND-FRAGILE 

TUMOR=ULTRASOUND- INSUFFICII~IT 

Fig. 10. Activation histories of selected units in convergence-problems simulation. Each graph 
shows activation on a scale of 1 to - 1 ,  with the horizontal line indicating the starting activation 

of O. 



294 P. THAGARD ET AL. 

Table 2 
Comparison of ARCS results with retrievability of radiation problem analogs 

Percentage of subjects Asymptotic activation 
achieving solution of ARCS unit 

Laser problem 69 0.22 
(fragile glass) 

Ultrasound problem 38 O. 15 
(fragile glass) 

Laser problem 33 O. 11 
(insufficient intensity) 

Ultrasound problem 13 0.05 
(insufficient intensity) 

Fortress problem 30 -0.12 

Note. Percentages for first four versions are taken from Holyoak and Koh [33]; percentage for 
fifth version is an approximate average based on several experiments reported by Gick and 
Holyoak [21, 22]. 

m eas u re  of  access ibi l i ty  in the  H o l y o a k  and  Koh  [33] e x p e r i m e n t .  S imi lar ly ,  
H o l y o a k  and T h a g a r d  [35] used  the ACME p r o g r a m  to s imula te  pos t - r e t r i eva l  
m a p p i n g  p e r f o r m a n c e  using da ta  f rom this s ame  e x p e r i m e n t .  

The  re la t ive  ac t iva t ion  of  the for t ress  p r o b l e m  is worse  than  the empi r i ca l  
m eas u re  would  a p p a r e n t l y  pred ic t .  H o w e v e r ,  this m e a s u r e  was o b t a i n e d  with 
d i f fe ren t  sub jec t s  in d i f fe ren t  e x p e r i m e n t s  than was the  da t a  for  the  o t h e r  four  
p r o b l e m s ,  so prec ise  c o m p a r i s o n s  are  u n w a r r a n t e d .  A l s o ,  sub jec t s  in the  ac tua l  
e x p e r i m e n t s  using the for t ress  p r o b l e m  had only  one  of  the  l igh tbulb  p r o b l e m s  
s to red  in m e m o r y ,  whe rea s  ARCS had  all of  t hem in compe t i t i on .  

The  a b o v e  resul ts  were  o b t a i n e d  with exc i ta t ion  set at 0.01, inh ib i t ion  at 
- 0 . 0 4 ,  and  decay  at 0.04. Sensi t iv i ty  analyses  to be desc r ibed  in Sect ion  6.3 
show that  the  resul ts  do  not  d e p e n d  on these  pa r t i cu la r  values.  

5.2. "Karla the Hawk" stories 

G e n t n e r  and  her  co l leagues  have  p e r f o r m e d  a ser ies  of  e x p e r i m e n t s  conce rn ing  
the re t r i evab i l i ty  of  a n u m b e r  of  s imi lar  s tor ies ,  and  ARCS has also been  used  to  
s imula te  these  results .  F igure  11 gives the  Engl ish  vers ions  of  one  set of  s tor ies  
f rom R a t t e r m a n n  and G e n t n e r  [48], whi le  Fig. 12 p rov ides  our  p r ed i ca t e -  
calculus  t r ans la t ion  of  the  first s tory.  2 R a t t e r m a n n  and G e n t n e r  first had  
sub jec t s  r ead  a list of  32 s tor ies ,  inc luding 20 crucial  s tor ies  such as " K a r l a  the  
H a w k . "  Then  sub jec t s  were  given a ser ies  of  p r o b e  s tor ies ,  inc luding  one  of  the  

2Because of its use of WordNet semantics, ARCS is able to handle more accurate and detailed 
representations of the stories than those used by Falkenhainer, Forbus and Gentner [13] to test 
their SME program. In their versions, for example, the propositions that Karla is a hawk and that 
Zerdia is an eagle were both represented using the predicate "bird": (bird karla), (bird zerdia). 
ARCS' semantics enables it to make the appropriate correspondence between (hawk karla) and 
(eagle zerdia), since hawks and eagles are both kinds of bird. 
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Base Story 
Karla,  an old hawk, lived at the top of a tall oak tree. One 
afternoon,  she saw a hunter  on the ground with a bow and some 
crude arrows that had no feathers. The hunter  took aim and shot at 
the hawk but missed. Karla knew the hunter  wanted her feathers so 
she glided down to the hunter  and offered to give him a few. The 
hunter  was so grateful that he pledged never  to shoot at a hawk 
again. He went off and shot deer  instead. 

