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Previous work has shown that adults in the United States process fractions and decimals in distinctly dif-
ferent ways, both in tasks requiring magnitude judgments and in tasks requiring mathematical reasoning.
In particular, fractions and decimals are preferentially used to model discrete and continuous entities,
respectively. The current study tested whether similar alignments between the format of rational
numbers and quantitative ontology hold for Korean college students, who differ from American students
in educational background, overall mathematical proficiency, language, and measurement conventions. A
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1. Introduction

1.1. Conceptual and processing differences between fractions and
decimals

A major conceptual leap in the acquisition of formal mathemat-
ics takes place with the introduction of rational numbers (typically
fractions followed by decimals, at least in curricula used in the
United States). These are the first formal numbers students encoun-
ter that can represent magnitudes less than one. Both fraction and
decimal symbolic notations often prove problematic for students.
Children, and even some adults, exhibit misconceptions about the
complex conceptual structure of fractions (Ni & Zhou, 2005;
Siegler, Fazio, Bailey, & Zhou, 2013; Siegler, Thompson, &
Schneider, 2011; Stigler, Givvin, & Thompson, 2010). Such
difficulties have also been reported in high mathematics-
achieving countries such as South Korea (Kim & Whang, 2011,
2012; Kwon, 2003; Pang & Li, 2008). Students also encounter
problems in learning to understand decimals (Rittle-Johnson,
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Siegler, & Alibali, 2001), but generally master the magnitudes of
decimals before fractions (Iuculano & Butterworth, 2011).

Fractions and decimals are typically introduced as alternative
notations for the same magnitude, other than rounding error
(e.g., 3/8 km vs. 0.375 km). For example, the Common Core State
Standards Initiative (2014) for Grade 4 refers to decimals as a
“notation for fractions”. However, psychological research has
revealed both conceptual and processing differences between the
two notations. Whereas the bipartite (a/b) structure of a fraction
represents a two-dimensional relation, a corresponding decimal
represents a one-dimensional magnitude (English & Halford,
1995; Halford, Wilson, & Phillips, 1998) in which the variable
denominator of a fraction has been replaced by an implicit con-
stant (base 10). Studies have shown that magnitude comparisons
can be made much more quickly and accurately with decimals
than with fractions (DeWolf, Grounds, Bassok, & Holyoak, 2014;
[uculano & Butterworth, 2011), but that fractions are more
effective than decimals in tasks such as relation identification or
analogical reasoning, for which relational information is para-
mount (DeWolf, Bassok, & Holyoak, 2015a). Importantly, various
aspects of performance with both fractions and decimals predict
subsequent success with more advanced mathematical topics, such
as algebra (Booth, Newton, & Twiss-Garrity, 2014; DeWolf, Bassok,
& Holyoak, 2015b; Siegler et al., 2011, 2012, 2013).
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1.2. Semantic alignment and the ontology of quantity types

There is considerable evidence that people’s interpretation and
use of arithmetic operations is guided by semantic alignment
between mathematical and real-life situations. The entities in a
problem situation evoke semantic relations (e.g., tulips and vases
evoke the functionally asymmetric “contain” relation), which peo-
ple align with analogous mathematical relations (e.g., the non-
commutative division operation, tulips/vases) (Bassok, Chase, &
Martin, 1998; Guthormsen et al., 2015). Rapp, Bassok, DeWolf,
and Holyoak (2015) found that a form of semantic alignment
guides the use of different formats for rational numbers, fractions
and decimals. Specifically, adults in the United States selectively
use fractions and decimals to model discrete (i.e., countable) and
continuous entities, respectively. Similarly, DeWolf et al. (2015a)
demonstrated that American college students prefer to use frac-
tions to represent ratio relations between countable sets, and dec-
imals to represent ratio relations between continuous quantities.

The preferential alignment of fractions with discrete quantities
and decimals with continuous quantities appears to reflect a basic
ontological distinction among quantity types (e.g., Cordes &
Gelman, 2005). Sets of discrete objects (e.g., the number of girls
in a group of children) invite counting, whereas continuous mass
quantities (e.g., height of water in a beaker) invite measurement.
Continuous quantities can be subdivided into equal-sized units
(i.e., discretized) to render them measurable by counting (e.g.,
slices of pizza), but the divisions are arbitrary in the sense that they
do not isolate conceptual parts. Even for adults, the distinction
between continuous and discrete quantities has a strong impact
on selection and transfer of mathematical procedures (Alibali,
Bassok, Olseth, Syc, & Goldin-Meadow, 1999; Bassok & Holyoak,
1989; Bassok & Olseth, 1995).

The different symbolic notations for rational numbers, fractions
and decimals, appear to have different natural alignments with dis-
crete and continuous quantities (see Fig. 1). A fraction represents
the ratio formed between the cardinalities of two sets, each
expressed as an integer; its bipartite format (a/b) captures the value
of the part (the numerator a) and the whole (the denominator b). A
decimal can represent the one-dimensional magnitude of a fraction
(a/b = c) expressed in the standard base-10 metric system.

The fraction format is well-suited for representing sets and sub-
sets of discrete entities (e.g., balls, children) that can be counted
and aligned with the values of the numerator (a) and the denomi-
nator (b) (e.g., 3/7 of the balls are red). Also, as is the case with inte-
ger representations, the fraction format can be readily used to
represent continuous entities that have been discretized—parsed
into distinct equal-size units—and therefore can be counted (e.g.,
5/8 of a pizza). In contrast, the one-dimensional decimal represen-
tation of such discrete or discretized entities seems much less
natural (~0.429 of the balls are red; 0.625 of a pizza).

In contrast, the decimal format is well-suited to represent por-
tions of continuous entities, particularly since unbounded decimals
capture all real numbers (i.e., all points on a number line). This
alignment appears to be especially strong when decimals (base
10) are used to model entities that have corresponding metric units
(0.3 m, 0.721). When continuous entities have non-metric units
(e.g., imperial measures with varied bases such as 12in. or
60 min), their alignment with decimals may require computational
transformations. Given that the denominator of a fraction is a vari-
able that can be readily adapted to any unit base, it is computation-
ally easier to represent non-metric measures of continuous entities
with fractions (2/3 of a foot) than with decimals (0.67 ft). Because
computational ease likely interacts with the natural conceptual
alignment of continuous entities with decimals, metric units are
predominantly represented with decimals, whereas imperial units
may be represented by fractions (Rapp et al., 2015).
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Fig. 1. Hypothesized alignment of fractions and decimals with discrete and
continuous entities. Copyright © 2015 by the American Psychological Association.
Reproduced with permission from Rapp et al. (2015).

1.3. The need for cross-national comparisons

The conceptual and processing differences between the differ-
ent notations for rational numbers have been interpreted as
reflecting basic representational differences between alternative
formats for such numbers. Fractions may be better suited to repre-
sent two-dimensional relations (DeWolf et al., 2015a), whereas
decimals may be more closely linked to one-dimensional magni-
tude values (DeWolf et al., 2014). In addition, the mental represen-
tations of fractions and decimals may inherently align with
discrete and continuous quantities, respectively (Rapp et al., 2015).

