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OBSERVATIONS

Cue Competition in Human Categorization:
Contingency or the Rescorla-Wagner Learning Rule?

Comment on Shanks (1991)

Eric R. Melz, Patricia W. Cheng, Keith J. Holyoak, and Michael R. Waldmann

Shanks (1991) reported experiments that show selective-learning effects in a categorization task,
and presented simulations of his data using a connectionist network model implementing the
Rescorla-Wagner (R-W) theory of animal conditioning. He concluded that his results (a) support
the application of the R-W theory to account for human categorization, and (b) contradict a
particular variant of contingency-based theories of categorization. We examine these conclusions.
We show that the asymptotic weights produced by the R-W model actually predict systematic
deviations from the observed human learning data. Shanks claimed that his simulations provided
good qualitative fits to the observed data when the weights in the networks were allowed to reach
their asymptotic values. However, analytic derivations of the asymptotic weights reveal that the
final weights obtained in Shanks' Simulations 1 and 2 do not correspond to the actual asymptotic
weights, apparently because the networks were not in fact run to asymptote. We show that a
contingency-based theory that incorporates the notion of focal sets can provide a more adequate
explanation of cue competition than does the R-W model.

Shanks (1991) described three experiments in which sub-
jects were asked to play the role of medical diagnosticians.
After being presented with a series of case histories (patterns
of patients' symptoms associated with various fictitious dis-
eases), subjects were asked to rate how strongly they asso-
ciated each symptom with each disease, using a 0-100 rating
scale. Subjects' association ratings consistently varied with
the relative predictiveness of each symptom for the disease
as defined by the Rescorla and Wagner (1972) model (here-
inafter the R-W model) rather than with the cue validity of
the symptoms (i.e., the probability of the disease given a
symptom; Shanks, 1991, Experiments 1-3) or with the con-
tingency of the symptoms (i.e., the difference between the
probability of the disease given the presence of a symptom
and that probability given the absence of the symptom;
Shanks, 1991, Experiments 2-3).

For example, consider the design of Shanks's (1991) Ex-
periment 2. (Summaries of the experimental designs of Ex-
periments 1-3 are presented in Table 1.) In Shanks's (1991)
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contingent set, the Compound Symptom AB signals the pres-
ence of Disease 1, but Symptom B alone signals the absence
of the disease, whereas Symptom C alone signals the pres-
ence of the disease. In the noncontingent1 set, Compound
Symptom DE signals the presence of Disease 2, Symptom E
alone also signals the presence of the disease, but Symptom
F alone signals the absence of the disease. The critical com-
parison is between the association rating given to Symptom
A for Disease 1 and the association rating given to Symptom
D for Disease 2. The contingency computed over the entire
set of events presented is .8 for both relations (see Figure 1);
however, the R-W model predicts that D, which is paired
with a better predictor, E, should be rated as less associated
than the corresponding Symptom A, which is only paired
with a nonpredictor, B. This difference was observed. In
other words, the rating given to a cue was reduced if a com-
peting cue was a better predictor of the relevant disease. Such
cue competition, in which associative learning to one cue is
blocked by the learning that accrues to a more predictive cue,
has some similarity to results obtained in animal conditioning
experiments.2

' Because the critical cues in Shanks's (1991) noncontingent
conditions were contingently related to the respective diseases by
the conventional definition, the labels for his stimulus sets in
Experiments 1 and 2—contingent condition and noncontingent
condition—do not conform to conventional usage.

2 In the animal conditioning literature the term blocking is re-
served for a paradigm in which the animal is first conditioned to a
single cue presented alone, which then blocks subsequent learning
to a second cue that is always paired with the first cue when
reinforcement is given. In this article we use the term blocking in
a more general sense to refer to reduction in associative learning to
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Table 1
Conditions, Trial Types, Number of Trials,
and Percentage of Correct Diagnoses for Shanks's
(1991) Experiments 1-3

Experiment/condition

Experiment 1
Contingent

Noncontingent

Contingent

Noncontingent

Contingent

Noncontingent

Experiment 2
Contingent

Noncontingent

Experiment 3
Correlated

Uncorrelated

AB
B -
CD
D -
EF
F -
GH
H -
IJ-
J - s

KL
L -

C -
AB
B -
DE
E -
F -

AB
AC
DE
DE
DF
DF

Trial
type

—» Dl
-> 0
—» D2

^D2
- > D 3
* 0
-» D4

•*D4
-» D5
• 0
—» D6
* D6

•>D1

-»D1
•* 0

-» D2
^ D2
* 0

-»D1
^ 0
->D2
->0
-» D2
-» 0

No.
trials

10
10
10
10
10
10
10
10
10
10
10
10

15
15
15
15
15
15

20
20
10
10
10
10

%
correct

88
81
75
88
75
94
88
69
75
81
88
94

100
100
94

100
100
94

91
82
49
49
52
52

Note. From "Categorization by a Connectionist Network" by D.
R. Shanks, 1991, Journal of Experimental Psychology: Learning,
Memory, and Cognition, 17, Tables 1, 2, and 3; pp. 436, 438, and
439, respectively. Copyright 1991 by the American Psychological
Association, Inc. Adapted by permission.

Shanks (1991) interpreted his experimental results in terms
of a connectionist categorization model that is based on an
application of the R-W learning rule, which has been used
to account for cue-competition effects in studies of animal
conditioning. For all experiments, the results of the simu-
lation model after training were qualitatively consistent with
subjects' ratings when we compared the final weights of cue-
disease associations in the network were compared with the
human data. Table 2 shows subjects' associative ratings and
the corresponding terminal weights obtained by Shanks's
(1991) network. For example, in his Experiment 1, the mean
associative rating was 62.3 for contingent cues and 41.8 for
noncontingent cues. The comparable means for Experiment
2 were, respectively, 58.6 and 33.8. The terminal weights of
the simulation for contingent and noncontingent cues were,
respectively, 55.0 and 23.7 (Experiment 1) and 61.1 and 17.4
(Experiment 2). Thus, not only did the model correctly pre-
dict the ordinal relationship between ratings for the two types
of cues, but it also apparently accounted for the fact that
blocking of the less predictive cue was always partial rather

a cue as a consequence of learning that accrues to a more predic-
tive cue.

than complete. Just as none of the mean association ratings
were close to 0, no relevant terminal weight went to 0. This
impressive fit between the data and the model's predictions
therefore seems to provide strong support for an associa-
tionistic account of category learning. Shanks (1991) further
concluded that his results cannot be explained by any of a
number of alternative theories. In particular, he argued that
cue validity and contingency theory as applied to the entire
set of events cannot account for the results of these
experiments.