Literal Similarity 
Once there was an eagle named Zerdia  who nested on a rocky cliff. 
One day she saw a sportsman coming with a crossbow and some 
bolts that had no feathers. The sportsman attacked but the bolts 
missed, Zerdia  realized that the sportsman wanted her tailfeathers 
so she flew down and donated a few of her tailfeathers to the 
sportsman. The sportsman was pleased. He  promised never to 
attack eagles again. 

True Analogy 
Once there was a small country called Zerdia  that learned to make 
the world's  smartest  computer .  

One day Zerdia  was attacked by its warlike neighbor, Gagrach.  
But the missiles were badly aimed and the attack failed. The 
Zerdian government  realized that Gagrach wanted Zerdian compu- 
ters so it offered to sell some of its computers  to the country. The 
government  of Gagrach was very pleased. It promised never to 
attack Zerdia  again. 

Mere Appearance 
Once there was an eagle named Zerdia  who donated a few of her 
tailfeathers to a sportsman so he would promise never  to attack 
eagles. 

One day Zerdia  was nesting high on a rocky cliff when she saw 
the sportsman coming with a crossbow. Zerdia  flew down to meet  
the man,  but he at tacked and felled her with a single bolt. As she 
fluttered to the ground Zerdia  realized that the bolt had her own 
tailfeathers on it. 

False Analogy 
Once there was a small country called Zerdia  that learned to make 
the world's smartest  computer .  Zerdia  sold one of its supercompu- 
ters to its neighbor,  Gagach,  so Gagrach promised never to attack 
Zerdia.  

But one day Zerdia  was overwhelmed by a surprise attack from 
Gagrach.  As it capitulated the crippled government  of Zerdia  
realized that the at tacker 's  missiles had been guided by Zerdian 
supercomputers .  

Fig. 11. English versions of "Karla the Hawk" stories (from Ratterman and Gentner [48]). 
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(hawk (obj-karla) true bsf-1) 
(old (obj-karla) true bsf-2) 
(oak (obj-tree) true bsf-3) 
(live-in (obj-karla obj-tree) true bsf-4) 
(afternoon (obj-afternoon) true bsf-5) 
(hunter (obj-hunter) true bsf-6) 
(see (obj-karla obj-hunter) true bsf-7) 
(when (obj-afternoon bsf-7) true bsf-8) 
(bow (obj-bow) true bsf-9) 
(arrows (obj-arrows) true bsf-lO) 
(crude (obj-arrows) true bsf-ll) 
(feathers (obj-feathers) true bsf-12) 
(have (obj-karla obj-feathers) true bsf-13) 
(have (obj-arrows obj-feathers) false bsf-14) 
(see-that (obj-karla bsf-14) true bsf-15) 
(shoot-at (obj-hunter obj-karla) true bsf-16) 
(miss (obj-hunter obj-karla) true bsf-17) 
(want (obj-hunter obj-feathers) true bsf-18) 
(know-that (obj-karla bsf-18) true bsf-lg) 
(glide-to (obj-karla obj-hunter) true bsf-20) 
(offer-to (obj-karla obj-feathers obj-hunter) true bsf-21) 
(accept-from (obj-hunter obj-feathers obj-karla) true bsf-22) 
(grateful-to (obj-hunter obj-karla) true bsf-23) 
(pledge-that (obj-hunter (bsf-26 false)) true bsf-24) 
(hawks (obj-hawks) true bsf-25) 
(shoot-at (obj-hunter obj-hawks) false bsf-26) 
(deer (obj-deer) true bsf-27) 
(shoot (obj-hunter obj-deer) true bsf-28) 
(cause (bsf-14 bsf-ll) true bsf-29) 
(cause (bsf-18 bsf-16) true bsf-30) 
(cause (bsf-14 bsf-17) true bsf-31) 
(cause (bsf-19 bsf-20) true bsf-32) 
(cause (bsf-19 bsf-21) true bsf-33) 
(cause (bsf-21 bsf-22) true bsf-34) 
(cause (bsf-21 bsf-23) true bsf-35) 
(cause (bsf-23 bsf-24) true bsf-36) 
(cause (bsf-24 bsf-26) true bsf-37) 
(cause (bsf-26 bsf-28) true bsf-38) 

