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INTRODUCTION 

Reviewing an active field of research is a bit like writing an unauthorized 
mid-career biography. Your subject is not about to reveal its secrets to you, or 
even to stand still long enough to allow a coherent story to be constructed. The 
task is made especially difficult when the topic is as amorphous as thinking. 
As Oden put it in his prior review for this series, "Thinking, broadly defined, is 

nearly all of psychology ; narrowly defined, it seems to be none of it" 
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(1987:203). Sometimes thinking is construed as a synonym for all "intelligent 
information processing," and sometimes it is construed as the umbrella term 
for a range of processes associated with "high-level" cognition, such as rea­
soning, categorization, and judgment and decision making. We emphasize the 
latter conception of thinking, but our chapter is not organized around those 
traditional subtopics, each of which has been reviewed in its own right (see 
Medin & Smith 1984; Payne et a11992; Rips 1990). Rather, we are guided by 
a piece of folk psychology. Rips & Conrad (1989) found that lay people 
believe that virtually all "everyday" mental activities (e.g. reasoning and re­
membering) are kinds of thinking, and that thinking is a part of each kind of 
mental activity. In keeping with the perceived ubiquity of thinking in cogni­
tion, we review a number of general themes that have emerged in recent 
research on the topic, drawing a sprinkling of examples from work in a variety 
of subareas. 

In surveying the field of thinking, three recent trends seem particularly 
noteworthy. 1. The rise of the connectionist paradigm has led to a critical 
reexamination of assumptions concerning the symbolic nature of human think­
ing. 2. Cognitive psychologists are taking seriously the notion that human 
thinking may be based on two very different systems; and there have been 
increased efforts to use evolutionary arguments, as well as biological evi­
dence, to constrain cognitive theories. 3. Theoretical efforts have been directed 
at explaining how thinking is constrained by the content of what is thought 
about, and by the context in which thinking takes place. Our review is organ­
ized around these three themes, which are interconnected in various ways. 

CONFLUENCE OF SYMBOLIC AND CONNECTIONIST 
PARADIGMS 

Two Contrasting Paradigms 

Our first theme is not simply the rise of connectionism, but rather the meeting 
and merging of two theoretical streams that have been channeled into the 
analysis of thinking. Human thinking (along with language) has generally 
been viewed as the sine qua non of symbolic mental activity. Since the 
cognitive revolution in the mid-20th century, thinking has been characterized 
as the product of a "physical symbol system." In 1990, Simon concluded that 
'The physical symbol system hypothesis has been tested so extensively over 
the past 30 years that it can now be regarded as fully established, although 
over less than the full gamut of activities that are called 'thinking'" (p. 3). 

This sanguine assessment has been challenged, however, by those who 
have developed alternative "subsymbolic" paradigms, such as Hofstadter 
(1984), Rumelhart, McClelland, and the PDP Research Group (1986), and 
Smolensky (1988). Connectionist models, the most common instantiations of 
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THINKING 267 

the subsymbolic approach, 1 consist of networks of relatively simple process­

ing units connected by links. Processing involves a series of cycles of activity; 
on each cycle, units take on new states of activation as a function of their own 
prior activations, the activations of units to which they arc connected, and the 

weights (excitatory or inhibitory) on the interconnecting links. Typical con­

nectionist models embody some or all of four central ideas. First, control is 
distributed over the network of units, rather than localized in a central "execu­
tive." Second, knowledge is to varying extents distributed over sets of units, 
rather than identified with single units. Third, decision making is based on 

parallel constraint satisfaction, by which successive cycles of processing tend 

to converge on an activation pattern that best satisfies the constraints embod­

ied in the weights on links. At convergence, the units with highest activations 

tend to support each other and inhibit their competitors. Fourth, learning 

consists of incremental revision of weights on the basis of either feedback 

concerning the performance of the network or internal constraints on weight 
patterns. 

These characteristics of connectionist models contrast with the prototypical 
features of serial production systems, the style of model most closely associ­
ated with the symbolic approach to modeling cognition (Newell 1973). In a 
"classical" production system, knowledge is encoded locally in "condition-ac­

tion" rules, perhaps coupled with a declarative semantic network (e.g. Ander­

son 1983). A central executive selects a single rule to fire on each processing 
cycle. When the condition of a rule is matched and that rule is selected to fire, 
then the action specified by that rule will be taken. The global behavior of a 
production system is more naturally characterized as serial generation of an 

action sequence, rather than parallel satisfaction of multiple constraints. 

Learning primarily consists of the addition of new productions, a process that 
requires the intervention of an executive controller that decides what new rules 
to build and when to build them (e.g. Anderson 1987; Rosenbloom et al 1991). 
It should be emphasized that some production systems developed in recent 
years, such as CAPS (Just & Carpenter 1992) and SOAR (Rosenbloom et al 
1991), depart from the "classical" architecture in important ways; nonetheless, 
the above contrast captures in broad strokes the differences between the mod­
els associated with each of the two paradigms. 

The symbolic and connectionist paradigms bear a rough but interesting 
correspondence to two different perspectives on thinking that have coexisted 
(with some degree of tension) over this century. The symbolic paradigm was 
shaped in large part by Newell & Simon's (1972) treatment of problem solv­
ing. Their approach primarily focused on "well-defined" problems, for which 
the problem solver knows at the outset what goal is to be achieved, what the 

Other types of subsymbolic models include classifier systems (Holland et al 1986; see Druhan 
& Mathews 1989, for a psychological application), and models based on flexible semantic net­
works such as Hofstadter's ( 1984; Hofstadter & Mitchell, 1993) Copycat model of analogy. 
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starting state is. and what operators are potentially relevant to achieving a 
solution. Problems that meet this description (such as proving geometry theo­
rems or solving logical puzzles) approximately satisfy a "closed world" as­

sumption: The pool of knowledge relevant to their solution, although possibly 
large. is nonetheless circumscribed. Newell & Simon characterized explicit 
thinking as conscious serial search through a specifiable space of possibilities, 
based in large part on heuristics that evaluate incremental progress toward 
goal attainment. In addition, they stressed the role of rapid recognition pro­
cesses that match external inputs against knowledge stored in long-term mem­
ory (Chase & Simon 1973). Production systems emerged as the model that 
most directly embodied Newell & Simon's characterization of thinking. 

In contrast. the earlier Gestalt psychologists. such as Duncker (1945) and 
Wertheimer (1945). stressed the solution of problems that are less well de­
fined, and hence do not satisfy the closed world assumption. In working on a 
particular new "target" problem, for example, a reasoner may be reminded of a 
better-understood analogous "source" problem, perhaps drawn from a substan­
tially different knowledge domain. The source analog may then suggest new 
goals or operators that might be used to solve the target problem. Because the 
bounds within which a potentially useful source analog may be found are not 
clearly circumscribed, analogical thinking can violate the closed-world as­
sumption. More generally, Gestaltists emphasized that thinking may involve 
parallel integration of knowledge based on mechanisms that are largely uncon­
scious, sometimes producing a "restructuring" of the problem representation. 

The theoretical ideas of the Gestaltists were notoriously vague, and Simon 
(1986; Kaplan & Simon 1990) has shown that the symbolic paradigm can 
accommodate many of the empirical phenomena associated with such Gestalt 
concepts as "intuition" and "insight." Nonetheless, some alternative approach 
might provide a computational realization of the Gestalt perspective on think­
ing. As Rock & Palmer (1990) have pointed out, there is some affinity be­
tween Gestalt theory and current connectionist models. In particular. 
connectionist networks perform "soft" constraint satisfaction (i.e. each con­
straint has some influence on the overall behavior of the network, but is not as 
inviolate as a hard-and-fast rule). A constraint network based on partially 
convergent and partially discrepant knowledge may yield a coherent interpre­
tation of a situation, so that "the whole is different from the sum of its parts.

,
,2 

2 
The broad current interest in connectionism within psychology is in part attributable to the 

fact that, in different ways, it captures some of the flavor of both Gestalt psychology and 
behaviorism, the main intellectual rivals that dominated early 20th-century psychology. Roughly, 
parallel constraint satisfaction is reminiscent of Gestalt ideas, while learning by incremental 
weight adjustment over distributed representations is reminiscent of associationist conceptions of 
learning (see Estes 1991. for the latter perspective). Current cognitive psychologists generally 
hold basic conceptions of cognition that have been shaped to a large extent by reactions to the 
Gestaltist and associationist legacies. As a consequence, connectionism offers something for 
almost everyone to love and/or hate, in a mixture that is a function of selective focus and 
intellectual predispositions. 
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THINKING 269 

These two perspectives on thinking tend to bring with them different views 
of the relationship between "high-level" thinking and the broader spectrum of 
information processing, which includes perceptual and motor components. 
The symbolic approach has dealt most directly with "central" cognition, either 
leaving aside the problem of modeling input and output processing, or at­
tempting to press models of high-level cognition downwards to serve also as 
models of perception and action (e.g. Anderson 1983; Rosenbloom et aI1991). 
Even theorists who acknowledge that "one thing wrong with much theorizing 
about cognition is that it does not pay much attention to perception on the one 
side or motor behavior on the other" (Newell 1990:159) are wont to find 
themselves, for the pragmatic reason that peripheral processes are highly 
complex, "committing this same sin" (p. 160). 

In contrast, Gestalt psychologists emphasized that high-level thinking is in 
many ways akin to perception. Similar views have been expressed by recent 
proponents of the subsymbolic approach, such as Hofstadter (1984; Hofstadter 
& Mitchell, 1993). Lakoff (1993) reviews a wide range of linguistic evidence 
suggesting that human understanding of such abstract concepts as time, cate­
gories, and causality is based on metaphors derived from perceptuomotor 
experience. (See Mandler 1992 for a discussion of the implications of this 
view for cognitive development.) Perceptual and motor processes, as well as 
basic memory processes, clearly evolved long before high-level human cogni­
tion. A general principle of evolutionary biology is that mechanisms that 
initially evolved to serve one function may later be coopted to serve other 
functions (a type of change termed "exaptation"). Thus from an evolutionary 
perspective, it is reasonable to conjecture that the mechanisms of high-level 
cognition have important links to those that evolved earlier to support percep­
tion and action. As we note below, recent analyses of "implicit" cognition 
have drawn attention to the evolutionary development of human thinking (e.g. 
Reber, 1992). Connectionist models, which have been developed primarily in 
the context of work on perception and motor control (e.g. Jordan & 

Rosenbaum 1989), tend to encourage "outer to inner" theorizing, in which 
models of peripheral processes are extended in attempting to account for more 
central processes, rather than the reverse. 

Systematicity and Symbols 

It is unlikely, however, that connectionism will undermine the traditional view 
that human thinking requires a symbol system. The most fundamental argu­
ment for the necessity of symbolic representations was presented by Fodor & 

Pylyshyn (1988; Fodor & McLaughlin 1990). They pointed out that knowl­
edge is systematic in the sense that the ability to think particular thoughts 
seems to imply the ability to think certain related thoughts. For example, if a 
person understands the meaning of the concepts "love," "boy," and "girl," and 
can understand the proposition "The boy loves the girl," then it would seem 
extremely bizarre if the person were nonetheless unable to understand the 
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proposition "The girl loves the boy." More generally, it seems characteristic of 

thinking that if each concept in a set of potential constituent concepts is 
understood, and a relation structure (such as a frame for a predicate and its 

arguments) can be instantiated by one assignment of the constituent concepts, 

then the thinker can also instantiate the relation structure with other permissi­
ble assignments of the concepts. The need to represent this kind of systematic 
relational information was part of the motivation for Minsky's ( 1975) concept 
of frames, a type of symbolic relation structure that continues to be influential 
in modeling human cognition (Barsalou & Hale, 1992). 

Systematic reasoning with composable constituents requires symbols. 
Newell ( 1990) describes the workings of a representational system: It can 
encode an external situation and external transformations; it can internally 
apply the encoded transformation to the encoded situation; and it can decode 
the result back to the environment-thereby predicting the external result of 
applying the transformation. (See Palmer 1978 for an earlier discussion of the 
nature of representations.) A representational system must be sufficiently flex­
ible to predict the effects of all the distinct external situations and transforma­
tions that are important to the organism. Newell argues that as the diversity of 
the knowledge that an organism must represent and manipulate increases, it 
becomes increasingly difficult to find specialized representational systems to 
provide appropriate encodings. In what Newell terms "the Great Move," evo­
lution developed a representational system that enables more complex repre­
sentations to be composed from simpler ones. 

This representational system must be able to share knowledge across many 
different contexts, because it will be impossible (owing to physical limits of 
the storage system) to store all the information potentially required for every 
task in a form in which it is immediately available. A "symbol" is fundamen­
tally a locally available code that can provide access to distal information 
relevant to a task. In a symbol system, information acquired in one task 

context has the potential to be made available in a different task context. This 
is exactly what is required for systematic reasoning with composable constitu­
ents. In our example above, we can understand both "The boy loves the girl" 
and "The girl loves the boy" because the concepts "girl" and "boy" are 
represented in a manner that keeps each distinct from both the "lover" and 
"beloved" contexts; both are therefore available for use in either context. 

When multiple task contexts permit access to a shared pool of knowledge, by 
virtue of constituency relations, performance in one context will be systemati­
cally related to performance in others. The ability to use systematic relational 
knowledge across contexts enables analogical reasoning about novel situations 
(Falkenhainer et al1989; Holyoak & Thagard 1989). 

Systematicity is also a key feature of rules of inference, such as "If X sells 
Y to Z, then Z owns Y." Smith et al (1992) propose several empirical criteria 
that may reveal when some knowledge used in human reasoning is coded as 
abstract rules. One criterion, which applies for at least some well-established 
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THINKING 271 

rules, is that it seems just as easy to draw inferences about unfamilar instantia­

tions-including nonsense ones-as about familiar ones. Thus if we are told 

that "Henry sold the floogle to Sam," we immediately conclude that Sam now 
owns the floogle, whatever a floogle might be. The inference follows directly 
from the role that "floogle" plays in the argument structure of the rule, without 

any requirement that floogles resemble familiar objects that have been trans­

ferred from one owner to another. 

