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ABSTRACT—Two competing psychological approaches to

causal learning make different predictions regarding what

aspect of perceived causality is generalized across con-

texts. Two experiments tested these predictions. In one

experiment, the task required a judgment regarding the

existence of a simple causal relation; in the other, the task

required a judgment regarding the existence of an inter-

action between a candidate cause and unobserved back-

ground causes. The task materials did not mention assess-

ments of causal strength. Results indicate that causal

power (Cartwright, 1989; Cheng, 1997) is the mental

construct that people carry from one context to another.

Judgments about cause-and-effect relations occur in contexts

that are like rivers—one never steps into the same context twice.

Generalization from one context to another is therefore para-

mount. In fact, generalizing from the learning context to what-

ever new context may come is the raison d’être of causal

learning. What is it that a reasoner carries from one situation

into another? Let us formulate this question more specifically in

terms of the scenarios illustrated in Figure 1.

Imagine that you are presented with data from two studies,

conducted in different laboratories, that tested the influence of

two allergy medicines on headache (a possible side effect). In

each study, allergy patients were randomly assigned to two

groups: a treatment group and a no-treatment (i.e., control)

group. In the first study (Fig. 1a), Medicine A alone was ad-

ministered. In the second (Fig. 1b), Medicines A and B were

administered in combination. Headache (indicated by a frown-

ing face, as opposed to a smiling face) occurred with a different

frequency in each of the four groups. What is your best bet,

based on the results from both studies, regarding whether or not

Medicine B causes headache? Presumably, if you perceive a

‘‘change’’ in the results across treatments (i.e., Medicine A in

one study and both medicines in the other), you might attribute

this change to the introduction of Medicine B in the second

study. But what constitutes a ‘‘change’’? To put the question

another way, what is assumed to be invariant, and hence to

generalize, across contexts?

Although the target question in this scenario concerns Med-

icine B, the psychological representation of interest concerns

Medicine A, the medicine that occurs in both contexts. One

could ask a direct question about the generalization of Medicine

A across contexts. The very wording of a direct question, how-

ever, might bias the answer toward one model or another (for a

discussion of the striking influence of wording of causal ques-

tions on responses, see Buehner, Cheng, & Clifford, 2003). In-

troducing Medicine B into the scenario and letting it be the

target of the question allows one to assess implicitly and without

bias what perceived aspect of Medicine A generalizes across

contexts. In the rest of this article, we briefly review two ap-

proaches to causal learning and present two experiments that

tested hypotheses about generalization across contexts, making

use of scenarios such as those in Figure 1.

CAUSALVERSUS PURELY COVARIATIONAL ACCOUNTS
OF CAUSAL LEARNING

Causal relations encapsulate how the world works. A classic

problem in the field of artificial intelligence is the frame problem

(McCarthy & Hayes, 1969): Given the vast amount of empirical

information that is available at each moment in each situation,

which kinds of information are the most relevant across time and

contexts and therefore should be selected for representation? A

prevailing answer is: causal relations (e.g., Pearl, 2000; Spirtes,

Glymour, & Scheines, 1993/2000). Concurrently in psychology,

causal learning has emerged as an important topic (e.g., Blais-

dell, Sawa, Leising, & Waldmann, 2006; Dickinson, Shanks,

& Evenden, 1984; Glymour, 2001; Griffiths & Tenenbaum,

2005; Waldmann & Holyoak, 1992). The two dominant ap-

proaches to causal learning—the causal approach (e.g., Cheng,

1997) and the purely covariational approach (e.g., Rescorla &

Wagner, 1972)—make precise and fundamentally different
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predictions regarding what remains invariant across contexts

(Cheng, 2000; Cheng, Novick, Liljeholm, & Ford, 2007). At the

heart of the debate between these approaches is the issue of

whether or not reasoners make (tacit) generic assumptions about

causal events in the distal world, events that (as Hume, 1739/

1987, noted) are unobservable. Assumptions about unobserv-

able events, ceteris paribus, are understandably objectionable.

In this article, we argue that the payoff of such assumptions is the

capability of making coherent generalizations across contexts.

Although some studies have investigated generalization to

novel causal contexts (e.g., Lien & Cheng, 2000; Povinelli,

2000), none have tested the distinct predictions of the two ap-

proaches. The experiments reported here tested these predic-

tions.