An important qualitative aspect of Shanks's (1991) results
in his Experiments 1 and 2 is that blocking of learning to
redundant cues was only partial, rather than complete. Al-
though subjects consistently gave higher association ratings
to the more predictive cues, they also clearly gave the less
predictive cues ratings indicative of a nonnegligible rela-
tionship to the disease. We show that, contrary to Shanks's
(1991) claims, his connectionist model, in fact, does not pre-
dict the partial blocking observed in his Experiments 1 and
2. Moreover a contingency-based theory of causal induction
and categorization may well account for cue competition.
Furthermore, unlike Shanks's (1991) model, such a model
potentially predicts the observed partial blocking.

Does the R-W Learning Rule Predict Partial
Blocking at Asymptote?

In the past few years, there has been a surge of interest in
the potential applicability of animal conditioning models to
human categorization and causal induction. The R-W model
and extensions of it, often implemented as connectionist net-
works, have figured prominently in these efforts (e.g., Gluck
& Bower, 1988; Shanks, 1990). These extensions to higher
level human learning have been advocated even though the
R-W model has a number of well-known limitations as an
account of animal conditioning. For example, the model is
unable to account for learned irrelevance (the reduced con-
ditionability of a cue as a result of an initial period of non-
reinforcement of that cue) or for the conditions under which
inhibitory cues can be extinguished (see Gallistel, 1990; Hol-
land, Holyoak, Nisbett, & Thagard, 1986; Miller & Matzel,
1988). The present analyses reveal that the explanatory
power of the R-W model as an account of human causal
induction may be limited in additional ways.

Shanks (1991) indicated that the terminal strengths he re-
ported are an inevitable consequence of the properties of the
network:

No systematic search of the parameter space was performed;
however, the pattern of results is not due simply to the choice
of a particular set of parameters. All the parameters really
affect is the rate at which the associative strengths reach
asymptote. The parameters chosen are such that the terminal
associative strengths are at asymptote, (p. 436)

This statement strongly implies that the terminal associa-
tive strengths obtained by the network simulations are in fact
the theoretical asymptotic weights of the network and that the
simulation parameters have little or no effect on the terminal
associative strengths.
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Figure 1. Potential focal sets in Shanks's (1991) Experiment 2. (Letters A to F denote cues.
Solid-line rectangles indicate universal focal sets; dashed-line rectangles indicate conditional focal
sets. Large bold letters denote the cues crucial for comparison.) From "Categorization by a Con-
nectionist Network" by D. R. Shanks, 1991, Journal of Experimental Psychology: Learning,
Memory, and Cognition, 17, Tables 1, 2, and 3; pp. 436, 438, and 439, respectively. Copyright 1991
by the American Psychological Association, Inc. Adapted by permission.)

In fact, given that Shanks's (1991) predictions are based
solely on the asymptotic weights of the R-W model, it is not
necessary to run computer simulations: The asymptotic
weights can be calculated by analytic methods. In the Ap-
pendix, we derive the asymptotic weights for Shanks's
(1991) simulations using a least-mean-squares method.3 We
found that, contrary to the simulation results reported by
Shanks (1991), in his Experiments 1 and 2, the asymptotic
weight for a contingent cue is the maximum value, 100,
whereas the asymptotic weight for a noncontingent cue is 0.
That is, the R-W learning rule predicts that at asymptote
blocking in these experiments will be complete rather than
partial. In the case of Experiment 3, our analysis indicates
that the relative weights for different cues will vary with the
choice of initial weights and with the learning parameters of
the network.

Simulations of Experiments 1 and 2

Because the theoretical asymptotic weights differ radically
from the terminal weights reported by Shanks (1991), we
tried to understand the discrepancy by implementing network
models that are based on Shanks's descriptions of his simu-

lations and by comparing them with alternative simulations.
Table 2 shows the terminal associative strengths for each
simulation reported by Shanks (1991) along with our rep-
lication of the simulations conducted with the same param-
eter values and number of training trials as those he reported.
For the simulations of Experiments 1 and 2, we closely rep-
licated the terminal weights reported by Shanks (1991).
However, on the basis of our theoretical analysis, it is clear
that these terminal weights are not asymptotic. We therefore
repeated all simulations, this time increasing the number of
trials in each simulation by a factor of 20. As Table 2 indi-
cates, these runs produced terminal weights extremely close
to the theoretical asymptotic weights.

Simulation of Experiment 3

Following Rescorla and Wagner (1972), Shanks (1991)
pointed out that the network correctly predicts the results in
Experiment 3 only when the learning rate for reinforced trials

3 There are alternative methods for deriving the asymptotic
weights (e.g., Appendix A of Gluck & Bower, 1988).
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Table 2
Cues, Associative Ratings, Terminal Network Weights From Shanks (1991), Replicated Terminal Weights, and
Terminal Weights Obtained by Increasing the Total Trials by a Factor of 20

Experiment/cue

Exp. 1
A
B
C
D

Exp. 2
A
B
C
D
E
F

Exp. 3
A
B
C
D
E
F

M
rating

62.3
—

41.8
—

58.6
—
—

33.8
—
—

32.3
87.5
13.5
49.0
39.2
43.8

Shanks's
reported
weight

55.0
—
23.7
—

61.1
—
—
17.4
—
—

33.5
66.4

-32.9
59.3
29.3
30.1

Replication
weight

M

54.8
37.5
24.0
87.3

61.1
33.1
92.7
22.0
91.8

0.0

42.6
55.4

-12.8
60.0
30.1
30.0

SD

1.2
2.8
6.1
1.1

1.6
2.6
0.0
5.2
1.4
0.0

0.9
0.5
1.1
2.8
2.2
1.9

Extended
replication

M

99.8
0.2
0.0

100.0

100.0
0.0

100.0
0.0

100.0
0.0

33.3
66.7

-33.3
60.5
30.1
30.4

SD

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0
2.8
2.0
2.0

Note. Exp. = Experiment. Dashes indicate data are not available. From "Categorization by a Connectionist Network" by D. R. Shanks,
1991, Journal of Experimental Psychology: Learning, Memory, and Cognition, 17, Tables 1, 2, and 3; pp. 436, 438, 439, respectively.
Copyright 1991 by the American Psychological Association, Inc. Adapted by permission.

is greater than that for unreinforced trials. Our analysis (see
Appendix) also shows that the pattern of weights reported by
Shanks (1991) is dependent on the initial weights provided
to the network. Our simulation confirms our analysis.4

Implications of Apparent Partial Blocking

Our analyses thus reveal that for the designs used in
Shanks's (1991) Experiments 1 and 2, the asymptotic per-
formance of the model—contrary to the original report—
predicts that perfect predictors ought to completely inhibit
associative learning to redundant predictors. Furthermore,
this behavior ought to be independent of parameter values or
initial conditions, as our analysis in the Appendix shows.
Neither Shanks's (1991) experiments nor similar studies
(Chapman, 1991; Chapman & Robbins, 1990; Dickinson,
Shanks, & Evenden, 1984; Shanks, 1985; Waldmann &
Holyoak, 1992) have yielded complete blocking in human
subjects.