However, the interpretation of these findings as reflections of
deep representational distinctions remains speculative, as all the
phenomena we have reviewed have been demonstrated only with
American students. It is well-known that students in the United
States lag behind students in various Asian countries (including
South Korea, Singapore, and Japan) in their math achievement
(OECD, 2012). Perhaps the gaps observed between performance
on various tasks (e.g., the superiority of decimals in magnitude
comparison, or of fractions in relational reasoning) reflect deficien-
cies in the knowledge American students have attained about
rational numbers. Similarly, the distinction between discrete and
continuous entities has linguistic and cultural correlates (Geary,
1995); hence it is possible that non-English-speaking students
from a different culture would not align distinct mathematical
symbols with distinct types of quantity. Such interpretive issues
can be addressed by cross-national and cross-cultural research
(cf. Bailey et al., 2015; Hiebert et al., 2003; Richland, Zur, &
Holyoak, 2007; Stigler, Fernandez, & Yoshida, 1996). In order to
develop general theories in the field of higher cognition, it is criti-
cal to distinguish between phenomena that are specific to particu-
lar educational practices in specific contexts, and those that reflect
representational capacities of the human mind that are not deter-
mined by specific educational practices or cultural contexts. The
methodological approach of identifying those aspects of cognitive
performance that are the same or different across populations
varying in culture, language, and educational practices is especially
informative in answering these types of basic questions.

1.4. Overview of the present study

Here we report a cross-national comparison of conceptual and
processing differences between fractions and decimals. We sys-
tematically replicated several studies conducted in the United
States that compared performance with the two types of rational
numbers, using tasks involving both magnitude comparison and
relational reasoning, with samples drawn from college students
in South Korea. Several factors make South Korea a particularly
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interesting nation to use in a cross-national comparison with the
United States. The Korean language is structurally very different
from English, and the culture and education system differ with
respect to several factors that may impact students’ conceptions
of rational numbers. First, in comparison to the U.S., South Korea
has excelled in mathematics achievement in recent years. Accord-
ing to the 2012 PISA results (OECD, 2012), South Korea ranked 5th
in mathematics achievement (compared to the 36th-place stand-
ing of the U.S.). There is evidence that much of this superior
achievement in Asian countries can be explained by educational
techniques that emphasize achieving deeper conceptual under-
standing and mastery before moving on to more complex concepts
(Bailey et al., 2015; Perry, 2000; Stigler et al., 1996). If Korean stu-
dents have superior skill in whole number division, they will be
able to translate fractions to decimals quickly and efficiently. Such
a difference in procedural fluency might result in national
differences in performance on conceptual tasks (Bailey et al., 2015).

The language differences between Korean and English are
another factor that could lead to conceptual differences between
different types of rational numbers. In particular, the Korean
number-naming system is structurally different from that of
English. Whereas the English number system has irregularly
formed decade names (e.g., ten, twenty, thirty, and forty) and teen
names (e.g., eleven, twelve, thirteen, and fourteen), many Asian
languages (including Korean, Chinese, and Japanese) use numerical
names that are more consistently organized using the base-10
numeration system. For example, in Korean, the name of the num-
ber 11 is literally translated as “ten-one”, and 12 as “ten-two”. Also,
20 is translated as “two-ten(s)” and 30 as “three-ten(s)” (where
plurals are tacitly understood).

The Korean spoken numerals thus inherently represent the base-
10 numeration system, which may affect the conceptual representa-
tion of numbers. For example, Miura, Okamoto, Kim, Steere, and
Fayol (1993) claimed that the transparent base-10 structure of Asian
counting systems affects children’s understanding of place value. In
their study, when first graders were asked to represent numbers
using blocks, Chinese, Japanese, and Korean-speaking children used
canonical base-10 constructions more often than did English,
French, and Swedish-speaking children. For example, to represent
the number 42, Asian children used 4 tens blocks and 2 ones blocks,
whereas English-speaking children used 42 ones blocks. The base-
10 structure of the linguistic system for number names is echoed
in the measurement system used in Korea. Base-10 (metric) units
are used exclusively in South Korea, whereas non-base-10 (e.g.,
imperial) units are widely used in the U.S., and are known to affect
students’ interpretation and use of fractions and decimals (Rapp
et al., 2015). These differences might be expected to impact perfor-
mance with different types of rational numbers.

The fraction-naming systems also differ between Korea and the
U.S. In the Korean language, the fractional parts are explicitly rep-
resented in fraction names (Miura, Okamoto, Vlahovic-Stetic, Kim,
& Han, 1999; Mix & Paik, 2008; Paik & Mix, 2003). For example, the
Korean name for “one third” translates as “of three parts, one”; and
“two thirds” translates as “of three parts, two”. These types of frac-
tion names transparently convey part-whole relations that are not
made so obvious in the English equivalents (although it is not clear
whether differences in fraction names influence children’s perfor-
mance; Paik & Mix, 2003).

Finally, South Korean curricula place a strong emphasis on the
interchangeable use of different rational numbers. For example,
the Korean mathematics textbook (Korean Ministry of Education,
2014) formally introduces fractions and decimals in the same chap-
ter for the third-grade level (fractions first, immediately followed
by decimals); this is the first time when students are taught about
either fractions or decimals. Throughout the elementary-school
curricula, students are expected to learn how fractions and

decimals are conceptually related and to use them interchangeably.
Some word problems use both fractions and decimals to represent
quantities of the same type (e.g., 0.51 and 2/3 1 of water). In con-
trast, in curricula used in the United States, fractions are typically
introduced around first grade whereas decimals are introduced
only in third grade, after fractions are thought to be well under-
stood. Other than a brief transition explaining the relation between
fractions and decimals, the two number formats are typically con-
sidered separately (Common Core State Standards Initiative,
2014; Scott Foresman-Addison Wesley, 2011). This difference in
pedagogy may have an impact on conceptual understanding and
performance with different types of rational numbers, perhaps
reducing or eliminating processing differences between fractions
and decimals in Korea relative to the United States.

In the present study we used samples of college students in
South Korea to replicate several experimental paradigms, previ-
ously used in the United States, in which performance with frac-
tions and decimals was compared. Our overarching aim was to
determine whether the reported differences in processing between
the two types of rational numbers reflect specific characteristics of
the samples used in the original studies conducted in the United
States, or reflect more fundamental representational differences
between alternative formats for rational numbers.

The work reported here examines both magnitude processing
and reasoning with fractions and decimals. First, we performed a
textbook analysis to establish whether Korean textbooks show an
ontological alignment between fractions and decimals and discrete
and continuous entities, respectively, as appears to be the case for
textbooks used in the United States (Rapp et al., 2015). We then
performed a series of experiments investigating whether Korean
adults show sensitivity to this alignment. If decimals map more
readily than fractions to continuous representations, then one
important task that would be expected to show a decimal advan-
tage is magnitude comparison (typically assumed to depend on a
continuous mental number line, see Dehaene, 1992). In Experi-
ment 1 we tested whether adults in Korea would show the same
advantage in magnitude processing for decimals and integers over
fractions as do American adults (DeWolf et al., 2014). Given that
Korean students learn fractions and decimals together, and the
fraction-naming system in Korean provides a more explicit map-
ping of symbol to referent, one might expect that Korean students
would develop a more unified representation of number types, and
hence not show differences in processing efficiency. Indeed, deci-
mals and fractions could both be aligned with a continuous repre-
sentation, so it is not at all obvious that a performance difference
between the two number types would be observed in the Korean
population. By focusing instruction on the translation between
fractions and decimals, the Korean system may encourage students
to map fractions onto continuous representations. On the other
hand, if the cognitive representation of decimals is inherently more
closely linked to a continuous representation of one-dimensional
magnitude than is the representation of fractions, then similar dif-
ferences in processing efficiency may be observed in the Korean
sample.