Fig. 12. Predicate-calculus translation of "Karla the Hawk" probe. 
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four alternative stories listed in Fig. l l ,  and were asked to write down any 
story they were reminded of by the probe. (In Gentner's terminology, "target" 
corresponds to our "probe," and "base" corresponds to our "source.") The 
four versions manipulated the similarity of the probe and source story. The 
"literal-similarity" and "mere-appearance" conditions were high in overall 
semantic similarity, whereas the "true-analogy" and "false-analogy" conditions 
were low in overall similarity. The literal-similarity and true-analogy conditions 
preserve the pattern of causal relations in the probe, whereas the mere- 
appearance and false-analogy conditions did not. Thus the design provides a 
factorial manipulation of degree of semantic similarity and degree of structural 
consistency at the level of causal relations. 

As in the case of the convergence problems, it is impractical to simulate the 
actual knowledge of subjects in Rattermann and Gentner's experiment. As a 
surrogate for general memory, we used the fables data base described in 
Section 6.1. Because many of the 100 fables concern animals, as do the 
Rattermann and Gentner stories, they serve as excellent distractors for the 
probe story. We did four retrieval simulations, using the same parameters as in 
the simulations involving the tumor problem. The largest network consisted of 
570 units, 26,330 links, and did not settle within the 200-cycle limit we 
imposed. As Table 3 indicates, ARCS' simulation corresponded well with the 
results of the psychological experiments. Each probe story retrieved the "Karla 
the Hawk" story, but the retrievability of that story as measured by the 
number of fables that were better retrieved varied inversely with the number of 
subjects recalling the story in the Rattermann and Gentner experiment. That 
is, the greater the percentage of the subjects retrieving the "Karla the Hawk" 
story using a probe of a particular type, the better the story did in relation to 
the fables also stored in memory. The ordering of activations of the units shows 
a small reversal for the true-analogy and false-analogy case relative to ordering 
of the retrieval percentages obtained by Rattermann and Gentner, but we view 

Table 3 
Comparisons of ARCS simulation with "Karla the Hawk" experiment (Ratterman and Gentner 
14s]) 

Percentage of subjects Rank of "Karla" Asymptotic activation 
retrieving story unit of "Karla" unit 

Literal similarity 58 1 of 68 0.67 
Mere appearance 45 9 of 59 -0.17 
True analogy 18 9 of 61 -0.27 
False analogy 8 16 of 29 -0.11 

Note. The percentages are inferred from a graph; the actual numbers were not reported by 
Ratterman and Genmer. By "Karla" unit we mean the unit representing the correspondence 
between the probe story and the "Karla the Hawk" story. In the rank column, "1 of 68" means 
that there were 67 fables activated in addition to the Karla story and the "Karla" unit had the 
highest activation. 
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this as an artifact of there being so many more fables activated in the 
true-analogy case than in the false-analogy case. 

The results of Rat termann and Gentner  [48] appear to show effects of both 
semantic similarity and structural consistency. The latter effect reveals itself in 
the apparent advantage of the literal-similarity condition over the mere- 
appearance condition, and the advantage of the true-analogy over the false- 
analogy condition. Although these differences fell short of statistical signifi- 
cance, each of these two trends were replicated in two separate experiments 
[19, 48], and in one experiment the advantage of the true analogy relative to 
the false analogy was significant [19]. Note that pragmatic centrality plays no 
role in the "Karla the Hawk" simulations, since the stories are not problems, 
explanations, or arguments. We agree with Gentner  [17] (in contrast, for 
example, to Hammond [26]) that semantic similarity is the most important 
constraint on analog retrieval, although we maintain that structural and 
pragmatic constraints are also used when such information is available. 

6. Computational Evaluation 

ARCS is thus consistent with some major psychological experiments on analog 
retrieval, and therefore gains some credibility as a cognitive model. However ,  
it is also important to do computational experiments to determine what 
happens in data bases in which the presence of many potential source analogs 
raises the danger of either retrieving too many not-so-relevant analogs or 
requiring too much computation to select out the more relevant ones. Do the 
networks required to do constraint satisfaction explode as the size of the data 
base increases, rendering the model intractable? We showed in Section 3.3 that 
the space complexity of ARCS is no worse than O(kZn4), but realistic cases 
provide more encouraging results. 