It might be argued that a positive rating, even one that is
significantly greater than 0, does not necessarily indicate a
positive association for Experiment 1, because in that ex-
periment subjects apparently were not given a clear defini-
tion for the endpoints of the scale. Thus, subjects might not
have interpreted a rating of 0 as indicating no association. In
Shanks's (1991) Experiment 2, however, the zero point was
defined. Experiment 2 subjects were told, "Zero indicates
that the symptom and disease are completely unrelated, and
100 indicates that they are very strongly related" (Shanks,
1991, p. 438).

Subjects' interpretations of the zero point can be tested by
comparing the association rating between a disease and a

redundant symptom, such as that between Disease 2 and
Symptom D in Experiment 2, with that between a disease and
a completely irrelevant symptom, such as that between Dis-
ease 1 and Symptom D in the same experiment. The R-W
rule predicts that both kinds of associations should have zero
weight. If the association ratings observed for redundant
symptoms proved greater than those for irrelevant symp-
toms, then subjects' interpretations of the rating scale would
be ruled out as an explanation of the apparent partial blocking
of redundant Cue D. Unfortunately, although Shanks (1991)
included both redundant and irrelevant symptoms in his de-
signs for Experiments 1 and 2, he did not report the relevant
ratings needed for a comparison.

The equality of these two kinds of associations strikes us
as rather implausible. In a test of a similar prediction of the
R-W rule, Waldmann and Holyoak (1992, Experiment 3)
asked subjects to rate the degree to which each of several
individual cues was predictive of an effect, using a scale from
0 to 10, where 0 indicated the cue was not a predictor and
10 indicated that the cue was a perfect predictor. The cues that
were rated included one that was a perfect predictor of the
effect, one that was redundant with the predictor (i.e., subject
to blocking), one that was constantly present, and one that
varied in a noncontingent manner. According to the R-W

4 Our replication of Shanks's (1991) simulation of Experiment 3
following his description failed to reproduce his results. Specifi-
cally, the terminal weights of Cues A, B, and C are significantly
different from those that Shanks reported. However, by increasing
the number of training trials by a factor of 20 beyond that reported
by Shanks, we obtained terminal weights similar to those he re-
ported (see Table 2).
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model, the associative strengths acquired for the latter three
cues all should have approached 0. However, Waldmann and
Holyoak found that the mean of subjects' final predictiveness
ratings was significantly higher for the redundant cue relative
to the two uncorrelated cues: mean ratings of 4.3 for the
redundant cue, 1.3 for the constant cue, and 0.8 for the vary-
ing noncontingent cue. The partial blocking obtained by
Waldmann and Holyoak, like that observed in Shanks's
(1991) experiments, raises the possibility that humans are
sensitive to differences in the causal status of cues that cannot
be distinguished by the R-W model.

An alternative explanation of the partial blocking observed
in Shanks's (1991) experiments is that the subjects were not
in fact trained to asymptote. The subjects in Shanks's (1991)
Experiment 2 were close to 100% correct for each trial type;
however, their reaction time might well continue to shorten
with increased training, indicating further learning. The evi-
dence for partial blocking is thus not definitive. However,
given that the R-W model makes a strong prediction of com-
plete blocking at asymptotic learning, whereas only partial
blocking has been reported for human causal induction, it
seems that the burden of proof rests on proponents of the
model to provide a convincing case of complete blocking at
asymptote.

Contingency-Based Theories of Categorization and
Causal Induction

Associative learning models are often contrasted with
models that are based on statistical contingency. If there is
only one possible causal factor, its contingency with an effect
is defined as the difference between the probability of the
effect given the presence of the factor and that probability
given its absence. When multiple potential causal factors are
present, there are various possible ways of computing con-
tingency. Shanks (1991) and others (e.g., Chapman & Rob-
bins, 1990; but see Chapman, 1991) have examined the spe-
cial case in which the contingency of each of the multiple
potential causal factors that are present is calculated inde-
pendently (e.g., unconditionally over the universal set of
events). However, contingency could alternatively be com-
puted over subsets of the universal set of events. Philoso-
phers and statisticians have proposed that in such situations
causal relations should not be based on contingencies com-
puted over the universal set of events (Cartwright, 1979,
1989; Reichenbach, 1956; Salmon, 1980, 1984; Simpson,
1951; Suppes, 1970, 1984) because in these situations un-
conditional contingencies do not reflect what people intu-
itively judge to be normative causal inferences. In particular,
people distinguish between a genuine cause and a spurious
cause—a factor that is contingently related to the effect
purely as the result of its correlation with a genuine cause.
Unconditional contingencies do not reflect this difference.

The proposal, then, is that if a factor is known or likely to
be the cause of an effect, determining the causal status of
another factor requires that the contingency of the latter
be calculated separately conditional on the presence and on
the absence of that cause (a test of "conditional indepen-
dence").5 Testing for conditional independence is analogous
to using control conditions in standard experimental design,

in which extraneous variables are kept constant. Although
this criterion has not been uncontested among philosophers
(e.g., Cartwright, 1989; Salmon, 1984), the prevalent adop-
tion of the analogous principle of experimental design gives
an indication of its normative appeal.

Let us consider the interpretation of some possible out-
comes of the test of conditional independence for a target
factor that is statistically relevant to the effect in terms of its
unconditional contingency. For example, suppose we are as-
sessing possible causes of cancer and that smoking cigarettes
is an established cause. Now we observe that coffee drinking
is also statistically relevant to cancer, in that the probability
of cancer is higher for people who drink more than five cups
per day than for those who drink fewer cups per day. How-
ever, let us further suppose that people who drink large quan-
tities of coffee also tend to smoke. To tease apart the influ-
ence of coffee drinking from that of smoking, it is desirable
that we calculate the conditional contingency between coffee
drinking and cancer separately for cases involving the pres-
ence versus the absence of smoking. The following are four
possible outcomes that will be relevant in interpreting
Shanks's (1991) results:

Case 1. If both conditional contingencies for the target factor
are positive, then the target factor will be interpreted as a
genuine cause. For example, if coffee drinking increases the
risk of cancer both for smokers and for nonsmokers, then
coffee drinking will be interpreted as a genuine cause (unless
it turned out to be confounded with some other cause of
cancer, such as eating fatty foods).

Case 2. If contingencies for the target factor conditional on
both the presence and the absence of the established cause are
zero, then that factor will be interpreted as a spurious cause. It
is said to be "screened off" (i.e., normatively blocked) from
the effect by the conditionalizing cause. For our example, the
statistical link between coffee drinking and cancer would be
attributed entirely to the confounding between coffee drinking
and smoking.