Additional work was directed at the conceptual nature of frac-
tions and decimals. In particular, we sought to determine whether
Korean students, like their American counterparts, honor a natural
alignment of fractions with discrete quantities and decimals with
continuous ones. Using paradigms adapted from Rapp et al.
(2015) and DeWolf et al. (2015a), Experiments 2-4 tested whether
Korean college students show the same natural alignment between
rational numbers and entity types as do American students,
despite differences in language and use of different measurement
systems in the two countries (invariably metric in Korea vs. often
imperial in the United States). Finally, Experiment 5 investigated
whether Korean college students show differences in reasoning
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about fractions in a task designed to highlight the advantages of
the bipartite fraction format over the unidimensional decimal for-
mat when aligned with various discrete and continuous represen-
tations (DeWolf et al., 2015a).

2. Textbook analysis

We examined the possible alignment of fractions to discrete
quantities versus decimals to continuous ones using the standard
Korean textbook for grades 3-6 in which fractions and decimals
are formally introduced. Rapp et al. (2015) argued that this selec-
tive alignment may be due in part to how these quantities are used
to represent entities in the real world. In an analysis of textbook
word problems, they found that educators in the U.S. are more
likely to create problems in which continuous entities are repre-
sented with decimals and discrete entities are represented with
fractions. Given that learning history may affect subsequent align-
ment, we examined a set of word problems in a comparable Korean
mathematics textbook to assess whether this alignment also holds
for problems that Korean mathematics educators present to stu-
dents as situation models of rational numbers.

2.1. Method

We examined the Korean mathematics textbook 2014 series
from 3rd through 6th grade (Korean Ministry of Education,
2014). This textbook series is a national standard used in elemen-
tary schools in South Korea. Each grade consists of two semesters,
in which one main textbook and one workbook are used. The 3rd to
6th grade levels were selected because they cover the main intro-
duction and use of rational numbers in math curricula prior to the
start of formal algebra in both the United States and South Korea.
Although in the U.S. curricula fractions initially appear around
the first grade, the main introduction of both fractions and deci-
mals begins in the third grade (Common Core State Standards
Initiative, 2014; Scott Foresman-Addison Wesley, 2011), as is also
the case in Korea. To allow a comparable analysis, we focused only
on the 3rd through 6th grade levels from Rapp et al. (2015). In
South Korea, neither fractions nor decimals are covered at all prior
to the 3rd grade.

We analyzed all the problems that involved either fraction or
decimal numbers (but not both); problems that included both frac-
tions and decimals were excluded from the analysis. Such prob-
lems comprised only 9.5% of the total problems (the analogous
problems excluded from analyses by Rapp et al. comprised 2% of
the total). This criterion yielded a total of 274 problems for analysis
(159 with fractions and 115 with decimals).

2.2. Problem coding

We used a coding scheme that was developed by Rapp et al.
(2015). Problems were categorized by their number type (fraction
vs. decimal) and entity type (continuous vs. countable). Problems
were classified as fraction or decimal based on the number type that
appeared in the problem text or was called for in the answer. Prob-
lems were classified as continuous or countable based on the entities
in the problems. Continuous problems involved entities that are
referred to with mass nouns (e.g., weight, volume, length), whereas
countable problems involved either discrete (e.g., marbles, bal-
loons) or explicitly discretized entities (e.g., an apple cut into
slices). Two researchers coded all of the problems separately using
the above coding schemes. Each coder was blind to the other coder’s
judgments. The two coders agreed on 263 (96%) of the textbook
problems. A third researcher, who was blind to the first two coders’
judgments, then coded the 11 problems on which the first two

coders had differed. These problems were then placed into which-
ever category to which it was assigned by two of the three coders.

2.3. Results and discussion

The distributions of the textbook problems are shown in Fig. 2.
Of the 274 problems, 115 used decimals and 159 used fractions.
Continuous entities comprised a large majority of the decimal
problems (96%), but this percentage dropped drastically in fraction
problems (63%). In a complementary way, countable entities
appeared more often in fraction problems (37%) than in decimal
problems (4%). A chi-square test of independence between number
type and continuity confirms that the two factors are significantly
associated, y?(1)=40.01, p<.001, phi=.382 (phi=.334 in US.).
The pattern of results and effect sizes closely matched across the
U.S. and Korean samples.’

This Korean textbook analysis thus yielded a pattern qualita-
tively similar to that observed in the United States for the same
grade levels, 3-6 (Rapp et al., 2015), such that the preference for
continuous entities is greater in decimals and the preference for
countable entities is greater in fractions. While the decimals
showed an almost exclusive alignment with continuous entities,
fractions were applied to countable entities far more often than
were decimals in both Korean and American textbooks.

3. Experiment 1

In Experiment 1, we examined the performance of Korean col-
lege students on a magnitude-comparison task. College students
in the United States make magnitude comparisons much more
quickly and accurately with decimals and integers than with frac-
tions, and show an exaggerated distance effect (i.e., decrease in
response time as a function of numerical magnitude) with fractions
(DeWolf et al., 2014). These differences have been interpreted as
evidence that magnitude representations for fractions are accessed
more slowly and are less precise. If the slower magnitude-
comparisons for fractions relative to decimals observed in
American students reflect relative inexperience with calculating
fractions magnitudes, or poor understanding of fractions, then we
would expect that such a difference would diminish or even disap-
pear in Korea. If, however, we observe similar patterns of responses
in Korean and American students, the results would lend support to
the view that these performance differences reflect deep concep-
tual differences in the representations of different types of rational
numbers - the more natural alignment of decimals than of fractions
with the continuous number-line representation of magnitude.

3.1. Method

3.1.1. Participants
A total of 50 undergraduate students (male=15; mean
age =21.82) from Yonsei University in South Korea participated

1 Because the experiments were conducted separately between the two nations
and sample sizes varied, it would have been inappropriate to make direct statistical
comparisons between the Korean and U.S. samples. There was also one major design
difference: for Experiment 1, a within-subjects design was adopted for the Korean
sample, whereas a between-subjects design was used for the U.S. sample. Because of
these methodological and design differences, we report effect sizes for both samples
in order to better compare performance across the two nations. Overall, the
magnitudes of effect sizes were highly similar for the two nations across the
textbook analyses and the five experiments we report. The biggest difference in
magnitude of effect size was found in Experiment 5, where the Korean students
showed much higher accuracy for the continuous display type for decimals (relative
to fractions), and much longer response times for the countable display types for
decimals (relative to fractions). Nonetheless, the qualitative patterns of the results
were still consistent between the U.S. and Korean samples.
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Fig. 2. Percentage of decimal and fraction problems that were continuous or countable in a textbook analysis (grades 3-6) for South Korea (left panel), and in a comparable
analysis of textbooks in the United States (grades 3-6 only from Rapp et al., 2015; right panel).

in the study for course credit. The U.S. sample used for comparison
consisted of 95 undergraduates from the University of California,
Los Angeles (UCLA, male = 23; mean age = 21), who received course
credit (Experiment 2, DeWolf et al., 2014).

3.1.2. Design, materials, and procedure

Participants completed magnitude comparisons across different
types of numbers. Experimental materials were adapted from
Experiment 2 of DeWolf et al. (2014), which was itself modeled clo-
sely on a study reported by Schneider and Siegler (2010). The study
was conducted as a within-subjects design with three types of num-
bers: fractions, decimals, and three-digit integers. These three types
of numbers were presented as separate blocks, and the order of the
three blocks was counterbalanced across participants. Each block
started with four practice comparisons, followed by the target com-
parisons. Order of problems was randomized within each block.

