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Abstract 

We formulate four alternative Bayesian models of causal 
strength judgments, and compare their predictions to two sets of 
human data. The models were derived by factorially varying the 
causal generating function for integrating multiple causes 
(based on either the power PC theory or the ΔP rule) and priors 
on strengths (favoring necessary and sufficient (NS) causes, or 
uniform). The models based on the causal generating function 
derived from the power PC theory provided much better fits 
than those based on the function derived from the ΔP rule. The 
models that included NS priors were able to account for subtle 
asymmetries between strength judgments for generative and 
preventive causes. These results complement previous model 
comparisons for judgments of causal structure (Lu et al., 2006). 
Keywords: Bayesian inference; causal strength; causal power 

Strength Judgments in a Bayesian Framework 
Within the Bayesian framework, two major types of queries 
about causal knowledge can be distinguished. A query about 
model selection requires assessing the underlying causal 
structure, (e.g., does a causal link exist between the HIV 
virus and AIDS?). A query about parameter estimation 
requires assessing the strength of a cause that acts to 
produce or prevent an associated effect. For example, the 
HIV virus almost always leads to development of the 
disease AIDS (high causal strength), whereas smoking a 
pack of cigarette every day for a year leads to cancer with 
some small probability (low causal strength). Our previous 
work (Lu et al., 2006) focused on model selection. The 
present paper, in contrast, focuses on parameter estimation. 

Judging causal strength can be formalized as a Bayesian 
problem of parameter estimation within a fixed causal 
graph, as shown in Figure 1 (Griffiths & Tenenbaum, 2005; 
Jaynes, 2003). Within the Bayesian framework, inference 
depends jointly on the likelihoods of data given alternative 
hypotheses, and on priors for these hypotheses.  Likelihoods 
depend on the causal generating function, i.e., how do the 
influences of potential causes B and C in Graph 1 combine 
to influence E? The relevant priors are initial probabilities 
assigned to possible values of the weights wo and w1 

(representing causal strengths) on the causal links for B and 
C, respectively.  

 
Derivation of Bayesian Models 
In previous work (Lu et al., 2006) we compared alternative 
Bayesian models of human judgments concerning 
confidence that a causal link exists (structure judgments).  
Here we compare a broader set of Bayesian models to sets 
of human data concerning causal strength.  Based on 
observation of contingency data D, a Bayesian model is able 
to assess the probability distribution of 

! 

w
1
 so as to quantify 

statistical properties of the causal strength of candidate 
cause C to produce or prevent E. In this paper we compare 
the average human strength rating with the mean of 

! 

w
1
 in 

the causal structure shown in Figure 1.  The mean of 
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w
1
 is 

determined by  
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(2)          
where ),|( 10 wwDP  is the likelihood term. ),( 10 wwP  
corresponds to prior probabilities that model the learner’s 
beliefs about the values of causal strengths. 

! 

P(D)  is the 
normalizing term, denoting the probability of obtaining the 
observed data.  Let !+ /  indicate the value of the variable 
to be 1 (present) versus 0 (absent).  The likelihood term 

),|( 10 wwDP  is given by 

  

 

w0 w1 

B C 

E 

Figure 1. A simple causal graph. 
B, C, and E are binary variables.  
Weights w0 and w1 in Graph 1 
indicate causal strength of the 
background cause, B, and the 
candidate cause, C, respectively.   
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 where }1,0{,, !ecb  denotes the absence and the presence 

of the causes B, C, and the effect E. 
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n  denotes the number 

of ways of picking k unordered outcomes from n 
possibilities. 
 
Alternative Causal Generating Functions Griffiths and 
Tenenbaum (2005) pointed out that Bayesian models of 
causal judgments can be constructed using either of two 
causal generating functions derived from models in the 
psychological literature. The causal generating function 
adopted by Griffiths and Tenenbaum in their “causal 
support” model is the power generating function, derived 
from the power PC theory (Cheng, 1997; see Glymour, 
2001). For the situation in which background cause B and 
candidate cause C are both potential generative causes, the 
probability of observing the effect E is given by a noisy-OR 
function, 

! 

P(e
+
|b,c;w0,w1) = w0b + w1c " w0w1bc.       (4) 

It is assumed that 

! 

b =1 because the background cause B is 
always present in the experimental setup. In the preventive 
case, B is again assumed to be potentially generative 
(following the power PC theory, which specifies that the 
background must not include preventive causes), whereas C 
is potentially preventive. The resulting noisy-AND-NOT 
generating function for preventive causes is 

.),;,|( 10010 bcwwbwwwcbeP !=
+          (5) 

For convenience we will refer to Eqs. 4-5 together as the 
power generating function. Because the power generating 
function obeys the laws of probability, the weights w0 and 
w1 are inherently constrained to the range [0,1]. 