Case 3. If the effect always occurs in the presence of the
established cause, regardless of whether the target factor oc-
curs (therefore the contingency conditional on the presence of
the established cause is zero), but the contingency conditional
on the absence of the causal factor is positive, then the target
factor will be interpreted as a genuine cause. This situation
would arise if smoking always caused cancer, so that coffee
drinking did not increase the risk of cancer for smokers but did
increase the risk for nonsmokers. In this situation, coffee
drinking would be interpreted as a genuine cause of cancer,
and the zero contingency in the presence of smoking would
likely be attributed to a ceiling effect (i.e., smoking by itself
generates the maximal cancer risk, so that the detrimental
impact of coffee drinking is masked for smokers).

Case 4. If the contingency of the target factor conditional on
the presence of the established cause is positive, but the ef-
fect never occurs in the absence of the established cause
(therefore the contingency conditional on the absence of the
known cause is zero), then the two factors will be interpreted
as interacting to produce the effect (see Cheng & Novick,

5 We do not mean to imply that at least one of the two condi-
tional contingencies can always be computed, nor that a test of
conditional independence is the only process for differentiating
between genuine and spurious causes (Lien & Cheng, 1992).
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1992). Such an interaction would exist if coffee drinking in-
teracted with smoking to increase the risk of cancer for
smokers but had no effect on the probability of cancer for
nonsmokers.

What are the implications of the various ways of com-
puting contingency for Shanks's (1991) results? One prob-
lem that complicates the test of conditional independence is
that the information required for computing the two condi-
tional contingencies is not always available. In the classical
blocking paradigm, for example, one cue is established as a
perfect predictor of the unconditioned stimulus (US) in the
first phase of the learning task (Kamin, 1969). In a second
phase, this cue and a redundant second cue are, in combi-
nation, always paired with the US. Across the two phases, the
contingency of the redundant cue conditional on the presence
of the predictive cue is therefore zero. Because the redundant
cue is never presented by itself, it is impossible to compute
the contingency between this cue and the US, conditional on
the absence of the predictive cue. As Waldmann and Holyoak
(1992) noted, because the level of the effect produced by the
predictive cue is already at ceiling, it is impossible to de-
termine whether the redundant cue is a spurious cause (Case
2), or a genuine cause (Case 3). Given that relevant infor-
mation is missing in the blocking design, subjects who adopt
the criterion of conditional independence would be uncertain
about the predictive status of the redundant cue, as opposed
to being certain that this cue is not predictive, as implied by
the R-W learning rule.

In some other situations the contingency for a potential
causal factor conditional on the presence of a likely or
known alternative cause is not available. In such situations,
when the contingency for this factor, conditional on the ab-
sence of the cause, is zero, one cannot be certain whether
the factor is a spurious cause (Case 2) or interacts with the
alternative factor as a conjunctive cause (Case 4).

It is important to note that there is an asymmetry between
the informativeness of tests conditional on the absence versus
presence of other causes: The tests most likely to clearly rule
out a target factor as an independent excitatory cause are
those that are based on the absence of conditionalizing cues.
In particular, the finding of a zero contingency conditional
on the absence of other causes clearly rules out the factor as
an independent excitatory cause (i.e., it is either spurious as
in Case 2, or a component of an interaction as in Case 4),
whereas the finding of a zero contingency conditional on the
presence of a known cause is inconclusive (the target might
be spurious as in Case 2, but it might instead be genuine as
in Case 3). (This interpretation excludes consideration of
inhibitory causes.) Similarly, finding a positive contingency
conditional on the absence of other causes constitutes evi-
dence that the cue is an independent excitatory cause (for
which Case 1 or Case 3 might obtain), but a positive con-
tingency conditional on the presence of a known cause could
indicate either a genuine independent excitatory cause (as in
Case 1) or a component of an interactive excitatory cause (as
in Case 4). The fact that tests conditional on the absence
rather than the presence of other causes are more informative
is reflected in experimental design: If only one type of con-
ditionalizing test can be performed, scientists generally favor
designs in which a target factor is manipulated while ensur-

ing that other known causes are absent, rather than present.
We therefore assume that people will prefer to conditionalize
each target factor on the simultaneous absence of all estab-
lished or likely causes, because this is the test that will be
maximally informative.

Contingency models focus on reasoning from causes to
effects. However, the approach can also be applied to situ-
ations in which cues are interpreted not as causes per se, but
as causal indicators that predict an outcome. In Shanks's
(1991) experiments, for example, it seems implausible to
suppose that his subjects actually interpreted the symptoms
as causes of the diseases; however, they might have treated
the symptoms as causal indicators (i.e., visible correlates of
some hidden cause of a disease, such as a virus). From
Shanks's (1991) report, it appears that in all three experi-
ments his subjects were told, "All you have to do is to learn
which symptoms tend to go with which illness, so that you
can make as many correct diagnoses as possible" (p. 436).
During a learning trial, subjects were first told the symptoms
of a patient, and then they were asked to judge from which
disease the person was suffering. Feedback followed the sub-
ject's judgment. In Experiments 1 and 2, the rating task in-
structions said, "On a scale from 0 to 100, how strongly do
you associate symptoms [S] with disease [D]?" (Shanks,
1991, p. 436). Given the vagueness of the instructions, at
least some subjects presumably treated the symptoms as
causal indicators of the diseases and encoded probabilities of
each disease conditional on the symptoms. Although the
symptoms may have been interpreted as causal indicators
rather than actual causes, for simplicity we will refer to the
symptoms as "causes" and the diseases as "effects." In our
discussion of the contingency analysis of Experiment 2, we
will consider the implications of the further possibility that
some subjects may have interpreted the symptoms as effects
of the diseases.

A Process Model for Assessing Conditional
Independence

To provide a more detailed analysis of Shanks's (1991)
results in terms of contingency theory, we apply a
contingency-based process model developed by Cheng and
Holyoak (in press). This proposed process model is of course
only one possible procedure for contingency analysis, and we
do not mean to deny the viability of other variants. This
model, however, will serve to illustrate how a contingency
analysis might account for results in Shanks's (1991)
experiments.

A plausible psychological model of causal inference that
is based on contingency analysis must specify mechanisms
that would allow people to decide (a) what cues should be
used to conditionalize others, (b) what conditional tests to
perform once a set of conditionalizing cues has been selected,
and (c) how to integrate the resulting contingency informa-
tion to make causal assessments of the cues. In situations in
which there is no guidance from prior knowledge (as in
Shanks's, 1991, experiments), every cue is potentially causal.
Given n binary cues, exhaustively conditionalizing the con-
tingencies for each target cue on every combination of the
presence and absence of the other cues require computing
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2" '-n contingencies. Given processing limitations, it is cru-
cial to specify how people select which contingencies to
compute. Moreover, in Shanks's (1991) experiments many of
the cue combinations that would be relevant to a contingency
analysis were never presented to subjects. Accordingly, it is
necessary to specify which contingencies will be computed
in the face of missing information.

