
Psychological Review
1997, Vol. 104. No. 3, 427-466

Copyrighl 1997 by (he American Psychological Association, Inc.
0<B3-293X/97/$3.00

Distributed Representations of Structure:
A Theory of Analogical Access and Mapping

John E. Hummel and Keith J. Holy oak
University of California, Los Angeles

This article describes an integrated theory of analogical access and mapping, instantiated in a

computational model called LISA (Learning and Inference with Schemas and Analogies). LISA

represents predicates and objects as distributed patterns of activation that are dynamically bound

into prepositional structures, thereby achieving both the flexibility of a connectionist system and the

structure sensitivity of a symbolic system. The model treats access and mapping as types of guided

pattern classification, differing only in that mapping is augmented by a capacity to learn new corre-

spondences. The resulting model simulates a wide range of empirical findings concerning human

analogical access and mapping. LISA also has a number of inherent limitations, including capacity

limits, that arise in human reasoning and suggests a specific computational account of these limita-

tions. Extensions of this approach also account for analogical inference and schema induction.

A fundamental challenge for cognitive science is to under-

stand the architecture that underlies human thinking. Two gen-

eral properties of thinking jointly present extremely challenging

design requirements. First, thinking is structure sensitive. Rea-

soning, problem solving, and learning (as well as language and

vision) depend on a capacity to code and manipulate relational

knowledge, with complex structures emerging from the system-

atic recombination of more primitive elements (Fodor & Pyly-

shyn, 1988). Second, thinking \& flexible in the way in which

knowledge is accessed and used. People apply old knowledge

to new situations that are similar but by no means identical,

somehow recognizing and exploiting useful partial matches.

Both of these properties, structure sensitivity and flexibility,

are apparent in the use of analogies (Centner, 1983), schemas

(Rumelhart, 1980), and rules (Anderson, 1983).

The first steps in analogical thinking are access and mapping.

Access is the process of retrieving a familiar source analog (or

schema, or rule) from memory given a novel target problem as

a cue. Mapping is the process of discovering which elements in

the target correspond to which in the source. For example, in

the analogy between the atom and the solar system, the sun

maps to the nucleus of the atom rather than to the electrons

(Centner, 1983). Once a source has been retrieved from memory

and mapped onto the target, the former can be used to generate

inferences about the latter; jointly, the two can be used to induce

a more general schema that captures the essential properties
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they have in common (Gick & Holyoak, 1983; Ross & Kennedy,

1990). Analogical access and mapping are both structure sensi-

tive (guided by relational correspondences) and highly flexible

(able to tolerate partial matches), although access is less struc-

ture sensitive than mapping (Centner, Rattermann, & Forbus,

1993; Whartonetal., 1994).

This article presents a theory of analogical access and map-

ping motivated by the problem of simultaneously achieving both

structure sensitivity and flexibility. Although our current focus

is on problems surrounding analogical thought, our aim is to

lay the groundwork for a more general theory of human thinking.

Analogy provides a useful starting point for the development of

general models of thinking for three reasons. First, analogy is

representative of human thinking in that it is both structure

sensitive and flexible. A model of analogy therefore must show

how both of these key properties can simultaneously hold (Barn-

den. 1994). Second, the use of analogy is ubiquitous in human

reasoning (Holyoak & Thagard, 1995) and provides a basis for

the induction of complex relational knowledge such as schemas

and rules (Holland, Holyoak, Nisbett, & Thagard, 1986). An

understanding of analogy, therefore, may provide the foundation

for a broader theory of human learning and inference. Third, a

number of sophisticated computational models of analogy have

been developed in recent years. Their strengths and weaknesses

are particularly informative in die attempt to understand the

relationship between structure and similarity in human thinking

and provide a basis for evaluating any new theory of analogical

reasoning.

Structure Sensitivity and Flexibility in Computational

Models of Cognition

The twin design requirements of structure sensitivity and

flexibility have figured prominently in discussions of the con-

trast between symbolic and connectionist approaches to model-

ing human cognition. These approaches have a strikingly com-

plementary pattern of apparent strengths and weaknesses (Barn-

427



428 HUMMEL AND HOLYOAK

den, 1994; Holyoak, 1991; Norman, 1986). Roughly, symbolic

systems readily model structure sensitivity but often fail to dem-

onstrate humanlike flexibility, whereas connectionist systems

exhibit flexibility in pattern matching and generalization but

have great difficulty in forming or manipulating structured rep-

resentations. One approach to capitalizing on the strengths of

both symbolic and connectionist models has been to develop

hybrid models. For example, Holyoak and Thagard (1989) pro-

posed a hybrid model of analogical mapping. Most hybrids com-

bine symbolic knowledge representations with connectionist-

style constraint satisfaction. However, although hybrid models

have had considerable success in simulating important aspects

of analogical processing, their architectures seem to represent

a ' 'marriage of convenience'' between their symbolic and con-

nectionist components, lacking a natural interface between the

two. An alternative line of theoretical effort has focused on the

development of more sophisticated connectionist representations

that can code and manipulate structured knowledge (e.g., El-

man, 1990; Hummel & Biederman, 1992; Pollack, 1990; Shas-

tri & Ajjanagadde, 1993; Smolensky, 1990; Touretzky & Hinton,

1988).

The theory introduced in this article is based on the latter

approach and takes the form of a structure-sensitive connec-

tionist model. The model, embodied in a computer simulation

called LISA (Learning and Inference with Schemas and Analo-

gies), represents propositions (predicates and their arguments)

as distributed patterns of activation over units representing se-

mantic primitives. These representations have the flexibility and

automatic generalization capacities associated with connec-

tionist models. However, LISA departs from traditional connec-

tionist models in that it actively (i.e., dynamically) binds these

representations into prepositional structures. The result is a sys-

tem with the structure sensitivity of a symbolic system and the

flexibility of a connectionist system. These representations—

and the processes that act on them—naturally capture much

of the flexibility and structure sensitivity of human cognition.

However, this combination of strengths comes with costs: LISA

has a number of inherent limitations, including capacity limits,

sensitivity to the manner in which a problem is represented, and

sensitivity to strategic factors such as the order in which ele-

ments of a problem are processed. A key theoretical claim is

that similar limitations arise in human reasoning. LISA thus

provides a computational account of many strengths and weak-

nesses of the human cognitive architecture.

As the model's name implies, our long-term goal is to account

for human use of both analogies and more abstract schemas and

to model the inductive learning that allows people to acquire

abstractions from experience with concrete examples (e.g.,

Gick & Holyoak, 1983; Novick & Holyoak, 1991; Ross & Ken-

nedy, 1990). This article focuses on the processes of retrieving

analogs and schemas from long-term memory (i.e., analogical

access) and performing structure-sensitive comparisons be-

tween two analogs (or between a schema and an analog) in

working memory (i.e., analogical mapping). Although there are

numerous models of analogical access and mapping in the litera-

ture (reviewed shortly), LISA is the first to unify these two

processes, and it is the first to account for some complex asym-
metries between them (as elaborated in the Simulation Results

section). In addition, we consider analogical access and map-

ping to be foundational for developing a theory of schema
induction.

We first review what is known about analogical access and

mapping and the strengths and limitations of existing computa-

tional models in this area. The empirical evidence concerning

human analogical reasoning provides standards by which to

assess LISA'S adequacy as a psychological theory; the limita-

tions of current models in part motivate the novel representation

and processing assumptions embodied in LISA. Next, we briefly

consider alternative connectionist architectures that exhibit

structure sensitivity and describe the rationale for the particular

architecture on which LISA is based. We then describe LISA

and report various examples of its operation. Finally, we con-

sider the prospects for applying the LISA architecture to a wider

range of cognitive phenomena, particularly inference generation

and schema induction.

Analogical Access and Mapping

A great deal is now known about how adults access and use

analogies and how analogical abilities develop over the course

of childhood (for reviews, see Gentner, 1989; Goswami, 1992;

Holyoak & Thagard, 1995; Keane, 1988; Reeves & Weisberg,

1994). These findings have motivated the development of a

number of theories and computational models of analogical ac-

cess and mapping (e.g., Falkenhainer, Forbus, & Gentner, 1989;

Forbus, Gentner, & Law, 1995; Halford et al., 1994; Hof-

stadter & Mitchell, 1994; Holyoak & Thagard, 1989; Keane,

Ledgeway, & Duff, 1994; Kokinov, 1994; Thagard, Holyoak,

Nelson, & Gochfeld, 1990). These models differ in important

ways, but they have converged in positing a few basic con-

straints that guide human intuitions about natural correspon-

dences between the elements of source and target analogs. We

describe these constraints in the terminology of Holyoak and

Thagard's (1989, 1995) multiconslrainl theory of analogical

mapping.

Three broad classes of constraints, which overlap with those

identified by other theorists (e.g., Gentner, 1983, 1989), form

the basis of the multiconstraint theory.

1. The structural constraint of isomorphism has two components:

(a) structural consistency implies that source and target ele-

ments that correspond in one context should do so in all

others, and

(b) one-to-one mapping implies that each element of one ana-

log should have a unique correspondent in the other.

2. The constraint of semantic similarity implies that elements with

some prior semantic similarity (e.g., joint membership in a taxo-

nomic category} should tend to map to each other.

3. Pragmatic centrality implies that mapping should give prefer-

ence to elements that are deemed especially important to goal

attainment and should try to maintain correspondences that can

be presumed on the basis of prior knowledge.

Each of these constraints is inherent in the operation of LISA.

However, the design of LISA differs from that of previous

models based on the multiconstraint theory in that it also

honors additional cognitive constraints on representation and

processing.
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Table 1

Empirical Phenomena for Evaluation of Models

of Analogical Access and Mapping

Access and its relationship to mapping
1. Semantic similarity has greater impact than in mapping
2. Isomorphism has less impact than in mapping
3. Close analog and schema easier to access than far analog
4. Access is competitive

5. Familiar analog accessed more readily
Analogical mapping

6. Isomorphism
7. Semantic similarity

8. Pragmatic centrality
9. Multiple possible mappings for one analogy

10. Correct initial correspondence facilitates finding subsequent
mappings

11. Difficulty rinding mapping for "unnatural" analogy problems*

12. Possible to map predicates with different numbers of
arguments3

Phylogenetic and ontogenetic change
13. Limited analogy ability exhibited by "language"-trained

chimpanzees
14. Ability to process deeper and more complex analogies

increases over childhood

3 These criteria are considered plausible but lack direct empirical evi-

dence.

Table 1 summarizes 14 interrelated empirical phenomena

concerning analogical access and mapping. For convenience we

divide these phenomena into three broad classes, which concern

the relationship between access and mapping, detailed aspects of

mapping, and phylogenetic and ontogenetic change in mapping

ability.

Access and Its Relationship to Mapping

In general, analogical access (the process of retrieving one

analog, usually a source, from memory when given another

analog as a cue) appears to be sensitive to the same basic con-

straints as analogical mapping (the process of discovering the

specific correspondences between the source and target). How-

ever, semantic similarity appears to have relatively greater im-

pact on access than on mapping (Phenomenon 1), whereas iso-

morphism has a greater impact on mapping than access (Phe-

nomenon 2; Centner et al., 1993; Holyoak & Koh, 1987; Ross,

1987, 1989). When analogs must be cued from long-term mem-

ory (rather than simply being stated as part of an explicit map-

ping problem), then cases from a domain similar to that of the

cue are retrieved much more readily than cases from remote

domains (Keane, 1986; Seifert, McKoon, Abelson, & Ratcliffe,

1986). For example, Keane (1986, Experiment 1) measured

retrieval of a convergence analog to Duncker's (1945) radiation

problem (for which the key solution is for a doctor to apply

multiple low-intensity rays simultaneously to a stomach tumor

from different directions). The source analog was studied 1-3

days before presentation of the target radiation problem. Keane

found that 88% of participants retrieved a source analog from

the same domain (a story about a surgeon treating a brain tu-

mor), whereas only 12% retrieved a source from a remote do-

main (a story about a general capturing a fortress). This differ-

ence in ease of access was dissociable from the ease of post-

access mapping and transfer, as the frequency of generating the

convergence solution to the radiation problem once the source

analog was cued was high and equal (about 86%) regardless

of whether the source analog was from the same or a different

domain.