Using the power generating function, Cheng (1997) 
derived quantitative predictions for judgments of causal 
strength. Let q represent a point estimate of the value of 
causal power. When certain assumptions are satisfied, the 
predicted value of causal power for a generative cause is 
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and the predicted value of power for a preventive cause is 
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where ΔP is simply the difference between the probability 
of the effect in the presence versus absence of the candidate 
cause, i.e., 
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Griffiths and Tenenbaum (2005) showed that causal power 
(q in Eqs. 6-7) corresponds to the maximum likelihood 
estimate for the random variable w1 on a fixed graph (as 
shown in Figure 1) under the power generating function. 

The term 

! 

P(e
+
| c

"
)  in the denominator of Eqs. 6-7 is 

often termed the base rate of the effect, as it gives the 
prevalence of the effect under background conditions in the 

absence of the candidate cause. The base rate determines the 
value of w0 in the causal structural graph shown in Figure 1.  

An alternative causal generating function can be derived 
directly from ΔP (Eq. 8), which has been interpreted by 
some theorists as an estimate of causal strength (Jenkins & 
Ward, 1965). Under certain conditions, when learning is at 
asymptote the ΔP rule is equivalent to the Rescorla-Wagner 
associative learning model (see Danks, 2003), which has 
been advanced as a model of causal inference (Shanks & 
Dickinson, 1987). The ΔP model yields a linear generating 
function, 

! 

P(e
+
|b,c;w0,w1) = w0b + w1c              (9) 

where w0  is within the range [0,1], and  w1  is within the 
range [-1,1] and with an additional constraint that w0 + w1 
must lie in the range [0,1] so as to result in a legitimate 
probability distribution.  Eq. 9 simply states that the 
candidate cause C changes the probability of E by a constant 
amount regardless of the presence or absence of other 
causes, such as B.  Griffiths and Tenenbaum (2005) proved 
that Eq. 9 yields ΔP as the maximum likelihood estimate of 
w1 when substituted for Eqs. 4-5.  

 
Alternative Priors The second component in Eq. 2 is the 
prior on causal strength, ),( 10 wwP , within the causal 
structure in Figure 1. When C is an unfamiliar cause, a 
natural assumption is that people will have no substantive 
priors about the values of w0 and w1, modeled by priors that 
are uniform over the range [0,1]. Griffiths and Tenenbaum 
(2005) adopted uniform priors in their causal support model. 

An alternative proposal is that people have priors for 
necessary and sufficient (NS) causes (Lu et al., 2006). Our 
NS power model integrates the power generating function 
with generic priors (cf. Lu & Yuille, 2006) about the 
relationship between the powers of alternative potential 
causes. We make the assumption that people prefer causal 
networks that are relatively simple (Novick & Cheng, 2004, 
p. 471) and that people have a deterministic bias regarding 
causal strength. Causal simplicity (Chater & Vitányi, 2003) 
potentially manifests itself in multiple ways, which likely 
include a preference for fewer causes (Lombrozo, 2007) and 
for causes that do not involve interactions (Novick & 
Cheng, 2004; Liljeholm & Cheng, in press). Deterministic 
causal preference biases causal strength towards 0 and/or 1. 
NS priors imply that people have a prior belief favoring 
causes that are necessary and sufficient (e.g., a genetic 
defect on chromosome 4 is necessary and sufficient to cause 
Huntington’s disease). But rather than being a strict logical 
condition, NS priors are assumed to be probabilistic. Pearl 
(2000) interpreted generative causal power (Eq. 3) as 
“probability of sufficiency,” and ΔP (Eq. 6) as “probability 
of necessity and sufficiency.” (For preventive causes the 
analogous quantities are preventive causal power and −ΔP, 
respectively.) Developmental data provide support for the 
assumption of NS priors. Recent evidence indicates that 
preschool children tacitly believe in “causal determinism”, 
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inferring unobserved causes to explain apparently stochastic 
patterns of effects (Schultz & Sommerville, 2006). 