Let us first consider the selection of conditionalizing cues.
The ideal set of conditionalizing cues would include all, and
only, those that are actually causal. Given the limitations of
knowledge, the best people could do is to select as condi-
tionalizing cues those that they currently believe to be plau-
sible causes. In cases in which prior knowledge is relevant,
such knowledge would be used to establish certain cues as
likely causes, and the contingencies for other cues would
then be conditionalized on the (perhaps tentatively) estab-
lished causes. If such prior knowledge is lacking, people may
nonetheless use some heuristic criterion to select an initial set
of conditionalizing cues. A simple heuristic that might be
used is to include any cue that is noticeably associated with
the effect, based on the relative frequency of the effect given
the cue. Contingencies are not computed in this initial phase
of selecting conditionalizing cues; rather, people simply
identify a pool of cues with some apparent positive asso-
ciation with the effect, which are then treated as an initial set
of plausible causes. This phase ignores the possibility that
cues may be interactive or inhibitory causes.

Contingency assessment occurs in the subsequent phase,
in which people compute the conditional contingencies of all
cues on the basis of the set of conditionalizing cues identified
in the initial phase. The initial set of conditionalizing cues
can be dynamically updated if contingency assessments in-
dicate that cues that at first appeared to be plausible causes
are in fact spurious or that cues initially viewed as causally
irrelevant are in fact causal. Changes in the set of condi-
tionalizing cues in turn change the relevant conditional con-
tingencies for all cues, which may alter other causal assess-
ments. The entire assessment process thus may be iterative.
If the values of the cues stabilize as the process iterates, the
process will return these values and stop. Otherwise, the pro-
cess will stop after some maximum number of iterations.

In assessing conditional contingencies, heuristics are re-
quired to determine which tests (of those possible, given the
cue combinations that are actually presented) should in fact
be performed. We assume, on the basis of the arguments
presented earlier, that people prefer to conditionalize the con-
tingency for each target factor on the simultaneous absence
of all conditionalizing cues. If this is not possible, then they
will conditionalize on the absence of as many conditional-
izing cues as possible. For any conditionalizing cue that can-
not be kept absent along with the others, it is desirable to
conditionalize the contingency for the target factor on its
presence (holding other conditionalizing cues absent).

A special case that should be noted involves any cue that
is constantly present (i.e., part of the background context). In
applications of the R-W model to conditioning phenomena,
it is commonly assumed that constant background cues are
represented and may acquire nonzero weights. Note that it is
impossible to compute any contingencies at all (either con-
ditional or unconditional) for constant cues because they are

always present. Accordingly, subjects will have no positive
evidence that any constant cue is causal. Therefore although
constant cues may be initially included in the set of condi-
tionalizing cues (because of their presence when the effect
occurs), the failure to obtain contingency information to sup-
port their causal status will lead to them being dropped. Be-
cause consideration of constant cues would not alter our con-
tingency analyses for Shanks's (1991) experiments, we will
not consider them further.

In addition to specifying what cues are selected to form the
conditionalizing set and what contingencies are computed, a
process model must specify a response mechanism that trans-
lates the calculated contingencies into causal judgments. If
the experimental design omits cases that would be relevant
in assessing conditional independence for a target factor, sub-
jects may find themselves uncertain about its causal status
after considering conditional contingencies. At least in such
cases, subjects may base their causal assessments on the un-
conditional as well as (or instead of) on the conditional con-
tingencies for cues. Mean ratings across subjects may there-
fore reflect some mixture of the evidence provided by
conditional and unconditional contingencies.

Following Cheng and Novick's (1990) terminology, we
call the set of events over which a subject computes a par-
ticular contingency6 •A. focal set. When subjects do not all use
one and the same focal set, the mean causal judgment about
a cue (averaged across subjects in an experimental condition)
should reflect some mixture of assessments that is based on
the multiple focal sets used. These may include the universal
focal set7 of all events in the experiment (i.e., unconditional
contingencies) and various more restricted focal sets (i.e.,
conditional contingencies). The response mechanism must
then account for the ways in which multiple contingencies
are integrated. The clearest situation is that in which the
relevant unconditional and conditional contingencies for a
factor are all computable and equal to zero, in which case
subjects should be certain that the factor is noncausal. Such
cues should therefore receive mean ratings equal to or ap-
proaching zero in Shanks's (1991) Experiments 2 and 3, in
which the zero point on the rating scale was unambiguously
defined as indicating that the symptom and disease were
completely unrelated. Beyond this limiting case, we make no
claim about the exact quantitative mapping between contin-
gency values and the numerical response scales used by sub-
jects in Shanks's (1991) experiments. Our assumption is that
subjects' causal estimates will increase monotonically with
a nonnegatively weighted function of the contingency values
for their focal sets. Individual subjects may calculate and
integrate multiple contingencies for a cue (e.g.. by simple
averaging). Alternatively, each subject may use only one fo-

6 Cheng and Novick (1990) referred to a contingency value as a
"contrast" (between the conditional probability of the effect in the
presence versus absence of the causal factor).

7 What is referred to here as the "universal set" is actually the
pragmatically restricted set of events that occur in the experiment
(i.e., a small subset of the truly universal set of events known to the
subject). This contextual delimitation of the largest relevant focal
set implies that even the cases in the cause-and-effect-both-absent
cell are restricted to a small finite number.
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cal set, but different subjects may use different focal sets in
which case the mean ratings may mask distributions that are
in fact multimodal. We refer to the assumption that causal
ratings may be based on multiple contingencies (calculated
either by individual subjects or by different subjects) as the
"mixture-of-focal-sets" hypothesis.

In summary, the process model described by Cheng and
Holyoak (in press) assumes that subjects will (a) identify as
initial conditionalizing cues those that are noticeably asso-
ciated with the effect; (b) compute contingencies for each
target factor, conditional on the absence of as many condi-
tionalizing cues as possible, thus dynamically revising the set
of conditionalizing cues in the process; and then (c) use the
computed conditional contingencies and/or unconditional
contingencies to produce causal assessments for the cues.

Contingency Analysis of Experiment 2

For Experiment 1, the unconditional contingencies of the
Critical Cue A (1.0) in the contingent set and Cue C (.91) in
the noncontingent set yield the prediction of lower associa-
tive ratings for C than A. As Shanks (1991) noted, this dif-
ference in contingency can explain cue competition. In ad-
dition, the positive contingency for C can predict the
incomplete blocking of C. A contingency analysis using con-
ditional contingencies, however, can also provide an expla-
nation for the results of Experiment 2, in which the uncon-
ditional contingencies were equated across sets. We consider
how this analysis applies to the design of this experiment (see
Table 1), for which the R-W rule predicts the complete
blocking of the redundant cue.