All of the comparisons were done against the reference value of
3/5 for fractions, 0.613 for decimals, and 613 for integers. The target
numbers ranged between 20/97 and 46/47 for fractions. Decimals
were the magnitude equivalents of the fractions. The decimals were
all rounded to three digits to make the decimals consistent in length
regardless of their fraction equivalent. In addition, using three dig-
its helped to standardize the number of digits participants had to
process across number type (the fractions had between two and
four digits). Integers were simply 1000 times the value of the dec-
imals. The complete set of fractions, decimals, and integers used
in Experiment 1 are listed in DeWolf et al. (2014, p. 76, Table 2).

On each trial, the target number was displayed at the center of
the screen and participants were asked to select the a or [ key,
respectively, to indicate whether the number was smaller or larger
than the reference value. Written reminders appeared on the
screen (“smaller than 3/5”, or the reference value appropriate to
the number type, on the left side; “larger than 3/5” on the right
side). Participants were told to complete the comparison as quickly
and accurately as possible. No fixed deadline was imposed on time
to reach a decision.

3.2. Results and discussion

Fig. 3 shows the mean error rates for each target, for each of the
three number types. Error rates were much higher for fractions

2 Across the five experiments we reported, the Korean samples consisted of college
students at Yonsei University (Experiments 1-5), whereas the U.S. samples were
either from UCLA (Experiments 1, 4, and 5) or the University of Washington
(Experiments 2 and 3). According to the U.S. News & World report rankings (as of
2015), Yonsei University is ranked 5th in Korea, and UCLA and University of
Washington are ranked 23rd and 52nd in the U.S., respectively. More detailed
comparisons across the schools are not possible because there is no standardized
exam used across American and Korean schools. Also, Yonsei University does not
make admissions information public. However, in qualitative terms, students at all
three schools are relatively high-achieving relative to their respective countries.

(M=14.87, SD =8.96) than for decimals (M =1.87, SD =2.53) or
integers (M =1.93, SD = 2.44). A one-way within-subjects ANOVA
revealed that differences among number types were highly reli-
able, F(2,98)=95.46, p <.001, 1,%=.661 (11,2 =.471 in US.). The
fraction number type showed significantly higher error rates than
the decimal number type, t(49) =9.67,p <.001,d=1.97 (d =1.71 in
U.S.), and the integer number type, t(49) = 10.43, p <.001, d = 1.97
(d=1.68 in U.S.), but there was no significant difference between
the decimal and integer number types, t(49)=0.16, p=.875,
d=0.02 (d=0.15 in U.S.). The comparable effect sizes across the
samples indicate that the pattern and magnitude of the differences
across the two nations were highly similar.

The pattern of response times (RTs) across all three number
types is depicted in Fig. 4. RTs were considerably slower for frac-
tions than for decimals and integers. Collapsing over all targets,
RTs were slower for fractions (M =3.48, SD = 2.51) than for deci-
mals (M = 0.89, SD = 0.20) or integers (M =0.79, SD = 0.16). A one-
way within-subjects ANOVA revealed reliable overall differences
among number types, F(2,98)=59.22, p<.001. 1,*=.547
(npz =.560 in U.S.). The fraction number type yielded significantly
longer times than the decimal number type, t(49) = 7.53, p <.001,
d=1.45(d=1.98 in U.S.), and the decimal number type took signif-
icantly longer than the integer number type, t(49) = 3.72, p =.001,
d=0.55(d=0.06 in U.S.), although the difference was only 0.1 sec-
ond between these two number types. Even for relatively common
fractions such as 1/4, 1/2, and 2/3 (coded in Fig. 4 as b, h, and s,
respectively), response times for their decimal counterparts were
considerably faster than fraction response times (1/4 vs. .250:
2.39s vs. 091s, t(48)=2.87, p=.006; 1/2 vs. .500: 2.71s vs.
0.71s, t(46)=6.19, p <.001; 2/3 vs. .667: 3.855s vs. 1.04 s, t(39)
=5.66, p <.001).

As shown in Fig. 3, error rates for comparisons of fractions
showed a clear distance effect, whereas errors for the other two
number types were uniformly low. Because accuracy was at ceiling
for both decimals and integers, we focused on distance effects
based on the RT measure (see Fig. 4). In order to assess the func-
tional form of the distance effect, we conducted regression analy-
ses for response times based on the logarithmic distance
measure (i.e., log (|target-reference|), which we will abbreviate as
“log Dist” (Dehaene, Dupoux, & Mehler, 1990; Hinrichs, Yurko, &
Hu, 1981; Schneider & Siegler, 2010). As in DeWolf et al. (2014),
log Dist accounted for a significant amount of variance in response
time for all three number types: 75% for fractions, 18% for deci-
mals, and 31% for integers (for fractions, beta = —.87, t(28)=9.30,
p <.001; for decimals, beta = —.45, t(28) = 2.68, p = .01; for integers,
beta = —.58, £(28) =3.72, p =.001).

Overall, the results of Experiment 1 were consistent with those
of the comparable study conducted in the United States (DeWolf
et al., 2014). Korean students showed lower overall error rates than
the American students (15% vs. 19% for fractions; 2% vs. 3% for dec-
imals; 2% vs. 4% for integers). However, both groups consistently
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showed far more difficulty for comparisons of fractions than com-
parisons of decimals or integers, and the distance effect was much
more pronounced for fractions as shown in the regression analyses
for response times. As was the case for adults in the United States,
Korean students produced the most similar response patterns for
decimals and integers, even though fractions and decimals are
more similar in the sense of representing rational numbers.

The present results are based on a wide range of fraction and
decimal values. One might expect that complexity and familiarity
of numbers could affect the differences among number types. For
example, if simple fractions like 20/100 and 9/10 had been used,
it is possible that performance in the fraction condition would have
been considerably better, reducing the processing differences
among the three number conditions. Yet, as was the case in the
American population, even magnitudes of simple fractions such
as 1/4, 1/2, and 2/3 were more difficult to process than the magni-
tudes of equivalent decimals. Thus, despite the greater overall
math expertise of Korean students, and other cultural, instruc-
tional, and linguistic differences, the same basic differences in
magnitude comparisons for fractions and decimals were observed
in South Korea as in the United States.

4. Experiment 2

Rapp et al. (2015) found that American students show the same
alignments as found in the textbook analysis when asked to
generate word problems. Experiment 2 was designed to test
whether Korean college level adults also show the same pattern
of alignments. If Korean students do show the same alignments
as US students, this lends support to the hypothesis that these
alignments are based on a deeper representational difference
between fractions and decimals rather than an artifact of the edu-
cation or cultural system specific to the given country. In order to
test this hypothesis, we asked Korean undergraduate students to

generate word problems that contained either fractions or deci-
mals, and examined the entities (continuous vs. countable) they
described in their generated problems. Experimental materials
were adapted from Experiment 1 of Rapp et al. (2015).

4.1. Method

4.1.1. Participants

A total of 71 undergraduate students (male=25; mean
age = 21.39) from Yonsei University participated in the study for
course credit. A randomly-selected half of these participants gener-
ated decimal word problems and the other half generated fraction
word problems. The U.S. sample used for comparison consisted of
156 undergraduates from the University of Washington
(male = 84; mean age = 19), who received course credit (Experi-
ment 1, Rapp et al,, 2015).

4.1.2. Design, materials, and procedure

The study was a between-subjects design with one factor: num-
ber type (fraction vs. decimal). Participants were given a single
sheet of paper with three examples of simple word problems pro-
vided at the top. The three examples involved one countable entity
(30 marbles), one continuous entity (5 kilometers), and one dis-
cretized mass entity (four 2-kilogram bags of sugar). All of these
examples were presented with whole numbers. Participants were
then asked to generate two word problems with their own num-
bers. Depending on the condition, they were told that the numbers
in their problems had to be fractions (e.g., 1/4, 1'/5, 5/2), or deci-
mals (e.g., 0.25, 1.5, 2.5). Participants completed the study using
paper and pencil. There was no time limit.