For the generative case, the background B and candidate 
C are both potentially generative, and hence will implicitly 
compete as alternative NS causes. Accordingly, we set 
priors favoring NS generative causes with the prior 
distribution peaks for 

0
w , 

1
w  at 0,1 (C is an NS cause) and 

1,0 (B is) (see Figure 2A). We specify the priors using a 
mixed distribution with exponential functions, 
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where !  is a parameter controlling how strongly necessary 
and sufficient causes are preferred. When 0=! , the prior 
follows a uniform distribution, indicating no preference to 
any values of causal strength. 22 /)1(2)( !! !"

"= eZ  denotes a 
normalization term that ensures the sum of the prior 
probabilities equals 1. Figure 2A depicts the shape of a 
distribution when ! = 5.  

 
Figure 2. Prior distributions over w0 and w1 with NS priors. A: 
Generative case, 5=!  (peaks at 0,1 and 1,0); B: Preventive case, 

5=!  (peaks at 1,1 and 1,0). 
The NS prior will differ for the preventive case (Figure 

2B). Because the background cause, B, is assumed to be 
generative regardless of the existence of the preventive 
candidate cause C, B and C will not compete as alternative 
NS causes in the preventive case. The issue of prevention 
will arise under the assumption that the effect is being 
generated; hence the peak weight of w0 for the background 
cause B (the only possible generative cause) is assumed to 
be biased towards 1. The maximum probability of necessity 
and sufficiency for C as a preventer will then obtain when B 
is a sufficient generative cause, 

! 

w
0

= 1 , yielding a 

distribution peak for 
0
w , 

1
w  at 1,1. If C is not sufficient, 

the alternative consistent with causal determinism is that it 
is completely ineffective, yielding an additional peak at 1,0. 
We again use an exponential formulation,  
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where all parameters are defined as in Eq. 10. 
Note that the two peaks of the NS priors for the 

preventive case (Figure 2B) are not symmetrical with those 
for the generative case (Figure 2A). As we will see, the 
asymmetrical NS priors for generative versus preventive 
causes yield systematic asymmetries in human causal 
judgments as a function of causal direction. 

In summary, the factorial combination of two alternative 
causal generating functions (power versus linear) and two 
alternative priors (NS or uniform) yields four alternative 
Bayesian models: Model I (power, NS), Model II (power, 
uniform), Model III (linear, NS), and Model IV (linear, 
uniform). Model I corresponds to the NS power model (Lu 
et al., 2006) when adapted to estimate causal strength. 
Model II corresponds to the causal support model (Griffiths 
& Tenenbaum, 2005) when adapted to estimate strength 
(Danks, Griffiths & Tenenbaum, 2003). Model IV 
corresponds to a Bayesian formulation of the ΔP rule 
(Jenkins & Ward, 1965) and the equivalent variant of the 
Rescorla-Wagner model (e.g., Shanks & Dickinson, 1987). 
Model III, identical to Model IV except with NS priors, has 
never been previously considered. 

Simulations of Human Strength Judgments 
We tested these four models by comparing the predictions 
of each for two data sets of human judgments of causal 
strength. Methodological issues arise in selecting data for 
quantitative modeling of strength judgments. Many studies 
have used rating scales to assess causal strength. As pointed 
out by Buehner et al. (2003), such scales may be ambiguous, 
leading participants to give responses that conflate causal 
strength with reliability. An elicitation procedure for 
strength judgments that minimizes ambiguity is to ask 
participants to estimate the frequency with which the 
candidate cause would produce (or prevent) the effect in a 
new set of cases that do not already exhibit the effect 
(Buehner et al., 2003, Experiments 2-3). The two data sets 
we selected for modeling used this type of query, coupled 
with summary displays of contingency information in which 
individual cases are presented in a single organized display 
(see Figure 3 for an example). Such presentations provide a 
vivid display of individual cases, making salient the 
frequencies of the various types of cases, while minimizing 
memory demands.  

Data Set 1: “Headache” Cover Story 
We first modeled a large data set from a study by Liljeholm 
and Cheng (2007, Experiment 1). 
Method  Fifty-two undergraduates at the University of 
California, Los Angeles (UCLA) were assigned in equal 
numbers to generative and preventive conditions. 
Participants first read a cover story about a pharmaceutical 
company investigating whether various minerals in an 
allergy medicine might produce headache (generative 
condition) as a side effect. The preventive cover story was 
identical except that the word “remove” was substituted for 
“produce”. Participants were further informed that each 
mineral was to be tested in a different lab, and that the 
number of patients who had a headache before receiving any 
mineral, as well as the total number of patients, might vary 
across patient groups from different labs. Participants were 
then presented with data from the tests of the allergy 
medicine.  Each trial was depicted as the face of an allergy 
patient.  As illustrated in Figure 3, each patient was 
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represented by a cartoon face that was either frowning 
(headache) or smiling (no headache). The data were divided 
into 2 subsets, each an array of faces. The top subset 
represented patients before receiving the mineral and 
depicted P(e+|c-); the bottom subset represented patients 
after receiving the mineral and depicted P(e+|c+).  
 