Access is also facilitated by learning conditions that encour-

age induction of an abstract schema from remote analogs

(Brown, Kane, & Echols, 1986; Catrambone & Holyoak, 1989;

Gick & Holyoak, 1983). For example, Catrambone and Holyoak

(1989, Experiment 5) had college students read three conver-

gence problems drawn from three distinct domains and then

answer questions that highlighted the abstract structural com-

monalities among them (e.g., use of multiple small forces from

different directions to achieve the effect of a single large force).

After a 1-week delay, 74% of participants spontaneously gener-

ated an analogous convergence solution to the radiation prob-

lem. The overall pattern of findings concerning analogical access

suggests that close analogs and schemas are accessed relatively

easily, whereas access is considerably more difficult for remote

analogs (Phenomenon 3).

Factors other than similarity and isomorphism also influence

access. It has been shown that analogical access is inherently

competitive (Phenomenon 4). For any cue, people are more

likely to retrieve a case from long-term memory if it is the

best match available (based on both structural and semantic

constraints) than if some other stored case provides a better

match (Wharton, et al., 1994; Wharton, Holyoak, & Lange,

1996). In addition (Phenomenon 5), highly familiar cases tend

be preferentially retrieved (even when the familiar case is less

similar to the cue than are some alternative stared cases). A

particularly well-established example is the prevalent use of the

person analog by children to make inferences about other ani-

mals and plants (Inagaki & Hatano, 1987). It has also been

shown that people understand new individuals by spontaneously

relating them to significant others, such as a parent or close

friend (Andersen, Classman, Chen, & Cole, 1995).

Mapping

The role of isomorphism in mapping (Phenomenon 6) is

apparent when people are able to find sensible relational corre-

spondences in the absence of substantial similarity between

mapped objects (e.g., Gick & Holyoak, 1980; Centner & Cent-

ner, 1983), or even when relational correspondences conflict

with object similarity (Centner & Toupin, 1986). Recent work

has established that human similarity judgments are also sensi-

tive to isomorphism, in that perceived similarity is increased by

consistent role correspondences (Goldstone, 1994; Goldstone,

Medin, & Gentner, 1991; Markman & Centner, 1993a, 1993b;

Medin, Goldstone, & Gentner, 1993). For example, common

features contribute more to the perceived similarity of two pat-

terns when they participate in similar relations in the patterns

("matches in place") than when they participate in different

relations across the patterns ("matches out of place"; Gold-

stone & Medin, 1994). Semantic similarity (Phenomenon 7)

reveals its influence in the greater ease of mapping when similar

objects fill parallel roles than when objects and roles are "cross

mapped" (Gentner & Toupin, 1986; Ross, 1987, 1989). It has
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also been shown that increasing predicate similarity (when it

converges with structural parallels) decreases the latency of

finding structurally consistent mappings (Keane et al., 1994).

The impact of pragmatic centrality (Phenomenon 8) is evident

when mappings are ambiguous on the basis of structural and

semantic constraints. In such cases, people tend to preferentially

map objects and relations they deem important to their goal

(Spellman & Holyoak, 1996).

It has also been established that different people will produce

different, internally consistent mappings for the same analogy

(Phenomenon 9; Burns, 1996; Spellman & Holyoak, 1992,

1996). That is, it is often the case that there is not just one

correct mapping between two analogs. Much like the two incom-

patible visual interpretations of a Necker cube, people typically

arrive at one interpretation of an ambiguous analogy (although

they may be able to shift from one interpretation to another).

Analogical mapping is sensitive to order of processing. When

people are led to map analogs incrementally (e.g., by mapping

as they read the two analogs), then the overall accuracy of their

object mappings is influenced by the order in which mappings

are made. Keane and colleagues (Keane, 1995; Keane et al.,

1994) have shown that for purely structural analogies, mapping

is more accurate when the order in which the analogs are pro-

cessed encourages a correct initial mapping, which can then

constrain subsequent mappings (Phenomenon 10).

Phenomena 11 and 12 have a less firm empirical basis than

the other entries in Table 1; however, each can be supported by

informal observations and "thought experiments." We discuss

these possible phenomena later in the context of evaluating cur-

rent computational models of mapping.

Phylogenetic and Ontogenetic Change

Another major class of phenomena that must be accounted for

by a theory of analogical reasoning concerns variations across

species and across human development. Chimpanzees that have

received training in an artificial' 'language" based on manipula-

ble tokens are able to solve simple relational analogies, such as

"can opener is to can as key is to ?," where the answer is

"lock" (Gillan, Premack, & Woodruff, 1981; Premack, 1983).

However, chimpanzees are apparently unable to solve analogies

at the level of adult human competence (Premack, 1988), sug-

gesting that species with basic analogy ability nonetheless differ

in the upper bound on the complexity of mappings they can

solve (Phenomenon 13). A similar pattern is apparent within the

course of human cognitive development. Sensitivity to abstract

relational similarities increases with age (Smith, 1989), and

children's ability to comprehend deeper and more complex anal-

ogies increases at least up until 12 years of age (Phenomenon

14; e.g., Gentner, 1988; Goswami, 1989; Johnson, & Pascual-

Leone, 1989). This developmental pattern is, doubtless, in part

due lo increases in children's knowledge; however, there is also

evidence that the shift is in part due to maturational increases

in the capacity of working memory (Halford, 1992, 1993).

These are by no means the only phenomena that can be used

to assess models of analogy, but they provide a challenging set.

(See Markman, Gentner, & Wisniewski, 1995, for an overlap-

ping set of empirical criteria for model assessment.)

Limitations of Current Analogy Models

Although it seems fair to say that no existing analogy model

unambiguously captures all of the phenomena discussed thus

far, it also seems that none of these phenomena is clearly beyond

the reach of current models or reasonable augmentations of

them. Why, then, are we taking the tack of developing a very

different type of cognitive architecture for analogy? Although

there is no definitive basis for rejecting current models, a strong

case can be made for considering alternative approaches.

Consider the general mode of operation of representative cur-

rent models. The most general models of analogical access and

mapping are two pairs of systems: SME (mapping) coupled

with MAC/FAC (access; Falkenhainer et al., 1989; Forbus et

al., 1995), and ACME (mapping) coupled with ARCS (access;

Holyoak &Thagard, 1989;Thagardetal., 1990). These systems

are broadly similar in that they take symbolic, propositional

representations as inputs and perform complex symbolic opera-

tions to generate plausible sets of candidate mappings. ACME/

ARCS uses a connectionist constraint-satisfaction algorithm to

compute mappings; however, the input to this algorithm is a set

of units representing all syntactically legal mapping possibilit-

ies, constructed by symbolic procedures operating on the propo-

sitional representations provided to the program. MAC/FAC

includes a vector-processing stage in its retrieval algorithm, but

the vector elements are high-level concepts without a detailed

semantic representation.

In broad terms, these models have, at most, localist represen-

tations of the meaning of concepts (e.g., a semantic network in

the case of ARCS), and most of their processing is performed

on propositional representations unaccompanied by any more

detailed level of conceptual representation (e.g., neither ACME

nor SME includes any representation of the meaning of con-

cepts). Although these properties may be viewed as gaps in

implementation rather than strong theoretical tenets, it is unclear

how either approach could be readily adapted to the use of more

detailed representations of semantic content.

These general properties of current analogy models give rise

to four general classes of doubts about their potential for

extension.

Psychologically Implausible Working-Memory

Requirements

First, although the models are quite successful in accounting

for many aspects of human analogical competence (i.e., pre-

dicting what analogies people will retrieve and what mappings

they will identify), their algorithms are difficult to reconcile

with established properties of cognitive architecture (see Keane

et al., 1994, for similar reservations). In particular, working-

memory limitations have generally been ignored (although the

STAR model of Halford et al., 1994, addresses the role of work-

ing-memory capacity in human analogical mapping). ACME

implements the multiconstraint theory by using an algorithm for

parallel constraint satisfaction in which all possible matches

between source and target elements, and all constraints relevant

to the selection of those matches, are considered simultaneously.

SME performs mapping by a process of graph matching, which

requires explicit formation and manipulation of propositional
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graph structures. Both ACME and SME form explicit represen-

tations of very large numbers of possible local matches between

elements of source and target analogs, most of which are then

discarded as mapping proceeds. Such processes do not seem

compatible with the generally accepted limits of working mem-

ory. ARCS (and to a lesser degree MAC/FAC) performs similar

constructive operations in the course of accessing cases in long-

term memory (i.e., before the to-be-retrieved cases have even

entered working memory), which seems especially unrealistic

as a psychological model.

The working-memory requirements for mapping can be re-

duced by using incremental algorithms to serialize processing

(Keane et al., 1994; Forbus, Ferguson, & Centner, 1994). How-

ever, the algorithms themselves do not necessitate operating

within a limited working-memory capacity: As algorithms, par-

allel constraint satisfaction and graph matching are just as happy

to operate on a 10,000-node network (or tree) as on a 10-node

network (or tree). As a result, these algorithms provide no

principled basis for estimating the maximum working-memory

capacity available for mapping; that decision is left to the intu-

itions of the modeler. Typically, the estimate is large: Even the

incremental algorithms require explicit formation of multiple

graph structures to determine mapping order. Although the num-

ber of possible matches explicitly considered is reduced relative

to nonincremental algorithms, it can nonetheless be quite large

relative to reasonable estimates of human working-memory

capacity.

Failure to Integrate Access and Mapping

A second limitation of current models is that they do not

provide a graceful integration of analogical access and mapping.

For example, for the purposes of access, ARCS uses a semantic

network that is not available to ACME for the purposes of

mapping. Similarly, MAC/FAC uses a vector representation for

access that is not available to SME for mapping. If one assumes

that access and mapping reflect different operations on the same

stored knowledge, then it would seem desirable to understand

how both processes could operate on a single basic representa-

tion of that knowledge. Such an understanding should help ac-

count for the known similarities and differences between access

and mapping (Table 1, Part I) in terms of differences between

the processes available to long-term memory (access) and those

available to working memory (mapping).

Over- and Under-Powerful Mapping Performance

A third limitation of current models is related to the fact that

they are premised on unrealistic assumptions about working-

memory capacity: In some respects, these models are too good

at analogical mapping. For example, both ACME and SME can

map analogies of virtually any size or complexity with roughly

equal facility. Human reasoning is both more limited and more

domain specific. A physician, for instance, might understand a

complex analogy between different organ systems or diseases

yet fail to understand an analogy between, say, different com-

puter operating systems, even if the latter problem is, in some

sense, formally simpler. Extant models of analogical mapping

do not directly explain the domain specificity of mapping ability

(Novick, 1992). In a similar vein, current models provide no

clear linkage between variations in available working memory

and analogical performance. In other words, they do not offer

specific predictions about the manner in which performance will

improve or degrade as available working memory increases

(e.g., by maturation) or is reduced (e.g., by concurrent tasks

or brain damage).