DP and Causal Power: Two Psychological Accounts of

Causal-Strength Estimation

Purely covariational models of causal learning attempt to side-

step assumptions regarding unobservable distal events. Ac-

cording to a well-established model of covariation, the DP rule

(Jenkins & Ward, 1965), adapted to apply to subsets of events in

which causes other than the candidate cause remain constant

(Cheng & Holyoak, 1995), reasoners contrast two probabilities:

P(e|c), the probability of a target effect e given the presence of a

candidate cause c, and P(e|�c), the probability of e given the

absence of c:

DPc ¼ Pðe j cÞ � Pðe j �cÞ ð1Þ

These conditional probabilities are directly estimable by the

observable relative frequencies of the relevant events. Both e

and c are binary variables. Depending on whether DP is greater

than, less than, or not noticeably different from 0, c is assumed to

be a generative cause, preventive cause, or noncause of e, re-

spectively. Under a set of conditions in which learning is at

asymptote, the DP rule is equivalent to Rescorla and Wagner’s

model (1972; see Danks, 2003), and both accounts have been

adopted to model causal strength (e.g., Spellman, 1996). For all

conditions in our experiments, these accounts make the same

ordinal predictions.

Fig. 1. Illustration of two hypothetical studies testing the influences of Medicines A and B on
headache. The illustrations at the top show patients who were not exposed to any medicine; the
bottom illustrations show patients who were exposed to either (a) Medicine A alone or (b) Medicines
A and B in combination. In these studies, the causal power of the treatment (an estimate of a distal
property) remains constant across studies while DP (a proximal property) varies. Values of Rescorla
and Wagner’s (1972) model (RW) and of the causal-support model (Griffiths & Tenenbaum, 2005)
are also listed. Values of causal support were generated with a noisy-OR function (see the section on
Independent Causal Influence).
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In Figure 1, DP of the treatment increases from .25 in the first

study to .75 in the second study. Therefore, if judgments are

based on DP, people should perceive a change in the results

across treatments and, accordingly, infer that Medicine B causes

headache.

In contrast, according to the causal-power theory of the prob-

abilistic contrast model (Cheng, 1997; Novick & Cheng, 2004;

the power PC theory for short), the reasoner explains observable

probabilistic contrast (e.g., the covariation between cigarette

smoke and lung cancer) by postulating unobservable causal

relations in the distal world (e.g., lung cancer being caused

by cigarette smoke, background causes, or both). The un-

observable causal power (i.e., strength; Cartwright, 1989) of

these relations is estimable under a set of default generic causal

assumptions. For example, two of these assumptions (which can

be revised in light of evidence) are that candidate c influences e

independently of background causes (i.e., all causes of e other

than c occurring in the context), and that the latter do not prevent

e. It can be shown that under this set of assumptions, if, in ad-

dition, background causes of e are believed to occur indepen-

dently of c, then when DP is greater than or equal to 0, the

generative power of c with respect to e—the (ideally invariant)

unobservable probability with which c produces e—can be es-

timated as follows:

generative power of c ¼ Pðe j cÞ � Pðe j �cÞ
1� Pðe j �cÞ ð2Þ

The preventive analogue of this equation applies when DP is

less than or equal to 0 (see Cheng, 1997).

For both studies in Figure 1, the causal power of the treatment

is .75, according to Equation 2. Thus, if change is defined by

causal-power values, people should judge that Medicine B does

not cause headache. Critical to this prediction is the assumption

that c and the background causes exert independent influences.

If the influence of a cause depends on (i.e., the cause interacts

with) context-specific and potentially unobserved background

causes, knowledge acquired in one context will not apply in

another.

Independent Causal Influence

Let us consider what independent causal influence means. If two

or more causes independently influence an effect, then when they

are jointly present, each operates on the effect as if the other

cause or causes were not there. We use Figure 1 to illustrate this

concept for Medicine A and the background cause (omit Med-

icine B from the second study for our purpose here). Suppose

that Medicine A is administered to the patients in both control

groups (top halves of the two studies illustrated in Fig. 1) and

that the medicine causes headache with a probability of 3/4 in

each individual, operating in the same way in both studies (i.e.,

as if the background causes were not there). The resulting fre-

quencies of headache would be consistent with what appears in

the treatment groups (bottom halves of the two studies in the

figure), in accordance with the definition of independence in

probability theory.