Systematicity of relational correspondences (i.e. of correspondences be­

tween the arguments of multi-place predicates) also plays a role in judgments 

of perceptual similarity (Goldstone et al 199 1). For example, suppose people 

are shown three pairs of geometric shapes, with each pair arranged vertically. 

One pair consists of two identical triangles, one of identical squares, and one 

of identical circles. People tend to evaluate the pair of triangles as more similar 

to the pair of squares than to the pair of circles. But if a square is now added as 
a third form below the two items in each of the pairs, the evaluation of 
similarity reverses: Two triangles and a square are viewed as less similar to 
three squares then to two circles and a square. This similarity reversal reflects 
differences in relational correspondences: Both the first and the third triad can 
readily be represented as "two same forms plus a square," whereas the middle 
triad is most naturally represented as "three squares." Thus the first and third 
triads match better in terms of relational correspondences. Goldstone et al 
demonstrated not only that systematic relations matter to similarity, but also 

that relational matches matter more (relative to matches of one-place predi­
cates, such as "square") as the overall relational overlap between two complex 

figures increases. Their findings are difficult to interpret in terms of feature 

models of similarity (most notably Tversky ' s 1977 contrast model) that do not 

specify a role for systematic relational correspondences in similarity judg­
ments. (Connectionist models that are implementations of feature models also 
fail to capture relational aspects of similarity.) 

If thinking depends on symbol systems, as the arguments of Fodor & 
Pylyshyn ( 1988) and Newell ( 1990) imply, connectionist models of thinking 
face the formidable challenge of implementing symbolic processing within the 
constraints imposed by the simplicity of units and links (e.g. Dyer 199 1). As 
McCarthy ( 1988) has observed, the representational power of connectionist 
models is generally restricted to unary (i.e. one-place) predicates applied to a 
single fixed object. An adequate model of human thinking, however, requires 

representations with at least the logical power of the first-order polyadic 
predicate calculus (Stenning & Oaksford, 1993): That is, it must be able to 
express relations among multiple objects that fill particular roles associated 
with the arguments of predicates (e.g. the "lover" and the "beloved" roles 
associated with the predicate "love"). Accordingly, a crucial requirement for 
systematic reasoning is a solution to the "binding problem": the need to keep 
track of what roles are being played by each constituent. (For example, distin­

guishing "John loves Mary" from "Mary loves John" requires a way to encode 
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272 HOLYOAK & SPELLMAN 

which object fills which argument slot.) Humans can obviously make such 
distinctions and can code binding information in long-term memory (although 

it takes longer to recognize previously encountered role bindings than simply 
to recognize recurrences of objects; Ratcliff & McKoon 1989). 

Simple connectionist representations, however, lack constituency relations. 
Unlike symbolic representations in which links between elements typically 
define meaningful relationships, the links in connectionist models merely 
serve to transmit activation between units. As a result, connectionist models 
do not guarantee systematicity of thinking in principle; in practice, most 
current connectionist models fail to deal with anything like the systematic 
knowledge involved in everyday human reasoning. For example, binding in­
formation is conspicuously absent in connectionist models such as that used 
by Rumelhart et al (1986) to represent a "room schema." In their model, a 
"kitchen," for example, would be represented by a vector of features (i.e. 
unary predicates) such as "has refrigerator," "has stove," "has sink," and so 
on. Lacking any capability of expressing multi-place predicates and their role 
bindings, the model is unable to distinguish a "normal" kitchen from a room 
with a refrigerator in the sink with a stove piled on top of it. 3 Thus, a key 
theoretical challenge facing the connectionist approach to meaning is to show 
how distributed representations of individual concepts could function symbol­
ically as constituents of more complex relation structures. (See Farah & 
McClelland 1991 for an analysis of neurological data consistent with the 
possibility that individual concepts have distributed representations in seman­
tic memory.) 

The fact that human cognition has both symbolic and subsymbolic aspects 
encourages various attempts to integrate the approaches. A number of sugges­
tions for hybrid "symbolic-connectionist" models have been offered (e.g. Dyer 
1991; Holyoak 1991; Minsky 1991). These models can be divided roughly 
into two classes. One class of models maintains a core of "traditional" sym­
bolic machinery (e.g. discrete propositions and rules) to represent relation 
structures, while adding connectionist-style mechanisms for "soft" constraint 
satisfaction. The second class of models seeks to develop connectionist repre­
sentations of relation structures by introducing techniques for handling the 
binding of objects to roles. We review examples of each of these approaches 
to integrating the two theoretical perspectives. 

3 
Connectionist models typically introduce units that respond selectively to combinations (e.g. 

conjunctions) of inputs, allowing the expression of Booleatl operations. Such capability (equiva­
lent to introducing the operators "and," "or." etc) is sometimes characterized as capturing "rela­
tional" information (e.g. Estes 1 99 1 ). However, Boolean operations on a finite set of elements do 
not suffice to represent relation structures based on multi-place predicates. A typical connectionist 
model might be able to roughly represent the propositional conjunction "room has sink and room 
has stove" by including a unit that becomes active just in case both the "room has sink" and "room 
has stove" units are on. But Boolean operations on propositions do not distinguish "stove is beside 
sink in room" from "stove is on top of sink in room," "sink is on top of stove in room," and so on. 
This broader ability to represent argument bindings for multi-place predicates is lacking in typical 
connectionist representation schemes. 
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THINKING 273 

Soft Constraint Satisfaction in Reasoning 

The generation and evaluation of beliefs-the central task of induction-has a 
holistic quality that has posed grave difficulty for theoretical treatments. 
Tweney (1990) identified the complex interrelatedness of hypotheses as a 
major challenge for computational theories of scientific reasoning. Fodor 
(1983) has taken the pessimistic position that little progress is to be expected 
in understanding central cognition because the facts relevant to any belief 
cannot be circumscribed (i.e. we do not operate within a closed world) and the 
degree of confirmation of any hypothesis is sensitive to properties of the 
whole system of beliefs. As Quine (1961:41) put it, "our statements about the 
external world face the tribunal of sense experience not individually but only 
as a corporate body." A psychological theory of induction must identify mech­
anisms that can cope with the holistic quality of hypothesis evaluation (Hol­
land et aI1986). 

One mechanism with the requisite properties is parallel constraint satisfac­
tion, a basic capability of connectionist models. In a connectionist network, 
local computations involving individual units interact to generate stable global 
patterns of activity over the entire network. Models that perform "soft" con­
straint satisfaction over units corresponding to relation structures can attempt 
to capitalize on the complementary strengths of symbolic representation and 
connectionist processing. Such symbolic-connectionist models can make in­
ferences based on incomplete information, which standard symbolic systems 
are often unable to do, using knowledge that distributed connectionist systems 
cannot readily represent. Models of this sort have been used to account for 
psychological data concerning text comprehension, analogical reasoning, and 
evaluation of explanations. 

Kintsch (1988) has developed a symbolic-connectionist model to deal with 
the resolution of ambiguities during text comprehension. His "construction-in­
tegration" model has four main components: 1. initial parallel activation of 
memory concepts corresponding to words in the text, together with formation 
of propositions by parsing rules; 2. spreading of activation to a small number 
of close associates of the text concepts; 3. inferring additional propositions by 
inference rules; and 4. creating excitatory and inhibitory links, with associated 
weights, between units representing activated concepts and propositions, and 
allowing the network to settle. The entire process is iterative. A small portion 
of text is processed, the units active after the settling process are maintained, 
and then the cycle is repeated with the next portion of text. In addition to 
accounting for psycho linguistic data on text comprehension, the construction­
integration model has been extended to simulate levels of expertise in plan­
ning routine computing tasks (Mannes & Kintsch 1991). 

Symbolic-connectionist models have been developed to account for two of 
the basic processes in analogical reasoning-retrieving useful analogs from 
memory and mapping the elements of a known situation (the source analog) 
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274 HOLYOAK & SPELLMAN 

and a new situation (the target analog) to identify useful correspondences. 
Because analogical mapping requires finding correspondences on the basis of 

relation structure, most distributed connectionist models lack the requisite 

representational tools to do it. Purely symbolic models have difficulty avoid­
ing combinatorial explosion when searching for possible analogs in a large 
memory store and when searching for optimal mappings between two analogs. 
The two symbolic-connectionist models-the ACME model of Holyoak & 

Thagard (1989), which does analogical mapping, and the ARCS model of 
Thagard et al (1990), which does analogical retrieval-4lperate by taking 
symbolic, predicate-calculus-style representations of situations as inputs, ap­
plying a small set of abstract constraints to build a network of units represent­
ing possible mappings between elements of two analogs, and then allowing 
parallel constraint satisfaction to settle the network into a stable state in which 

asymptotic activations of units reflect degree of confidence in possible map­
pings. The constraints on mapping lead to preferences for sets of mapping 
hypotheses that yield isomorphic correspondences, link similar elements, and 
map elements of special importance. These same constraints (with differing 
relative impacts) operate in both the mapping and retrieval models. The map­
ping model has been applied successfully to model human judgments about 
complex naturalistic analogies (Spellman & Holyoak 1992) and has been 
extended to account for data concerning analogical transfer in mathematical 
problem solving (Holyoak et aI, 1993). A similar constraint-satisfaction model 
has been proposed by Goldstone & Medin (1993) to account for the role of 
relational correspondences in similarity judgments. 

Thagard (1989, 1992) has shown that the problem of evaluating competing 
explanations can be addressed by a symbolic-connectionist model of explana­
tory coherence, ECHO. The model takes as inputs symbolic representations of 
basic explanatory relations between propositions corresponding to data and 
explanatory hypotheses. The system then builds a constraint network linking 
units representing the propositions, using a small number of very general 
constraints that support explanations with greater explanatory breadth (more 
links to data), greater simplicity (fewer constitutent assumptions), and greater 
correspondence to analogous explanations of other phenomena. Relations of 
mutual coherence (modeled by symmetrical excitatory links) hold between 
hypotheses and the data they explain; relations of competition (inhibitory 
links) hold between rival hypotheses. Parallel constraint satisfaction settles the 
network into an asymptotic state in which units representing the most mutually 
coherent hypotheses and data are active and units representing inconsistent 
rivals are deactivated. Thagard (1989) showed that ECHO can model a num­
ber of realistic cases of explanation evaluation in both scientific and legal 
contexts; Schank & Ranney (1991, 1992; Ranney, 1993) have used the model 
to account for students' belief revision in the context of physics problems; and 
Read & Marcus-Newhall (1993) have applied the model to the cvaluation of 
explanations of everyday events. 
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THINKING 275 

The role of constraint satisfaction in human reasoning may explain a set of 
reasoning and memory phenomena that have sometimes been interpreted as 
evidence for "mental models" (Johnson-Laird 1983; Johnson-Laird & Byrne 
199 1). In syllogistic reasoning tasks, people tend to perform poorly when the 
premises admit of multiple consistent instantiations; and comprehension of 
described spatial relations is impaired when the description cannot be mapped 
onto a single determinate array. As Stenning & Oaksford (1993) and Stenning 
& Oberlander ( 1992) have noted, connectionist networks have the property of 
"self-completion": Given a fragmentary input, they naturally settle into a state 
representing a coherent, unified interpretation of the input. Although such 
networks may be massively parallel at the level of unit activity, they nonethe­
less are radically serial at the level of network states. Thus constraint satisfac­
tion is well-suited to reasoning tasks in which a single unified interpretation of 
the input is both possible and desirable (i.e. the interpretation corresponds to a 
unique stable state of the network) but badly suited to reasoning tasks in which 
a single unified interpretation is not possible (as in coding indeterminate 
spatial descriptions) or not desirable (as in syllogistic tasks for which identify­
ing an acceptable conclusion depends on all possible consistent instantiations 
of the premises, rather than a single instantiation). We return to the topic of 
mental models when we discuss "vivid representations" below. 

Reflexive Reasoning Using Dynamic Binding 

Whereas the models discussed above involve various hybridizations of con­
nectionist processing mechanisms and symbolic representations, a second 
class of models attempts to provide pure connectionist-style representations of 
complex relational knowledge. Achieving this goal requires a mechanism for 
coding bindings of properties and relations to sets of individuals. In contrast to 
purely symbolic models (e.g. Anderson 1983) in which bindings are repre­
sented by unanalyzed elements of notation (e.g. labeled arcs in a semantic 
network), the connectionist approach represents bindings by more global prop­
erties of network states. One general proposal has been to introduce distributed 
representations in which both the argument slots associated with a predicate, 
and the objects that fill the slots, are represented as patterns of activity over 
pools of shared units. For example, Smolensky (1990) developed a representa­
tion of argument bindings based on taking the tensor product of appropriate 
vectors representing the predicate and each of the fillers of its argument slots. 
Halford et al ( 1993) have proposed a model based on tensor-product represen­
tations to account for constraints on analogical reasoning, as well as for 
capacity limits on working memory. 

A very different approach, based on mechanisms that neurophysiological 
evidence suggests may play a role in mammalian vision, involves using oscil­
lations of unit firings to represent transient bindings between objects and the 
argument slots in propositions and rules. A number of researchers have sug­
gested that temporal synchrony can be used to bind features to object represen-

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

99
3.