The excessive mapping power of some current models is re-

lated to Phenomenon 11 in Table 1. Although based more on

informal observations than on rigorous data, it seems that people

find some analogy problems to be highly ' 'unnatural'' and dif-

ficult to map. Current analogy models have remarkably little

difficulty in solving some such unnatural problems. Table 2

presents an analogical mapping problem that exemplifies how

ACME in particular may be too powerful relative to humans.

In this "boys-dogs" problem, the task is to state the correspon-

dences between three boys described by a total of three unary

predicates and three dogs described by three different and se-

mantically unrelated predicates. This problem was constructed

by Holyoak and Thagard (1989) to illustrate ACME's ability

to map semantically and pragmatically meaningless analogs

solely on the basis of the structural constraint of isomorphism.

Indeed, ACME's parallel constraint algorithm finds the unique

structural solution (see Table 2) to this mapping problem just

as easily as it finds the solution to many semantically meaningful

problems.

It is possible for people to solve this problem. Holyoak and

Thagard reported that 6 of 8 college students produced the six

correct mappings within 3 min. Keane et al. (1994) found that

participants could solve the problem in roughly 3—6 min when

given feedback whenever they produced an erroneous mapping.

However, the boys-dogs problem is intuitively a very unnatural

analogy, and informal observation suggests that few, if any,

people solve the problem by parallel constraint satisfaction as

ACME does. Rather, people tend to consciously re-represent the

analogs (noticing, for example, that Steve and Fido each have

just one property, rather than two like the remaining individuals)

and then explicitly step through the possible correspondences,

solving them like a puzzle (' 'Hmm . . . if Steve is Fido, then

. . ."). Such augmented representations, coupled with serial

hypothesis testing (and in Keane et al.' s procedure, error correc-

tion by the experimenter), can eventually yield the solution. But

the human solution process for this problem seems qualitatively

very different from that of ACME, which finds all mappings in

parallel by simultaneous considering all structural connections

Table 2

Semantically Empty Boys—Dogs Mapping Problem Based on

Unary Predicates (Holyoak & Thagard, 1989)

"Boys" analog "Dogs" analog

Smart (Bill)
Tall (Bill)
Smart (Steve)
Timid (Tom)
Tall (Tom)

Hungry (Rover)
Friendly (Rover)
Hungry (Fido)
Frisky (Blackie)
Friendly (Blackie)

Isomorphic solution: Bill-»Rover, Steve-*Fido, Tom-»Blackie,
smart-hungry, timid->frisky, tall-»friendly
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without re-representing the analogs or receiving error correction.

The human solution to the boys-dogs problem also seems quali-

tatively different from the human solution to more natural prob-

lems (such as the fortress story and the radiation problem;

Gick & Holyoak, 1980; or the Persian Gulf War and World War

II; Spellman & Holyoak, 1992). People appear to use less la-

bored methods to map such semantically rich analogies, even

when they are structurally more complex than the artificial

boys-dogs problem. Although the evidence is only suggestive,

there is reason to suspect that people are sensitive to differences

in the naturalness of analogies that are not reflected in the opera-

tion of current models based on massively parallel constraint

satisfaction, such as ACME.

Even though current models are, arguably, overpowerful rela-

tive to people in some respects, they may be underpowerful in

other respects. In particular, all current models share an inviola-

ble structural constraint: A predicate with n arguments can only

map to another predicate with n arguments. This "n-ary restric-

tion" is basic to the operation of all current mapping models;

without it, the number of syntactically legal mappings that would

need to be explicitly represented would greatly increase, and

the mechanisms the models use to enforce isomorphism would

be compromised. Nevertheless, the n-ary restriction is psycho-

logically questionable. For example, it precludes mapping the

following analogs:

Target

tall (Abe)
shorl (Bill)

Source

taller than (Chris Dean)

As a thought experiment, however, it is compelling that Abe

maps to Chris and Bill maps to Dean. In a similar way, it has

often been argued that people represent transitive ordcrings by

mapping from relational premises to some sort of mental array

(e.g., DeSoto, London, & Handel, 1965; Huttenlocher, 1968).

Suppose, then, that a person attempts to map binary ordered

pairs from a set of three objects onto a three-place ordered

array. This mapping problem would have a form such as:

Target

taller than (Abe Bill)
taller than (Bill Charles)

Source

top-to-bottom (top middle bottom)

Because of the n-ary restriction, no current model of analogical

mapping could map the people into the array on the basis of

height. One might attempt to account for the human ability to

find such correspondences by assuming that one analog is re-

represented before mapping to match the syntactic form of the

other analog. It is unclear, however, how such a re-representation

process would actually operate. If one provisionally accepts that

mappings between predicates with unequal numbers of argu-

ments are sometimes psychologically natural (Phenomenon 12

in Table 1), then it follows that current models are nol only too

profligate in explicitly generating all syntactically legal map-

pings but also too restrictive in that they define some sensible

mappings as syntactically illegal.

We believe that current mapping models are overdependent

on the n-ary restriction for a basic reason: They treat predicate-

argument structures as passive data structures equivalent to lists,

using list position as a simple and inviolable cue to possible

matches between fillers of argument slots (i.e., first argument

to first argument, second argument to second argument, etc.).

In contrast, LISA represents predicate-argument structures as

collections of activation patterns distributed over units repre-

senting semantic features. The list position of an argument has

no meaning in this type of representation, and symbolic list-

matching operations are unavailable to LISA. As we will demon-

strate, one consequence of this fundamentally different approach

to representing and processing structure is that LISA is able to

map examples that violate the n -ary restriction. Thus, although

in some respects LISA'S mapping ability is less powerful than

that of current models (because of its limited working memory),

in other respects LISA has greater mapping ability because of

the flexibility afforded by its distributed representations of

meaning.

Extendability to Schema Induction

The fourth general source of doubt about current analogy

models concerns their extendibility to account for aspects of

learning and creativity—capacities that are commonly linked

to analogical reasoning (Centner, 1989; Hofstadter & Mitchell,

1994; Holland, Holyoak, Nisbett, & Thagard, 1986; Holyoak &

Thagard, 1995). On the face of it, current models have provided

a key prerequisite for modeling complex relational schema in-

duction. Structure-based correspondences between elements of

the source and target analogs (the output of analogical mapping)

provide information about what elements to generalize over and

should therefore provide essential input to a generalization

mechanism. However, the apparent connection between analogy

and schema induction, although widely recognized, has gener-

ally not been computationally realized (however, see Falken-

hainer, 1990, for an effort in this direction). Some models can

use computed mappings to generate inferences specific to the

target (e.g., Falkenhainer et al., 1989; Hofstadter & Mitchell,

1994; Holyoak, Novick, & Melz, 1994), but even these models

cannot form new abstractions (either complex relational sche-

mas or new predicates and concepts). For example, the Copycat

model of Hofstadter and Mitchell (1994), formulated with the

explicit goal of modeling creative aspects of analogy, in fact

lacks any capacity to learn. After laboring to retrieve and map

analogs, most models simply throw away the knowledge thereby

acquired. As a result, the analogical episode has no conse-

quences for future processing of related problems.

The apparent difficulty in building abstractions using current

analogy models is at least partly attributable to their lack of

detailed semantic representations of concepts. It is not obvious,

however, how to adapt current mapping algorithms to use dis-

tributed representations of concept meaning, especially given

the role of structure in analogical mapping. Purely localist repre-

sentations work well for the purposes of analogical mapping

but are inadequate for generalization and building abstractions

(basic components of schema induction). Thus the representa-

tional requirements of most current mapping models may be

fundamentally incompatible with the representational require-

ments of schema induction (see Hummel & Holyoak, in press).

Summary: Justifying a New Approach

In summary, we do not claim it is impossible to extend or

modify current analogy models to make them compatible with
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human working-memory limits, to unify analogical access and

mapping, to more closely match the limitations and strengths of

human mapping, or to account for the learning of new abstrac-

tions. However, we do argue that the hurdles facing current

models are sufficiently daunting as to justify serious consider-

ation of alternative approaches. To the extent that these hurdles

are related to one another—as we have argued they are—there

is particular utility in seeking a new approach to modeling ana-

logical processes. A unified approach that overcomes all of these

limitations would be preferable to a traditional approach aug-

mented with a patchwork of specific fixes.

Given the widely recognized links between analogy and other

mental operations, a psychologically realistic model of analogi-

cal mapping might also be expected to bear a resemblance to

models of other cognitive processes. As detailed in the Discus-

sion, LISA bears more than a passing resemblance to some

models of object perception and recognition (Hummel & Bie-

derman, 1992; Hummel & Stankiewicz, 1996). We argue that

these resemblances are not coincidental but rather reflect im-

portant properties of a general solution to the problem of repre-

senting and processing structure—properties, we argue, that are

shared by the human cognitive apparatus.

Distributing Structure Over Time

Human analogical reasoning (as well as other types of think-

ing) depends critically on the capacity to manipulate structured

representations, including predicates with multiple arguments

and higher order predicates that take propositions as arguments

(Barnden, 1994; Markman et al., 1995). Localist connectionist

units (e.g., as in ACME) and symbolic tree structures (e.g., as

in SME) are extremely well-suited to this task. At the same

time, pattern matching (e.g., for analog access), pattern comple-

tion (e.g., for mapping and inference), and generalization (e.g.,

for schema induction) require representations that are more

flexible than purely localist or symbolic representations. Distrib-

uted representations are well-suited to such problems, but tradi-

tional distributed representations are notoriously bad at captur-

ing structure. The basic representational challenge for a model

of analogical reasoning is to satisfy these joint requirements of

flexibility and structure sensitivity, and the fundamental binding

problem lies at the heart of this dilemma.

Representing a proposition entails binding the argument roles

of the proposition to their fillers (Fodor & Pylyshyn, 1988). For

example, to represent the statement "John loves Mary," John

must be bound to the role of lover while Mary is bound to the

role of beloved. Traditional distributed representations are ill-

suited to representing such structures because they do not make

these bindings explicit: Simply jointly activating patterns repre-

senting "John," "Mary," and "loves" cannot distinguish

"John loves Mary" from "Mary loves John" (or even from a

description of a narcissistic hermaphrodite).

A number of distributed approaches to representing role bind-

ings have been proposed (e.g., Elman, 1990; Pollack, 1990;

Shastri & Ajjanagadde, 1993; Smolensky, 1990; Touretzky &

Hinton, 1988). One general approach is to introduce units or

vectors that code conjunctions of roles and fillers. Models based

on tensor products (Smolensky, 1990) and holographic reduced

representations (Plate, 1991) are particularly sophisticated vari-

ants of this conjunctive coding approach. The STAR model of

analogical mapping (Halford et al., 1994) is based on multidi-

mensional tensor products. Models based on conjunctive coding

can provide some of the advantages of distributed representa-

tions while preserving structure, but they also have limitations

(Hummel & Biederman, 1992). Units in a conjunctive code

represent combinations of case roles (predicates) and fillers

(objects) rather than individual roles and fillers, so the natural

similarity structure of the individual predicates and objects is

lost. For example, if separate units represent (a) John as lover,

(b) John as beloved, (c) Mary as lover, and (d) Mary as beloved,

then the proposition "John loves Mary," represented by units

a and d, would have absolutely no semantic overlap with "Mary

loves John," represented by c and b. Although we have illus-

trated this problem by using a strictly localist code (i.e., one unit

per conjunction), the basic problem cannot be solved simply by

postulating more distributed conjunctive codes. For example,

Smolensky's (1990) tensor products are distributed, but the

representation of a given object bound to one case role will not

necessarily overlap at all with the representation of the same

object bound to a different case role. In general, the capacity of

a distributed conjunctive code to represent binding information

declines in proportion to its capacity to preserve similarity

across different bindings: In a conjunctive code, these capacities

are fundamentally in conflict (Hummel & Holyoak, 1993).