4.2. Results and discussion

There were a total of 142 problems constructed (70 decimals,
72 fractions). The constructed problems were coded using the
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classification scheme developed by Rapp et al. (2015). Problems
were classified as fraction or decimal based on the number type
that appeared in the problem text. Problems were classified as con-
tinuous or countable (i.e., discrete) based on the entities that
appeared in the constructed problems, using the same criteria as
were used for the textbook analysis.

The left panel of Fig. 5 shows the distribution of countable and
continuous problems in the decimal and fraction problems. Over-
all, students generated more continuous problems with decimals
than fractions. As in the textbook analysis, continuous entities
appeared more often in decimal problems (91%), but this percent-
age dropped drastically in fraction problems (63%). In a comple-
mentary way, countable entities appeared more often in fraction
problems (36%) than in decimal problems (9%). A chi-square test
confirmed that number type (decimal vs. fraction) and continuity
(continuous vs. countable) were significantly associated, x*(1)
=15.42, p<.001, phi=.330 (phi=.381 in U.S.). Thus, the size of
the effects was both strong across the Korean and U.S. samples.
For comparison, the right panel shows the results from U.S. under-
graduates (Experiment 1 of Rapp et al., 2015).

Overall, there was a consistent pattern of alignment across the
two nations in that students tend to use decimals to represent con-
tinuous entities and fractions to represent discrete or countable
entities. However, Korean students showed an overall preference
towards using continuous rather than countable quantities. Specif-
ically, Korean students used continuous quantities more often than
countable quantities when creating fraction word problems (64%
vs. 36%). Despite this difference, Korean students, like their
American counterparts, used countable quantities more often with
fractions than decimals and continuous quantities more often with
decimals.

5. Experiment 3

Experiment 3 was designed to rule out the possibility that the
alignments observed in word problems (textbook analysis and
Experiment 2) had more to do with cultural conventions than with
a conceptual distinction between fractions and decimals as repre-
sentations of discrete and continuous variables, respectively. We
assessed this possibility using a task introduced by Rapp et al.
(2015, Experiment 2). We manipulated whether fractions and dec-
imals were paired with continuous units (e.g., kilometer) or with
discrete units (e.g., sandwich). We then asked participants to
choose either a continuous or discrete graphical representation
to depict the given quantity. This paradigm makes it possible to
test whether number type, unit type, or both contribute to align-
ments with discrete or else continuous representations.

5.1. Method

5.1.1. Participants

A total of 57 undergraduate students (male=14; mean
age =21.12) from Yonsei University participated in the study for
course credit. The U.S. sample used for comparison consisted of
157 undergraduates from the University of Washington
(male = 42; mean age = 19.4), who received course credit (Experi-
ment 2, Rapp et al., 2015).

5.1.2. Design, materials, and procedure

The study was a 2 (number type: fraction vs. decimal) x 2
(entity type: continuous vs. countable) within-subjects design.
There were two trials of each experimental condition, resulting
in a total of eight trials per participant. Experimental materials
were constructed by adapting the materials used in Experiment 2
of Rapp et al. (2015). Translations of the English versions were

created by two Korean-English bilingual researchers, and then
back-translated into English to ensure accuracy. Because imperial
units (pound, mile) are seldom used in Korea, these were replaced
with metric units (liter, degree in Celsius).

Each participant saw eight different expressions, each including
either a fraction or a decimal and either a countable (pens, sand-
wich, books, banana) or continuous (kilometer, liter, degree in
Celsius, kilogram) entity type. Four fractions were used (3/4, 5/8,
4/9, 2/7), and their magnitude-equivalent decimals (.75, .63, .44,
.29). For example, a participant might see “3/4 kilometer” or
“75 sandwich” . Assignments of entity type and number type were
counterbalanced so that half of the participants received a fraction
with a particular entity (e.g., 3/4 sandwich) and half received the
equivalent decimal with that same entity (e.g., .75 sandwich). Thus,
each participant saw eight of the 16 possible pairings of number and
entity type.

The dependent variable was whether participants selected a
continuous circle representation or a discrete dots representation
for the number type-entity type expressions (see Fig. 6). Critically,
the representation options were the same for all of the statements.
Both of the representations depicted the value of 1/2 (.50), which
was not used in any of the fractions or decimals given in the state-
ments. The choice of representation type thus could only be guided
by its abstract form (continuous or discrete), rather than by
matches of specific values. Participants were given eight expres-
sions that paired number type and entity type. For each expression
participants were instructed to choose which type of diagram (cir-
cle or dots) they would prefer to use to represent it.

5.2. Results and discussion

The left panel of Fig. 7 shows the percentage of total times the
continuous representation (circle) versus discrete representation
(dots) was chosen for a given combination of entity type and num-
ber type. Collapsing across entity type, for decimal expressions
participants selected the continuous representation (circle) 64%
of the time, whereas for fraction expressions participants chose
the continuous representation (circle) 46% of the time. A 2 x 2
within-subjects ANOVA was performed on data coded as the pro-
portion of trials on which the continuous representation (circle)
was selected. For simplicity, we report the preference for continu-
ous only. There was a significant main effect of number type,
F(1,56) = 8.84, p=.004, 1,%>=.136 (1,°=.134 in U.S.), indicating
that the continuous representation was selected more frequently
for decimals than for fractions. There was no main effect of entity
type (F<1), nor any reliable interaction effect between number
and entity type, F(1,56)=1.55, p=.219, 5,2 =.027 (1,2=.022 in
U.S.). The magnitude of the effect size was nearly identical between
the Korean and U.S. samples.

For comparison, the right panel of Fig. 7 shows the comparable
data from American students (based solely on items using metric
units, to maximize compatibility with the items used in Korea).
As in Experiment 2, Korean students showed the same basic pat-
tern of alignments as had been found for American students. How-
ever, Korean students chose continuous versus discrete
representations almost equally often when representing fractions,
whereas the U.S. students chose discrete representation more often
than continuous representation. Korean students thus showed an
overall preference for continuous representations. Despite this,
the overall pattern of results closely mirrors the results of the

3 In Korean, the translation for a number-continuous entity pair takes the form of
“H# ", whereas that for a number-countable entity pair takes the form of “of
_____, #". For example, “3/4 kilometer” literally translates as “3/4 kilometer” whereas
“.75 sandwich” roughly translates as “of sandwich, .75.”
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Fig. 6. Options provided to represent continuous (circle) and discrete (dots)
representations in Experiment 3. Copyright © 2015 by the American Psychological
Association. Reproduced with permission from Rapp et al. (2015).

U.S. results in that a continuous representation was preferred for
decimals and a discrete representation was preferred for fractions.

6. Experiment 4

Experiment 3 showed that participants’ preferences for repre-
sentation types varied depending on the type of rational number
used. In Experiment 4 we tested for alignment in the opposite
direction, adapting a task employed by DeWolf et al. (2015a,
Experiment 1). College students were asked to choose either a frac-
tion or decimal for different types of displays that depicted ratio
relations. If Korean students show the same alignments as do
American students, then they should prefer fractions for discrete
displays but decimals for continuous displays. Importantly, in this
task students were asked to make a conceptual judgment about the
alignment of the representation and the rational number. In Exper-
iment 5, by contrast, participants performed a task that required
both procedural and conceptual alignments. To isolate the role of

= Korea a
.2 100 { .2
151 o
Q Q
© 80 ©
n ]
Q [
Z 2
g 60+ o)
=9 =9
5 5
ez 40 1 4
e e
2 20, z
8 8
£ 0 &
Decimal| Fraction Decimal| Fraction
Continuous Countable

the conceptual preference for quantity type and rational number
type, Experiment 4 tested the alignment using a forced-choice task
that did not require any calculation or mathematical procedure.
The goal of the experiment is to establish a conceptual link
between a conceptual ontology of quantities and types of rational
numbers.