44
:2

65
-3

15
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
L

os
 A

ng
el

es
 -

 U
C

L
A

 D
ig

ita
l C

ol
l S

er
vi

ce
s 

on
 0

8/
14

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



276 HOLYOAK & SPELLMAN 

tations in visual perception (Hummel & Biederman 1992; von der Malsburg 

1981). Shastri & Ajjanagadde (1993) have developed a detailed computational 

model that uses temporal dynamics to code the relation structure of proposi­
tions and rules. Dynamic bindings in working memory are represented by 

units firing in phase. Consider a proposition such as "John gave the book to 

Mary." On a single phase, a unit representing the object John will fire in 
synchrony with a unit representing the "giver" role; in a different phase the 

unit for Mary will fire in synchrony with a unit for the "recipient" role. The 

system is object-based, in the sense that each time slice is occupied by the 

firing of a single active object unit together with units for all the argument 

roles that the object fills. Bindings are systematically propagated to make 

inferences by means of links between units for argument slots. For example, in 

a rule stating that "If someone receives something, then they own it," the 

"recipient" role in the antecedent of the rule will be connected to the "owner" 

role in the consequent. Accordingly, if Mary is dynamically bound to the 
"recipient" role (by phase locking firing of the "Mary" and "recipient" units), 

then Mary will become bound to the "owner" role as well (i.e. the unit for 

Mary will fire in phase with units for both relevant roles). Shastri & 
Ajjanagadde show that their model can answer questions based on inference 
rules in time that is linear with the length of the inference chain but indepen­
dent of the number of rules in memory-the most efficient performance pat­

tern theoretically possible. 
Shastri & Ajjanagadde (1993) note a number of interesting psychological 

implications of their dynamic binding model. In particular, they distinguish 
between two forms of reasoning, which they term "reflexive" and "reflective." 
Reflexive reasoning is based on spontaneous and efficient inferences drawn in 

the course of everyday understanding, whereas reflective reasoning is the 

deliberate and effortful deliberation required in conscious planning and prob­

lem solving. It is intriguing that humans are far better at text comprehension 
than, for example, syllogistic reasoning, even though the formal logical com­
plexity of the former task is much greater than that of the latter (Stenning & 

Oaksford, 1993). In terms of the Shastri & Ajjanagadde model, text compre­
hension mainly involves reflexive reasoning, whereas syllogistic inference 
requires reflective reasoning. Fluent comprehension draws upon a rich net­

work of stored rules, which are used in conjunction with the input to establish 
a coherent, elaborated model of the situation. Reflexive reasoning of the sort 
involved in ordinary comprehension relies on dynamic binding of objects to 
argument slots in preexisting rules. These rules have been encoded into long­

term memory, with appropriate interconnections between their arguments. In 

contrast, reflective reasoning requires manipUlation of knowledge in the ab­

sence of relevant prestored rules. An arbitrary deductive syllogism (e.g. "If all 
artists are beekeepers, and some beekeepers are chemists, what follows?") is 
unrelated to any stored rules; rather, understanding the premises requires 
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THINKING 277 

setting up de novo "rules" (e.g. "If someone is an artist, then that person is a 
beekeeper") for each problem. 

Shastri & Ajjanagadde's model predicts that reflexive reasoning will be 
constrained by limits on the number of multiply instantiated predicates, as well 
as by patterns of variable repetition across the arguments of a rule. The model 
also makes predictions about the limits of the information that can be active 
simultaneously in working memory. Although the number of active argument 
units is potentially unlimited, the number of objects that can be reasoned about 
in a single session is limited to the number of distinct phases available (be­
cause only one object unit may fire in a single phase). Given plausible assump­
tions about the speed of neural activity, this limit on the number of active 
objects can be calculated as being five or fewer. This figure is strikingly 
similar to Miller's (1956) estimate of short-term memory capacity and is 
consistent with work by Halford & Wilson (1980) indicating that adults cannot 
simultaneously represent relations involving more than four elements. For 
example, recent empirical evidence (described by Halford et aI, 1993) con­
firms a limit that will be recognized by anyone who has worked with statistical 
interactions: The most complex statistical relation that people can deal with in 
working memory is a 3-way interaction (which involves three independent 
variables and one dependent variable, for a total of four dimensions). Experi­
mental studies of people's memory for bindings between individuals and 
properties have revealed similar capacity limits, as well as error patterns 
consistent with distributed representations of bindings (Stenning & Levy 
1988; Stenning et aI1988). Recent work has extended the temporal-synchrony 
approach to other forms of reasoning. Hummel & Holyoak (1992) have shown 
that the principles embodied in Holyoak & Thagard's (1989) ACME model of 
analogical mapping can be captured by a model that encodes propositional 
structure by temporal synchrony. 

An interesting feature of the synchrony approach is that the need to mini­
mize "cross talk" between the constituents of relation structures encourages 
postulating specific types of serial processing at the "micro" level of temporal 
phases. For example, in the Shastri & Ajjanagadde model only one object is 
allowed to fire in each time slice. It is also noteworthy that their model 
combines localist representations of concepts with distributed control, and 
thus exemplifies a theoretical "middle ground" between traditional production 
systems and fully distributed connectionist networks. It is possible that at­
tempts to develop connectionist models of symbol systems will cast new light 
on the limits of parallel information processing. In addition, connectionist 
models may provide more effective implementations of the flexible recogni­
tion processes based on long-term memory that appear crucial to expertise 
(Chase & Simon 1973). More generally, the confluence of the symbolic and 
connectionist paradigms seems likely to deepen our understanding of the kinds 
of computations that constitute human thinking. 
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IMPLICIT THINKING AND COGNITIVE EVOLUTION 

One interpretation of the contrast between connectionist and symbolic ap­
proaches to thinking is that human knowledge depends on two distinct cogni­
tive systems. In fact, many theorists of diverse persuasions have been led to 
propose cognitive dichotomies, which have been given a rather bewildering 
array of labels: unconscious vs conscious, procedural vs declarative, automatic 
vs controlled, reflexive vs reflective, and many others. These distinctions do 
not always divide cognition along the same lines, nor are particular cognitive 
functions necessarily associated uniquely with particular halves of the dichot­
omy (Kihlstrom 1987). Nonetheless, there are tantalizing similarities among 
the proposed dichotomies. In particular, the first member of each pair is 
generally viewed as involving unconscious mental processes, a topic that has 
seen a recent resurgence of interest among experimental psychologists (see 
American Psychologist 47(6) for reviews from various perspectives). 

We discuss some of the evidence for a gross cognitive dichotomy, which 
we term (following Reber, 1992) implicit vs explicit cognition. Reber argues 
that this dichotomy can be understood in terms of the evolutionary constraints 
that have molded human cognition, a type of argument that has attracted 
considerable attention lately (Anderson 1990). We therefore also review the 

broader issues raised by the use of evolutionary and adaptationist arguments in 
analyses of cognition. 

Acquisition of Implicit Knowledge 

The fact that at least some of our knowledge is conscious, explicit, and 
verbalizable is incontrovertible. At the same time, motor skills provide clear 
examples of knowledge that can be acquired without awareness and main­
tained in some implicit form that is not readily verbalized (e.g. Pew 1974). The 
more controversial claim is that some of the knowledge that underlies higher­
level thinking tasks is also implicit in much the same ways as are motor skills. 
Implicit knowledge, as we use the term here, has a number of important 
characteristics. It is (a) knowledge about covariations in the environment, (b) 

learned by exposures to stimuli exhibiting the covariations, (c) obtainable 
without intention or awareness (although in some cases similar knowledge 
might be obtained explicitly), and (d) demonstrated by improved performance 
on tasks that seem to require thinking (e.g. generalization and prediction); but 
it is knowledge that does not have a fully explicit representation in that (e) it is 
not fully verbalizable and (j) it is not manipulable in the sense that it cannot be 
re-represented explicitly to serve as input to other procedures. 

We begin by considering evidence concerning the acquisition of implicit 
knowledge-that is, implicit learning. Implicit learning may well be related to 
implicit memory, a topic that has received much attention in recent years (see 
Richardson-Klavehn & Bjork 1988; Roediger 1990; and Schacter et al 1993 
for reviews). Work on implicit memory, however, typically focuses on the 
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THINKING 279 

effect of specific events on subsequent task performance, whereas work on 

implicit learning focuses on the cumulative impact of multiple events involv­

ing different (although related) stimuli, emphasizing the acquisition of knowl­

edge about overall regularities in the stimuli rather than about the details of 
single learning events. Implicit learning has been demonstrated in the labora­
tory using many different techniques which, until recently, have been explored 

in relative isolation. Seger ( 1992) has provided an integrated review of three 
major methodologies: artificial-grammar learning, learning to control the be­

havior of dynamic systems, and sequence-learning tasks. 
In the typical artificial-grammar learning procedure (see Reber 1989 for a 

review of the extensive work from his laboratory, which began with the 

seminal study of Reber 1967), the experimenter constructs a finite-state gram­

mar that generates "grammatical" letter-strings. In the learning phase, subjects 

are exposed to some of those strings; they may be told to observe or memorize 
the strings or, in an intentional learning task, to observe and try to figure out 
the rules that govern the regularities in the strings. In the test phase subjects 
are typically asked to make "grammaticality" judgments for both old and 
novel strings. They are told that the strings they have seen were generated 
according to rules; they are then asked to judge whether or not various test 
strings follow those rules. In addition, they are often asked to verbalize their 
knowledge about the grammar and explain how they made their grammatical­
ity judgments. Two consistent results have emerged from these studies: 1 .  
subjects can usually distinguish grammatical from nongrammatical letter 

strings at an above-chance although far-from-perfect level, and 2. subjects 
cannot fully articulate the rules they are using to make those judgments. 

In dynamic systems tasks, subjects are asked to learn to control the output 

of a rule-governed system by manipulating input into the system. For example, 
subjects may be asked to try to control the output of a simulated sugar produc­
tion factory by typing in the number of workers the company should employ to 
reach a specified level of production. On each trial the subject types in a 
number and then is told how much sugar will be produced. The rules underly­

ing the system are linear equations (sometimes with a random error factor 
added) and always depend on either the previous or current input or output. 
Berry & Broadbent (1984) used rules of the form: output = 2 x current input -
previous output + error. In that study, subjects were able to learn to control the 
system but were not able to verbalize how they did so. Berry & Broadbent 

( 1988) and Hayes & Broadbent ( 1988) compared performance on a task with 
one of two underlying ru1es-a "salient" rule (output = current input - 2 + 

error) and a "nonsalient" rule (output = previous input - 2 + error). Under 
standard learning conditions, subjects receiving the first rule were better able 
to control the system, were more likely to be able to state the relationship 
between the variables of the task in protocols, and were more accurate on a 
questionnaire asking what they could do to control the system given specific 
circumstances. 
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Dynamic systems tasks and artificial grammar tasks are similar in that (a) 

subjects seem to acquire knowledge through exposure to repeated exemplars, 

and (b) subjects' performance exceeds their ability to verbalize their knowl­
edge. The tasks differ, however, in that subjects in the dynamic systems tasks 

are explicitly trying to achieve an objective goal (to maintain production at a 

specific level). Thus it seems likely that all subjects in the dynamic systems 
task, unlike subjects in the artificial-grammar task, are intentionally seeking 
the systems' underlying rules. 

In sequence-learning tasks, subjects' implicit knowledge is usually demon­
strated by a decrease in reaction time to events generated by underlying rules 
relative to events generated randomly-without the subject being able to 
articulate the rule or make explicit predictions about subsequent events (e.g. 
Cohen et al 1990; Stadler 1989; Willingham et al 1989; but Kushner et al 
199 1 ;  see Seger 1992). In a study by Nissen & Bullemer (1987), for example, 

subjects were to press a corresponding button after each in a series of flashes 
of light. Subjects showed a decrease in reaction time to push buttons when the 
pattern of flashes was repeated relative to random light sequences. These 
results are similar to those obtained in the Hebb (1961) digits task, in which 
subjects echo strings of digits, some of which are repeated. Subjects make 
fewer errors on repeated strings than on other strings, a result that has been 
shown to hold regardless of subjects' level of awareness of the repetition 
(McKelvie 1 987). In other sequence-learning tasks (e.g. Lewicki et al 1 988), 
subjects show a decrease in reaction time when responding to targets whose 
position is predictable from the positions of items in earlier trials. When 
questioned, however, subjects report no knowledge of the sequences underly­
ing the task. 

Evidence of implicit learning also comes from studies of "intuitive phys­
ics." As they interact with the physical world, humans acquire knowledge 

about the complex rule-governed behavior of moving objects. (See WeUman 
& Gelman 1992 for a recent review of developmental aspects.) People often 
make systematic errors in predicting (by verbalizing or drawing) the future 
motion of physical objects as they exit from curvilinear tubes, are released 
from strings constraining their motion, or are dropped from moving carriers. 
Yet implicit knowledge of physical rules is demonstrated when subjects view 
contrived videotapes showing what objects would look like following the 
paths that subjects predict (Kaiser et al 1985 ; Shanon 1976; but see McClos­
key & Kohl 1983). Even 6-year-old subjects recognize that these trajectories 
"look wrong" (Kaiser & Proffitt 1984). Such recognition only occurs, how­
ever, for the physics of objects that behave like point masses (such as the 
examples described above); for more complex motion involving multidimen­
sional relationships (e.g. rotating objects), subjects have great difficulty in 
distinguishing possible from impossible motions while viewing simulations of 
ongoing events (Proffitt et al 1990). In addition, explicit knowledge (such as 
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THINKING 281 

that produced by training in physics) often does not increase the accuracy of 
predictions (e.g. Proffitt et al I990). 

The fact that people apparently acquire implicit knowledge of only certain 
types of physical regularities is consistent with other evidence indicating that 
there are limits or constraints on which covariations can be learned implicitly 
(Seger 1 992). A variety of factors apparently contributes to those limitations, 
of which two major classes are (a) the "simplicity" of the rules underlying the 
covariations, and (b) biases-both innate and learned-that favor learning 
certain kinds of covariation. 

Some rules may be too difficult to learn implicitly. There may be limits on 
our ability to detect covariations over spatial and temporal distances (e.g. 
Broadbent et al 1 986; Cleeremans & McClelland 1991),  or between a large 
number of interacting variables (e.g. Proffitt et al 1 990). Other rules may be, in 
a sense, "too easy" to learn implicitly. If a covariation is sought and discov­
en�d consciously, then it becomes explicit: Performance is more accurate, the 
rule is more likely to be verbalizable, and there is no dissociation between 
verbalization and performance. Explicit learning can be encouraged by in­
structions to search for rules underlying the covariations in the exemplars; 
however, such instructions only seem to improve performance when the rules 
are, in fact, discoverable. Reber et al ( 1 980) found that instructions interacted 
with the way the learning exemplars were presented. When the exemplar 
presentation made the underlying rules more obvious, subjects instructed to 
search for rules performed better than those not so instructed (also Servan­
Schreiber & Anderson 1990). In contrast, when the presentation of exemplars 
was unstructured, subjects who were told to search for rules performed worse 
than those given more implicit instructions, because the rule-seeking subjects 
induced nonrepresentative rules. Similarly, Berry & Broadbent ( 1988) found 
that intentional instructions helped subjects' performance in the easy "salient" 
condition but impaired the performance of those in the "nonsalient" condition. 