Dynamic Binding

An alternative to conjunctive coding is dynamic binding, in

which units representing case roles are temporarily bound to

units representing the fillers of those roles. Dynamic binding is

difficult in neural networks because it requires an explicit tag

with which units can represent group membership. This tag

must be independent of a unit's activation (because activation

expresses information that is independent of binding; Hummel &

Biederman, 1992). One possible dynamic binding tag is based

on synchronized oscillations in activity, in which units fire in

synchrony if they are bound together and fire out of synchrony

if they are not (Milner, 1974; von der Malsburg, 1981, 1985;

see Gray, 1994, for a review). Although controversial (see

Tovee & Rolls, 1992), there is some neurophysiological evi-

dence for binding by synchrony in visual perception (e.g., in

striate cortex; Eckhorn et al., 1988; Gray & Singer, 1989;

Konig & Engel, 1995) and in higher level processing dependent

on frontal cortex (Desmedt & Tomberg, 1994; Vaadia et al.,

1995).

Numerous connectionist models use synchrony for binding.

This mechanism has been applied in models of perceptual

grouping (e.g., Eckhorn, Reitboeck, Arndt, & Dicke, 1990; von

der Malsburg & Buhmann, 1992), object recognition (Hum-

mel & Biederman, 1990, 1992; Hummel & Saiki, 1993; Hum-

mel & Stankiewicz, 1996), and rule-based reasoning (Shastri &

Ajjanaggade, 1993). LISA (like its predecessor, the Indirect

Mapping Model, IMM; Hummel, Burns, & Holyoak, 1994;

Hummel & Holyoak, 1992; Hummel, Melz, Thompson, & Holy-

oak, 1994) uses synchrony to represent role-filler bindings in

propositions. For example, ' 'John loves Mary'' would be repre-

sented by units for John firing in synchrony with units for the

agent role of ' 'loves,'' whereas units for Mary fire in synchrony
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with units for the patent role. The John-agent units must fire

out of synchrony with the Mary-patient units.

Dynamic binding permits a small set of units to be reused in

an unlimited number of specific bindings. This capacity to reuse

units allows the representation of case roles and objects to be

completely independent of one another, thereby preserving simi-

larity across different bindings. For example, all propositions in

which John serves as a role filler are similar by virtue of their

sharing the units that represent John; likewise, all propositions

involving the predicate "love" employ the same "love" units.

Accordingly, the representation of two propositions overlap to

the extent that their meanings overlap. Analogous benefits accrue

from the use of dynamic binding to represent structure in models

of perception (see Hummel & Biederman, 1992). The common

role of dynamic binding in perception and reasoning, although

not surprising, suggests additional linkages between perception

and cognition: Because both require a capacity to represent

structure, both are subject to the computational constraints im-

posed by the need for dynamic binding.

Although synchrony is a convenient (and perhaps neurally

plausible) mechanism for dynamic binding, we are not commit-

ted to the use of synchrony per se. Rather, our theoretical claim is

that dynamic binding (in one form or another) is a fundamental

prerequisite to representing structure and that dynamic binding

is therefore a problem that must be taken seriously in the attempt

to model human reasoning. The critical properties of any scheme

for dynamic binding are that (a) the binding tag must be inde-

pendent of activation and (b) dynamic binding is necessarily

capacity limited (i.e., there is a finite number of tag values;

Halford et al., 1994; Hummel & Holyoak, 1993). These proper-

ties are apparent in binding by synchrony. Whether two units

fire in or out of synchrony with one another (the binding tag)

is independent of the magnitude of their firing (their activation).

The capacity limit is apparent in the fact that only a finite

number of groups of units can be active and mutually out of

synchrony with one another (as elaborated shortly). Although

synchrony is a neurally plausible basis for dynamic binding, it

is by no means the only imaginable basis (e.g., Mozer, Zemel,

Behrmann, & Williams, 1992, describe a network that uses

imaginary numbers as a binding tag). Our argument is that

independence is a necessary requirement for dynamic binding,

and that any realistic scheme that achieves it also has capacity

limits (Hummel & Biederman, 1992; Hummel & Holyoak,

1993; Hummel & Stankiewicz, 1996).

Constraints on Dynamic Binding in the Representation

of Structure

Dynamic binding necessarily operates in working memory

(if two units are not active, they cannot be dynamically bound)

and, hence, is unsuitable as a basis for binding in LTM. For this

purpose, static binding (e.g., by conjunctive units) is necessary.1

Nonetheless, dynamic binding conveys two critical advantages

as a representation of binding in working memory. First, it pro-

vides a mechanism for making rapid systematic inferences with-

out incurring the computational cost of forming a long-term

memory code. Second, it removes the need for a static code

(e.g., as stored in LTM) to directly capture the structured con-

tent of a proposition. The sole requirement for the LTM repre-

sentation of a role-filler binding is that it be capable of reinstat-

ing the original dynamic binding when the proposition is reacti-

vated. Once reactivated, the dynamic form of representation will

make the structured content of the proposition explicit. This

distinction between dynamic binding in active memory and static

binding in LTM is consistent with the fact that dense anterograde

amnesia does not result in catastrophic loss of reasoning abili-

ties: It is possible to lose the capacity to store static bindings

in LTM in a retrievable form without losing the capacity for

dynamic binding in active memory.

Although it is useful, dynamic binding is nonetheless subject

to important limitations. One is a capacity limit. Dynamic bind-

ing (by synchrony or any other means; see Hummel & Stankie-

wicz, 1996) does not permit unlimited parallel processing over

distributed representations. Rather, the number of dynamic bind-

ings that can be represented at any given time is limited to the

number of distinct tags in the binding scheme. For example, in

the case of synchrony, the number of binding tags is given by

the number of groups of units that can be simultaneously active

and mutually desynchronized. Let us refer to a collection of

mutually synchronized units as a group, and to a collection of

mutually desynchronized groups as a phase set. The capacity

limit of binding by synchrony is equivalent to the size of the

phase set: How many groups is it possible to have simultane-

ously aclive but mutually out of synchrony?2 This number is

necessarily limited, and its value is proportional to the length

of time between successive peaks in a given group's output (the

period of the oscillation) divided by the duration of each peak.

Single unit recording studies with monkey and cat suggest that,

at least in the visual systems of these animals, a reasonable

estimate of the size of a phase set is between four and six phases

(e.g., Gray & Singer, 1989; see also Hummel & Biederman,

1992).

A second and less obvious limitation of dynamic binding is

the one-level restriction, which concerns the number of .levels

of embedding that can be represented simultaneously at the level

of semantic primitives. Dynamic binding can only operate al

one level of abstraction or hierarchy at a time (Hummel &

Holyoak, 1993; Hummel etal., 1994). Consider the higher order

proposition "Sam believes that John loves Mary," in which an

entire proposition is bound to the patient role of the "believe"

predicate. To represent the internal structure of "John loves

Mary," the bindings "John-lover" and "Mary-beloved" must

be desynchronized; however, to represent "John loves Mary"

as the unitary filler of ' 'what is believed,'' the representation of

the entire proposition must be synchronized with the patient

role of the "believes" predicate. Simply binding "what is be-

lieved" to both case roles of "John loves Mary" creates ambi-

guity at the level of semantic binding (see Hummel & Holyoak,

1993). Synchrony can only dynamically represent role bindings

1 Note that it is not necessary to postulate the preexistence of a]]

possible conjunctive units. Rather, a novel binding can first be repre-

sented dynamically (in active memory), with a conjunctive unit created

only when it is necessary to store the binding in LTM.
2 Although this discussion is couched in terms of phase, it is not

necessary to assume that the units outputs are strictly phased-locked

(i.e., oscillating with regular and equal periods). The analysis operates

in the same way if one simply assumes that the units are synchronized.
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at one hierarchical level at a time. For the same reason, it can

only represent the structure of one proposition at a time. If

John loves Mary and also is hated by Sam, then simultaneously

representing "John-lover" and "John-hated" would (given dis-

tributed representations of predicate meaning) blend the "lover/

hated" roles.

The synchrony-based model of Shastri and Ajjanagade

(1993) can "stack" multiple roles of an object within a single

phase, apparently violating the one-level restriction. However,

this is possible only because the model uses localist representa-

tions of concepts and objects. In essence, their model uses the

static binding implicit in a localist code to eliminate the need

for dynamic binding at the lower levels of the hierarchy. The

benefit of this approach is the ability to stack objects and predi-

cates, thereby avoiding the one-level restriction; the cost is that,

as in any localist code, the resulting representations do not

capture the similarity relations among the entities they represent.

If the model represented objects and predicates in a distributed

fashion, then it would capture these similarity relations, but it

would also be subject to one-level restriction.

LISA uses distributed representations of concepts and ob-

jects, thereby capturing similarity relations. However, as a eon-

sequence, it is subject to the one-level restriction. LISA can

nonetheless map complex structures involving higher order rela-

tions and multiple role bindings. However, because LISA is

founded on distributed representations of concepts and objects,

it is forced to use various types of serial processing to maintain

structure sensitivity when mapping hierarchical structures.

In summary, LISA translates the computational constraints

imposed by the similarity-structure trade-off into an architec-

ture that combines distributed representations with a capacity

for dynamic binding. The benefit of this approach is that LISA

can represent structure without sacrificing similarity. The cost

is that, in contrast to models such as ACME and SME, LISA

must operate within inherent capacity limits (given by the size

of the phase set). As a result, LISA lacks the ability to solve

analogical mappings by massively parallel constraint satisfac-

tion. Rather, mapping in LISA requires systematic serial pro-

cessing combined with limited parallel constraint satisfaction.

The theoretical claim is that the human cognitive architecture

represents a similar algorithmic solution to the same computa-

tional problem. The surprising result is that for a wide range of

suitably structured problems, the serial mapping algorithm

yields outputs that closely mimic those that would be produced

by unlimited parallel constraint satisfaction. However, analogies

that make excessive demands on working memory, or that have

an "unnatural" structure, reveal USA's limitations—which ap-

pear to be shared with people.

The Architecture and Operation of LISA

Overview

LISA is designed to represent propositional knowledge both

dynamically in working memory and statically in LTM. Based

on these representations, it performs structured comparisons

during both access and mapping as a form of guided pattern

matching. When a proposition becomes active, the units repre-

senting it in LTM generate distributed, synchronized patterns

of activation (one for each case role) on a collection of semantic

units. These patterns, which serve as the model's working-mem-

ory representation of the proposition, capture both the semantic

content of the proposition (by virtue of the distributed represen-

tation) and the structure of its case role-argument bindings (via

dynamic binding by synchrony). The semantic primitive units

are shared by all propositions in LTM, so the pattern generated

by one proposition will tend to activate one or more similar

propositions in other analogs. This process is a form of memory

access. Mapping is performed by augmenting access with the

capacity to learn which propositions responded to which pat-

terns, that is, to learn the correspondence between the generating

proposition and the responding (recipient) proposition or propo-

sitions. These correspondences, which are stored as connection

weights, then serve to constrain subsequent memory access.

Over the course of several propositions, the result is a represen-

tation of the correspondences between the elements of two or

more analogs.