6.1. Method

6.1.1. Participants

A total of 60 undergraduate students (male=18; mean
age = 21.08) from Yonsei University participated in the study for
course credit. Participants were randomly assigned in equal
numbers to two between-subjects conditions (part-to-part vs.
part-to-whole ratio; see below). The U.S. sample used for compar-
ison consisted of 48 undergraduates from the UCLA (male=11;
mean age=20.4), who received course credit (Experiment 1,
DeWolf et al., 2015a).

6.1.2. Design, materials, and procedure

The study was a 2 (relation type: part-to-part vs. part-to-whole
ratios) x 3 (display type: continuous, discretized, discrete) design,
where relation type was a between-subjects factor, and display
type was a within-subjects factor. A part-to-part ratio (PPR) is
the relation between the sizes of the two subsets of a whole,
whereas a part-to-whole ratio (PWR) is the relation between the
size of one subset and the whole.

Fig. 8 depicts examples of the three display types. The discrete
items were displays of circles, squares, stars, crosses, trapezoids,
and cloud-like shapes. The continuous items were displays of rect-
angles that could differ in width, height and orientation (vertical or
horizontal). The discretized items were identical to the continuous
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Fig. 7. Percentage of response selection by number type for trials with continuous entities and countable entities in Experiment 3 in South Korea (left panel) and the U.S.
(right panel). The U.S. results are from Rapp et al. (2015, Experiment 2, metric units only).
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Fig. 8. Examples of continuous, discretized and discrete displays used in Experi-
ment 4. Copyright © 2015 by the American Psychological Association. Reproduced
with permission from DeWolf et al. (2015a).

displays except that the rectangles were divided into equal-sized
units by dark lines. For the stimuli used in test trials, red* and green
were used to demarcate the two different subsets. The displays var-
ied which color represented the larger subset versus the smaller
subset.

Participants were given instructions for either the part-to-part
ratio (PPR) or part-to-whole ratios (PWR) condition. They were
given a Korean translation of the following instructions for the
PPR condition: “In this experiment, you will see displays that show
various part to part relations. In the display below [display with 1
orange circle and 2 blue crosses] this would be the number of
orange circles relative to the number of blue crosses. Such relations
can be represented with fractions (e.g., 3/4) or with decimals (e.g.,
.75). For each display your task is to choose which notation is a bet-
ter representation of the depicted relation—a fraction or a decimal.
Note that the specific values (i.e., 3/4 and .75) are just examples
and do not match the values in the displays.” For the PWR condi-
tion, the instructions were identical except for the description of
the relations. In this condition the part-to-whole relation was
defined using the example of the number of orange circles relative
to the total number of blue crosses and orange circles. The relation
type (PPR vs. PWR) was manipulated between subjects; thus par-
ticipants in the PPR condition were only told about PPRs and par-
ticipants in the PWR condition were only told about PWRs.
Participants were shown examples of the continuous and dis-
cretized displays, in addition to the discrete display, and were told
that displays could appear in any of those formats.

The task was simply to decide whether the relationship should
be represented with a fraction (3/4) or a decimal (.75). In order to
assess this preference on a conceptual level, the specific fraction
and decimal shown to participants (3/4 and .75) were held con-
stant across all trials, and never matched the number of items in
the pictures. Thus, no mathematical task needed to be performed.
There was therefore no requirement for accuracy, nor was any
speed pressure imposed. Since the quantity shown in a display
never matched the particular fraction and decimal values provided
as response options, there was no real need to even determine the
specific value represented in a display. The paradigm of Experi-
ment 4 was thus intended to investigate participants’ conceptual
representations for fractions and decimals, in a situation in which
mathematical procedures were not required.

4 For interpretation of color in Fig. 8, the reader is referred to the web version of
this article.

Stimuli were displayed on a computer screen and participant
responses were recorded. Participants were given the instructions
described above for either the PPR condition or the PWR condition.
Participants were told to select the z key for decimals and the m
key for fractions. Participants completed 60 test trials (20 for each
display type). A fixation cross was displayed for 600 ms between
each trial. Display types were shown in a different random order
for every participant.

6.2. Results and discussion

Because participants were forced to choose either a fraction or a
decimal for each trial, the preference for each is complementary.
For simplicity, we report the preference for fractions. The propor-
tion of trials in which participants selected the fraction notation
was computed for each display type for each participant. The left
panel of Fig. 9 shows the proportion of trials that participants
chose either fractions or decimals for each display. A 2 (relation
type: PPR vs. PWR) x 3 (display type: discrete, discretized, contin-
uous) ANOVA was performed to assess differences in notation pref-
erence. There was a significant main effect of display type,
F(2,116)=30.88, p<.001, 1,%=.347 (n,°=.305 in U.S.). Planned
comparisons showed that preference for fractions was significantly
greater for discretized displays than discrete displays, t(59) = 2.23,
p=.029,d=.386 (d=.303 in U.S.), which in turn was greater than
continuous displays, t(59) = 4.94, p <.001,d = 1.055 (d = 1.039 in U.
S.). There was no interaction between relation type and display
type, F(2,116)=1.17, p =.314, 1,>=.020 (11,2=.010 in U.S.), and
no main effect of relation type, F < 1. Thus the pattern and magni-
tude of the effect size were nearly identical between the Korean
and U.S. samples.

These results reveal that Korean students preferred to represent
both PPR and PWR ratio relationships with fractions when a dis-
play showed a partition of countable entities, but with decimals
when the display showed a partition of continuous mass quanti-
ties. Participants picked the number format that provided the best
conceptual match to either continuous or discrete displays.

No mathematical task needed to be performed, and the specific
quantities depicted in the displays did not match the numerical
values of the fractions and decimals provided as choice options;
hence our findings demonstrate that the preferential association
of display types (discrete or continuous) and rational number for-
mats (fractions or decimals) has a conceptual basis for Korean as
well as American students (DeWolf et al., 2015a). This result clo-
sely aligns with the results of Experiments 2-3, in that college-
educated adults show a preference for using continuous displays
to represent decimals and countable displays to represent frac-
tions. The patterns of results were consistent between Korea and
the U.S. Experiment 4 thus provides strong support for the hypoth-
esis that the natural alignment of different symbolic notations with
different quantity types has a conceptual basis.

7. Experiment 5

Experiment 4 established a conceptual correspondence between
quantity types and symbolic notations for rational numbers. In
Experiment 5, adapted from a paradigm introduced by DeWolf
et al. (2015a, Experiment 2), we examined whether this conceptual
correspondence also makes one or the other symbolic notation
more effective in a relational reasoning task, which also requires
procedural thinking. College students were asked to evaluate ratio
relationships using fractions or decimals, given different types of
entities being represented. If there is a conceptual and procedural
advantage to using fractions with discrete quantities in such a rela-
tional reasoning task, then students should perform better with
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fractions than decimals for discrete displays. DeWolf et al. found
that American students were able to identify relations more effec-
tively using fractions than decimals, at least for discrete displays.