Humans seem to be biased to learn certain types of regularities more 
readily than others. In category learning, for example, subjects more easily 

learn categories with unimodal than with bimodal distributions (Flannagan et 
al 1986). In cue-probability learning, subjects perform better with linear than 
with nonmonotonic functions; for psychophysical functions, humans find it 
easiest to learn functions that are linear in logarithmic space (Koh & Meyer 
1 99 1 ) . When exposed to stimuli that exhibit nonpreferred regularities, 
people' s  judgments early in learning are biased toward the preferred form of 
regularity; with additional exposure, however, people eventually learn the 
actual pattern, overcoming their entering bias. 

In tasks involving sequence learning, the early items in a series appear to be 
especially significant, perhaps because they serve to mark the beginning of a 
new pattern. In the Hebb digits task, changing the first two digits (but not just 
the first one, or just the last one or two) eliminates learning (Schwartz & 

Bryden 1 97 1). Servan-Schreiber & Anderson ( 1 990) found that subjects who 

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

99
3.

44
:2

65
-3

15
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
L

os
 A

ng
el

es
 -

 U
C

L
A

 D
ig

ita
l C

ol
l S

er
vi

ce
s 

on
 0

8/
14

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



282 HOLYOAK & SPELLMAN 

memorized three-chunk letter strings by building a larger chunk out of the first 
two smaller chunks were more accurate at grammaticality judgments than 

subjects who memorized the strings by chunking the second two smaller 

chunks. 
In addition, implicit learning is sometimes affected by the semantic content 

of the stimuli. The same underlying rule may be learned better when presented 
with some stimuli than with others. Stanley et al found that subjects performed 
better in a dynamic systems task when the cover story involved controlling the 
friendliness of a person rather than the sugar production of a factory, even 
though the underlying rule was the same in both cases (also Berry & Broad­
bent 1984). Such content effects suggest that prior knowledge can modulate 
implicit learning, perhaps by biasing subjects to attend to particular features or 
to expect particular types of regularities. (We discuss other content effects 
observed in thinking tasks in a later section.) 

Access and Use of Implicit Knowledge 

An important characteristic of implicit knowledge, demonstrated in several of 
the learning studies reviewed above, is that subjects cannot verbalize all of 
their knowledge. It is clear, however, that at least some useful knowledge is 
often verbalizable. In an artificial-grammar learning task, Mathews et al 
(1989) told some subjects that after each test trial they should explain to an 
"unseen partner" how they made the grammaticality decision. These explana­
tions were later played to another group of subjects as the latter made gram­
maticality judgments without any prior training or feedback. Such yoked 
subjects performed better than chance, but not as well as the original subjects, 
suggesting that some but not all knowledge is verbalizable. Stanley et al 
(1989) obtained similar results for yoked subjects in a dynamic systems task. 
Note, however, that the lower performance of the yoked subjects might be 
attributable either to (a) the inability of the original subjects to articulate all of 
their knowledge, or to (b) the inability of the yoked subjects to implement the 
transmitted knowledge successfully. 

In general, it would be difficult to show conclusively that knowledge is 
inaccessible to consciousness, because the methodology for assessing access 
to implicit knowledge is inevitably open to challenge. Various methods that 
do not rely on verbalization of rules have been used to elicit subjects' implicit 
knowledge; often these methods reveal accessible covariation-based or frag­
mentary knowledge that can account for much or all of the subjects' perfor­
mance. In artificial-grammar tasks, classification performance can be 
accounted for by: subjects' ability to indicate grammatical or ungrammatical 
parts of letter strings (Dulany et al 1984); knowledge of bigrams or trigams 
(Perruchet & Pacteau 1990, 1991; Perruchet et aI 1992); knowledge of chunks 
(Servan-Schreiber & Anderson 1990); or knowledge of sequential letter de­
pendencies-i.e. the ability to decide, when presented a string of letters, 
whether each letter in the grammar, if presented next, would create a grammat-
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ical string (Dienes et a1 1991). Similar arguments have been levied against the 
sequence learning tasks (Perruchet et al 1990). Most recently, Perruchet & 
Amorim ( 1992) showed that in a sequence-learning task, subjects' conscious 
ability explicitly to generate and recognize parts of the sequences paralleled 
their improvement on the reaction-time task. One critique that may be leveled 
against some methods used to elicit implicit knowledge is that the procedure 
itself may change the representation of the knowledge from implicit to explicit 
(Reber et al 1 985); certainly knowledge that is initially implicit may eventu­
ally be re-represented in some more explicit form (Karmiloff-Smith 1990; also 
Berry & Broadbent 1 988). On the other hand, these studies offer insight into 
two important and unresolved questions: (a) How unconscious is the learning 
and (b) is what is being learned abstract rules or something less complex? 

Nonetheless, evidence still suggests that subjects' ability to consciously 
access implicit knowledge typically lags behind their ability to use it. Rubin et 
al (1993) had subjects study and recall a series of five highly similar ballads. 
and then attempt to compose a ballad of their own. These subjects were also 
asked to write down the rules and generalizations that characterized the bal­
lads they had studied. The ballads by the subjects followed more than half of 
the objective regularities in the studied ballads, but the subjects could only 
state about one quarter of these rules. Moreover, the correlation between the 
implicit regularities observed in the composed ballads and the explicitly stated 
rules was low and statistically nonsignificant. Further support for a dissocia­
tion between implicit and explicit knowledge comes from studies of people 
solving various types of "insight" problems, which reveal that subjects often 
reach correct conclusions even though they either fail to report they are near­
ing a solution (Metcalfe 1986; Metcalfe & Wiebe 1987) or are unable to 
verbalize why their conclusion is correct and lack confidence in it (Bowers et 
aI1990). 

Another important issue relevant to accessing and using implicit knowl­
edge concerns the range of related cases to which such knowledge can be 
applied. Although it is typical to find generalization to new cases drawn from 
the same basic pool as those used during training, more distant transfer is not 
readily obtained. Berry & Broadbent (1988) trained subjects on one dynamic 
systems task and then measured their performance on a second task involving 
the same underlying rule. The semantic cover story of the transfer task was 
either superficially similar or dissimilar to that of the learning task. Subjects in 
the superficially similar condition improved their performance as much as 
control subjects (who continued to perform the same task); however, subjects 
in the superficially dissimilar condition showed no such transfer. Furthermore, 
subjects who were given a hint that the underlying equation in the transfer task 
was the same as that in the learning task were not helped: In fact, subjects in 
the similar condition performed worse when given such a hint. By contrast, 
such a hint generally aids transfer in explicit tasks involving analogical trans­
fer across semantic contexts; in the latter case, subjects seem only to need 
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reminding of knowledge available to them (e.g. Gick & Holyoak 1 980). Lack 

of transfer has also been demonstrated for intuitive physics problems: Subjects 

are accurate when making predictions about familiar problems but do not 

transfer their knowledge to make correct predictions on an unfamiliar problem 

with the same underlying structure (Kaiser et al I986). 
There is, however, evidence of remote transfer in studies using the artifi­

cial-grammar task: Subjects who are trained on an artificial grammar using 
one set of letters perform well on test items generated by structurally 
isomorphic grammars based on new letters (Mathews et al 1 989; Reber 1969). 
Reber ( 1989) and Mathews ( 1990) have argued, on the basis of such evidence 
for remote transfer, that implicit knowledge is abstract in the sense that the 
person has learned rules about the structure of the stimuli independent of its 
physical instantiation. It is possible, however, that such transfer effects are due 
to shared relational features that were associated with grammaticality during 
learning of the initial grammar (e.g. a run of three "same" letters near the 
middle of the string, or the presence of certain "fragments" as discussed 
above, might indicate grammaticality; see Seger 1 992). Although such rela­
tional features are arguably abstract to some degree (Mathews 1 990), learning 
covariations based on such features might not indicate general sensitivity to 
relational structure. It is also possible that transfer between isomorphic gram­
mars depends at least in part on analogical reasoning between studied exem­
plars and transfer items (Brooks & Vokey 1 99 1), or possibly between studied 
chunks and transfer items. However, exemplars need not be explicitly remem­
bered. Knowlton et al ( 1992) found that amnesic patients were able to classify 
letter strings according to the rules of an artificial grammar as well as control 
subjects, even though the patients' ability to recognize the studied exemplars 
was impaired. 

The transfer issue may well prove central in assessing potential models of 

implicit learning. In particular, subsymbolic models based on classifier sys­
tems (Druhan & Mathews 1 989) and on connectionist learning algorithms 
(Dienes 1992; Kushner et al 1 991 )  have been successful in accounting for 
many aspects of human performance in learning artificial grammars. The 
subsymbolic models readily account for the difficulty that people have in fully 
verbalizing their knowledge of stimulus regularities, which in the models is 
largely contained in low-level patterns (of strengths of classifier rules, or 
weights on links in a distributed connectionist network). However, none of 
these models can account for transfer between isomorphic grammars based on 
entirely different sets of letters. If such transfer could be explained on the basis 
of a limited set of relational features, or by additional explicit processes 
operating in the transfer task, then it might be possible to characterize the 

limits of implicit learning in terms of the capabilities of current subsymbolic 
models; if not, more sophisticated learning models will be required. The limits 
of transfer based on implicit learning clearly warrant further investigation. 
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The kind of covariational information that can be learned implicitly appears 
to be statistical in nature. The question then arises as to the conditions under 
which such information will be accessed and used in tasks that require making 
intuitive predictions. The classic work of Kahneman & Tversky (see Kahne­
man et a1 1982) produced many compelling illustrations of people's failures to 
use statistical infonnation of the sort that could plausibly be acquired by 
implicit learning. In particular, people commonly underutilize base rates and 
sample frequencies in making judgments about the likelihood of individual 
events. Hasher & Zacks ( 1984) argued that the encoding of event frequency is 
based on an automatic or implicit process that takes place largely without 
awareness. Although there has been some dispute about the extent to which 
frequency encoding satisfies various proposed criteria for automaticity, people 
are generally accurate in picking up such infonnation (e.g. Sanders et al 1987). 
The evidence for implicit frequency encoding leads to the following puzzle: If 
the encoding of frequency is automatic, then one would expect the encoding of 
base rates, which are simply relative frequencies, to be automatic also. Why, 
then, have countless studies shown that subjects neglect base-rate infonnation 
when making various inferences? 

In fact, the paradox may be more apparent than real. In almost all studies 
showing base-rate neglect, subjects are provided with summary information 
about base rates, rather than with an opportunity to learn infonnation about 
each individual event comprising the set of events. The base-rate information 
is thus presented cxplicitly; no implicit learning occurs. Generally, in experi­
ments in which base-rate information i s  derived from real-life experience 
(Christensen-Szalanski & Bushyhead 1981), or learned from presentation of 
exemplars (Manis et al 1980), subjects use that infonnation effectively. The 
procedure of giving summary infonnation can be contrasted with the typical 
category-learning experiment in which subjects are presented with individual 
exemplars of the categories, are asked to make category judgments, and then 
are given feedback. When subjects learn to predict membership in categories 
that occur with different frequencies, they learn to use base rates accurately 
during the study trials (Estes et al 1989; Gluck & Bower 1988; Medin & 
Edelson 1988). However, subsequent transfer trials, in which subjects are 
asked either to indicate category membership or to estimate the probability 
that a category was correct given a cue, often reveal some apparent misuse of 
base-rate information. 

The findings from category learning experiments suggest that base-rate use 
has two components: acquisition, which might be done implicitly and is quite 
accurate (perhaps based on learning feature-to-category conditional probabili­
ties); and access, which (depending on the type of test) may well be explicit 
and under more conscious control. When acquisition and test both tap implicit 
knowledge (e.g. during learning trials), subjects generally use base rates accu­
rately; however, it seems that when engaged in more explicit tasks, subjects 
must be "reminded" to use base rates. In such tasks, people tend to focus on 
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the strength or extremity of the individuating evidence about the case, with 
insufficient regard for its weight or credibility; base rates and sample size are 
special cases of the latter type of information (Griffin & Tversky 1992). 

Explicitly presented base rates have greater impact when they have strong 
causal implications (Ajzen 1977; Bar-Hillel & Fischhoff 198 1 ;  Tversky & 
Kahneman 1 980), when people bring a scientific rather than a clinic a 1 orienta­

tion to a problem (Zukier & Pepitone 1984), when subjects watch a random 
sampling process or operate in a domain in which revision of base-rate infor­
mation is common (Gigerenzer et al 1988), or when conversational context 
suggests that base-rate information is more relevant than individuating infor­
mation (Krosniek et al 1990; Schwarz et al 1 991) .  The situations in which 
subjects tend to use base-rate information are similar to those in which sub­
jects are more likely to invoke other elements of appropriate statistical reason­
ing (Nisbett et al 1983). We discuss further examples of contextual variations 
in the use of reasoning strategies in a later section. 

In the absence of cues of the above types, statistical knowledge is more 
likely to be evoked when subjects make judgments about an aggregated set of 
cases rather than individual cases (Tversky & Kahneman 1 983). In particular, 
people are typically overconfident in evaluating the accuracy of their own 
beliefs taken one at a time, yet quite well calibrated in judging their overall 

accuracy for a set of beliefs (Gigerenzer et a1 1 99 1 ;  Griffin & Tversky 1992). 

Without some "reminder" cue, people tend to base their decisions on their 
assessment of individual events, rather than estimates about a population of 
similar events (Kahneman & Lovallo, 1993; Tversky & Kahneman 1 982). It 
follows that people are often overconfident in their decisions even though at 
some level they "know better." Such examples support the general possibility 

of dissociation between the acquisition and use of implicit knowledge. 