Architecture and Representation of Propositions

The core of LISA'S architecture is a system for representing

dynamic role-filler bindings and encoding those bindings in

LTM. In working memory, role-filler bindings are represented

as activation patterns distributed over the semantic units. These

semantic units are linked to structure units that store, recreate,

and respond to patterns on the semantic units. Structure units

serve the purely structural function of encoding the binding

relations among the components of a proposition into LTM. This

function is enhanced by their strictly localist implementation

(Hummel & Holyoak, 1993).

Every proposition is encoded in LTM by a hierarchy of three

types of structure units (see Figure 1). At the bottom of the

hierarchy are predicate and object units. (Predicate and object

units are functionally equivalent; we distinguish them only for

conceptual clarity.) Each predicate unit locally codes the seman-

tic primitives of one case role of one predicate. For example,

the predicate unit lovesl represents the first (agent) role of the

predicate "loves" and has bidirectional excitatory connections

to all of the semantic units representing that role (e.g., actor,

emotion!, positivel, strongl, etc.); Ioves2 represents the second

role of "loves" and is connected to the semantic units represent-

ing that role (e.g., patient, emotion2, positivel, strong2, etc.).

Different instantiations of a predicate may have different shades

of meaning (e.g., loves in "John loves Mary" differs from

loves in "John loves winning an argument"), but much of

this difference can be captured in the semantics attached to the

arguments filling the roles. In the current implementation,

shades of meaning that cannot be captured in this fashion are

captured by coding the different shades as distinct semantic

units. We generally distinguish semantic primitives for predi-

cates by place; Emotion!, representing emotion in the first role

of an emotion predicate, and emotion2, representing emotion in

the second role, are separate units. However, this separation is

not strictly necessary, and different roles of the same predicate

may share semantic units. Similar predicates will tend to share

units in corresponding roles (e.g., the predicate units lovesl and

likes! will be connected to many of the same semantic units).

However, some predicates will share units in different roles



436 HUMMEL AND HOLYOAK

a.

Structure Units:

P units

Sub-Proposition
(SP) unils

Predicate
and

Object Units /lovesl

b. Sam knows
John loves M

Semantic Units

Figure 1. (a) Illustration of the LISA representation of the proposition loves (John Mary), (b) LISA
representation of the hierarchical proposition knows (Sam loves (John Mary)). J. = John; M. = Mary.

(e.g., converses such as parent of and child of, which have
reversed roles). In this way, the structural and semantic similar-
ity of different predicates is made explicit.

Object units are just like predicate units except that they are
connected to semantic units describing things rather than roles.
For example, the object unit Mary might be connected to seman-
tic units such as human, adult, female, and so on, whereas John
might be connected to human, adult, and male.

Subproposition (SP) units are structure units that bind case
roles to their fillers (objects or propositions) in LTM. For exam-
ple, "John loves Mary" would be represented by two SP units:
one representing John as agent of loving, and the other represent-
ing Mary as patient of loving. The John-agent SP would share
bidirectional excitatory connections with John and lovesl, and
the Mary-patient SP would share connections with Mary and
Ioves2.

Proposition (P) units reside at the top of the hierarchy. Each
P units shares bidirectional excitatory connections with the cor-
responding SP units. P units serve a dual role for the purposes
of representing hierarchical structures, such as "Sam knows
John loves Mary" (see Figure Ib). In their role as binding units
for a proposition, they are connected to SPs representing their
constituent role-filler bindings (Figure la). When a proposition
serves as the filler of a role in another proposition, the lower-
level P unit serves in the place of an object unit under the
appropriate SP. For example, the P unit for "John loves Mary"
is connected (in the place of an object) to the second SP of the
proposition "Sam knows [X]."' In this way, the binding of

"John loves Mary" to the patient role of "knows" is made
explicit in LTM.

Every analog is represented by a hierarchy of this type for
each proposition it contains. Object and predicate units are not
repeated within analogs. For example, if John serves as an argu-
ment to multiple propositions in a given analog, the same John
unit will be connected to multiple SP units. Each type of struc-
ture unit plays an important role in LISA'S operation. Having
separate units for roles, objects, and propositions allows the
model to treat each such entity as an entity, a capacity that is
critical for mapping analog elements onto one another. At the
same time, it is important to emphasize thr.t the structure units
do not directly encode meaning. Rather, they work together to
impose (and respond to) particular patterns of synchrony on
the semantic units; it is only the latter that encode meaning.

The final component of LISA'S architecture is a set of map-
ping connections between structure units of the same type in
different analogs. Every P unit in one analog shares a mapping
connection with every P unit in every other analog; likewise,
SPs share connections across analogs, as do object and predicate
units. These connections are assumed to reside in working mem-
ory and to be established when the analogs are called into work-
ing memory for mapping. At the beginning of a simulation run,
the weights on these connections are initialized to zero. A map-
ping weight grows larger (taking larger positive values) when-
ever the units it links are active simultaneously and grows more
negative whenever one unit is active and the other is inactive.
In this way, LISA keeps track of what-corresponds-to-what
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across the analogs. By the end of a simulation run, correspond-

ing units will have large positive weights on their mapping

connections, and noncorresponding units will large negative

weights.

The mapping connections play an important role in the mod-

el's operation. LISA treats analogical mapping as a form of

learning. By allowing structure units in one analog to directly

activate structure units in other analogs, mapping connections

permit learned mappings to constrain future mappings. We will

see that by treating mapping as a kind of learning, LISA pro-

vides a unified account of analogical access and mapping with

a single assumption: Mapping connections can only be learned

when the analogs reside in working memory.

Operation

For clarity, the model's operation is described here only in

broad strokes. The fine points of the algorithm, including equa-

tions and parameters, are detailed in Appendix A.

For the purposes of mapping, analogs are divided into two

mutually exclusive sets: a driver, and one or more recipients.

The driver and all recipients are assumed to reside in working

memory. For the purposes of memory retrieval, there is a third

class of dormant analogs, which are assumed to reside in LTM

but not working memory. Dormant analogs are candidates for

retrieval from memory but cannot participate in analogical map-

ping (i.e., no mapping connections are established for dormant

analogs). The only differences between the operation of recipi-

ent and dormant analogs are that (a) the former, but not the

latter, update their mapping connections with the driver; and

(b) the activations of units in dormant analogs decay faster

than the activations of units in recipient analogs (Equation 14,

Appendix A). The theoretical assumption motivating (a) is that

the mapping connections reside in working memory; the as-

sumption motivating (b) is that activation consumes attentional

resources, so unattended (dormant) elements decay more rap-

idly than attended (recipient) elements. As in systems such as

ARCS and MAC/FAC, retrieval in LISA is an inexpensive pro-

cess that consumes fewer working memory resources than map-

ping. However, in contrast to ARCS and MAC/FAC, access in

LISA operates in the same fundamental way—and on the same

knowledge representations—as analogical mapping. As a result,

access in LISA is sensitive to role-arguments bindings. Except

when it is necessary to distinguish mapping from memory re-

trieval, we refer to both active recipient analogs and dormant

analogs as recipients.

There is a strong asymmetry between the activity of driver and

recipient analogs, in that mapping and retrieval are controlled by

the driver. Note that there is no necessary linkage between the

driver-recipient distinction and the more familiar source-target

distinction. However, a canonical flow of control would involve

initially using a target analog (the unfamiliar, novel situation)

as the driver to access a source analog stored in long-term mem-

ory. Once a source is in working memory, mapping can be

performed in either direction (including successive switches of

driver assignment from one analog to the other). After a stable

mapping is established, the source will be used to drive inference
Qf.npration unrl srhp.trm inHiirtinn in rhp tarirpt (nrrvp^spe hpvnnH

the scope of this article; however, see Hummel & Holyoak,

1996, in press).

Driver operation. As a default, propositions in the driver

are selected one at a time to become active in the phase set.

(We discuss the possible selection of multiple propositions

shortly.) The protocol specifying the order in which propositions

are selected is given as input. We assume that the order in

which propositions are selected is based, in part, on factors that

determine text coherence, such as argument overlap (Kintsch &

van Dijk, 1978) and causal connections (Keenan, Baillet, &

Brown, 1984; Trabasso & van den Broek, 1985). That is, suc-

cessive propositions entering the phase set will tend to overlap

in the objects that fill their slots or will themselves be related

by a higher order proposition expressing a causal or other func-

tional dependency. Although we have yet to implement a specific

algorithm by which LISA would determine its own selection

order, it is possible to take advantage of the fact that normal

text is ordered so as to maintain coherence. Therefore, as a

general default for verbal analogies, we simply select proposi-

tions in the order in which they appear in a sequential proposi-

tional representation of the text describing the driver analog. In

addition, we assume that propositions that are deemed to be

especially important (e.g., because of their apparent relevance

for achieving a goal) will tend to be selected earlier and more

frequently than less important propositions. Such factors (e.g.,

goal relevance and causal-chain status) also serve as top-down

constraints on strategic processing (e.g., allocation of attention)

in human text and event comprehension (Fletcher, 1986;

Fletcher & Bloom, 1988; van den Broek, 1988). For example,

readers allocate more attention to statements following causal

antecedents than to statements following causal consequents

(Fletcher, Hummel, & Marsolek, 1990). As we will demon-

strate, variations in selection priority allow LISA to simulate

the influence of pragmatic centrality on mapping.

A proposition is selected by setting the activation of its P

unit to 1.0 and allowing that unit to excite the SP units below

itself. SPs under the same P unit represent the separate role-

filler bindings of that proposition, so they must fire out of syn-

chrony with one another. To this end, SPs inhibit one another,

competing to respond to input from the P unit. Due to random

noise in their excitatory inputs, one SP will win the initial

competition, becoming highly active and inhibiting all others to

inactivity. Active SPs excite the predicate and object units under

them, which in turn excite the semantic units to which they are

connected. The result is a pattern of activity on the semantic

units representing the semantic primitives of the object and case

role connected to the winning SP (see Figure 2a). SPs "take

turns'' firing because of the operation of an inhibitory unit (von

der Malsburg & Buhmann, 1992) associated with each SP. As

detailed in Appendix A, an SP's inhibitor allows the SP to

remain active for a short time and then temporarily inhibits it

to inactivity. The result is that, with a constant input from a P

unit, an SP's activation will oscillate between zero and one. In

combination with SP-to-SP inhibition (and SP-to-predicate and

SP-to-object excitation), this arrangement causes SPs, predi-

cates, and objects to oscillate in SP-based groups. For example,

when "John loves Mary" is selected, the John-as-lover group
fir*»<: ruit r,f cvn,-hrr»nv «;irh fhp Mt»r\/_Qc_hplr,,^H ntv-inr, altpmol_
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a.

Figure 2. Proposition (PJ units impose the working-memory representation of a proposition onto the
semantic units via subproposition (SP), predicate, and object units. (Case roles of a proposition fire out of
synchrony with one another.) Shaded areas depict active units, and unshaded (white) areas depict inactive
units.

ing between the patterns depicted in Figures 2a and 2b,
respectively.