In the contingent set, the Compound Cue AB signals the
presence of Disease 1(15 trials), but Symptom C by itself
does so as well (15 trials). However, Cue B by itself signals
the absence of the disease (15 trials), as does the absence of
A, B, and C (45 trials). In the noncontingent set, Compound
Cue DE signals the presence of Disease 2(15 trials), as does
the presence of Cue E alone (15 trials). In contrast, Cue F
alone signals the absence of the disease (15 trials), as does
the absence of D, E, and F (45 trials).

Figure 1 illustrates the computation of contingencies for
the crucial cues for comparison: A in the contingent set and
D in the noncontingent set. As shown in Figure 1, the un-
conditional contingency (i.e., the contingency computed
over the universal set of all events) is .8 for Critical Cue A
with respect to Disease 1, as is that for Cue D with respect
to Disease 2. To test conditional independence of these cues
with respect to the particular disease, we apply the process
model described earlier. With respect to Disease 1 (see
lefthand diagram of Figure 1), only Cues A, B, and C will
be identified as initial conditionalizing cues, because these
are the only cues that are ever accompanied by Disease 1.
Cue B has a contingency of 0 in the focal set in which both
A and C are absent (Figure 1, Rows 3-6 of the lefthand
diagram). Cue C has a conditional contingency of 1.0 in the
focal set in which Cues A and B are both absent (Figure 1,
Rows 1 and 4-6 of the lefthand diagram). Each of the re-
maining Cues (D, E, and F) has a conditional contingency of
0 in the focal set in which all conditionalizing cues (A, B, and
C) are absent (Figure 1, Rows 4-6 of the lefthand diagram).

The contingency for Cue A, conditional on the absence of
both B and C, cannot be computed because A does not occur
in the absence of B. However, A has a contingency of 1.0 in
the focal set in which B is present and C is absent (Figure
1, Rows 2-3 of the lefthand diagram). From the first iteration
of conditional-contingency assessment, it follows that B will
be assessed as noncausal and dropped from the set of con-
ditionalizing cues, so that only A and C remain as condi-
tionalizing cues. The relevant contingency for A then be-
comes that which is conditional on the absence of C (Figure
1, Rows 2-6 of the lefthand diagram, enclosed by a dashed
rectangle) and has a value of 1.0. This is equal to the value
of the relevant conditional contingency obtained for A in the
previous iteration. As is the case for A, none of the values of
the relevant conditional contingencies for any of the other
cues change as a result of dropping B from the condition-
alizing set.

For Disease 2 (see the righthand diagram of Figure 1),
Cues D and E will be selected as conditionalizing cues. Be-
cause D never occurs in the absence of E, its contingency can
only be calculated as conditional on the presence of E. For
this focal set (enclosed by the dashed rectangle in Figure 1),
the conditional contingency for D with respect to Disease 2
is 0. The difference between the computed contingency for
Cue A with respect to Disease 1(1.0) and that for Cue D with
respect to Disease 2 (0) provides an explanation for cue
competition—lower ratings are given to D than to A.

In addition, Cue E has a contingency of 1.0 conditional on
the absence of D (Figure 1, Rows 1-3 and 5-6 of the right-
hand diagram). All other cues have a contingency of 0 with
respect to Disease 2 in the absence of Cues D and E.

Next, we consider how partial blocking might arise. The
conditional contingency for Cue D seems to predict that D
will be completely screened off (and hence blocked) by Cue
E. However, subjects may be uncertain of this conclusion, as
it was not possible to conditionalize the contingency for D
on the absence of E. Accordingly, at least some subjects may
assess the unconditional contingency for D over the universal
set of events, which is .8. This positive value contrasts with
the 0 contingency for D conditional on the presence of E.
Assuming that subjects' causal ratings reflect a mixture (ei-
ther within individual subjects or across subjects) of these
two contingencies, D will receive a relatively low but posi-
tive mean rating. That is, Cue D will be partially blocked.
Moreover, the prediction of cue competition remains, be-
cause the mixture of contingencies for A (.8 and 1.0) is still
higher than the mixture of the contingencies for D (.8 and 0).
In summary, if there is a mixture of focal sets, either within
subjects or across subjects, contingency theory predicts par-
tial blocking in addition to cue competition.

The analyses described above assume that subjects used
the symptoms as predictors of the diseases. It is also possible,
however, that some of Shanks's (1991) subjects interpreted
the disease labels to be denoting causes of symptoms, in
which case they may have interpreted the task as one in-
volving diagnostic learning (Waldmann & Holyoak, 1992).
In diagnostic inference, the symptoms would be viewed as
effects, and the diseases would be interpreted as causes of the
symptoms. There is evidence that when people impose a
causal schema on a situation, they tend to encode knowledge
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about conditional probabilities in the cause-to-effect direc-
tion (Tversky & Kahneman, 1980). This directional prefer-
ence emerges even when the causal direction is opposite to
the temporal presentation order of cues and responses (Wald-
mann & Holy oak, 1992). Waldmann and Holy oak have
shown that the degree of cue competition differs radically
depending on whether people interpret the cues as the causes
of an effect to be predicted, or as the effects of a cause to be
diagnosed. In their study, redundant cues competed against
one another when they were interpreted as possible causes
but not when they were interpreted as possible effects. If the
same phenomenon occurred in Shanks's (1991) experiments,
one would expect that subjects who interpreted the cues as
effects would show no cue competition, that is, no difference
between the critical symptoms in the contingent and non-
contingent sets.

As we explained for Shanks's (1991) Experiment 2 (and
explain below for Experiment 3), the same prediction (no cue
competition) happens to follow for subjects who reasoned
from symptoms to diseases with contingency computed over
the universal set. Thus for Shanks's (1991) data, adding to
the mixture-of-focal-sets hypothesis the assumption that
some subjects interpreted the cues as effects yields predic-
tions that are qualitatively indistinguishable from those of the
mixture-of-focal-sets hypothesis alone. To tease apart these
different theoretical possibilities, researchers in this area
need to control the focal sets and assure that the subjects
understand the directionality of causal connections among
cues.

As we noted earlier, the results of Shanks's (1991) Ex-
periment 1 can be explained in terms of unconditional con-
tingencies alone. If subjects in that experiment applied the
process model to compute conditional contingencies, the pat-
tern of causal assessments likewise yields cue competition
and partial blocking. The contingency analysis is highly
similar to that for Experiment 2.