7.1. Method

7.1.1. Participants

A total of 50 undergraduate students (male=15; mean
age = 21.82) from Yonsei University participated in the study for
course credit. Participants were assigned in equal numbers to the
two between-subjects conditions (fractions vs. decimals; see
below). The U.S. sample used for comparison consisted of 58 UCLA
undergraduates (male = 9; mean age = 20.4), who received course
credit (Experiment 2, DeWolf et al., 2015a).

7.1.2. Design, materials, and procedure

The study was a 2 (symbolic notation: fractions vs. decimals) x
2 (relation type: part-to-part vs. part-to-whole ratios) x 3 (display
type: continuous, discretized, discrete) mixed-subjects design.
Symbolic notation was a between-subjects factor, and relation type
and display type were within-subjects factors.

The displays were similar to those used in Experiment 4 (see
Fig. 8). The magnitudes of fractions and decimals were matched.
The values of the fractions and decimals were always less than
one, and decimals were shown rounded to two decimal places.
The values of the rational number presented on each trial repre-
sented one of two ratio relationships within the display: part-to-
whole ratio (PWR) or part-to-part ratio (PPR). These were the same
relationships used in Experiment 4, but the task in Experiment 5
explicitly required participants to identify on each trial which of
the two relationships matched a presented number. Thus, a num-
ber was paired with the display that specifically matched one of
the relationships. For example, Fig. 10 shows an example of a
PWR trial with a display with 9 red units out of a total of 10. The
number specified is 9/10 (or .90 in a matched problem using dec-
imals), thus corresponding to a PWR. For the corresponding PPR
problem, the number would be 1/9 (or .11 in decimal notation).
The smaller subset would be the numerator in this case, so that
the overall magnitude was always less than one.

Stimuli were presented electronically using the E-prime 2.0
software (Psychology Software Tools, 2012), and response times
and accuracy were recorded. Participants received Korean transla-
tion of the following instructions: “In this experiment, you will see
a display paired with a value. You need to identify which of the two
following relationships is shown.” Below this, there were two dif-
ferent displays showing the PWR and PPR relations, which were
simply referred to as “Relation 1” and “Relation 2”. The assignment
of the labels was counterbalanced for all participants such that half
was told Relation 1 was PPR and the other half was told Relation 1
was PWR. The PPR display contained 1 circle and 2 crosses. For the

Fig. 10. Example of a ratio identification problem used in Experiment 5. Copyright
© 2015 by the American Psychological Association. Reproduced with permission
from DeWolf et al. (2015a).

fractions condition this was labeled as “1/2 amount of circles per
amount of crosses;” for the decimals condition it was labeled as
“.50 amount of circles per amount of crosses.” The PWR was repre-
sented by a display of 2 circles and 3 crosses. For the fractions con-
dition this was labeled as “2/5 of the total is the amount of circles;”
for the decimal condition it was labeled as “.40 of the total is the
amount of circles.”

The first of these explanations of the PPR and PWR relations was
shown with discrete items. The subsequent screen showed the
same values paired with discretized displays. A third screen
showed the same values paired with continuous displays. Half of
the participants were told to select the z key for Relation 1 and
to select the m key for Relation 2; the other half received the
reverse key assignments.

After this introduction, participants were given an example
problem and asked to identify the relation. After they made their
judgment, an explanation was shown to participants about why
the example showed the correct relation. The explanation also sta-
ted what the numerical value would be for the problem if it had
shown the alternative relation. Participants were then given
another example using the other relation, with the same explana-
tion process. A series of practice trials were then administered. Par-
ticipants had to complete at least 24 practice trials (four for each of
the six within-subjects conditions). If they scored at least 17 cor-
rect (i.e., about 70%) they were able to move on to the test trials.
If they did not score above this threshold, they continued with
additional practice trials until they reached the threshold percent-
age correct. All of the practice trials were different from those used
in the test trials. Feedback was given for correct trials, in the form
of a green “0O” on the screen and for incorrect trials, in the form of a
red “X” on the screen. After the practice trials had been completed,
a screen was displayed informing participants that the actual test
trials were beginning. Participants were told to try to respond as
quickly as possible without sacrificing accuracy. Participants com-
pleted 72 test trials (12 for each of the 6 within-subjects condi-
tions). Feedback was continued for incorrect trials. Relation types
and display types were shown in a different random order for
every participant.
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7.2. Results and discussion

Accuracy and mean response time (RT) on correct trials were
computed for each condition for each participant. A 2 (symbolic
notation: fractions vs. decimals) x 2 (relation type: part-to-part
vs. part-to-whole ratios) x 3 (display type: continuous, discretized,
discrete) mixed-subjects ANOVA was performed to assess differ-
ences in accuracy and RT. As the three-way interaction was not
reliable, all analyses are reported after collapsing across the factor
of relation type, which was not theoretically important given the
goals of the study.

Fig. 11 displays the pattern of accuracy, which exceeded chance
level (50%) for all conditions. There was a significant interaction
effect between the display type and number type, F(2,96)
=78.27, p <.001, n,%=.620, (n,° =.342 in U.S.). Planned compar-
isons indicated that accuracy was higher for fractions than deci-
mals in the discretized condition, 88% vs. 72%; t(48)=6.77,
p<.001,d=1.913 (d=0.979 in U.S.), and in the discrete condition,
93% vs. 80%; t(48)=4.43, p<.001, d=1.252 (d=1.277 in US.).
However, an opposite pattern was observed in the continuous con-
dition such that accuracy was higher for decimals than fractions,
83% vs. 70%; t(48)=4.86, p<.001, d=1.373 (d=0.324 in US.).
The pattern and size of the effects for the two countable displays
were consistent across the U.S. and Korean samples. However,
the Korean students showed an even higher reversal in accuracy
for the continuous condition for decimals.

Fig. 12 displays the pattern of mean correct RTs across condi-
tions. As for the accuracy analysis, a significant interaction was
obtained between display type and symbolic notation, F(2,96)
=45.06, p <.001, 1, =.484, (17,2 =.093 in U.S.). Planned compar-
isons indicated that RTs were faster with fractions than decimals
for the discretized condition, 3.22s vs. 6.03s; t(48)=4.15,
p<.001,d=1.174 (d = 0.201 in U.S.) and for the discrete condition,
3.80s vs. 6.77 s; t(48) = 5.62, p<.001, d = 1.589 (d = 0.407 in U.S.).
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For the continuous conditions, however, RTs did not reliably differ,
3.95s vs. 3.58s; t(48)=0.72, p=.478, d=0.202 (d=.574 in U.S.).
The pattern of results was replicated across the Korean and U.S.
results, however the size of the effects was much stronger for
Korean students for both of the countable display types.

Overall performance was somewhat more accurate for the
Korean students (overall M = 81.43, SD = 8.07) than for the U.S. stu-
dents (overall M =69.07, SD = 14.18). Nonetheless, the results of
Experiment 5 were consistent with the U.S. results in that there
was an advantage for identifying ratio relationships in displays
when these ratios were represented by fractions rather than deci-
mals. When displays conveyed countable entities (sets of discrete
objects, or continuous displays parsed into units of measurement),
ratios were evaluated more accurately when the notation was a
fraction rather than a decimal. In contrast, when the display
showed continuous quantities, Korean students were more accu-
rate when the notation was a decimal rather than a fraction. This
finding suggests not only that students in both Korea and the U.
S. show a conceptual preference for specific alignments between
rational number types and quantity types, but also that this align-
ment impacts performance on a task that requires students to link
their conceptual preference to a procedure that can be used to per-
form the calculations necessary for the task.