For the treatment group in Figure 1a (bottom left), the prob-

ability of ‘‘headache being caused independently by both the

medicine and the background cause,’’ an unobservable event,

should be 1/2, the product of the probabilities of the constituent

events: the probability that headache is caused by the medicine

(3/4) and the probability that headache is caused by the back-

ground cause (2/3; estimated by reasoning that, given the ran-

dom assignment of patients to the treatment and control groups

in Fig. 1a, if the treatment group had not received Medicine A,

the proportion of patients who would have a headache anyhow

would be similar to the proportion of patients in the control group

who do have a headache). (Visualize the bottom left panel as

showing the result of the superimposition of the panels at the

upper left and bottom right. The overlap between the latter two

panels corresponds to this unobservable event.) Given that the

probability of the overlap is 1/2, it follows that the probability of

headache being caused by the medicine, the background cause,

or both is 11/12—the probability of the union of two indepen-

dent events is the sum of the constituent probabilities minus

their product (i.e., the noisy-OR rule; Glymour, 2001). And in-

deed, that is the observed outcome in the bottom left panel. By

applying the product definition of independence to postulated

causal events, as just explained, the power PC theory (Cheng,

1997) interprets the noisy-OR rule as an implication of inde-

pendent causal influence (in contrast to related interpretations

in the artificial intelligence literature; e.g., Pearl, 1988, pp.

184–185).

The covariational view’s attempt to skirt assumptions about an

unobservable event—in this case, the event of headache being

independently produced by both c and the background cause—

merely results in assuming that the event does not occur, in other

words, that c and the background cause have mutually exclusive

influences; there is no escape from assumptions regarding some

unobservable events (Cheng et al., 2007). Figure 2, with Med-

icine B omitted in the second study, illustrates this predicament

of the DP model. Across the two studies in this figure, DP of the

treatment is unchanged: .25 (in each study, given the treatment,

6 additional patients have a headache). Thus, according to DP,

the figure represents the independent influences of Medicine A

and the background cause. However, for the strength of Medi-

cine A as defined by DP to remain constant across the two

studies, those 6 additional patients in the bottom half of Figure

2b must not overlap with the 16 who are estimated to have

headache due to the background cause; that is, the causes have

mutually exclusive influences (i.e., the probability of both

causes producing headache in a patient is 0). The summation

term in Rescorla and Wagner’s (1972) model carries the same

implication.

Note that mutual exclusivity as a definition of independence

is self-contradictory. Under this definition, which patients the
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medicine affects would depend critically on which patients are

affected by the background cause; in other words, the medicine

cannot operate as if the other causes are not there. In sum, co-

variational measures are proximal rather than distal, in that they

do not map onto any interpretation of causal strength that is

coherent across contexts.

Griffiths and Tenenbaum (2005; Tenenbaum & Griffiths, 2001)

showed that both DP and causal power are Bayesian maximum-

likelihood estimates of causal strength, given the existence of the

causal relation, under two alternative generating functions: lin-

ear and noisy-OR. The former generating function corresponds to

DP, whereas the latter is the generating function adopted by the

power PC theory, and follows from its assumptions (Cheng, 1997).

Griffiths and Tenenbaum interpreted each generating function as

reflecting a different possible causal mechanism. Their view of

DP as a viable interpretation of causal strength overlooks the

incoherence ofDP just explained (see Cheng & Novick, 2005, for

an alternative interpretation of DP, not as strength, but as the

probability with which e would not have occurred without c). Our

experiments addressed this issue: Do reasoners adopt an inter-

pretation of causal strength that supports coherent generalization

across contexts?

EXPERIMENT 1: A STRUCTURAL DECISION ABOUT
A SIMPLE CAUSAL LINK BASED ON

MULTIPLE CONTEXTS

The goal of Experiment 1 was to identify the property of a causal

relation that is assumed to be invariant, and hence generalize,

across contexts. For this experiment, we used the scenarios in

Figures 1 and 2 but presented individual trials in each scenario

(corresponding to individual faces in the figures) in random se-

quential order, with trials in corresponding positions in the con-

trol and treatment panels paired in a before-and-after design.