To provide experimental answers to questions concerning how well ARCS 
scales up, we constructed two large data bases consisting of 100 fables and 24 
synopses of Shakespeare's plays. Tests on the first data base show that ARCS is 
capable of screening the wheat from the chaff in a data base of many complex 
structures, whereas tests on the second data base show that it is capable of 
handling even more complex structures: the fables average about 22 proposi- 
tions per structure whereas the plays average about 55. 

6.1. The fables data base 

Aesop's fables [1] are a series of engaging stories intended to provide moral 
and social lessons. Most readers will be familiar with the story of the fox who 
decides that grapes that he cannot reach are probably too sour to be wanted 
anyway, illustrating how people sometimes decide that unattainable things are 
not desirable. The fables contain a wealth of social wisdom and opinion, but 
our reason for choosing them as a test data base is that they are semantically 
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rich, structurally complex, and highly interconnected with each other via 
similar characters and events. In this data base, the problem of selecting 
relevant analogs while not being swamped by less relevant ones is acute. 

Figure 13 presents the text of the fable about sour grapes, while Fig. 14 
provides our predicate-calculus representation of it. The fables data base also 
includes 99 similar structures. The semantic information for all our data bases 
has WordNet-style entries for over a thousand predicates like FOX and GRAPES. 
Probing from fable 3, "Sour Grapes," yielded connections to 71 of the 99 
stored fables (71%), largely because of the preponderance of animal characters 
in them; the winner was a fable [1, number 15] that also concerned foxes and 
eating. To check whether ARCS' performance on this data base was plausible, 
we in addition created a story about humans that we thought was analogous to 
the fox and sour grapes story. As expected, probing from this story into the 
entire data base retrieved the sour grapes fable more than any other. 

Sour Grapes 
A hungry fox tried to reach some clusters of grapes which he saw 
hanging from a vine trained on a tree, but they were too high. So he 
went off and comforted himself by saying: "They weren't ripe 
anyhow." 

In the same way some men, when they fail through their own 
incapacity, blame circumstances. 

Fig. 13. Sample fable "Sour Grapes." 

Story: 
(fox (obj-fox) true f3-1) 
(grapes (obj-grapes) true f3-2) 
(want (obj-fox obj-grapes) true f3-3) 
(get (obj-fox obj-grapes) false f3-4) 
(decide (obj-fox (f3-6 true)) true f3-5) 
(sour (obj-grapes) false f3-6) 
(cause (f3-4 f3-5) true f3-7) 

Moral: 
(men (obj-men) true m3-1) 
(circumstances (conc-circumstances) true m3-2) 
(fail (obj-men) true m3-3) 
(incapable (obj-men) true m3-4) 
(cause (m3-4 m3-3) true m3-5) 
(blame-for (obj-men conc-circumstances m3-3) true m3-6) 

Fig. 14. Predicate-calculus version of "Sour Grapes" fable. 
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We tested ARCS' capacity for efficient retrieval with the fables data base by 
performing a series of computational experiments. The results are shown in 
Fig. 15(A)-(D), which provides graphs of various performance measures 
against data bases of varying sizes. We randomly selected 10 fables and used 
them as probes into data bases of 10, 20 . . . . .  99 fables, also randomly selected 
from the total data base. For each run, we noted the size of the networks 
created and the settling time. Figure 15 show the results averaged over the 10 
fables selected as probes. The graphs show that the numbers of units and links 
increase manageably as the data base grows, The number of propositions (Fig. 
15(A)) and units (Fig. 15(B)) increase linearly with the number of fables, while 
the number of links (Fig. 15(C)) increases at a rate on the order of the square 
of the number of fables. This increase is far more manageable than the 
O(kZn 4) result (for k fables, of maximum n propositions) result in Section 3.3. 
If the worst-case result obtained generally, parallelism would not be of much 
help, since a very large number of processors would be required for retrieval of 
a relatively small number of analogs. Fortunately, ARCS uses semantic similari- 
ty information to prune dramatically the set of possible correspondences, 
resulting in the O(k 2) experimental result for the fables data base. 
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Most encouragingly, the number of cycles required for the fable networks to 
settle tends to level off. Figure 15(D) graphs the average number of cycles to 
settle in networks produced by probing into data bases of different sizes. Even 
networks created by probing into the largest data bases tend to settle in under 
200 cycles. The maximum number of units created was 587, and the maximum 
number of links was 25,170. 