Evolutionary History and Adaptation 

Another theme in recent work on thinking, closely related to evidence for 
implicit cognition, concerns the use of evolutionary arguments to support 
cognitive analyses. The evolution of human cognition is, of course, largely a 
matter of conjecture. As Lewontin ( 1990) wrote, in a cautionary introduction 
to the topic, "If it were our purpose . . .  to say what is actually known about the 
evolution of human cognition, we could stop at the end of this sentence" 
( 1990:229). Lewontin pointed out that different types of evolutionary argu­
ments must be distinguished. Here we focus on two types: those based on the 
evolutionary connections among species, and those based on the adaptive 
Significance of cognitive characteristics. Of these, the former has the virtue of 
being more closely tied to observable evidence. 

There are many reasons to suspect that implicit cognition is phylogeneti­
cally older than the explicit variety (Rozin 1 976; Sherry & Schaeter 1987)­

certainly, basic covariation detection is within the cognitive capacity of many 
species, whereas the writing of review articles is practiced, as far as we know, 
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by Homo sapiens alone. Based on the assumption that implicit cognition 

evolved long before high-level consciousness, Reber ( 1992) argues that cer­
tain principles of evolutionary biology-von Baer's pre-Darwinian laws of 
embryological development and Wimsatt' s (1986) "developmental lock" 

model of evolutionary change-can be used to derive a number of predictions 

about the general character of implicit cognition. The major predictions Reber 

derives are that: 1 .  implicit systems should be more robust than explicit 

systems, operating despite injuries, diseases and other disorders; 2. implicit 
processes should be more age independent, revealing fewer differences than 

explicit processes in both infancy and old age; 3. implicit processes should be 

IQ independent; 4. more generally, implicit processes should show lower 

population variance than explicit processes; and 5. implicit processes should 
show across-species commonalities. Reber cites empirical evidence in support 
of each of these predicted characteristics of implicit cognition. 

In addition to deriving predictions based on evolutionary history, Reber 
(1992) and others have proposed reasons it would be adaptive to have two 
basic cognitive systems--one to passively pick up covariations among signif­
icant environmental stimuli, and another to selectively integrate and control 
information from many different sources. Others, most notably Anderson 
( 1990), have made much more general appeals to arguments based on adapta­
tion. Anderson argues that psychologists can best develop theories of human 
cognition by making the assumption that human cognition is optimally 

adapted to the environment. He terms his research program "rational analy­
sis," taking care to distinguish two meanings of the term "rational": 1 .  "the 
normative sense, as used in philosophy, in which human behavior is matched 
against some model that is supposed to represent sound reasoning . . .  [and 2.] 

the adaptive sense, as used in economics, in which the behavior is said to be 
optimized with respect to achieving some evolutionarily relevant goals" 
( 1990:250-51).  It is in this latter sense that Anderson argues human behavior 
is rational. 

Developing a theory using Anderson's  program of rational analysis in­
volves six steps (Anderson 1 990:29): 1 .  Specify the goals of the cognitive 
system; that is, what the system is trying to optimize. 2. Develop a formal 

model of the environment to which the system is adapted; that is, the environ­
ment in which the cognitive system evolved. 3. Make minimal assumptions 
about computational limits and abilities of the system, including the costs 
incurred in achieving optimal perfonnance. 4. Derive what the optimal behav­
ioral function should be, given Steps 1-3. 5 .  Examine the empirical literature 
to see whether the predictions of the behavioral functions are confirmed. 6. If 
the predictions are off, try reexamining and revising the assumptions in Steps 
1-3. 

There is considerable potential for slipperiness in executing this program, 
especially in Steps 1-3, as has been noted both by Anderson himself (Ander­
son 1990:30) and others (see commentary on Anderson 1991 a  in Behavioral 
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and Brain Sciences, Vol. 14; also Lewontin 1990). Step 3 is especially prob­

lematic because we know little about the environment(s) in which cognition 

evolved. Thus if the predictions of rational analysis fail, it may be all too 

tempting to go back and redefine the environment. It is always possible to 
invent an environment in which a behavior would be adaptive (Dawkins 1987; 

Simon 1991) .  

Anderson ( 1 990) demonstrates the use of his method in analyzing memory 

(also Anderson & Milson 1989), categorization (also Anderson 199 1b), causal 
inference, and problem solving. In practice, his rational approach involves 
B ayesian analysis, making various simplifying assumptions to avoid the com­

putational intractibility of unconstrained Bayesian inference (see Pearl 1988 
for an artificial-intelligence approach along broadly similar lines). With some 
minor tinkering, Anderson's analysis of memory predicts many major memory 

findings; the optimized categorization model also predicts a large number of 
laboratory phenomena. In both cases Anderson ' s  models are nearly equivalent 
to more mechanistic models that had been proposed previously, and inherits 

their weaknesses as well as their strengths (e.g. his categorization model, like 
other similarity-based models, does not provide any constraints on which 
features are used to represent objects, nor does it account for theory-hased 
influences on categorization; see Medin 1 989). 

Anderson' s  program has so far been less successful in dealing with other 
topics. In particular, rational analysis provides' few insights into problem solv­
ing, as Anderson admits. He believes that this failing "is more a comment on 
the state of the literature on problem solving than on the theory" ( 1 990:229). 
As Anderson points out, most studies of problem solving have been concerned 
with games and puzzles, which have little adaptive value when compared to 
the sorts of problems that people confront in real life. More naturalistic prob­
lems might include choosing a birthday card, getting the car fixed, or deciding 
whether to buy an expensive zoom lens. (Of course, none of the latter exam­

ples is any more likely than are puzzle problems to have exerted great selec­
tion pressure during human evolution.) There is reason to suspect, however, 
that the limitations of rational analysis in dealing with general problem solving 
arise for a more basic reason. Problem-solving performance reveals much 
more pronounced individual differences (often due to the relative efficacy of 
different strategies) than do tasks that more specifically tap memory retrieval, 
categorization, or causal inference. In fact, problem-solving skill seems to 
meet none of Reber's ( 1992) predicted criteria for implicit knowledge-it is 
not robust, and it is quite variable across age, IQ, and within as well as across 
species. The other cognitive functions that Anderson analyzes, which at least 
in primitive forms are doubtlessly phylogenetically older than general problem 
solving, seem to have a more implicit than explicit character (although Ander­
son does not address the implicit/explicit distinction). It is possible that im­
plicit systems, which have undergone longer evolutionary refinement, are in 
general better optimized to the environment than is explicit cognition and 
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therefore more amenable to rational analysis (S. Kosslyn and S. J. Gould, 
personal communication). Indeed, given the greater inherent computational 
complexity of the functions that explicit cognition attempts to compute (which 
are almost certainly intractible in the general case), it is unlikely that even a 
few more billion years of evolution will make much difference. 

What Is Explicit Thinking For? 

In many ways we have painted a more attractive picture of implicit thinking 
than of its younger explicit sibling. Implicit knowledge is acquired with little 
effort and is often accurate, perhaps even optimized in some sense. Explicit 
knowledge, by contrast, takes hard mental work to achieve and might seem 
barely worth the effort-it often flouts the dictates of rationality, even wan­
tonly ignoring the accurate statistical knowledge that the implicit system has 
patiently accumulated. What, then, is explicit thinking for? 

One answer (at the risk of seeming facetious) is that it  enables us to draw a 
picture of a person with two heads. If the answer seems absurd, consider: For 
how long would the implicit system have to absorb covariations passively 
before its knowledge would enable us to draw such a picture? Longer than a 
lifetime, no doubt. Drawing a two-headed person requires more than the 
simple reproduction of patterns observed in the environment; it requires the 
creation of something we have never seen. We may use our experience, 
however limited, with drawing other objects, such as people with the more 
typical quota of heads; but to make the required transformation, the usual 
procedure for drawing a person must itself be manipulated in the process. And 
to be manipulated in this way, the procedure must be represented explicitly. 

The role of internal representations in creative drawing has been explored 
by Karmiloff-Smith ( 1 990), from whom we have borrowed our example. As 
she points out (also Rutkowska 1987), a procedure can have two functions: 1 .  
it can be activated to generate an output; and 2. it can itself be manipulated or 
reorganized by other procedures. In terms of the implicit vs explicit distinc­
tion, only a procedure that has an explicit representation can serve as "data" 
for another procedure, and hence be transformed. According to Karmiloff­
Smith ( 1986, 1990), it is characteristic of cognitive development that proce­
dures initially represented implicitly, such that they can accomplish routine 
tasks, must be re-represented at a more explicit level before they can be 
manipulated to accomplish novel tasks. 

Katmiloff-Smith ( 1990) found evidence of a developmental progression in 
children's  abilities to draw such novel objects as a two-headed man-evidence 
that supports her theoretical claims. When given this task, 5-year-old children 
were likely to draw a normal man first, then add a second head with an entire 
second body attached. By age 8-1 0, however, children had acquired the ability 
to systematically interrupt their routine drawing procedure, insert two heads 
symmetrically tilted away from the upright, and then continue drawing the rest 
of the man. Whereas for the younger children the drawing procedure seemed 
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290 HOLYOAK & SPELLMAN 

to be represented as a fixed sequence, for the older children it seemed to have 

a more abstract part-whole structure, allowing the routine to be interrupted and 

novel parts to be inserted. 

The re-representation of procedures from an implicit to an explicit form is 

the opposite of the progression assumed in Anderson' s  ( 1983, 1987) concep­

tion of knowledge compilation, a process that transforms explicit declarative 

knowledge into an implicit procedural representation. We return to this con­
trast below when we discuss expertise and knowledge transfer. For now, we 

note that Karmiloff-Smith's concept of explicit representation appears to 

imply a capacity for systematic manipulation of knowledge of much the same 

sort as we discussed earlier when we considered the relationship between 

connectionist and symbolic representations. 

A more general answer to our opening question, then, is that explicit 

thinking is required for some important forms of creative thought (Boden 

1990). (This is not to deny, however, that implicit processes may also play 

important roles in creativity.) Such a function would suggest that the explicit 

system ought not to be adapted to the environment in which it evolved-at 

least not in the sense of Anderson' s  ( 1990) rational analysis. Let the implicit 

system become adapted to the environment; the explicit system can help us 
adapt the environment to us. Explicit representations of knowledge allow us to 
imagine what is not the case, but might be, and how we might make it so. 

CONTENT IN THINKING, THINKING IN CONTEXT 

Our third theme is an extension of a topic we encountered in the previous 

section: the role played in thinking by prior knowledge and contextual cues. 

Across a wide variety of tasks, the manner in which individuals reason and 

solve problems is intimately related to the content of what is being thought 

about as well as to the context in which the thinking takes place. Indeed, 

content and context are themselves interwined, since the context of thinking­
for example, the actions of other individuals and the goals of the reasoner-di­

reedy influences the content of thought. Conversely, the content of thought­

for example, the internal representation of a problem situation-may trigger 
goals that alter the effective context in which the thinker is operating. The 

implications of content and context effects are a focus of current theoretical 
debates. 

Thinking vs Theorem Proving 

Cognitive scientists all agree that thinking is properly construed as computa­
tion. At the same time, the most vigorous debates in the field concern the 
questions of what kinds of computation underlie human thinking, and what 

kinds of representations are used. Various theorists have championed repre­
sentations for reasoning and problem solving based on stored cases, schemas, 
rules of varying degrees of generality, constructed semantic models of individ-
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THINKING 291 

uals, and quasi-spatial or image-like structures. The "classical" view has been 
that thinking is much like the conventional procedures for proving theorems in 
a formal system, such as a logic. The derivation of inferences, in this proof­
theoretic view, depends on the serial application of exceptionless formal rules 
of inference to internal "statements" expressed in a "language of thought" 
(Fodor 1983). The classical account implies that reasoning depends on rules 
that manipulate internal representations on the basis of their syntactic form, 
rather than their semantic content.4 Fodor & Pylyshyn have emphasized the 
centrality of the proof-theoretic approach to cognitive science: "It would not 
be unreasonable to describe Classical Cognitive Science as an extended at­
tempt to apply the methods of proof theory to the modelling of thought" 
(1988:29-30). 

It is now clear that the conventional proof-theoretic approach is seriously 
limited in its ability to account for human thinking (Oaksford et aI 1990). Two 
empirical problems present themselves. First, everyday commonsense reason­
ing is based on defeasible (Le. "defeatable") inferences, such that conclusions 
derived from premises can be overturned by subsequent information. For 
example, suppose we have a rule-like belief that Tom leaves for work in his 
car every morning at 8 AM. If we see Tom pulling out of the driveway at 8 
AM sharp, we will probably conclude that he is going to work. However, we 
are likely to retract this conclusion if we later remember that it is actually a 
holiday or if we hear that Tom's wife delivered a baby at the local hospital at 
9:00 AM, and so on. The list of exceptions to most rule-like regularities is 
indefinitely long, thwarting attempts to code the exceptions exhaustively into 
rules. Thus although there have been many attempts to formalize common­
sense reasoning in versions of nonmonotonic logics (i.e. logics in which infer­
ences may be subtracted, as well as added, with the addition of new premises), 
these efforts have met with limited success (Minsky 1991; Oaksford et al 
1990). 

The second problem with the proof-theoretic approach is that everyday 
reasoning is highly content dependent. As we observed in our earlier discus­
sion of connectionist approaches to thinking, people are often poor at solving 
deductive problems based on arbitrary content (like syllogisms), yet they 
easily use knowledge stored in long-term memory to make inferences that 

4 
The tenllS "fonual" and "syntactic" have multiple usages in cognitive science. As has often 

been noted (e.g. Rips 1 990), any computational system is necessarily "formal" and "syntactic" in 
the sense that the procedures are specified in tenus of the form of the representations over which 
they operate. In principle, any aspect of semantic or pragmatic content could be used by a theorist 
to define the forms that detennine the range of applicability for inferential procedures. Accord­
ingly, any computational model of reasoning (including, if they are made explicit, those based on 
pragmatic schemas and mental models; see below) is necessarily formal in this basic sense. This 
point has often been misunderstood (see Stenning 1992). Those psychological theories that we 
refer to as based on "fonual rules," however, place strong constraints on what aspects of meaning 
are required to define the fonu of representation. Such theories postulate that only the meanings of 
the "logical tenus" included in logics that have been proposed by logicians (e.g. connectives, 
quantifiers, and modals) are required to define the fonus to which inference rules apply. 
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292 HOLYOAK & SPELLMAN 

contribute to a coherent interpretation of a situation. That is, the psychological 
difficulty of inferences seems to depend more on the relationship between the 
content of the premises and prior knowledge than on the logical form of the 
reasoning involved. 