Method

Subjects

Fifty undergraduates at the University of California, Los An-

geles (UCLA), participated to obtain credit in an introductory

psychology course. They were randomly assigned to two groups.

Design

All subjects were presented with data from two separate studies

(i.e., two data sets). One group of subjects, the power-constant

group, was presented with the two data sets illustrated in Figure 1,

Fig. 2. Illustration of two hypothetical studies testing the influences of Medicines A and B on
headache. The illustrations at the top show patients who were not exposed to any medicine; the
bottom illustrations show patients who were exposed to either (a) Medicine A alone or (b) Medicines
A and B in combination. In these studies, the causal power of the treatment varies across studies
while DP remains constant. Values of Rescorla and Wagner’s (1972) model (RW) and of the causal-
support model (Griffiths & Tenenbaum, 2005) are also listed. Values of causal support were gen-
erated with a noisy-OR function (see the section on Independent Causal Influence).
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in which causal power was constant while DP varied. A second

group, the DP-constant group, was presented with the data sets

illustrated in Figure 2, in which causal power varied while DP

remained constant.

The critical measure was a judgment about whether Medicine

B is a cause of headache. We constructed this measure on the

basis of the assumption that reasoners expect causal influences to

remain invariant across contexts. To avoid biasing subjects’ an-

swers (e.g., toward a decision based on causal power or DP), we

did not request evaluation of any aspect of the individual studies.

If subjects spontaneously generalized across studies on the

basis of causal power, those in the power-constant group would

have judged Medicine B to be noncausal. Conversely, if subjects

generalized on the basis of DP, those in the DP-constant group

would have been the ones to judge Medicine B to be noncausal.

Materials and Task

The task was presented on a computer. First, subjects were

presented with the following cover story:

A pharmaceutical company is investigating if two allergy medi-

cines (Medicines A and B) might produce headache as a side ef-

fect. The company has conducted two experiments that test the

influence of these medicines, and you will see the results from both

experiments. The two experiments were conducted in different

labs, so the number of allergy patients who have a headache before

receiving any medicine may vary across experiments. After re-

viewing the results from both experiments, you will be asked about

the influence of the medicines on headache.

Subjects were further informed that data from the two studies

would be presented separately and that patients in the first study

received Medicine A only, whereas those in the second study

received Medicines A and B in combination.

On each trial, subjects were presented with a picture of an

individual allergy patient indicating that patient’s state (with or

without headache) before receiving any medicine (i.e., an en-

larged version of a face in one of the top panels in Fig. 1 or 2).

They were then asked to predict whether the patient had a

headache after receiving the medicine or medicines. They were

instructed to press the ‘‘Y’’ key to indicate ‘‘yes’’ and the ‘‘N’’ key

to indicate ‘‘no.’’ After making a prediction, subjects were given

feedback, which consisted of a picture indicating the patient’s

state after taking the medicine or medicines (i.e., an enlarged

version of a face in one of the bottom panels in Fig. 1 or 2) and a

statement reporting whether the subject’s prediction was right or

wrong. The before-and-after format was adopted to encourage

the assumption that background causes occurred independently

of the treatment, a prerequisite for estimating causal power.

The data sets were separated by a screen indicating that

the data from the first study had ended and that the data from

the second study would follow. Subjects were reminded that

they would be asked about the results from both studies. After

viewing all the trials, subjects were asked this question:

Based on the information from BOTH experiments, what is your

best bet on whether or not Medicine B causes headache?

Subjects pressed the ‘‘Y’’ key to indicate ‘‘yes, it does’’ and the

‘‘N’’ key to indicate ‘‘no, it does not.’’ Note that our question

concerned neither estimates of causal strength nor estimates of

the influence of Medicine A, even though the predictions being

tested rested on the causal strength of that medicine.

Results

Our results clearly indicated that change across contexts is defined

with respect to causal power, rather than DP. Whereas more than

two thirds of the power-constant group (18 out of 25) responded

that Medicine B was noncausal, only one fifth of the DP-constant

group (5 out of 25) did so, w2(1, N 5 50) 5 13.6, p < .001.