6.2. The plays data base 

Winston [66] tested his ideas about analogy using very complex structures 
representing synopses of Shakespeare's plays. Although such structures are 
larger than people can probably handle in an entirely parallel manner, they 
provide a useful test of the computational power of a model of retrieval. 
Probing from a play into a data base of plays requires the comparison of a very 
large number of characters and elements. Our plays data base includes 
structures for 24 synopses based largely on summaries of the plays taken from 
Magill [41]. The plays averaged about 55 propositions per play, and every 
predicate was provided with WordNet-style semantic information. Figure 16 
presents our predicate-calculus version of the synopsis of the play Hamlet. 

Because the plays are such large structures, and because they overlap with 
each other a great deal, the networks produced using this data base are large. 
Probing from Hamlet into a data base of the remaining 23 plays produces a 
network with 1,160 units and 67,140 links. This exceeds the rate of growth we 
found for links versus the size of the fables data base, because each play is on 
average twice the size of each fable. It is less important, however, that a model 
of human analog retrieval scale well for size of structure than for size of data 
base, since it is more plausible that human memory contains a very great 
number of cases than that these cases are very large. 

Figure 17 shows the concurrently produced activation graphs of the units 
representing which play is most retrievable from Hamlet. The graph over 200 
cycles shows the stability of the network. With the default values for excitation 
and inhibition, the network settles in 268 cycles. Notice that six tragedies, 
Romeo and Juliet, King Lear, Othello, Cymbeline, Macbeth, and Julius Caesar, 
were judged to be more similar to Hamlet than the other plays, most of which 
had units with activation values below 0. As a further check on the plausibility 
of ARCS' performance on this data base, we formalized a plot outline of West 
Side Story, expecting that this structure would retrieve Romeo and Juliet, which 
it does. 

6.3. Sensitivity analyses 

How sensitive is ARCS' performance to changes in representation and parame- 
ter values? Our structure representations were constructed independently of 
the tests described above, using predicate calculus, WordNet-style semantics, 
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and a preponderance of semantic entries drawn from WordNet. Performance 
does not depend on the internal organization of analogs, for example of 
problems into starting conditions and goals: ARCS uses such information only 
for marking some propositions and concepts as pragmatically important. The 
common representation scheme for all data bases makes it possible to do 
experiments on amalgamated data bases. When the tumor problem is used as a 
probe into a data base consisting of both convergence problems and "Karla the 
Hawk" stories, it turns out that the stories are candidates for retrieval along 
with the problems. But the stories are quickly rejected as plausible analogs of 
the tumor problem and the ordering of activation of the radiation problems 
remains as described in Section 5.1. 

All of the runs described above, on all the data bases, used the default 
parameter values of 0.01 for excitation, 0.04 for decay, and -0.04 for 
inhibition. The default values were selected because they tend to lead to 
networks settling in fewer than 100 cycles; other parameter values increased 
settling time to as many as 150 cycles. We have conducted systematic sensitivity 
tests on the Holyoak and Koh data base, and found that ARCS obtains the 
desired results for a reasonable range of parameter values. Decay values 
between 0.01 and 0.05 work fine, except that at the higher levels the final 
resting values of the units approach 0, so that there is not as much spread 
between the activations of the units representing the retrievability of the 
different structures. The orderings, however, are preserved. Higher levels of 
decay significantly reduce the settling time, with the Holyoak and Koh 
experiment settling in fewer than 30 cycles at high (>0.1) decay values. 
Holding inhibition constant at the default value, we varied excitation and 
determined that acceptable performance resulted from excitation values within 
the range from 0.007 to 0.0145. The lower values tended, however, to reduce 

Characters: 
(king (obj-old-hamlet) true hac-1) 
(prince (obj-hamlet) true hac-2) 
(queen (obj-gertrude) true hac-3) 
(man (obj-claudius) true hac-4) 
(man (obj-polonius) true hac-5) 
(man (obj-laertes) true hac-6) 
(woman (obj-ophelia) true hac-7) 
(daughter (obj-ophelia obj-polonius) true hac-8) 
(son (obj-laertes obj-polonius) true hac-9) 
(siblings (obj-old-hamlet obj-claudius) true hac-10) 
(son (obj-hamlet obj-old-hamlet) true hac-ll)  