The defeasibility of commonsense inferences is closely connected to their 
content specificity. For example, studies of reasoning about propositional 
connectives, such as "if," reveal that the content of premises can affect the 
conclusions drawn. For example, Byrne ( 1 989) gavc one group of subjects 
premises such as the following: 

I .  If she has an essay to write then she will study late in the library. 
2. She has an essay to write. 

Almost all subjects (96%) in this group drew the conclusion supported by the 
formal inference rule modus ponens, namely 

3. She will study late in the library. 

Another group of subjects also received premises 1 and 2 but in addition 
received 

1 '. If the library stays open then she will study late in the library. 

Only 38% of the latter subjects drew conclusion 3, indicating that introduction 
of premise l '  blocked application of modus ponens based on premises 1 and 2. 

Although Byrne ( 1 989; Johnson-Laird & Byrne 1 991)  interpreted her re­
sults as indicating that people do not "follow rules" such as modus ponens 

when reasoning, this conclusion is overstated (Politzer & Braine 199 1).  The 
most obvious interpretation of Byrne's results, as she herself noted, is simply 
that the addition of premise l '  causes subjects to implicitly alter their interpre­
tation of premise 1, reinterpreting the antecedent as a conjunction of two 
clauses, "she has an essay to write" and "the library is open." Once the 
premise is tacitly altered, modus ponens does not apply (cf Henle 1962). Other 
results indicate that people are reluctant to apply modus ponens to conditional 
statements when the antecedent is interpreted as a probabilistic cause, such as, 
"If a person smokes, then that person will get lung cancer" (Cummins et al 
199 1). Cheng & Nisbett ( 1993) argue that causal regularities of the form "If 
cause then effect" (a major subclass of conditionals) are treated as expressions 
of probabilistic contingencies. It seems that people generally treat conditional 
rules not as deterministic and inviolate but as expressions of "default" regular­
ities, assumed to hold unless overridden by other information (cf Oaksford & 

Chater, 1 993). Certain general inference rules, such as modus ponens, may, in 
fact, be used in reasoning, as some theorists argue (e.g. Braine & O'Brien 
1 99 1 ;  Rips 1989; Smith et al 1992); however, if the content triggers knowl­
edge that overrides the stated premises, application of the inference rule may 
be blocked. The theoretical challenge is to provide a model that accounts for 
people' s  facility in making plausible but defeasible inferences (e.g. Osherson 
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THINKING 293 

et al 1990). It seems unlikely that a successful model of everyday reasoning 
will resemble standard methods for constructing proofs using exceptionless 
formal rules. [See Stenning & Oaksford ( 1993) for a discussion of the relation­
ship between logic and reasoning.] 

Relevance and Pragmatic Reasoning 

A crucial question for theories of thinking concerns relevance: How do people 
access and exploit knowledge relevant to their goals when drawing inferences, 

making decisions, or solving problems? The problem of determining relevance 
emerges in many guises. In the area of deductive reasoning, psychological 
theories based entirely on formal logics have been unable to explain how 
everyday inference is constrained by intuitions about the relevance of prem­
ises to conclusions. For example, an apparent constraint on the use of the 

English connective "if' is that the antecedent should be relevant to the conse­

quent. But when "if' is interpreted in terms of the material conditional in 
propositional logic, the sentence "If the moon is made of green cheese, then 13  

is a prime number" is  considered to be true (because any conditiJnal with 
either a false antecedent or a true consequent is true). The "schema for Condi­
tional Proof' that Braine & O'Brien (1991)  adapt from natural-deduction logic 
to form a core component of their psychological theory of "if' implies that any 

sentence of the form "If p then q" is true whenever q is already known to be 
true, even when p is irrelevant to q. Often, however, people find such irrele­
vant conditionals peculiar. And even premises that are relevant to making a 
deductive inference may fail to be relevant to explanation, as an example from 
Hempel ( 1965) demonstrates. Suppose we are given the premises 

All members of the Greenbury School Board are bald. 
Horace is a member of the Greenbury School Board. 

We can readily deduce that Horace is bald. However, if asked to explain why 
Horace is bald, we are unlikely to say it is because he is a member of the 
school board. So far, no formal theory has satisfactorily solved the problem of 
defining relevance. 

People's inferential procedures are also influenced by their current beliefs 
about the content of the premises. In deductive inference tasks, for example, 
reasoners are more likely to accept an invalid conclusion that is consistent 
with their beliefs than an invalid conclusion that they do not believe is true 
(and hence are motivated to refute) (Evans et al 1 983; Markovits & Nantel 
1989; Oakhill et aI 1 989). In hypothesis testing, the reasoner's current hypoth­
esis will guide selection of cases chosen to be examined. People have a strong 

preference for "positive" tests-that is, for examining cases in which either the 
hypothesized condition for the target outcome, or the target outcome itself, is 
known to hold. As Klayman & Ha ( 1987, 1 989) have argued, positive testing 
need not indicate an irrational bias toward confirmation of one's hypotheses. 
In many realistic cases, positive testing actually maximizes the possibility that 
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294 HOLYOAK & SPELLMAN 

the tested hypothesis will be disconfirmed. More generally, focus on confir­
mation vs disconfirmation may vary dynamically as the reasoner collects 
evidence over time. Successful hypothesis testing, in studies both of scientific 
inference and of medical diagnosis, often involves an initial focus on confir­
mation followed by more critical examination of "loose ends" or apparent 
anomalies, which may lead to hypothesis revision (Dunbar, 1993; Mynatt et al 
1978; Patel & Groen 1991) .  In cases of "pathological science," however, 
scientists with strong attachment to their hypotheses may actively avoid col­
lecting or recognizing disconfirming evidence (Rousseau 1992). In a review of 
evidence for motivated reasoning, Kunda ( 1990) argues that motivation to 
arrive at particular conclusions enhances the use of strategies (such as biased 
memory search) likely to lead to the desired conclusion. 

Content effects and intuitions of relevance have been studied extensively 
over the past quarter century using Wason' s  ( 1966) "selection task" (see 
Evans 1989 for a review).  The selection task involves giving subjects a condi­
tional rule in the form "If p then q." Subjects are shown one side of each of 
four cards, which respectively show the cases corresponding to p, not-p, q, and 
not-q. They are told that the cards show the value of p (i.e. p ar not-p) on one 
side and the value of q on the other. Their task is to decide which of the cards 
must be turned over to check whether the rule is false. The "correct" choice, 

according to standard propositional logic, is to select the p card (which might 
have not-q on its back) and the not-q card (which might have p on its back), 
because these are the only two possibilities that would falsify the rule. Sub­
jects seldom make the correct choice when the conditional rule has arbitrary 
content (e.g. "If a card has an 'A' on one side, then it must have a '4' on the 
other").  Rather, they tend to make various errors, of which the most common 
is to select the cards corresponding to p and q (i.e. "A" and "4"). In contrast, 
for certain comparable rules that can be interpreted as expressing permission 
or obligation relations, such as "If a person is to drink alcohol, then they must 

be at least 2 1  years old," thc p and not-q cases are selected much more 
frequently (see, for example, D' Andrade 1982; Cheng & Holyoak 1985; Cos­
mides 1989; Girotto et al 1989b; Johnson-Laird et al 1972; Light et al 1990; 

Manktelow & Over 199 1 ;  Politzer & Nguyen-Xuan 1992). 

To explain the influence of content on reasoning in the selection task and 
other tasks (such as linguistic rephrasing) involving inference with condition­
als, Cheng & Holyoak ( 1985) suggested that thematic content evokes prag­
matic reasoning schemas: sets of rules that deal with situations defined in 
terms of recurring classes of goals and relationships to these goals. Pragmatic 
reasoning schemas fall into broad categories, of which prominent varieties are 
those dealing with causal inferences (Cheng & Nisbett, 1993; Tversky & 
Kahneman 1980) and those dealing with inferences based on the concepts of 
permission and obligation (Cheng & Holyoak 1 985; Cheng et al 1986). The 
pragmatic schema theory predicts that performance on the selection task will 
depend on which schema (if any) is evoked by the content and context of the 
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THINKING 295 

stated rule. For example, the "drinking age" rule just mentioned will tend to 

evoke a "permission schema," which applies when a precondition must be 
satisfied if a regulated action is to be taken. If a rule is interpreted as a 

conditional permission, the schema will focus attention on the case in which 

the action is taken (e.g. someone who drinks alcohol should be checked to be 

sure the age precondition has been met) and that in which the precondition has 

not been met (e.g. someone who is under age should be checked to be sure 

they are not drinking alcohol), because these two cases might reveal a viola­

tion. These are in fact the p and nol-q cases-the selections dictated by 

standard logic. Accordingly, problems that evoke the permission schema show 

a dramatically greater frequency of these "correct" selections. 

In addition to explaining patterns of facilitation for rules with concrete 

thematic content, Cheng & Holyoak ( 1 985) demonstrated that facilitation 

could be obtained even for an abstract permission rule, "If one is to take 

action 'A',  then one must first satisfy precondition 'P' "  (also see Cheng & 
Holyoak 1989; Girotto, et aI, 1 992). The fact that people can reason reliably 

about rules with novel content or abstract content fulfills two of the major 

empirical criteria for rule use proposed by Smith et al ( 1 992). In addition, the 

ability to reason about regulations has been demonstrated in children as young 

as 6 years old (Girotto et al 1988;  Legrenzi & Murino 1 974; Light et al 
1 989). 

As Cheng & Holyoak ( 1 985) noted, evocation of a pragmatic schema will 

not necessarily lead to selection of the "logically correct" cases. The perceived 

relevance of cases may vary both across schemas (because different schemas 

may encourage different inferences) and within schemas (because the context 

may alter the mapping of the elements of the stated conditional onto compo­

nents of the schema). Moreover, a single conditional may be potentially 

mapped onto multiple schemas. Subjects who are encouraged to take different 

perspectives on a rule may interpret the rule in terms of different schemas, 

each of which yields a distinct response pattern (Politzer & Nguyen-Xuan 

1 992). Politizer & Nguyen-Xuan' s  analysis can account for other demonstra­

tions that subjects' perspectives guide their evaluation of conditional regula­

tions (Cosmides 1 989; Gigerenzer & Hug 1992; Manktelow & Over 1 99 1). 

It has been suggested that people only have one special case of the permis­

sion schema-that in which someone who receives a rationed benefit must pay 

a cost (Cosmides 1 989). In fact, however, many findings are inconsistent with 

this restriction (e.g. Cheng & Holyoak 1989; Girotto et al 1989a; Manktelow 

& Over 1 990; Politzer & Nguyen-Xuan 1 992). For example, Manktelow & 

Over ( 1990) found facilitation in the selection task for the conditional precau­
tion, "If you clean up spilt blood, then you must wear rubber gloves," where 

there was no suggestion that cleaning up spilt blood was a rationed benefit for 

which one must pay a cost. Although Cosmides ( 1 989) reported failing to 

obtain facilitation with some conditional rules, none of them was unambigu-

A
nn

u.
 R

ev
. P

sy
ch

ol
. 1

99
3.

44
:2

65
-3

15
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
L

os
 A

ng
el

es
 -

 U
C

L
A

 D
ig

ita
l C

ol
l S

er
vi

ce
s 

on
 0

8/
14

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



296 HOLYOAK & SPELLMAN 

ously cast as a permission situation for subjects (Cheng & Holyoak 1989; 

Pollard 1990). 

The influence of content on reasoning extends well beyond the domain of 
social regulations. Work on causal reasoning-both inductive and deduc­
tive�reveals that people have inference procedures that are to some extent 

specialized for reasoning about cause and effect relations (e.g. Cheng & 
Nisbett, 1 993; Cheng & Novick 1990, 199 1 ,  1992; Hilton & Slugoski 1986; 

Kahneman & Miller 1986; Tversky & Kahneman 1980). One line of research 
has investigated the conditions under which people base causal judgments on 
the contingency between potential causal factors and an effect, where the 

contingency is defined as the proportion of events for which the effect occurs 
when a factor is present vs absent. Contingency is therefore sensitive not only 
to information about what occurs when the causal factor is present, but also to 
information about what happens in its absence. For example, in evaluating 
whether smoking causes cancer, information about nonsmokers who do not 

develop cancer is relevant. Cheng & Novick (1990) found that people's causal 
attributions could be reliably predicted from a contingency computation�as 
long as the set of events over which contingency is computed was taken into 

account (also Novick, Fratianne & Cheng, 1992). A number of apparent biases 
in causal attribution, such as a bias to attribute effects to a person rather than a 
situation, can be attributed to the fact that experimenters have not been fully 
aware of the information their subjects were using to compute contingency 
(Cheng & Novick 1992). Often people do not compute contingency over all 
possible cases, but rather some subset of cases-the focal set (Cheng & 
Novick 1990)-that they consider pragmatically relevant in the context. Vari­
ations in focal sets have been shown to account for people' s  intuitions about 

the distinction between causes and enabling conditions (Cheng & Novick 
1991) .  For example, people will typically perceive a lightning strike as the 
cause of a forest fire, but they will view the presence of oxygen as merely an 
enabling condition, even though the lightning and the oxygen (along with 
other factors, such as the presence of combustible material) were individually 
necessary and jointly sufficient to yield the fire. In another context, for exam­
ple that of a special oxygen-free laboratory, oxygen will be considered the 
cause of a fire that breaks out when it seeps into the lab. The distinction 
between causes and conditions thus depends on pragmatic contextual influ­
ences, rather than simply on the formal properties of necessity and sufficiency. 