EXPERIMENT 2: A DECISION ABOUT WHETHER
A CANDIDATE CAUSE INTERACTS WITH

BACKGROUND CAUSES

Most causes are complex and are likely to interact with unob-

served background factors. Thus, the assumption that causal in-

fluences are independent would often be too strong (see Cheng,

2000, for derivations of weaker conditions that mimic indepen-

dent causal influence). This assumption, however, provides a

criterion for its own demise: If the candidate’s causal power

changes across contexts, one can infer that the assumption has

been violated. This violation provides a signal for seeking a more

complex explanation. In Experiment 2, we explored the criterion

subjects use to decide that a simple causal hypothesis needs re-

vision.

Experiment 2 used the same method as Experiment 1, except

that subjects in Experiment 2 were presented with three hypo-

thetical studies in which only one medicine was tested. Subjects

were asked to judge whether that medicine interacted with

background causes that might have varied across the three

studies. As in Experiment 1, we avoided requesting evaluations

of causal influence for individual studies.

Method

Thirty UCLA undergraduates participated to obtain credit in an

introductory psychology course. They were randomly assigned

to two groups.

Design

Each subject was presented with three studies. Causal power

remained constant across the data sets for one group of subjects,

the power-constant group, but varied across the studies for the

other group, the power-varying group. In other words, the as-

sumption of independent causal influence for the candidate and

background causes held in the data presented to the power-

constant group, but not in the data presented to the power-
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varying group. Unlike in Experiment 1, DP varied across the

studies for both groups, with the variation held constant across

groups. Tables 1 and 2 list the event frequencies and values of

causal power and DP for the three studies presented to each

group. Within each group, the order of the three studies was

counterbalanced across subjects in a Latin-square design.

The critical measure was a judgment of whether Medicine A

interacted with unobserved background causes. If subjects

generalized across contexts on the basis of causal power, those in

the power-varying group would have inferred an interaction, but

those in the power-constant group would have inferred no in-

teraction. In contrast, if subjects generalized on the basis of DP

values, subjects in the two groups would have inferred an in-

teraction equally often.

Materials and Task

Except for modifications to convey that a single medicine was

tested and that three studies would be presented, the materials

and task were identical to those in Experiment 1. After viewing

all trials, subjects were asked:

Based on the results from ALL THREE experiments, do you think

that Medicine A interacts with some factor that varies across ex-

periments, or do you think that the medicine influences the pa-

tients in different experiments in the same way?

YES: I think that the medicine interacts with some factor that

varies across experiments.

NO: I think that the medicine has the same influence across ex-

periments.

Note that we did not specify what ‘‘influences . . . in the same

way’’ involved.

Results

Our results corroborated those of Experiment 1, demonstrating

that generalizations are coherent, that is, in accord with causal

power rather than DP. Whereas only one third of the subjects in

the power-constant group (5 out of 15) responded ‘‘yes’’ to the

interaction query, most subjects (13 out of 15) in the power-

varying group did so, w2(1, N 5 30) 5 8.89, p < .005.

A Group (2) � Order (3) between-subjects analysis of vari-

ance indicated that there was an influence of group, F(1, 24) 5

10.67, p< .005, but no influence of order or interaction between

group and order, Fs(2, 24) < 1.

GENERAL DISCUSSION

Both experiments indicate that people tacitly adopt generic

assumptions regarding unobservable causal events so that co-

herent generalization across contexts is possible. Although the

experimental task concerned a structural decision (regarding

the existence of a simple causal link or of an interaction with

background causes), people spontaneously responded on the

basis of estimates of causal strength; more specifically, they

judged according to causal power, a coherent estimate of the

unobservable distal property of causal strength, rather than

according to DP, a proximal measure of covariation. The same

pattern of results was obtained with variations of our experi-

mental materials: scenarios involving a between-subjects rather

than before-and-after design, simultaneous rather than se-

quential presentation of trials, other values of causal power and

DP, and different sample sizes for the scenarios (Liljeholm,

2006).