Focal Sets with Respect to Disease 1

Contingency Analysis of Experiment 3

Next, we consider a contingency analysis of the design of
Experiment 3 (summarized in Table 1). In the correlated set,
the Compound Cue AB signals the presence of Disease 1 (20
trials). However, the Compound Cue AC signals the absence
of Disease 1 (20 trials), as does the absence of A, B, and C
(40 trials). In the uncorrelated set, Compound Cue DE signals
the presence of Disease 2 half of the time, on 10 of 20 trials,
as does the Compound Cue DF (20 trials). In contrast, the
absence of D, E, and F signals the complete absence of Dis-
ease 2 (40 trials). Shanks (1991) reported that subjects rated
the Critical Cue A lower than the Critical Cue D (see Table
2). In addition, Cue B was rated much higher than C.

Figure 2 illustrates some of the focal sets involved in a
contingency analysis of this design. The unconditional con-
tingency is .5 for Critical Cue A with respect to Disease 1 (see
lefthand diagram of Figure 2), as is that for Critical Cue D
with respect to Disease 2 (righthand diagram of Figure 2).
With respect to Disease 1, the process model identifies Cues
A and B as initial conditionalizing cues. In the absence of
these conditionalizing cues, Cues D, E, and F have 0 con-
tingencies with respect to this disease. For Cues A, B, and
C, because of the inherent confoundings between them in the
experimental design, the most informative contingencies that
can be computed are those conditional on the absence or
presence of one conditionalizing cue. Cue A and Cue C each
have a conditional contingency of 0 in the absence of B (the
focal set enclosed within the rectangle in the lefthand dia-
gram of Figure 2). Cue B has a conditional contingency of
1.0 in the presence of A. Because the relevant conditional
contingency for Cue A is 0, A will no longer be viewed as
a plausible cause, and hence will be dropped from the set
of conditionalizing cues. Cue B, the sole remaining condi-
tionalizing cue, has an unconditional contingency of 1.0,

Focal Sets with Respect to Disease 2

Trial

Type

Cue

A B C D E F
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B is absent in dashed focal set.
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Proportion of
Cases with
Disease 2
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+
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o

o

o

o
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0/20
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10/20

F is absent in dashed focal set.

Figure 2. Potential focal sets in Shanks's (1991) Experiment 3. (Letters A to F denotes cues.
Solid-line rectangles indicate universal focal sets, dashed-line rectangles indicate conditional focal
sets. Large bold letters denote cues crucial for comparison. From "Categorization by a Connectionist
Network" by D. R. Shanks, 1991, Journal of Experimental Psychology: Learning, Memory, and
Cognition, 17, Tables 1, 2, 3; pp. 436, 438, and 439, respectively. Copyright 1991 by the American
Psychological Association, Inc. Adapted by permission.)
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Table 3
Unconditional and Conditional Contingencies, Dominance Contingency Ranking, Mean Contingency Ranking, and
Mean Associativeness Ratings for Cues in Shanks's (1991) Experiment 3

Cue

A
B
C
D
E
F

Unconditional
contingency

0.5
1.0

-0.33
0.5
0.33
0.33

Conditional
contingency

0
1.0
0
0.5
0.5
0.5

Dominance
contingency

ranking

3
1
4
2
3
3

Mean
contingency

ranking

4
1
5
2
3
3

Mean
associativeness

rating

32.3
87.5
13.5
49.0
39.2
43.8

Note. The contingencies and ratings for Cues A, B, and C correspond to Disease 1; those for Cues D, E, and F correspond to Disease
2. From "Categorization by a Connectionist Network" by D. R. Shanks, 1991, Journal of Experimental Psychology: Learning, Memory,
and Cognition, 17, p. 439. Copyright 1991 by the American Psychological Association, Inc. Adapted by permission.

confirming its status as a plausible cause. Thus the contin-
gency analysis for Disease 1 provides evidence that only
Cue B is a genuine cause of the disease. However, as
much of the information for computing conditional contin-
gencies is missing in this design, these conclusions might
be viewed with uncertainty.8 Recall that the unconditional
contingency of A is .5. The mixture-of-focal-sets hypoth-
esis therefore predicts that the association rating for A will
be low but positive.

We now apply the same analysis to Disease 2 (see right-
hand diagram of Figure 2). Cues D, E, and F all qualify as
conditionalizing cues. In the absence of these conditional-
izing cues, A, B, and C each have a conditional contingency
of 0. For Cues D, E, and F, given the inherent confoundings
among these cues in the experimental design, the most in-
formative contingencies that can be computed are those con-
ditional on the absence of one conditionalizing cue. For ex-
ample, the focal set enclosed by the rectangle in the right half
of Figure 2 would be used to compute the contingency for
the crucial D cue (as well as E), conditional on the absence
of F. Similarly, the focal set conditional on the absence of Cue
E (Figure 2, Rows 1, 2, and 4 of the righthand diagram)
would be used to compute the contingency for Cues D and
F. Every such conditional contingency, for Cues D, E, and F,
has the value .5. By this analysis, these three cues are
therefore equally likely to be viewed as causes of Disease
2. As was the case for Disease 1, because much of the in-
formation for computing conditional contingencies is miss-
ing, these conclusions might be viewed with uncertainty.
For example, the conditional contingency for Cue E, in the
focal set in which D is present, has no clear interpretation,
because Cue F—which has been initially assessed as a
plausible cause and is negatively correlated with Cue E in
this set—cannot be disregarded. The interpretation of the
conditional contingency for Cue F in the presence of D in-
volves the same problem. As the unconditional contin-
gency for Cue D is .5, the mixture hypothesis predicts that
the association ratings will be higher for D (based on a
mixture of contingencies of .5 and .5) than for A (based on
a mixture of the contingencies 0 and .5), as reported by
Shanks (1991).

Table 3 presents a summary of the contingency assess-
ments for all the cases in Experiment 3 for which Shanks
(1991) reported judgment data: Cues A, B, and C with respect

to Disease 1 and Cues D, E, and F with respect to Disease
2. In Table 3 we report both the unconditional contingency
for each case and the mean of the most relevant conditional
contingencies that can be calculated. Table 3 also shows the
predicted rank order of causal judgments derived by two
methods that are based on the mixture hypothesis. The domi-
nance method requires no assumptions about the relative
weighting of the two contingencies for each case: A case is
ranked higher than others only if at least one of its two con-
tingencies is higher than the corresponding contingency for
every dominated case and if neither of its contingencies is
lower than the corresponding contingency for any dominated
case. We obtained the second set of rankings by averaging
the two contingencies for each case and assuming that they
are weighted equally. It is apparent that both methods pro-
duce rank orderings that agree with the relative mean ratings
that subjects gave for the six cases. (The comparable pre-
dictions derived from the R-W model appear in Table 2.)