So far, we have illustrated the driver s operation with a simple,
nonhierarchical proposition. Hierarchical propositions work in
the same way except that they are subject to two additional
constraints (dictated by the one-level restriction). The first is
that only one level of hierarchy is selected to be active at a time.
For example, consider the hierarchical proposition "Sam knows
John loves Mary" (Figure 3). This proposition will be activated
(selected) in two sets: the parent set, "Sam knows [X]" (Fig-
ures 3a and 3b), and the daughter set, [X] = "John loves
Mary" (Figures 3c and 3d). When "John loves Mary" is se-
lected, LISA operates exactly as described previously. When
"Sam knows [X]" is selected, LISA also runs as described
previously: Its SPs and their associated role and filler units fire
out of synchrony. However, now, one filler is a P unit rather
than an ohject unit. The second constraint on hierarchical propo-
sitions is that P units activated as fillers (i.e., via SPs above
themselves, in the way that "John loves Mary" is activated
when "Sam knows [X]" is selected) are not allowed to excite
their constituent SPs. When the SP for " [ X]-as-known" fires
(Figure 3b), the P unit for "John loves Mary" will become
active, but it will not activate its own SPs (John-as-lover and
Mary-as-beloved). We refer to these two modes of operation as
the "parent" and "daughter" modes, respectively. Selected P
units enter parent mode, exciting their constituent SPs ("Sam
knows [X]" is selected in Figures 3a and 3b. "John loves
Mary" is selected in Figures 3c and 3d); however, when a P
unit is activated by an SP above itself, it enters daughter mode
and does not excite its constituent SPs (e.g., "John loves Mary1'
in Figure 3b). As elaborated in Appendix A, this mode distinc-
tion is straightforward to implement on the basis of signals that
are completely local to the P units. Parent propositions and their
daughters are selected at separate times, just like any other pair

of propositions, but they will typically be selected in close
temporal proximity (usually with the daughter immediately fol-
lowing the parent).

Recipient operation and learning a driver-recipient map-
ping. Distributed patterns of activation are produced on the
semantic units in response to the sequential selection of proposi-
tions in the driver. These patterns are arranged hierarchically in
time. On a coarse time scale, patterns correspond to proposi-
tions: One proposition is selected to fire, followed by another.
At a finer time scale, patterns correspond to role-filler bindings:
The SPs under a common P unit fire out of synchrony with one
another.

The job of a recipient analog is to respond to these patterns.
Object, predicate, and SP units in the recipient compete to re-
spond to patterns varying over the fine time scale, and P units
compete to respond to patterns varying over the coarse lime
scale. That is, the recipient analog treats patterns on the semantic
units as inputs to be classified—a task for which connectionist
networks are extremely well-suited. Important to note is that
the recipient is initially completely blind to Ihe driver producing
the patterns; its only source of information is the patterns them-
selves. Thus, unlike virtually all current analogy models in
which mapping is treated as an explicit comparison between
analogs (based on symbols representing hypothesized corre-
spondences), mapping in LISA is a much more implicit process
in which the recipient reacts to semantic patterns created by the
driver.

In the recipient, units of the same type are competitive (mutu-
ally inhibiting one another) and units within a proposition are
cooperative (mutually exciting one another). (The competitive
rule takes precedence such that SPs in the same proposition
inhibit one another) Consider mapping "John loves Mary" in
the driver onto "Bill likes Susan" versus "Peter fears Beth"
in the recipient (see Figure 4) . When the SP for John-as-lover
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a. b.

c. d.

Mary- loves!

Figure 3. Illustration of parent and daughter propositions. Parent propositions and their daughters (argu-
ment propositions) are constrained by the one-level restriction to be selected (active) at different times.
Shaded areas depict active units, and unshaded (white) areas depict inactive units, (a) The higher-level
proposition (P) know (Sam X) is selected and its first subproposition (SP), Sam-knowl is active. I. ~ John;
M. = Mary, (b) The higher-level proposition X- know2 know (Sam X) is selected and its second SP, is
active. When it receives input from X-know2 the P unit for loves (John Mary} goes into daughter mode
and passes no excitation to its constituent SPs, (c) The lower-level proposition is selected (and therefore
in parent mode) and its first SP. John-loves) is active, (d) The lower-level proposition is selected and its
second SP, Mary-loves2 is active.
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Analog 1
(Driver)

Analog 2
(Recipient)

loves(John Mary)

fears(Peter Beth)

Figure 4. Illustration of mapping loves (John Mary) (Analog 1) onto likes (Bill Susan) versus fears (Peter
Beth) (Analog 2). The subproposition (SP) encoding the binding of John lo lovel (the agent role of "love")
is active in the driver (Analog 1). For both the driver and the recipient, black units are very active and white
units are inactive. In the recipient, moderately active units are depicted in gray. Lovesi shares more semantic
primitives with likes! (the agent role of "like") than with ./ears/ (the agent role of "fear"), so the pattern
generated by tovesl will activate likes 1 radier than fears!. As a result, John will map tn Bill rather than Peter,
even though John shares just as much semantic content with Peter as with Bill.

(John tovesl) fires in the driver, it will activate John and loves 1,
which will activate their semantic units (e.g., human, male,
adult, and emotion], positive!, strong!). This pattern will excite
object and predicate units in the recipient, which will compete
to become active. Human, male, and adult will excite Bill and
Peter; human and adult will excite Susan and Beth. In this
competition, Bill and Peter will become equally active, inhib-
iting Susan and Beth. Based on their semantic overlap alone,
LISA begins to act as if John corresponds to either Bill or
Peter. At the same time, emotion], and positive I will excite the
predicate unit likesl, but only emotionl will excite fearsl.
Likes I will inhibit fearsl: LISA begins to act as if loves! corre-
sponds to likesl. Because likes! is more active than fearsl, the
SP Bill-likes} will receive more bottom-up input—and therefore
become more active—than the SP Peter-fearsl. SPs excite the
P units to which they belong, so the unit for "Bill likes Susan"
will become more active than the unit for "Peter fears Beth."
Hence, LISA concludes that "John loves Mary" corresponds
to "Bill likes Susan" rather than "Peter fears Beth." The SP
mappings also allow LISA to resolve the semantically ambigu-
ous John-ta-Bill versus John-to-Peter mappings. SPs feed acti-
vation back to (heir predicate and object units, giving Bill an
edge over Peter. Now, LISA concludes that John corresponds
to Bill rather than to Peter. Analogous operations will cause
LISA to conclude that Mary corresponds to Susan rather than

to Beth, and that Ioves2 corresponds to Iikes2. Selected P units
in the driver remain active for a fixed number of iterations. At
the end of this time, the activations of all units in the recipient are
initialized to zero in preparation for the next driver proposition.

As these operations run, the cross-analog mapping connections
keep track of which structure units are coactive across the analogs
(as detailed in Appendix A). When structure unit i is active at
the same time as structure unity (where i and j are units of the
same type in different analogs), a buffer on the connection from
j to i is incremented; when i is active while j is inactive, the buffer
fioiny to i is decremented. After all propositions in the phase set
have been selected (and run), the values accumulated on (he
mapping connection buffers are used to set the weights on those
connections: A connection weight is incremented or decremented
in proportion to the value of the corresponding buffer, with the
result that structure units develop positive mapping weights to the
extent that they are active simultaneously, and negative weights to
the extent that one is active while the other is inactive. The map-
ping weights are then normalized to enforce the constraint of
one-to-one mapping: Whenever the weight fromy to / increases
by some value, Awa > 0, all other mapping weights leading into
unit i are decremented by Aw,_,/n,, (where n\ is the number of
other weights leading into i), and all other weights leading out
of unit j are decremented by Awv/«;, (where n, is the number of
other weights leading out of j). In the preceding example, the
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mapping weights from John to Bill, Mary to Susan, loves] to

likes 1, and Ioves2 to Hkes2 (as well as the associated SP and P

weights) will all develop positive values. All other mapping

weights will develop negative values. The resulting weights serve

as LISA'S representation of the mapping, with positive weights

between corresponding elements.

These mapping weights serve to enforce structural consis-

tency, both with hierarchical propositions and with multiple non-

hierarchical propositions. First consider the nonhierarchical

case. Imagine that LISA learns to map John to Bill and Mary

to Susan, and let us add some additional propositions to the

driver and recipient analogs: "Mary gave John flowers" in the

driver, and "Susan gave Bill candy" and "Beth gave Peter a

watch" in the recipient. If we assume Ihut flowers shares just

as much semantic content with watch as it does with candy,

then in isolation the "give" mapping would be ambiguous:

"Mary gave John flowers" would map equally well to both

"Susan gave Bill candy" and "Beth gave Peter a watch." How-

ever, if "John loves Mary" has already mapped to "Bill loves

Susan," then "Mary gave John flowers" will tend to map to

"Susan gave Bill candy" because of the positive weights from

Mary to Susan and from John to Bill. As a result, LISA will

also map flowers to candy rather than to watch. This kind of

biasing works with analogies of any size, serving both to imple-

ment structure sensitivity in mapping and to produce an interest-

ing order sensitivity: LISA can resolve the mapping of flowers

to candy in the context of the gave propositions only after it

has mapped Mary to Susan in the context of the loves—likes

propositions. Additional implications of this order sensitivity

are discussed in the report of simulation results.

The same biasing allows LISA to map hierarchical propositions

in spite of the one-level restriction. Let the driver consist of the

proposition "Sam knows John loves Mary," and let the recipient

consist of' 'Joe knows Bill likes Susan," and ' 'Robert likes Beth."

At the lowest level of hierarchy, the mapping of John to Bill

versus to Robert is completely ambiguous: "John loves Mary"

maps equally well to both "Bill likes Susan" and "Robert likes

Beth." However, in the context of the higher-level propositions,

"Sam knows [ X]" and "Joe knows [Y]", the mapping is unam-

biguous. "John loves Mary" and "Bill likes Susan" serve as

arguments of corresponding higher level propositions and there-

fore correspond to one another. Hence, the correct mapping places

John into correspondence with Bill rather than with Robert. LISA

discovers this mapping as follows. When "Sam knows [X]" is

selected in the driver, "Joe knows [Y]" will become active in

the recipient, establishing the correspondence between Sam and

Joe and—more importantly—between [X] ("John loves

Mary") and [Y] ("Bill likes Susan"). This latter mapping will

be stored as a positive weight on the connection from the P unit

for "John loves Mary" to the P unit for "Bill likes Susan." When

"John loves Mary" is selected, this positive weight will give "Bill

likes Susan" an advantage over "Robert likes Beth." As a result,

John will map to Bill rather than to Robert.

Constraints on Working Memory

It is important to relate LISA'S operation to our theoretical

claims about the processes underlying human reasoning, espe-
cially the limits of working memory. LISA'S working memory

can be subdivided into three levels, operating at increasingly

fine-grained time scales. Active memory can be viewed as the

largest subset of long-term memory that is currently the focus

of attention. Active memory is assumed to be relatively stable

over a time range of several seconds to minutes, and the contents

of active memory are assumed to be held in a state in which

they can be rapidly shifted in and out of working memory (which

lasts on the order of a few seconds, as described shortly). We

assume that the cross-analog connection buffers representing

correspondences between driver and recipient reside in active

memory. It follows that analogical access and mapping differ in

a fundamental way: Mapping can be guided by the emergence

of new structural connections (i.e., altered weights on mapping

connections), but access must rely on preexisting connections.

In addition, access, by its nature, involves a competition among

numerous stored cases in LTM, whereas mapping (typically)

involves only a single case in active memory as recipient. LISA

(like the ARCS model of Thagard et al., 1990) treats access as

a competitive process in which lateral inhibition between stored

cases creates a retrieval bottleneck, such than only a small num-

ber of stored analogs can become highly active after a single

retrieval attempt (see Appendix A).

Within active memory, a very small number of propositions

in one analog can enter a dynamic state of phase-locked activity

that actively represents their variable bindings. This working

memory, which is viewed as the most significant bottleneck in

the system, corresponds to the phase set, consisting of the set

of mutually desynchronized role-argument bindings (SPs). As

stated previously, we assume that adult humans can maintain

an upper bound of about 4-6 nonoverlapping phases. The phase

set, along with the collection of mappings involving the elements

of that set (i.e., the mapping connection buffers referring to

those elements), is assumed to be relatively stable over a range

of a few seconds and intuitively corresponds to the system's

' 'current thought.''