Compelling intuition, as well as our findings, contradicts the

purely covariational approach. The DP model makes the

anomalous and counterintuitive prediction that a cause can be

predestined to interact with others. Let us return to Figure 1b,

but with Medicine B omitted from the treatment in the second

study. In this scenario, Medicine A has a DP value of .75. Now

consider testing this medicine on the patient groups in Figure

1a. Not only does the covariational approach make the in-

accurate prediction that reasoners would infer that the medicine

interacts with the background causes in view of the results for

these additional patients, but it predicts that they would infer

that this interaction is inevitable: Given the top left panel (the

TABLE 1

Relative Frequencies of Headache for the Three Hypothetical

Studies in Experiment 2

Subject group

Study 1 Study 2 Study 3

e|no A e|A e|no A e|A e|no A e|A

Power-constant 16/24 22/24 8/24 20/24 0/24 18/24

Power-varying 0/24 6/24 0/24 12/24 0/24 18/24

Note. A 5 administration of Medicine A; e 5 effect (i.e., headache).

TABLE 2

Values of Causal Power, DP, Rescorla and Wagner’s (1972) Model (RW), and Causal Support for the Three

Hypothetical Studies in Experiment 2

Subject group

Causal power DP and RW Causal supporta

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3 Study 1 Study 2 Study 3

Power-constant .75 .75 .75 .25 .50 .75 2.0 5.6 15.3

Power-varying .25 .50 .75 .25 .50 .75 2.0 7.7 15.3

aValues of causal support (Griffiths & Tenenbaum, 2005) were generated with a noisy-OR function (see the section on Independent Causal
Influence).
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control group for that study), it is impossible for the medicine to

have a DP value of .75. Therefore, one need not conduct the

study to find out if the medicine interacts with background

causes. The DP values for a given cause across contexts are like

two-dimensional snapshots that do not cohere into a three-di-

mensional representation.

We have made use of only causal power and DP to illustrate

the rather abstract distinction between a distal and a proximal

property (cf. Gallistel’s, 1990, distinction between representa-

tional and associative learning). Another proximal concept is

Griffiths and Tenenbaum’s (2005) Bayesian causal support, a

normative measure of the amount of evidence that a sample

provides in favor of the existence of a causal relation. This

measure and chi-square are highly correlated (Tenenbaum &

Griffiths, 2001). Both are properties of the sample; both increase

with sample size, other things being equal. Is causal support, as

a proximal quantity, something that reasoners carry from one

context into another? The clear answer is ‘‘no,’’ as in our various

experimental conditions, values of causal support were con-

trolled in tandem withDP (see Figs. 1 and 2 and Tables 1 and 2).

Note, however, that our results do not pose a problem for the

Bayesian approach per se. Bayesian models appropriate for the

structural decisions in our experimental scenarios can be de-

veloped (e.g., see Jaynes, 2003) and indeed have been devel-

oped (T. Griffiths, personal communication, January 15, 2006).

The distinction between distal and proximal properties is a

generalization of the psychophysical distinction between distal

and proximal stimuli. A proximal stimulus consists of the pat-

terns of energy impinging on receptors, whereas a distal stim-

ulus consists of the patterns of energy that emanate from an

object. It is a fundamental fact that people have no access to the

distal world except through proximal stimulation. But useful

distal properties are often not directly represented in the prox-

imal stimuli. Objects have viewpoint-invariant three-dimen-

sional shapes that are not directly represented in the two-

dimensional viewpoint-specific inputs in retinal images. Like-

wise, invariant causal relations are not directly represented in

the observed frequencies of events. For example, each panel in

Figure 1 shows a different number of patients with headache,

even though we constructed the influence of the treatment to be

invariant across contexts. Thus, for organisms to operate intel-

ligently in the distal world, their cognitive processes must have

the goal of recovering distal properties (e.g., the constant shape

of a three-dimensional object) from proximal input (e.g., view-

point-specific two-dimensional retinal images).

As cognitive scientists have learned, the problem of recov-

ering the distal stimulus is typically unsolvable unless con-

straints are introduced (see Marr, 1982, for examples). Indef-

initely many distal stimuli can give rise to the same proximal

stimuli. The theoretical construct of causal power serves a pur-

pose analogous to the tacit assumption in the human visual

system that the world is three-dimensional—both enable par-

simonious solutions to the recovery problem. From this per-

spective, our results indicating that causal power is the feature

people carry from one context into another should come as no

surprise. Neither should it be a surprise that coherence matters.

How else can one learn about the distal world that presumably

exists, if not by assuming the coherence of disparate proximal

stimuli?
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