Conclusion

In general, we find reasons to doubt whether variants of
associationist models, which have encountered difficulty in
dealing with various phenomena observed in studies of con-
ditioning with animals, will be able to provide a full account
of human categorization and causal induction. In any case,
researchers of induction cannot afford to ignore the concepts
of conditional independence and focal sets. Contingency
theory may account for cue competition in human catego-
rization tasks, once the role of conditional independence is
recognized. Moreover, a contingency theory that specifies
the role of focal sets offers a possible explanation for the
partial blocking apparently observed in Shanks's (1991) Ex-
periments 1 and 2 and in similar studies, findings which
contradict the asymptotic predictions of the R-W model. Al-
though current findings concerning partial blocking do not
clearly discriminate between the two approaches, a number

8 For example, a more complex, but nonetheless coherent, alter-
native interpretation that could be offered is that A is an excitatory
cause, C is an inhibitory cause, and B might be either an excitatory
cause or noncausal.
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of other phenomena provide stronger evidence favoring con-
tingency theory. In particular, contingency theory offers
simple explanations of learned irrelevance, extinction of con-
ditioned inhibition, and other phenomena that elude the R-W
model (see Cheng & Holyoak, in press).

Our analysis of Shanks's (1991) results is of course post
hoc and speculative, given that his experiments neither meas-
ured nor manipulated subjects' focal sets. Focal sets can,
however, be measured and manipulated (see Cheng &
Novick, 1990, 1991; Novick, Fratianne, & Cheng, 1992).
Our purpose in this article was not to decide among alter-
native approaches but rather to introduce a variant of con-
tingency theory that might challenge the R-W rule, to clarify
the predictions of the R-W rule, and thereby to bring atten-
tion to previously ignored tests that may discriminate among
these different approaches.
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Appendix

Derivation of Asymptotic Weights for Networks Used in Simulations by Shanks (1991)

1409

The Rescorla-Wagner theory is described by Shanks (1991) as
follows:

On each trial, the weight connecting each feature that is pre-
sent with the category occurring on that trial is incremented
according to the equation

where AV/c. is the weight change of a particular feature for the
category, af is a measure of the salience of the feature, /3C is a
measure of the salience of the category that occurs on that
trial, A is the asymptote of associative strength (usually 100),
and

learning rate associated with pattern p (either j3c or yc), Ap is the
desired output for the pattern (either 0 or 100 in Shanks's, 1991,
simulations), and S v / c P is the actual output produced for the pat-
tern, which is equal to the sum of the associative strengths of all
present features for the pattern. Each term in Equation 3 is weighted
by the learning rate associated with each pattern and by the relative
frequency of occurrence of each pattern to reflect the impact a
particular pattern has relative to other patterns on weight changes.
If the reinforcement learning rate f3c is equal to the nonreinforce-
ment learning rate yc, then the lp term may be omitted from the
equation. Similarly, if the patterns occur with uniform frequency,
then the TTP term may be omitted from the equation.

is the sum of the associative strengths of all the features
present on that trial for the category that actually occurs. At
the same time, the weights connecting each feature that is
present to each category that does not occur on that trial are
reduced; this represents extinction of the association between
the feature and the absent category. Reduction of these
weights occurs according to the equation

AV/C= - (2)

where yc. is a measure of the salience of the category not
occurring on that trial and

now refers to the total associative strength of the symptoms
present for the category not occurring on that trial. fic is
usually given a greater value than yc, indicating that a cate-
gory's occurrence is more salient than its omission, (p. 434)

Deriving the Asymptotic Weights

To obtain the asymptotic weights of a network, we begin by
noting the equivalence between the Rescorla-Wagner learning rule
and the least-mean-squares rule of Widrow and Hoff (1960; cf.
Sutton & Barto, 1981). This updating rule implements an iterative
algorithm for computing the solution to a set of linear equations,
defined by the set of stimulus-response patterns presented to the
network. If the input stimulus patterns are linearly independent, then
the updating rule will reveal a unique solution. Even if the stimulus
patterns are not linearly independent, the network will still converge
provided that the learning rate is sufficiently small and that the
various stimulus patterns occur with sufficient frequency in the
input sequence. The network will converge so as to minimize the
sum of the squared error over the stimulus patterns. That is, the
equation

(3)

will be minimized, where p is the index for a particular stimulus-
response pattern, -np is the relative frequency of pattern p, lp is the

Asymptotic Weights for Simulations 1-3

Shanks's (1991) first simulation consisted of two conditions. The
contingent condition consisted of one trial in which two input cues,
A and B, were associated with Disease 1 and another in which B
alone occurred and was not associated with any disease (i.e., it was
nonreinforced). The noncontingent condition also had a trial in
which two stimuli, C and D, were associated with Disease 2, but
in contrast to the contingent condition, on the second trial D was
associated with Disease 2 rather than nonreinforced.

The theoretical asymptotic weights of the network can be cal-
culated analytically by minimizing the sum squared error given by
Equation 3. To obtain the solution for the asymptotic weights for
the contingent condition in Simulation 1, we first derive the ap-
propriate instantiation of Equation 3. Recall that for the contingent
condition there are two stimulus patterns. For the first stimulus
pattern, the desired output \p is 100, and both Cue A and Cue B are
present. Hence the contribution to the error for a trial of the first
pattern type (p = 1) is

(A, - V,)]2

Similarly, the contribution to the error for a trial of the second
pattern type (p = 2), where B is present and the desired output is
0, is

= V 2

We may combine these two terms to calculate the sum of squared
errors weighting each term by the learning rate associated with each
pattern. Because each pattern type occurs with equal frequency, the
sum squared error is

- (VA + VB)f + yc(VBf

In general, the minimum value of the sum of squared errors may
be obtained by setting the partial derivatives with respect to each
weight to 0 and solving the resulting set of equations. In this case,
however, the weights that minimize the Equation just mentioned can

{Appendix continues on next page)
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be obtained by inspection: E will have its lowest value when VA +
VB = 100 and VB = 0. Hence, the asymptotic solution for the
contingent condition is VA = 100 and VB = 0.

Similarly, the sum of squared errors for the noncontingent
condition is

j3r[100 - (Vc + VD)f + pc(100 - VD)\

Here, the weights that minimize the equation are Vc = 0 and
VD = 100.

The asymptotic weights for Simulations 2 and 3 may be derived
with the method described above, obtaining for Simulation 2,

Correlated: VB = 100 - VA,

Contingent:

Noncontingent:

and for Simulation 3,

VA = 100,

Vc = 100

VD = 0,

VE = 100,

Uncorrelated: 7<.))100 -

Note that whereas Simulations 1 and 2 have unique solutions, which
are independent of the initial weights and the learning parameters,
there is no unique solution for either the correlated condition or the
uncorrelated condition in Simulation 3. In addition to the learning
parameters, the only other parameters in the model are the initial
weights. In the correlated condition, because the learning param-
eters drop out of the equations, the only parameters left are the initial
weights. The solution for the correlated condition is dependent on
the initial weights, and the solution for the uncorrelated condition
is dependent both on the learning rate parameters and the initial
weights.
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