For clarity, the previous examples treated individual proposi-

tions as the residents of each phase set. For example, the propo-

sition "John loves Mary" requires two role-argument bindings

and would therefore fill a phase set of size 2. ' 'Mary gave John

flowers" has three role-argument bindings and would fill a set

of size 3. However, in general, we assume that the phase set

(working memory) may contain more than one proposition.

Specifically, we associate the size of the set with the number of

independent SPs (role-filler bindings) that can be activated be-

fore updating the weights on the mapping connections. For ex-

ample, if LISA had a working memory (phase set) of size 5,

then it could select "John loves Mary" (occupying 2 phases)
and then select "Mary gave John flowers" (occupying 3), and

then update the mapping connections, converting the buffer val-

ues to weight values. By contrast, if LISA had a maximum set

size of 3, then it would have to update the connection weights

between selecting the propositions (i.e., select the loves proposi-

tion, then update the weights, then select the gave proposition,

then update the weights again). With a set size of 2, it could

not reliably represent the three-argument gives proposition at
all.

The theoretical claims motivating the above convention are

the following: (a) Working memory (the phase set) corresponds

to the current contents of "awareness." (b) The maximum size
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of the phase set is given by the number of role-filler bindings

that can be explicitly entertained simultaneously (i.e., be kept

simultaneously active but out of synchrony), (c) The buffers

on the mapping connections reside in working memory (whereas

the weights do not), so the mapping hypotheses generated in

working memory (i.e., during a given phase set, as embodied

in the buffers) must be consolidated (i.e., converted to weight

values so the buffers may be ' 'flushed1') before moving on to

the next phase set.

At the most microscopic level of operation (on the order of

about 25 ms; Gray et al., 1989), each individual group in the

phase set becomes active serially.3 Following the one-level re-

striction, the content of a group is restricted to a single role-

filler binding (i.e., one SP-based group). It follows that the

maximum amount of knowledge that can coexist in working

memory is a number of propositions that do not jointly involve

more than 4-6 role bindings.

In the operation of LISA, each subdivision of active memory

is theoretically linked to a particular aspect of the structure-

sensitive comparison processes. Comparisons that are internal

to active memory (i.e., mapping) can result in learning of new

mapping connections that code systematic correspondences be-

tween the two analogs. The general principle (LISA'S explana-

tion for Phenomena 1 and 2 in Table 1) is that access must rely

on preexisting connections, whereas mapping can create new

ones.

The division of LISA'S mapping operations into a hierarchy

of temporal scales (with individual SPs at the fastest scale,

combining into propositions, which combine into phase sets,

which finally compose a complete mapping session) has im-

portant consequences for USA's performance as a mapping

engine. Competition (and therefore mapping) at the level of

individual SPs operates on the basis of parallel constraint satis-

faction: An SP in the driver generates a pattern of activation on

the semantic units, and all units in the recipient compete in

parallel to respond to that pattern. It is only at this very small

scale that LISA'S mapping algorithm has the power of full paral-

lel constraint satisfaction. At the level of whole propositions,

the algorithm only weakly approximates parallel constraint sat-

isfaction. The activation of a P unit persists across multiple SPs,

and P units excite the SPs to which they are connected. There-

fore, mappings established by one SP can bias the mappings

established for other SPs in the same proposition.

The main computational significance of the phase set for

LISA is that mappings for different propositions in the same

set do not constrain one another at all. Mappings established by

one proposition are stored as weights that serve to bias subse-

quent access and mapping. Mapping weights are updated be-

tween phase sets (i.e., after one phase set ends and before the

next one begins), so the biasing that results from the mapping

connections operates only between separate phase sets: The or-

dering of propositions within a phase set has no impact on

mapping. Effectively, propositions in the same phase set are

considered in parallel. Accordingly, the size of the available

phase set (i.e., the size of working memory) places an upper

bound on the formal complexity of the analogies that LISA can

map. Variations in this aspect of working-memory capacity may

provide a partial explanation of some phylogenetic and ontoge-

netic differences in analogical competence.

Simulation Results

We now describe a series of simulations of analogical access

and mapping using the LISA model. The program used in these

simulations is written in TurboPascal (Version 7, Borland Inter-

national, Inc., Scotts Valley, CA) and runs on an IBM-compati-

ble 486 microcomputer. Our aim in this article is not to test the

capacity of the model to scale up to large examples4 but rather

to demonstrate its ability to account for the qualitative phenom-

ena listed in Table 1. Accordingly, the simulations are based on

small examples that illuminate specific phenomena. Most of the

examples are based on simplified versions of materials used in

empirical studies of human processing of analogies. Unlike most

previous analogy models (with the exception of the Copycat

system of Hofstadter & Mitchell, 1994), the performance of

LISA is stochastic, potentially yielding different outputs for

multiple runs on the same inputs. In addition, LISA is sensitive

to the order in which propositions in the driver enter the phase

set. Each simulation we report is based on a number of runs

sufficient to establish a stable pattern of results. Unless other-

wise indicated, simulations involved placing one proposition

(with from one to three arguments) at a time in the phase set,

so that the mapping weights were updated after each proposition.

It is necessary to specify dependent measures that can be

used to relate the performance of LISA to that of people. For

mapping, the most common dependent measure used in human

studies is some form of accuracy measure. For LISA, the accu-

racy of specific mappings can be identified with the learned

weights on the relevant mapping connections. Accordingly, we

use the mean advantage of the learned weight for the correct

correspondence relative to the strongest competitor as an index

of LISA'S mapping accuracy. To model experiments in which

latency is the primary dependent measure, we use the number

of cycles and/or propositions required for LISA to generate the

correct set of correspondences.

To provide a measure of analogical access, we use a retrieval

index based on the fit between the driver (i.e., retrieval cue)

and each analog in LTM. Two retrieval indices—a raw index

and a Luce index—are computed for each recipient or dormant

analog. The raw retrieval index, R,, for analog i in LTM is

computed as a Weber function of the sum of maximum P unit

activations, j, in i:

R, = 100 (1)

where a, is the maximum activation obtained (during the run)

by P unity in analog i, and Nj is the number of propositions in

analog i. (The scaling constant, 100, was chosen simply to keep

3 Each phase lasts only V^th of a second and there are only 4-6

phases in a set, yet we assume chat each phase set is maintained for a

few seconds. The reason is that, for the sake of stability, each phase is

assumed to become active several times during the duration of the phase

set.
4 Our microcomputer is running under Microsoft DOS (Version 5.0,

Microsoft Corp., USA, Redmond, \VA), the memory limitations of which

severely limit the size of the simulations we can run.
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retrieval indices roughly in the range of 0.01 to 2.00.) K, is

proportional to the number of propositions in i that become

active in response to the driver and the degree to which each

becomes active. The Weber fraction (Marshall, 1995) allows

analogs that have few propositions to compete on an equal

footing with analogs that have many; it is superior in this regard

both to a raw sum of activations (which would favor retrieval

of large analogs over small ones) and to a raw proportion (which

would favor small analogs over large ones). The squaring serves

to enhance small differences between the Weber fractions of

different analogs. This retrieval index can be computed even if

only a single analog at a time is stored in LISA'S LTM and is

directly proportional to the degree of fit between the driver and

the recipient analog.

We assume that during retrieval, analogs compete through

shunting (divisive) inhibition. The effect of such inhibition is

captured by the Luce retrieval index, L:

R,
(2)

which is mathematically equivalent to subjecting each R, to

Luce's (1959) choice axiom. Wharton, Holyoak, Downing,

Lange, & Wickens (1991) have shown that human analog re-

trieval fits well to the predictions of the Luce choice model.

Relationship Between Analogical Access and Mapping

We begin by reporting simulations of phenomena that bear

on the relationship between analogical access and mapping (Ta-

ble 1).

Similarity and role binding in access and mapping. Ross

(1987, 1989) has investigated the influence of two types of

similarity—general domain similarity (i.e., similarity of objects

and predicates), and consistency of role bindings (i.e., whether

or not similar objects played similar roles) —on both analogical

access and mapping. His results highlight both similarities and

differences between access and mapping. The pattern Ross ob-

served is complex and, to the best of our knowledge, has never

been simulated by any computational model of analogy. This

set of simulations therefore provides a challenging test of the

psychological adequacy of LISA, particularly with respect to

our claim that the model provides a unified account of access

and mapping.

Ross gave college students word problems illustrating the use

of equations to solve probability problems (e.g., permutation

and combination problems). He then gave them new word prob-

lems that differed in their semantic and structural relationships

to the studied source problem. For example, the source might

involve assigning cars to mechanics at the IBM motor pool

(e.g., for repair). In the illustrated equation for permutations,

the number of cars instantiated a variable n representing the

total number of items from which an ordered subset of a fixed

size is selected. The subsequent target problem varied whether

the basic story line was similar (e.g., another car assignment

problem at the motor pool vs. a formally equivalent problem

involving assignment of students at a high school). A second

dimension of variation involved bindings of objects into roles,

that is, which objects (humans or artifacts) served as n in the

equation. Recall that in the source problem the two major types

of objects were humans (mechanics) and artifacts (cars), and

the artifacts filled the role of n in the permutation equation. The

test problem could either be consistent with the source (humans

and artifacts, with the artifacts as n), inconsistent (cross

mapped) with the source (humans and artifacts, with the humans

as n), or neutral (two categories of humans, one of which

served as n).

Ross tested both access (participants' ability to retrieve the

source problem given the cue) and mapping (their ability to use

the source as a basis for solving the target) as a function of the

semantic and structural relations between source and target.

Table 3 (adapted from Table 3 in Ross, 1989, p. 464) summa-

rizes his major qualitative findings. Following the notation used

by Ross, each condition is denoted by an expression in the form

{ +, 0) / { +, 0, — ) , with one symbol selected from within each

set of brackets. The first symbol represents similarity of story

line (+ for close, 0 for far). The second symbol represents the

similarity of objects in matching roles (+ for similar, 0 for

neutral, — for dissimilar). For example, the condition +/ —

represents a target problem with a similar story line as the

source problem (e.g., both involving car repairs at a motor pool)

but with similar objects playing dissimilar roles (e.g., mechanics

instead of cars as n).

Table 3 shows four sets of ordinal comparisons between con-

ditions, for both access and mapping. The data provided by Ross

(1989) for the first comparison, ( + /+) - ( + /-), reveal that

when the overall story line is similar, assigning similar objects

to dissimilar rather than similar roles impairs both access and

mapping. That is, the difference ( + / + ) - (+ / — ) evaluates to

a positive number. The second comparison, (0/ + ) — (O/-),

Table 3

Associations and Dissociations Between Access and Mapping

as Observed in Humans and Simulated by LISA

Access Mapping

Condition6

(+/+) _ (+/_)

(0/+) - (O/-)
(0/0) - (O/-)
(0/0) - (+/-)

Humans'

.22

.04

.01
-.22

LISAb

.58

.17

.09
-1.3

Humansc

.19

.14

.11

.16

LISA"

1.98
1.82
0.94
0.94

Note. Human data from Ross (1989, Table 3). Adapted from "Distin-
guishing Types of Superficial Similarities: Different Effects on the Ac-
cess and Use of Earlier Problems," by B. Ross, 1989, Journal of Experi-
mental Psychology: Learning, Memory, and Cognition, 15, p. 464. Copy-
right 1989 by the American Psychological Association. Adapted with
permission of the author.
a Human access score based on proportion of cases in which appropriate
formula was recalled.
b LISA's score based on the raw retrieval index, R,
c Human mapping score based on proportion of cases in which variables
were correctly instantiated in formula.
d LISA's score based on value of correct mapping minus value of highest
incorrect mapping.
e All scores are based on differences between the two indicated condi-
tions, expressed as story line similarity-object correspondence similar-
ity.
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indicates that when the story line is dissimilar, assigning similar

objects to dissimilar roles impairs mapping but has little impact

on access. The third comparison, (0/0) — (O/-), shows a

similar dissociation between mapping and access when the

cross-mapped condition is compared to the neutral condition.