Fig. 16. Predicate-calculus formalization of Hamlet synopsis. 
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Plot: 
(kill (obj-claudius obj-old-hamlet) true ha-l) 
(marry (obj-claudius obj-gertrude) true ha-2) 
(conjoin-event (ha-1 ha-2) true ha-3) 
(king (obj-claudius) true ha-4) 
(cause (ha-3 ha-4) true ha-5) 
(upset (obj-hamlet) true ha-6) 
(cause (ha-3 ha-6) true ha-7) 
(distress (obj-hamlet obj-claudius) true ha-8) 
(dead (obj-hamlet) unknown ha-9) 
(desire (obj-claudius (ha-9 true)) true ha-10) 
(cause (ha-8 ha-10) true ha-ll) 
(curtain (obj-arras) true ha-12) 
(behind (obj-polonius obj-arras) true ha-13) 
(behind (obj-claudius obj-arras) false ha-14) 
(believe (obj-hamlet (ha-14 true)) true ha-15) 
(kill (obj-hamlet obj-polonius) true ha-16) 
(cause (ha-6 ha-15) true ha-17) 
(cause (ha-15 ha-16) true ha-18) 
(upset (obj-ophelia) true ha-19) 
(cause (ha-16 ha-19) true ha-20) 
(kill (obj-ophelia obj-ophelia) true ha-21) 
(cause (ha-19 ha-21) true ha-22) 
(upset (obj-laertes) true ha-23) 
(cause (ha-21 ha-23) true ha-24) 
(desire (obj-laertes (ha-9 true)) true ha-25) 
(cause (ha-23 ha-25) true ha-26) 
(conjoin-event (ha-10 ha-25) true ha-27) 
(duel (obj-hamlet obj-laertes) true ha-28) 
(cause (ha-27 ha-28) true ha-29) 
(kill (obj-hamlet obj-laertes) true ha-30) 
(kill (obj-laertes obj-hamlet) true ha-31) 
(conjoin-event (ha-30 ha-31) true ha-32) 
(cause (ha-28 ha-32) true ha-33) 
(kill (obj-claudius obj-gertrude) true ha-34) 
(accident (ha-34) true ha-35) 
(cause (ha-10 ha-34) true ha-36) 
(kill (obj-hamlet obj-claudius) true ha-37) 
(conjoin-event (ha-6 ha-10) true ha-38) 
(conjoin-event (ha-38 ha-34) true ha-39) 
(cause (ha-39 ha-37) true ha-40) 

Fig. 16. Continued. 
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Fig. 17. Activation histories of selected units in "plays" simulation. Each graph shows activation on 
a scale of 1 to -1, with the horizontal line indicating the starting activation of 0. 

the spread among the final activation levels of competing units. More im- 
portant, when excitation values exceeded 0.0145 the networks became unstable 
with units undergoing oscillations that delayed or precluded settling. Holding 
excitation constant at 0.01, we varied inhibition systematically and found that 
performance was maintained for the range of - 0 . 0 1 6  to - 0 . 2 .  

In testing whether ARCS performance is sensitive to the values for semantic 
similarity stated in Fig. 5(B),  we found that the parameter values could all be 
made the same without interfering with the simulation of the Holyoak and Koh 
[33] data, except for the parameter for antonyms which could vary but had to 
remain negative. Otherwise, ARCS found a mapping of HIGH to LOW as good as 
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a mapping from HIGH to HIGH, preventing it from distinguishing between the 
fragile-lightbulb and the insufficient-intensity versions of the problems. 

Since graceful degradation is often cited as a strength of connectionist 
networks, we tested ARCS'  immunity to deletion of randomly chosen units. 
Deletion of a few units from networks for the Holyoak and Koh simulation 
caused little problem, but in experiments where 25% of the units were 
randomly deleted, the results failed to fit the psychological data 75% of the 
time. Random deletion of percentages of concepts from permanent  memory 
has a more severe effect on performance: on average, deleting 10% of the 
concepts eliminated the psychological fit 60% of the time. 

Finally, we did selective sensitivity tests on the fable data base, probing from 
the sour grapes fable using extreme values for excitation and inhibition, and 
found that performance was fine over roughly the same ranges of values as for 
the two much smaller data bases. In particular, the same fable was favored in 
each case. The fable runs take just .over two minutes on a Sun 4 workstation. 