 
 
 
 
 
 
 
 
 
 
 
 

Contingency conditions were varied within-subjects. Two 
samples sizes (16 and 64) were combined with two causal 
powers, .25 and 1, and three base rates: 0 (for generative; 1 
for preventive), .25, and .75, yielding a total of 24 
conditions (see Figure 4). The code in Figure 4 indicates 
number of patients with headache out of total number before 
receiving the mineral (i.e., base rate of the effect), and 
number with headache out of total number after receiving 
the mineral (where the mineral is C and headache is E). In 
Figure 4, generative and preventive conditions are identical 
except that the frequencies of headache and no headache are 
transposed. For example, the generative case 0/16, 4/16, 
where the base rate P(e+|c-) = 0, P(e+|c+) = .25, power = 
.25, and the sample size is 16, is matched to the symmetrical 
preventive case 16/16, 12/16, where P(e+|c-) = 1, P(e+|c+) 
= .75, power = .25, and the sample size is 16. 

Before answering the strength query, participants were 
asked if “The mineral has absolutely no influence on 
headache.” Strength ratings were not obtained for those 
participants who agreed with this assertion. The subsequent 
query (generative conditions) was, “Suppose that there are 
100 people that do not have headaches. If this mineral was 
given to these 100 people, how many of them would have 
headaches?” The preventive version simply substituted “do” 
for “do not” and “have” for “not have”. Participants had 
been instructed not to provide any numerical rating when 
selecting the first answer option, as well as to not put a zero 
rating when selecting the second answer option. The 
dependent measure of causal strength was the average of 
numerical rating (1-100) elicited in each condition for the 
second query.  
 
Fits of Bayesian Models 
Predicted mean strength values can be derived from 
Bayesian models under the assumption that people estimate 
strength by implicitly sampling values drawn at random 
from the posterior probability distribution over w1 (cf. 
Mamassian & Landy, 1998). Accordingly, in our 

simulations the mean of w1 for each contingency was used 
to predict the corresponding mean strength rating. 
Following Buehner et al. (2003) and Liljeholm and Cheng 
(2007), we assume that mean strength ratings on the 100-
point scale approximate a ratio scale of causal power.1  

 
Figure 4. Strength ratings (Data Set 1). Numbers along top show 
stimulus contingencies for generative cases; those along bottom 
show contingencies for matched negative cases. A: Mean human 
ratings (error bars indicate 1 standard error); B~E: Predictions 
from four models. 
 

Hence, a successful model must aim to account for the 
actual values obtained for human strength judgments, 
without any further data transformation. Accordingly, we 
report model fits not only based on correlations, but also on 
root-mean-squared (RMS) deviations from the human data. 
In addition, the models with NS priors predict systematic 
interactions as a function of causal direction. For Models I 
and III only, we therefore computed not only the overall 
correlation of model predictions with human data, but also 
the correlation (rd) between the observed and predicted 
difference between the mean strength judgments for 
matched generative and preventive contingencies. The 

                                                             
1 The assumption of a ratio scale is likely to break down for 
strength estimates near the extremes (0 or 100 on the scale) due to 
measurement issues (errors necessarily fall one side of the true 
mean).  

 

Figure 3. Example of a 
“headache” display, 
showing patients who 
had not (top) or had 
(bottom) received a 
mineral used in an 
allergy medicine, and 
who had or had not 
developed headaches. 
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predicted difference score is always 0 for Models II and IV, 
which assume uniform priors; hence rd is not computable. 

The human data (Figure 4A) were well fit overall by 
Models I and II based on the power generating function, 
either with NS priors (Figure 4B) or uniform priors (Figure 
4C; r = .97 and .96, respectively). Model I (NS power) has a 
slight advantage in terms of lower RMS, and in addition 
yields a positive correlation with the difference in strength 
ratings for matched generative and preventive contingencies 
(rd = .41). Models III and IV based on the linear generating 
function (Figure 4D-E) yielded substantially poorer overall 
fits (r = .86 for each), roughly doubling the RMS relative to 
the models based on the power generating function.  The 
reason for the poor fits of the linear models is that they 
erroneously predict that human strength judgments will 
asymptote at values corresponding to values of ΔP, whereas 
human judgments actually approach values of causal power 
at asymptote. The linear Model III with NS priors does, 
however, yield a positive correlation with difference scores 
for generative versus preventive causes (rd = .61). 