The application of causal schemas is also constrained by factors other than 
contingency, most notably temporal directionality: People assume that causes 
must precede their effects (Bullock et al 1982; Tversky & Kahneman 1980). 
Waldmann & Holyoak ( 1992) have shown that when a causal context is 
imposed on a task of classification learning, the pattern of performance differs 
radically across a predictive context, in which the cues are interpreted as 

possible causes of a common effect, and a diagnostic context, in which the 
cues are interpreted as possible effects of a common cause. In particular, 
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THINKING 297 

competition among cues during learning is reduced or eliminated when they 
are perceived as joint effects of a common cause, rather than as alternative 
causes of a common effect. These differing patterns of cue competition sug­
gest that people have a natural tendency to induce contingencies from causal 
factors to effects, rather than the reverse, even when the order in which 
information is presented is "effect followed by cause." 

Taken as a whole, work on pragmatic reasoning indicates that thinking is 
heavily constrained by semantic and pragmatic content, and that the effects of 
broad classes of content are interpretable in terms of schemas that are rela­
tively abstract, although less so than rules of formal logic. The forms of 
inference generated by the two classes of schemas that have received closest 
scrutiny-causal and regulation schemas-are very different, reflecting the 
differing goals associated with these domains. Whereas causal schemas serve 
to guide informative prediction, diagnosis, and explanation, the permission 
and obligation schemas govern assessment of conformity with contractual 
agreements and maintenance of freedom of choice for individuals within the 
limits of established regulations. Each schema provides a unique set of infer­
ence rules that embodies relevance relations appropriate for the pertinent 
goals. 

The Context of Learning and the Content of Transfer 

The issue of relevance arises again in connection with the transfer of knowl­
edge from the context of learning to other related situations. Essentially by 
definition, transfer is based on the perception that prior knowledge is relevant 
to the current context. Transfer is in turn intimately related to the nature of 
expertise; We typically think of an "expert" as someone who is particularly 
good at recognizing the relevance of domain knowledge to new problems. 

Expertise, however, may come in two qualitatively distinct varieties, only 
one of which promotes transfer across contexts. Hatano & Inagaki ( 1986; 
Hatano 1988) have drawn a distinction between routine and adaptive exper­
tise; Salomon & Perkins ( 1989) elucidate a related distinction between "low­
road" and "high-road" mechanisms of transfer. Routine expertise is 
characterized by rapid and accurate solution of well-practiced types of prob­
lems; adaptive expertise is characterized by flexible transfer of knowledge to 
novel types of problems and the ability to invent new procedures derived from 
expert knowledge. In terms of the distinctions drawn earlier, routine expertise 
may be based on implicit knowledge of procedures, whereas adaptive exper­
tise may depend on more explicit and abstract representations. Of course, it is 
possible for a single individual to demonstrate both forms of expertise. Current 
production-system models of learning, with their emphasis on the acquisition 
of more specialized production rules through knowledge compilation, can be 
characterized as attempts to explain routine expertise (e.g. Anderson 1 987; 
Rosenbloom et al 1991) .  These models have been directed primarily at ac­
counting for stable superior performance on representative tasks, for which 
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298 HOLYOAK & SPELLMAN 

reproductive methods and specific knowledge are in fact central. Indeed, such 

theories are often described as models of "skill acquisition," which as Wenger 

(1987) has pointed out, is not coextensive with expertise: "Whereas skill 

acquisition can be tested by straightforward performance measures, expertise 

is a much more subtle notion . . . . [It] must also be evaluated by the capacity to 
handle novel situations, to reconsider and explain the validity of rules, and to 

reason about the domain from first principles . . .  " (p. 302). 

Hatano & Inagaki (1986) suggest that the key to adaptive expertise-which 
involves facility in the recognition of relevance relations across contexts�is 
the development of a deeper and more explicit understanding of the target 

domain (cf Karmiloff-Smith 1990). Such understanding is heavily dependent 

on the conditions under which learning takes place. Understanding is more 
likely to result when the task is variable and in some degree unpredictable 
rather than stereotyped, and when the task is explored freely without heavy 
pressure to achieve an immediate goal (Sweller 1988). Understanding can 

result from sensitivity to internally generated feedback, such as surprise at a 

predictive failure, perplexity at noticing alternative explanations of a phenom­
enon, and discoordination due to lack of explanatory links between pieces of 

knowledge that apparently should be related. Understanding is also fostered by 
social support and encouragement of deeper comprehension, and by efforts to 
explain a task to others or to oneself. For example, Chi et al (1989) found that 
better students of physics, as measured by transfer performance, took a more 
active approach to learning from worked examples of word problems than did 

weaker students. The better students continually tried to explain why the steps 
of the illustrated solutions were required. 

Analogical transfer�transfer of structural knowledge between specific sit­

uations-demonstrates an important bridge between context-bound and ab­

stract knowledge. Theories of analogical thinking must attempt to explain 
when and how a novel target situation will evoke potentially useful source 

analogs stored in memory. The issue of how relevance relations can be recog­
nized is thus central to analogical transfer. As we noted earlier, one general 
proposal (Thagard et al 1990) is that analog retrieval is governed by three 
types of constraints on the mappings between elements of the target and those 
of potential source analogs: semantic similarity (i.e. preference for mappings 
between taxonomically related concepts), isomorphism (i.e. preference for 
one-to-one mappings in which corresponding elements consistently fill paral­

lel roles), and pragmatic centrality (i.e. preference for mappings involving 
elements deemed to be especially important to goal attainment). Empirical 
evidence suggests that for novices in a knowledge domain, retrieval is domi­
nated by semantic similarity but that isomorphism also plays a role (e.g. 
Holyoak & Koh 1987; Keane 1988; Ratterman & Gentner 1987; Ross 1987, 
1 989; Seifert et al 1986; Wharton et aI 1992). Access is improved if the source 

and target have similar goal structures. Schank (1982) placed particular em­
phasis on the importance to the reminding process of encodings that are 
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THINKING 299 

influenced by goal failures. Recent evidence indicates that an initial goal 
failure experienced in connection with a source problem increases the likeli­
hood that it will be retrieved in the context of a subsequent target problem in 
which an analogous impasse is reached (Gick & McGarry 1992; Read & Cesa 
1 99 1 ). 

An important component of the development of expertise appears to be the 
induction of more abstract knowledge structures, such as rules and schemas, 
that serve to "highlight" problem-relevant aspects of situations, including less 
salient relations that are crucial to finding solutions (e.g. Chi et al 198 1 ;  

Sweller 1988). In a kind o f  bootstrapping, analogical reasoning between prob­
lem examples fosters schema induction, schematic knowledge yields more 
expert transfer across superficially different content domains, and expertise 
permits more effective processing of novel analogs (Brown 1989; Catrambone 
& Holyoak 1989; Gick & Holyoak 1983; Novick 1 988; Novick & Holyoak 
199 1 ;  Ross & Kennedy 1990). Transfer of problem-solving procedures ap­
pears to be limited by the diversity of the content represented in the learning 
context, and by the structural parallels between the concepts in the acquired 
schema and the concepts that the learner uses to represent the target domain 
(Bassok 1 990). 

In addition to laboratory studies of learning and transfer, related lines of 
research have examined these processes in naturalistic contexts, investigating 
the roles of social and cultural contexts in guiding thinking. The work on 
cultural constraints in learning includes detailed studies of apprenticeship 
learning (Lave & Wenger 199 1). Other research examines the differences 
between skills (such as mathematical strategies) as they emerge from formal 
instruction vs informal cultural practices (e.g. Carraher et a1 1985, 1 988;  Lave 

1988; Saxe 1982, 1988, 199 1 ;  Stevenson & Stigler 1992). 

The "cultural practice" model offered by the Laboratory of Comparative 
Human Cognition (LCHC 1983) fostered the extreme view that thinking is 
simply a collection of cognitive skills, each independently acquired in a spe­
cific social context and inextricable from that context. This view, a version of 
what is sometimes termed "situated cognition," has led some people to con­
clude that it is not possible to understand thinking in terms of the individual's 
cognitive processes lsee Vera & Simon (1993) for a critical discussion] . Early 
evidence from laboratory studies indicating that spontaneous cross-domain 
analogical transfer is difficult to obtain with novices (e.g. Gick & Holyoak 
1980) was taken as evidence that transfer inevitably depends on the social 
organization of experience: "Transfer is arranged by the social and cultural 

environment. This shift of focus does not so much solve the transfer problem 
as it dissolves it" (LCHC 1983:341 ;  italics in original). 

Such extreme "situationism" provides an overly restrictive picture of the 
impact of culture and context on thinking. There are in fact important varia­
tions in the degree to which culturally embedded learning impedes or pro­
motes flexible transfer. Hatano ( 1988) exemplifies the distinction between 
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300 HOLYOAK & SPELLMAN 

routine and adaptive expertise with a cross-cultural contrast between two 
forms of mathematical calculation skills: use of the abacus in Japan and other 
Asian cultures (e.g. Hatano & Osawa 1983), and the "street math" of Brazilian 
children working as vendors. Expertise in use of the abacus leads to extremely 
rapid calculations and to increased digit span; however, such knowledge can­
not be readily generalized to repair "buggy" pencil-and-paper arithmetic pro­
cedures (Amaiwa 1987) or to use nonconventional abacuses with different 
base values. In contrast, unschooled Brazilian children who acquire arithmetic 
skills in the context of sclling merchandise on the street can adapt general 
components of their procedures, such as decomposition and regrouping, to 
solve novel problems both on the street and in classroom mathematics (Saxe 
1991) .  Hatano suggests that the primary difference between the two skills is 
that representations of number relations on the abacus are impoverished in 
meaning, whereas those used in street math are semantically transparent, 
analogous to actual activities dealing with goods and money. In addition, 
abacus use is basically a solitary skill in which speed and accuracy are the 
dominant goals, whereas street math is a social enterprise in which transpar­
ency to the customer is more important than speed. 

In general, as Guberman & Greenfield ( 1991) have argued, sociocultural 
studies of everyday cognition provide evidence that dovetails nicely with 
laboratory research on learning and transfer. The extent of transfer varies 
enormously as a function of the content and context of learning. In both formal 
and informal settings, degree of transfer depends on the induction of abstract 
schemas, which is fostered by such factors as diversity of learning contexts, 
free exploration of the results produced by applying problem-solving opera­
tors, and perceived similarity of goal structures across examples. 

Vivid Representations for Reasoning 

The role of content in reasoning is intimately related to debates about the 
nature of the representational systems available for human thinking. Few if 
any issues in psychology or cognitive science have been debated as vigorously 
as the question of whether (or when) people think in "images" or "proposi­
tions." The debate peaked in the 1970s (Kosslyn et al 1979; Kosslyn & 
Pomerantz 1977; Pylyshyn 1973), stimulating a great deal of important empir­
ical research but also, owing to the lack of theoretical clarity, causing some 
psychologists to become pessimistic about the very possibility of evaluating 
competing cognitive models (Anderson 1978). After a relative lull of a decade 
or so, basic questions about distinctions among types of human representations 
are now being reopened. Several lines of research bear upon these issues, 
including studies of imagery and the use of diagrams in problem solving, 
logical analyscs of graphical representations, and theoretical proposals about 
"mental models." 

We use the term vivid representations to refer to representations of the 
general sort just mentioned. The psychological character of these representa-
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tions remains a matter for investigation, and so we use the term informally. It 
is inspired, however, by Levesque' s  ( 1 986) characterization of "vivid knowl­
edge" in logical systems-a conception not tied to spatial representations. The 
key idea is that reasoning is often facilitated when it can make use of represen­
tations in which information is definite rather than vague (Stcnning & Ober­
lander 1992). In a vivid representation, a finite number of objects are 

represented and each is associated with definite values for all relevant proper­

ties and relations. 
Representational systems vary in the degree of vagueness they permit. 

Imagine a simple world consisting solely of three animals (a fox, a pig, and a 

hen) standing in three positions, ordered from left to right. We might describe 

the current state of this world using sentences such as "The fox is left of the 
pig" and "The pig is left of the hen." Note the proposition expressed by the 
first sentence leaves the location of the hen unspecified, while the second is 
vague about the fox. From this sentential representation we can draw no 
further inferences in the absence of explicit inference rules. Such paucity of 
immediate inferences characterizes what we might term pallid representations. 

In contrast, to illustrate a vivid representation let us represent this same 
simple world using a system quite different from sentences: an imagined 
horizontal line with three positions on it. Suppose we establish correspon­
dences between the positions of the animals in the world and locations on the 
line. Each complete assignment of animal positions to line locations will 
constitute a model of this simple world. Now we can assess whether various 

propositions are true in particular models. Let the letters F, H and P stand for 
the positions of the fox, hen, and pig, respectively. There will be three models 
in which it is true that the fox is left of the pig (F P H, F H P, H F P) and three 

models in which it is true that the pig is left of the hen (P H F, P F H, F P H). 
The two sets of models have only one model in common, F P H; i.e. there is 
only one model in which both propositions are true. (Finding this unique 
model need not require exhaustive search of all the possibilities;  rather, one 
might first represent thc animals as described by the initial premise, and then 
add the third animal introduced in the second premise in a way that maintains 
consistency with the first premise.) Thus from two propositions, each of which 
fixes the relative position of two objects, we can deduce the absolute position 
of all three, as well as an additional relative ordering (the fox is left of the 

hen) .  
Note these inferences do not require use of any explicit rules: The deduc­

tions follow from the basic structure of the represented world (the finite 

number of animals in a restricted set of possible arrangements). If there is a 
unique model in which both premises are true, and we succeed in identifying 
it, we receive the inferences about the absolute locations of the objects as a 
"bonus." Such inferences will remain implicit in the model until some "read­
out" procedure interprets it. Read-out procedures for models bear some resem­
blance to inference rules; however, there is one highly significant difference. 
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302 HOLYOAK & SPELLMAN 

Whereas inference rules operate on given premises to yield conclusions, read­

out procedures operating on a model completely blur the distinction between 
"premises" and "conclusions." Thus once the model F P H has been estab­

lished as the representation of the stated propositions (and assuming the initial 
sentential representation of the premises has been lost), then the same read-out 

procedures would be required to derive from the model the fact that the fox is 

left of the pig (an initial premise) and the fact that the fox is left of the hen (an 
inferred conclusion). In fact, empirical studies of reaction time to make judg­
ments of relative order for items in a memorized linear series have revealed 
that some valid inferences (based on relations between items far apart in the 

series) can be judged to be true more quickly than premises based on relations 
between adjacent items (e.g. Potts 1974). Such evidence that conclusions can 
be more accessible than premises is difficult to explain in terms of the opera­

tion of inference rules but is consistent with read-out mechanisms applied to 
imagined arrays.  [See McGonigle & Chalmers ( 1 986) for a discussion of the 
conditions under which a distinction in memory between premises and conclu­
sions is maintained or lost.] 