8. General discussion

The pattern of results across a textbook analysis and five exper-
iments conducted in South Korea revealed a natural alignment
between decimals and fractions to continuous and discrete enti-
ties, respectively, very similar to findings from comparable studies
conducted in the United States. The magnitude of effect sizes was
also remarkably similar between the United States and South
Korea. Experiment 1 replicated the findings of DeWolf et al.
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Fig. 11. Mean accuracy of relation identification using factions and decimals across different types of displays in South Korea (left panel) and the U.S. (right panel). The U.S.
results are from DeWolf et al. (2015a, Experiment 2). Error bars indicate standard error of the mean.
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Fig. 12. Mean response time for relation identification using factions and decimals across different types of displays in South Korea (left panel) and the U.S. (right panel). The
U.S. results are from DeWolf et al. (2015a, Experiment 2). Error bars indicate standard error of the mean.



68 H.S. Lee et al./Cognition 147 (2016) 57-69

(2014) in the U.S., showing that magnitude comparisons with frac-
tions were slower than magnitude comparisons with both deci-
mals and whole numbers. Whole-number and decimal
magnitude comparisons, on the other hand, were virtually indistin-
guishable. Our cross-national comparison thus supports the con-
clusion that the advantage of decimals over fractions for
magnitude comparison is due to inherent representational differ-
ences (decimals directly express a continuous one-dimensional
magnitude, whereas fractions are two-dimensional), rather than
being restricted to American students, who tend to have lower
overall math expertise than South Korean students.

Experiments 2-4 provided more direct evidence that whereas
decimals are typically used to represent continuous entities, frac-
tions were more likely to represent discrete than continuous enti-
ties. Continuity versus discreteness is a basic ontological
distinction that affects children’s understanding of integers through
counting of discrete entities, and (later on) through measurement
of continuous entities that have been parsed into discrete units
(e.g., Gelman, 1993, 2006; Mix, Huttenlocher, & Levine, 2002a,
2002b; Nunes, Light, & Mason, 1993; Rips, Bloomfield, & Asmuth,
2008). The distinction between continuity and discreteness is pre-
served throughout the mathematical curriculum. As in the initial
cases of counting and measurement, discrete concepts are always
taught before their continuous counterparts (e.g., first arithmetic
progressions, then linear functions).

Although the overall patterns of results in our experiments
were consistent between the U.S. and South Korea, Korean stu-
dents (Experiments 2 and 3) showed a general preference for using
continuous entities and representations of rational numbers. One
possible explanation of this preference relates to the exclusive
use of the metric measurement system in Korea, as metric units
naturally align with continuous quantities (Rapp et al., 2015). As
we have discussed, fractions do not align conceptually with contin-
uous entities as well as do decimals. Further studies may investi-
gate the impact that differences in measurement systems may
have on fraction and decimal understanding.

The conceptual distinction between fractions and decimals has
implications for performance in certain reasoning tasks that use
these notations. Experiment 5 replicated the results of DeWolf
et al. (2015a) who found that people are better able to distinguish
bipartite relations between discrete sets when such relations are
denoted with fractions than with decimals. Fractions maintain
the mapping of distinct countable sets onto the numerator and
the denominator, whereas decimals obscure this mapping.

The close correspondence between the findings from textbook
analyses conducted in South Korea and the United States also pro-
vides strong evidence that fractions and decimals are preferentially
used to model discrete and continuous entities, respectively. These
findings lend support to the hypothesis of a natural conceptual
alignment between quantity types and number types. Of course,
it is possible that textbook writers (and subsequently their stu-
dents) respond to their respective learning histories of selective
use of fractions and decimals as models of discrete or continuous
entities. In this case, the alignment may simply reflect automatic
responses of selective association (Rothkopf & Dashen, 1995). An
alternative interpretation is that textbook writers and mathemat-
ics educators adopt semantic alignment in order to ensure that
learning makes real-world sense. If in everyday life fractions are
more frequently used to represent relations between two sets,
and decimals are more frequently used to measure quantities, then
an important educational objective will be to provide students
with realistic mathematical situations that demonstrate potential
domains of application. Future studies should investigate why
the alignment between entity type and number type appears in
textbooks, and if there are any pedagogical advantages in adopting
this alignment.

The results of the current study strongly support the basic
hypothesis first proposed by DeWolf et al. (2014, 2015a, 2015b):
fractions have a unique advantage over other rational number
types, such as decimals, when they are used to represent relations
between countable sets (e.g., the ratio of boys to girls in a class-
room). Conversely, decimals (which correspond to one-
dimensional magnitude representations) are very strongly linked
to continuous quantities, which also serve as representations of
one-dimensional magnitudes (e.g., the volume of water in a bea-
ker). The present set of studies indicate that this distinction is
not simply an artifact of the American educational system or cul-
tural context, but rather reflects important representational differ-
ences in how students store, manipulate, and think about rational
numbers and the types of quantities they naturally model in the
real world.

While many previous studies have focused on the widespread
difficulties students have with fractions compared to other mathe-
matical concepts (Ni & Zhou, 2005; Siegler et al., 2013; Stafylidou &
Vosniadou, 2004; Stigler et al., 2010), their focus has been solely on
how students understand the magnitudes of fractions. The present
set of studies highlights representational differences between frac-
tions and other number types that may shed new light on the
source of students’ difficulties in understanding fractions. In partic-
ular, magnitude estimation tasks may be ill-suited for assessing
fraction understanding. Fractions, with their bipartite structure,
are literally and mentally used to represent relations, whereas dec-
imals are better-suited to represent magnitudes. DeWolf et al.
(2015b) found evidence of that these two aspects of mathematical
understanding make differential contributions to acquisition of
higher-level mathematical concepts, such as those involved in
algebra. The present set of studies suggest that representational
differences between types of rational numbers are not specific to
cultural or educational variations.

The semantic alignment between number type and entity type
may reflect computational simplicity. When representing relations
between countable sets, it is possible to directly construct a frac-
tion using numbers derived from counting (e.g., 3/4 to represent
three girls in relation to a set of four girls and boys), whereas to
represent such a relation with a decimal (e.g., 0.75) an additional
transformation process (division) is required. Likewise, when mea-
suring quantities, it is often possible to simply read the numbers
(in decimal format) provided by measurement tools, whereas a
transformation is required in order to represent such a measure-
ment using a fraction. Due to such differences in cognitive simplic-
ity, people may align decimals with continuous quantities and
fractions with discrete entities. If this is the case, then students
who are computationally proficient in translating between frac-
tions and decimals may show a reduced tendency to honor seman-
tic alignment. Future studies will need to investigate how
alignment changes as learners acquire greater expertise in convert-
ing rational numbers between alternative formats.

Taken as a whole, the results of the present study provide
strong evidence that a natural alignment holds between entity
type and different formats of rational numbers. This alignment
cannot be attributed to the specifics of education, language, and
measurement units, which (as described in the Introduction) differ
greatly between the United States and South Korea. Given evidence
that students are particularly prone to misconceptions with
rational numbers (Ni & Zhou, 2005; Siegler et al., 2013;
Stafylidou & Vosniadou, 2004; Stigler et al., 2010), making use of
this natural alignment may help students to use their knowledge
of entities in the real world to bootstrap their knowledge of
rational numbers. The substantial congruence between patterns
of performance on multiple tasks using fractions versus decimals
across college students in the United States and South Korea sug-
gests that these patterns depend on fundamental representational
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differences between number types, rather than specific aspects of
education, language or culture. More generally, cross-national
comparisons provide a method of exploiting existing variation in
order to assess the generality of apparent differences in mental
representations.
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