Data Set 2: “DNA” Cover Story 
For generality, we performed an experiment to obtain 
strength ratings using a different cover story. 
 
Method  Seventy-four UCLA undergraduates served in the 
study. The cover story concerned a bio-genetics company 
testing the influence of various proteins on the expression of 
a gene. Participant were told that, in each of several 
experiments, DNA strands extracted from hair samples 
would be exposed to a particular protein and that the 
expression of the gene would then be assessed.  They were 
told that their job was to evaluate the influence of each 
protein on the expression of the gene.  Each participant then 
saw a series of “experiments”, each of which showed two 
samples of DNA strands, depicted as “vivid summaries” of 
the same basic sort used the “headache” study (see Figure 
5).  One sample of DNA strands had not been exposed to a 
particular protein, while the other sample of DNA strands 
had been exposed to that protein. The 16 contingencies used 
in the experiment are shown in Figure 6. Causal direction 
was varied between-subjects, contingency within-subjects. 

Strength judgments were obtained from all participants. 
The causal query in the generative condition was: “Suppose 
that there is a sample of 100 DNA strands and that the gene 
is OFF in all those DNA strands. If these 100 strands were 
exposed to the protein, in how many of them would the gene 
be TURNED ON?” The preventive query was identical 
except that “OFF” was replaced by “ON” and “TURNED 
ON” by “TURNED OFF”.  

 
Fits of Bayesian Models 
As for the data for the “headache” cover story, the human 
data based on the “DNA” cover story (Figure 6A) was well 
fit overall by Models I and II based on the power generating 
function, either with NS (Figure 6B) or uniform priors 
(Figure 6C; r = .98 for each). The RMS was very low for 

both models, with a slight advantage (less than 1 point on 
the 100-point scale) for Model II. However, Model I (NS 
power) yielded a substantial positive correlation with the 
difference in strength ratings for matched generative and 
preventive contingencies (rd = .80), whereas Model II with 
uniform priors is completely unable to account for the 
pattern of interactions with causal direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Strength ratings (Data Set 2). Same conventions as in 
Figure 4. 

Once again, Models III and IV based on the linear 
generating function (Figure 6D for NS priors, Figure 6E for 
uniform priors) yielded substantially poorer overall fits (r = 
.77 and .76, respectively), roughly quadrupling the RMS 
relative to the models based on the power generating 
function. Model III with NS priors did, however, yield a 

Figure 5. Example of a 
“DNA” display, with DNA 
strands that had not (top) or 
had (bottom) been exposed 
to a protein, and indicating 
whether a gene was off or 
on. 
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positive correlation with difference scores for generative 
versus preventive causes (rd = .81). 

General Discussion 
In summary, the best overall account of human strength 
judgments for both the “headache” and “DNA” data sets 
was provided by the NS power model (Model I), which 
combines the power generating function with NS priors. NS 
priors provide the only formal account to date of 
asymmetries between causal judgments for generative and 
preventive causes. Similar asymmetries have been observed 
for judgments of whether or not a causal link is present 
(structure judgments; Lu et al., 2006).2 

The quantitative failure of the linear generating function 
(Models III and IV) confirms the negative conclusion that 
has been reached on the basis of more qualitative 
comparisons (e.g., Buehner et al., 2003; Liljeholm & Cheng, 
2007; Novick & Cheng, 2004).  We thus can rule out the 
possibility that adopting the Bayesian framework might 
somehow salvage the linear generating function as a 
psychological model of human causal learning (see also 
Danks et al., 2003), regardless of whether the linear function 
is cast directly in terms of ΔP (Jenkins & Ward, 1965) or 
indirectly in the Rescorla-Wagner model (Shanks & 
Dickinson, 1987). 

An important meta-point is that there may be many 
potential “rational” models of a given cognitive task. The 
Bayesian framework simply derives rational predictions 
from stated theoretical premises: if a reasoner has certain 
entering causal beliefs, and believes that causes follow a 
certain function in generating their effects, then some 
pattern of rational causal judgments follows. The four 
Bayesian models we have considered here differ in their 
underlying theoretical premises, and hence in their empirical 
predictions. The Bayesian framework provides a natural 
formalism for deriving and comparing the quantitative 
predictions of alternative “rational” models. 
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