In general, a vivid representational systcm is one that compels specification 

of certain information and that specifies interdependencies between properties 
and relations so that a partially specified input can yield a definite model. In 

such a system, to think a certain thought may not only entail that you can think 
some other related thought (as in Fodor & Pylyshyn' s  1988 concept of sys­
tematicity) but that you are thinking it. To form a model, it is necessary to 
have enough information to assign each represented object to a unique symbol 
in the model and to establish values for objects with respect to all relevant 
predicates. A wide range of evidence indicates that indeterminancy is in fact 

often highly detrimental to both memory and inference (Mani & Johnson­

Laird 1982; McGonigle & Chalmers 1986). In addition, capacity limits on the 

number of objects that can be maintained in working memory imply that 

humans can only reason with vivid representations based on very small num­
bers of objects. 

The fact that a vivid representational system promotes definiteness (by 
requiring that all variables be bound to values) does not prevent it from 
allowing abstraction (Stenning & Oberlander 1992). Abstraction may arise in 

several ways. First, a crucial aspect of the general characterization of a repre­
sentational system is that it involves specifying which aspects of the repre­
sented world are relevant. Thus if only a subset of the objects and properties in 
the world is selected as relevant to the model, the model is allowed to be 
abstract-it need only be definite with respect to the selected subset of possi­
ble information. Second, vagueness can be represented by forming multiple 
models, each of which corresponds to a single determinate state of affairs, 
such that the set of models exhausts the possibilities. Third, vagueness of a 
property might be represented within a single model by introducing probabil­
ity distributions of property values. Finally, the system may be augmented by 
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explicit sentential statements: Representational vividness can be viewed as a 

continuum rather than a strict categorical distinction. Levesque succinctly 
captures the inherent trade-off between pallid and vivid representational sys­

tems: " . . .  [T]he representational expressiveness of a language . . .  is not so 

much in what it allows you to say, but in what it allows you to leave unsaid . . . .  

The more that is left unsaid, the more possibilities are allowed by what is said" 

(1988:370; italics in original). We would add the following: when more possi­

bilities are allowed, fewer inferences can be made immediately. 

The kinds of relation structures often assumed to underlie knowledge-based 

human thinking (e.g. schemas) are generally viewed as having properties that 
foster vivid representations. A schema specifies the relevant properties to be 

modeled, thus guiding relevant abstraction. Once a situation has been mapped 
into a schema, each relevant object will typically take on a definite value-ei­

ther a determinate value or one generated as a default by the schema itself­

with respect to each schema-relevant property. As Stenning & Oberlander 
( 1 992) point out, connectionist-style constraint satisfaction tends to naturally 
generate vivid representations in which a partially specified input may "com­
plete itself," thus automatically performing a kind of default reasoning. 

The fact that general representational concepts, such as schemas and con­
nectionist networks, provide properties associated with vivid representations 
implies that vivid representations are not strictly tied to spatial imagery alone. 
Indeed, Stenning & Oberlander (1992) argue that the contrast between "im­
ages" and "propositions" is fundamentally misleading. In psychological dis­

cussions,  "propositions" are often equated with sentences-if not 
natural-language sentences, then sentences in a language of the predicate-cal­

culus or LISP-string style. But from the point of view of logic, propositions are 
abstract objects that can have truth values with respect to a represented world, 
and are not tied to any specific representational system. Under this usage, the 

information conveyed by a graph is just as propositional as that conveyed by a 
sentence. Thus the central issues for cognitive psychologists do not concern 
whether imagery is somehow nonpropositional but whether representational 
systems differ in the range of propositions they can express and the nature of 
the procedures they provide for drawing inferences. (Of course, imagistic and 
sentential representations may have different neural underpinnings.) 

Although vivid representations are not necessarily imagistic, quasi-spatial 
representations certainly provide prominent examples of the vivid variety. A 
great deal of research indicates that people can manipulate visuospatial repre­

sentations to make certain types of inferences, such as judgments of the 
similarity of rotated objects (Shepard & Metzler 197 1), or of the shape formed 
by the two-dimensional projection of a rotated three-dimensional object 
(Pinker & Finke 1980; for a recent review see Finke 1989). Image-based 
inferences may also play a role in various forms of creative thinking (Finke 
1 990). There is considerable evidence that graphical and imagistic representa­
tions provide expressive and inferential power that differs from that afforded 
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304 HOLYOAK & SPELLMAN 

by sentential representations; for certain types of problems, the former type of 

system conveys distinct advantages. Larkin & Simon ( 1987) discuss the case 

of external diagrams of the sort used to capture relationships in physical space 

(e.g. pulley problems), in an ideal space (e.g. geometry problems), or in 

nonspatial domains that nonetheless can be mapped onto spatial displays (e.g. 
supply and demand functions in economics). They emphasize that diagrams 
organize information by location in a plane, and that information required for 

inferencing i s  therefore often present and explicit at a single location. Both 

recognition of meaningful elements and control of search (Le. matching of 
elements to inference rules) are likely to be enhanced when using vivid 

visuospatial rather than pallid sentential representations. Recognition benefits 

from the highly specialized procedures avai lable to the human visual system; 

search benefits because multiple elements that must be matched to a rule are 

typically found in close spatial proximity. 
Because external diagrams are effective for certain types of problem solv­

ing, it is natural to expect that internal memory representations of a quasi-spa­
tial nature would also prove useful. Koedinger & A nderson (1990) describe a 

simulation model of expert theorem proving in geometry based on quasi-spa­

tial schemas. Each schema is a cluster of geometry facts associated with a 
prototypical geometric image. Schemas enable efficient forward search from 
given information to the goal, a central characteristic of expert performance in 
this domain. Koedinger & Anderson found that the schema-based model could 
account for the steps that experts skipped mentioning in verbal protocols. The 
main steps experts did tend to mention corresponded to "whole-statements" 
(the overall conclusion supported by the configuration, such as the fact that 
two triangles with certain properties are congruent). Thus schemas seem to 
serve as "macro-operators," shortening the number of steps required to exe­

cute a procedure. It is interesting, however, that current production-system 

models of the formation of macro-operators (Anderson 1 987; Rosenbloom et 

al 199 1 )  were unable to account for how such geometry macro-operators could 
be learned. In these production-system models, macro-operators are formed by 
conjoining consecutive production rules that are applied to achieve the same 
goal. In contrast, the geometry schemas involve macro-operators organized 
around objects and aggregations of objects in the domain. Other evidence 
suggests that induction of problem schemas is better fostered by free explora­
tion of the search space (e.g. investigating the effects of applicable operators 
on objects) than by direct pursuit of specific goals (Sweller 1 988; Sweller et al 

1983). 

The work of Johnson-Laird and his colleagues on "mental models" 
illustrates how vivid representations in working memory can be used in rea­
soning (e.g. Johnson-Laird 1 983; Johnson-Laird & Byrne 199 1 ;  Johnson­
Laird, Byrne, et aI, 1992; Johnson-Laird et al 1989). In the mental-models 

framework, deductive reasoning is viewed as the construction and manipula­
tion of models derived from the premises. The most compelling examples of 
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the approach involve spatial reasoning. Consider the following two sets of 
premises: 

Problem I Premises 
A is on the right of B .  
C is on the left o f  B .  
D i s  in front of C. 
E is in front of B. 

Problem II Premises 
B is on the right of A. 
C is on the left of B.  
D is in front of  C.  
E is in  front of B. 

For both sets of premises, one can ask the same question: What is the relation 
between D and E? For Problem I, it is possible to construct a single determi­
nate model: 

C 
D 

B 
E 

A 

yielding the conclusion that D is left of E. In contrast, Problem II requires two 

distinct models:  

C 
D 

A B 
E 

and A C 
D 

B 
E 

but both models support the conclusion that D is left of E. The two problems 
not only have the same answer, they are identical except for the first premise 
in each set. Moreover, the initial premise is in both cases irrelevant to the 
conclusion, because the relation between D and E depends only on the relation 
between C and B and not on the location of A. Although the problems are 
closely matched in form and content, the mental-models theory predicts that 
Problem I should be easier than Problem II because the first premise leads to 
multiple models for the latter problem. A study by Byrne & Johnson-Laird 
( 1989) provided support for this prediction. Subjects were significantly more 
accurate for cases such as Problem I that had a valid conclusion based on a 
single model than for cases such as Problem II that had a valid conclusion 
based on multiple models (61 % vs 50% correct). Indeterminate problems with 
no valid conclusion, which should theoretically require exhaustive scrutiny of 
multiple models, were much more difficult ( 1 8 %  correct). For such spatial 
deductive tasks it would be difficult to devise a proof-theoretic model that 
could account for the observed patterns of human reasoning performance. 

Johnson-Laird and his colleagues have also proposed that people construct 
models in order to reason with syllogisms and propositional connectives. More 
complex assumptions are required to apply the mental-model approach to 
these more abstract tasks. It is assumed that sets of individuals or situations are 
mapped onto tokens in the model, thus eliminating variables; and that people 
tend to establish initial "default" models for the various logical terms (e.g. the 
quantifiers "all" and "some," and connectives such as "and" and "if'). Under 
some circumstances, it is assumed that people will "flesh out" their initial 
representation by constructing further possible models. Various symbolic de­
vices are also postulated--e.g. special symbols to indicate negations, to denote 
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which sets have been exhaustively considered, and to signify whether further 

models remain to be explored. The most general prediction of the approach is 
that problem difficulty will increase with the number of models that must be 
considered to arrive at a logically correct conclusion. 

The overall success of the mental-models approach in this domain is so far 
mixed. On the positive side, several novel predictions of the model were 
confirmed in the Johnson-Laird et al ( 1992) study (e.g. deductions from exclu­
sive disjunctions proved easier than those from inclusive disjunctions, as 
expected given the assumption that fewer models are required in the former 
case). Other inference phenomena are accounted for by auxillary assumptions. 
For example, to explain why people do not usually restate premises when 
drawing conclusions, Johnson-Laird et al assume that people keep track of the 
stated premises. Since a mental model (like vivid representations in general) 
does not preserve the identity of premises, some other representational system 
must presumably be helping out. 

Other phenomena place greater strain on the theory. If mental models are 
intended to be vivid representations in the sense we have discussed, then the 
application of the approach to propositional reasoning is based on question­

able assumptions. Johnson-Laird et al introduce a notation that allows for 
Objects that are not fully specified-what they call an "implicit model." Of 

course, for vivid representations the notion of an "implicit model" is an oxy­
moron: The basic requirement for a vivid model is that it be fully definite. 
Given such problems, Johnson-Laird et al' s account of propositional reasoning 
does not convincingly refute the view that formal inference rules such as 
modus ponens play some role in explaining human inference patterns. In any 
case, such a conclusion seems extremely unlikely given the highly evolved 
linguistic abilities of humans. Humans are presumably capable of reasoning 
both with pallid sentential representations, for which inference rules are well 
suited, and with more vivid representations. 

Moreover, the mental-models approach to deductive reasoning is itself 
fundamentally based on formal procedures for representing arbitrary situations 
involving logical terms, just as are formal-rule theories. The procedures are 
directed at the manipulation of tokens rather than syntactic rules, but the two 
approaches are equally formal (in the sense of making minimal reference to 
semantic content; see footnote 4). Accordingly, theories based on mental 
models, like those based solely on formal rules, arc unable to account for 
content effects in reasoning except by adding auxillary assumptions (often 
unacknowledged) about when people retrieve relevant counterexamples, sche­
matic knowledge about types of situations, and so on (e.g. Johnson-Laird & 
Byrne 1992). 

Thus although vivid representations undoubtedly play an important role in 
human thinking, an adequate theory must specify much more than procedures 
for manipulating symbolic tokens in mental models. The construction of men­
tal models in working memory must be guided by retrieval of relevant knowl-
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edge structures from long-tenn memory, and the use of models requires read­
out procedures that can make use of infonnation implicit in the models. 
Moreover, as Stenning & Oaksford ( 1 993) have argued, it would be desirable 
to show how initial default models in working memory emerge as a conse­
quence of more primitive computational mechanisms, such as procedures for 
dynamic binding of objects to roles (e.g. Shastri & Ajjanagadde, 1993). In a 
constraint-satisfaction model of binding, only one set of consistent bindings of 
objects to roles (i.e. one vivid model) can be maintained at one time. This 
basic processing limitation offers an explanation of why it is that if multiple 
models must be considered to solve a deductive problem, each must be consid­
ered serially, yielding a concomitant increment in problem difficulty. 

CONCLUSION 

There can be no real "conclusion" to a review of a field in progress, any more 
than to a mid-career biography. What conclusions we have reached were 
largely laid out at the beginning of the chapter in our selection of central 
themes-the confluence of symbolic and connectionist perspectives on think­
ing, the relationship between implicit and explicit cognition, and the theoreti­
cal implications of the impact of content and context on thinking. These 
themes amount to our "best guess" about the trajectory of current research on 
thinking. There are hopeful signs that topics previously investigated in isola­
tion from one another-for example, dynamic binding and vivid representa­
tions, implicit learning and neuropsychological organization, and sociocultural 
learning contexts and knowledge transfer-may prove deeply related. How 
these confluences will change the study of thinking remains to be seen. 
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