6.4. Connection machine implementation 

Because the algorithm used by ARCS for updating the network is fully parallel, 
it can theoretically operate in constant time if a processor is assigned to each 
unit and link. To begin to take advantage of this inherent parallelism, a version 
of ARCS has been implemented in *LISP on a 16384-processor CM2 Connection 
Machine. To implement the settling algorithm, CM2 processors are divided 
into two sets, corresponding to units and links, respectively. Each processor 
representing a unit contains slots for the unit's current activation, its activation 
on the prior cycle, and for the net excitatory and net inhibitory inputs to that 
unit. Each processor representing a link contains slots for the link's weight, for 
the processor index corresponding to the unit on the source end of the link, 
and for the processor index corresponding to the unit on the receiving end of 
the link. When the number of units and links exceeds the number of physical 
processors on the CM2, the memory associated with each processor is divided 
to create multiple "virtual processors" representing several units or links. On 
each cycle, each processor representing a link operates in parallel to calculate 
and transmit its input to the processor representing the receiving unit, where 
all inputs are summed; all units then update their activations in parallel. For 
the largest network so far tested (probing with Hamlet into the plays data 
base), the CM2 version of ARCS runs at a speed of approximately 1.6 seconds 
per cycle, a rate over nine times faster than that obtained with the serial 
version running on a Sun 4. 

7. Conclusion 

We conclude on the basis of the above evaluation that ARCS provides a 
psychologically plausible and computationally powerful model of memory for 
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analogs. People retrieve complex structures by simultaneously applying seman- 
tic, structural, and pragmatic constraints, with the semantic constraints being 
most crucial for initiating the probe process. 

ARCS is only part of a full model of analogy. Retrieval should blend naturally 
into mapping, so that when the retrieval system has selected a possible analog, 
the mapping system can go to work to determine in more detail how well the 
two structures correspond. Our mapping program ACME [35] uses similar 
principles to ARCS, and preliminary tests show that passing ARCS results 
directly to ACME greatly facilitates ACME's ability to fill in a complete mapping. 
ACME is not so dependent on semantic similarity as ARCS and can fill in the 
mappings of elements with no semantic overlap. 

After an analogy system has performed retrieval and mapping, it still needs 
to transfer the results of the analogy for the appropriate problem-solving, 
explanatory, argumentative, or evocative purpose. At this point, the goals of 
the system should be more important than anything else, although semantics 
and structural consistency may also contribute. Thus in our view all three 
constraints--semantic, structural, and pragmatic--are important to all three 
stages of analogy: retrieval, mapping, and transfer. As Table 4 summarizes, 
however, the importance of the different constraints to the different stages is 
hypothesized to vary, with semantics paramount for retrieval, structural con- 
straints paramount for mapping, and pragmatics paramount for transfer. 

A fourth stage of analogy use is learning: if an analogy proves to be useful, 
various strategies can be applied to learn from the success (e.g., by schematiz- 
ing the two analogs and by forming rules about how to use such schemas). Our 
earlier system PI [34] has such capabilities. Another attractive feature of PI is 
that it does both rule-based and analogical problem solving within the same 
cognitive architecture. We see no point in making a sharp contrast between 
rule-based and analogical (case-based) problem solving, since a system that 
approximates the power of human performance should gracefully incorporate 
both mechanisms. We are currently developing a cognitive architecture that 

Table 4 
Summary of hypothesized importance of different constraints to 
different stages of analogical thinking 

Semantic Isomorphism Pragmatic 

Retrieval Very Yes Yes 
(ARCS) 

Mapping Yes Very Yes 
(ACME) 

Transfer Yes Yes Very 
and learning 

Note. Here Yes means that the constraint is important, and 
Very means that the constraint is very important. 
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integrates the constraint-satisfaction methods of ARCS and ACME with a 
rule-based problem solver. The amalgamation of a rule-based problem solver 
and our constraint-satisfaction programs reflects our view that connectionist 
and traditional AI approaches belong to a continuum of complementary 
computational methods. 

Thus ARCS is only one component of a much larger system for analogical 
thinking. The system demonstrates, however, that an important part of that 
system, retrieval of relevant analogs from memory, can naturally be under- 
stood in terms of the satisfaction of multiple semantic, structural, and prag- 
matic constraints. 
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