Finally, the fourth comparison, (0/0) - ( + / — ), pits the two

factors in opposition to each other: a neutral assignment of

objects to roles in the absence of a similar story line (0/0)

versus a similar story line with a cross-mapping of objects to

roles (+/ — ). This comparison yielded a dramatic reversal of

difficulty between access and mapping, with the similar, cross-

mapped condition ( + / — ) yielding easier access but less accu-

rate mapping than the dissimilar, neutral condition (0/0).

Table 4 shows the representations of simplified versions of

the problems in one of Ross's item sets that were provided to

LISA. These consist of (a) a list of propositions for each analog;

and (b) for each object and predicate used in the propositions,

a list of semantic features. The features are given descriptive

Table 4

LISA Representations of Problems Used to Simulate Access

and Mapping Results of Ross (1989)

A. Propositions! representations of analogs

Source analog ("cars assigned to mechanics"; cars-m)
PI (work-at mechanics motor-pool)
P2 (belong cars executives)
P3 (assigned-to cars mechanics)

Target analogs
+/+ ("cars assigned lo mechanics"; cars-^w)

PI (work-at mechanics motor-pool)
P2 (belong cars salespeople)

P3 (assigned-to cars mechanics)
+/— ("mechanics assigned to cars"; mechanics-*/!)

PI (work-at mechanics motor-pool)
P2 (belong cars salespeople)

P3 (assigned-to mechanics cars)
0^+ ("computers assigned to students"; computers-*/?)

PI (enrolled-at students high-school)
P2 (assigned-to computers students)

0/0 ("students assigned to counselors"; students-*/?)

PI (work-at counselors high-school)
P2 (enrolled-at students high-school)
P3 (assigned-to students counselors)

O/— ("students assigned to computers"; students—*/i)

PI (enrolled-at students high-school)
P2 (assigned-to students computers)

B. Semantic features

Objects
motor-pool: location company workplace IBM
executives: animate person job business excel

salespeople; animate person job business sales!
cars: inanimate machine transport carsl
mechanics: animate person job mechanic!
high-school: location school workplace highl
students: animate person unpaid studcntl
counselors: animate person job teaching counsel 1
computers: inanimate machine info device computerl

Predicates
work-at: locative activity workl
enrolled-at: locative state enroll
belong: state posses belong 1
assigned-to: trans passive alter-poss assign 1

labels to aid readability; however, these labels have no import

to LISA (nor do the labels for predicates, objects, and proposi-

tions). Each predicate is defined to have a certain number of

arguments slots; by default, each slot is represented by a distinct

set of semantic features. The critical properties of these repre-

sentations for the purposes of simulating Ross's results are the

following;

1. The predicates and objects in the source and target prob-

lems with similar story lines have greater semantic overlap than

do those in problems with dissimilar story lines, and

2. The object filling the first role of "assigned to" plays the

role of n in the relevant equation to be instantiated.5

These representations were used to simulate the four compari-

sons summarized in Table 3, for both access and mapping. In

each simulation, the source analog (which was constant across

all runs) was the recipient, and the target was the driver. Proposi-

tions in the driver entered the phase set one at a time, in the

order listed in Table 4. The "assigned lo" proposition in the

target was selected twice as often as any other proposition,

reflecting its greater pragmatic importance. The sole difference

between LISA'S operation in simulating access versus mapping

was that learning of mapping connections was disabled during

access runs. We report the raw retrieval index, R (Equation 1) ,

as a measure of access. (There was only one analog—namely,

the source—in LTM during any simulation, so the Luce fit was

always 1.0.) As a measure of mapping, we recorded the mapping

weights from the driver (target) objects to the critical source

(recipient) object, "cars" ("cars" in the source analog corre-

sponds to n in the equation). We treated a mapping as correcl

if it would yield the correct answer in the target problem: Does

the participant (or LISA) treat the correct object as n in the

equation? The specific measure of mapping accuracy (in this

and all subsequent simulation reports) was taken as the weight

of the mapping connection for the correct mapping minus the

weight of the strongest connection for an incorrect mapping

(with the latter truncated to zero if it was negative). For both

access and mapping, difference scores were calculated for each

of the four comparisons of conditions provided by Ross (1989).

The dependent measures derived from the simulations with

LISA (mean values over three runs) are presented in Table 3,

along with the comparable data for human problem solvers as

reported by Ross (1989). LISA captures the major qualitative

associations and dissociations between the influence of the two

similarity factors on access and mapping. When story lines arc

similar, assigning similar objects to dissimilar roles impairs both

access and mapping (comparison I ) . However, when story lines

are dissimilar, assigning similar objects to dissimilar roles con-

tinues to impair mapping but has little or no impact on access

1 The predicate assign was used in all of the representations because

it allows reversals of object roles (i.e., whether people or artifacts serve

as the assigned set versus the assignee set). Bassok, Wu, and Olseth

(1995) have shown that mapping performance on transfer problems

similar to those studied by Ross (1989) is also guided by people's

knowledge about the schematic roles chat the specified objects tend to

play with respect to each other (e.g., prizes are typically assigned to

students rather than vice versa). Our simulations do not address such

interpretative effects. We thank Miriam Bassok for advice on the repre-

sentations used in these simulations.



ANALOGICAL ACCESS AND MAPPING 445

(comparisons 2 and 3). Moreover, the relative impact of the

two types of similarity is reversed for access and mapping: For

access, it is better to have a similar story line even if objects

are cross-mapped, but for mapping it is better to have a dissimi-

lar story line with a neutral assignment of objects to roles than

to have a similar story line with cross-mapped objects (compari-

son 4).

LISA'S ability to simulate the patterns of access and mapping

observed by Ross (1989) follows directly from its basic princi-

ples of operation. During both access and mapping, structured

comparisons are initially driven by semantic features (of both

predicates and objects) shared by the driver and recipient. The

only major difference between access and mapping is that the

latter process, which operates on information in active memory,

is able to exploit the mapping connections, thereby encouraging

subsequent mappings that are structurally consistent with initial

mappings. (Recall that the only other difference is that activation

decays faster for access than for mapping.) Prior to access,

however, the recipient or recipients are in a passive state in LTM,

and hence mapping connections cannot be updated. Access must

depend solely on preexisting connections (i.e., shared semantic

features), whereas mapping can create new structural connec-

tions. Similarity of story line (which LISA models as overlap-

ping of semantic features) is therefore more critical to access

than to mapping.

The benefit of having similar objects in similar roles (i.e.,

the benefit of consistent mappings over cross-mappings) follows

from the fact that SP units integrate inputs from both predicates

and objects. If both the object and predicate components of a

driver SP pattern converge in activating a single SP in the recipi-

ent, then that SP (and the P unit to which it is connected) will

clearly win the inhibitory competition in the recipient: The SP

and associated P units will become highly active. Conversely,

if the object pattern activates one SP while the predicate pattern

activates another, then the lateral inhibition between SP and P

units will result in no SP or P units becoming highly active.

Together, these tendencies produce overadditivity for recipient

SPs that match on both the object and predicate patterns relative

to SPs that match on only one or the other. This tendency oper-

ates in both recipient and dormant analogs (i.e., in both working

and long-term memory), but its effects are compounded in

working memory as mapping connections are learned. If the

driver and recipient have little semantic overlap in the first place

(i.e., when the story lines are dissimilar), then the influence of

similarity at the level of role bindings will be minimal due to

the low baseline activation of the recipient.

The simulations of the results of Ross (1989) demonstrate

that LISA can stimulate Phenomena 1 and 2 as well as Phenom-

ena 6 and 7 (see Table 1).

Access and mapping for close analogs, far analogs, and sche-

mas. Phenomenon 3 in Table 1 involves the ordering of ease

of access: Close analogs and schemas are accessed relatively

easily, whereas far analogs are much more difficult to access.

We applied LISA to simulate this finding by using a set of

materials based on convergence problems, which have been used

in several relevant empirical studies (Catrambone & Holyoak,

1989; Gick & Holyoak, 1980, 1983; Keane, 1986). The results

of these studies reveal differences in ease of access and also

suggest a dissociation between access and mapping. Once a hint

to use the source problem or problems is given, the frequency

with which college students generate the convergence solution to

the radiation problem is high and roughly comparable (generally

over 80%), regardless of whether the source is a close analog,

a far analog, or a schema induced from comparisons between

multiple analogs.

Appendix B provides the prepositional representations for the

four convergence problems: the radiation problem (always used

as the target), a close analog ("The Surgeon"), a far analog

("The General"), and a schema for the class of convergence

problems. The semantic features for each object and predicate

are also listed in Appendix B. The general notational conven-

tions used are the same as for the representations used to simu-

late the results of Ross (1989; see Table 4). However, the repre-

sentations used for the convergence problems are considerably

larger and more complex. The schema representation was con-

structed to capture the major common aspects of the specific

analogs. It therefore has fewer propositions and more abstract

objects and predicates (i.e., each object and predicate has rela-

tively few semantic features). The representations of the source

analogs are simplified by omitting solution information, as ac-

cess and mapping are necessarily driven by information that

overlaps with the target (which lacks a solution).

Three sets of runs were performed, one for each source ana-

log. In each run, the radiation problem served as driver, with its

propositions entering into the phase set in the order in which

they are listed in Appendix B. The retrieval runs (with learning

of mapping connections disabled) yielded mean Luce retrieval

indices of .43 for the close analog, .34 for the schema, and .23

for the far analog, matching the empirical ordering. The mapping

runs yielded roughly comparable results for all three sets. The

representation of the target problem includes seven objects (the

doctor, the tumor, the stomach, the tissue, the ray source, the

high-intensity rays, and the low-intensity rays). For both the

close analog and the schema, all seven objects were mapped

correctly (weights on correct mapping connections ranging

from .65 to 1.00, with negative weights on all incorrect mapping

connections); for the far analog, six of the seven objects mapped

correctly (weights on correct mapping connections ranging

from .51 to 1.00, with negative weights on all but one incorrect

mapping connection).

In terms of LISA'S operation, the greater ease of accessing

the close than the far analog is a direct consequence of the

greater number of semantic features that a close analog shares

with the target. The ease of accessing the schema relative to the

far analog has a more subtle basis. Like R, the raw analog

retrieval index, LISA'S predicate and object units use a Weber-

law input rule (see Appendix A), favoring recipients that have

a greater proportion of their units activated by the driver.6 Rela-

tive to objects and predicates in a far analog, objects and predi-

6 The use of a Weber-fraction input rule (Marshall, 1995) as in LISA

eliminates various retrieval biases. For example, ARCS (Thagard et al.,

1990), which does not normalize analog activation in proportion to

analog size, tends to be biased toward retrieving large rather than small

analogs, even when the larger analogs are less isomorphic (Forbus et

al., 1995}. This bias is removed when the ARCS algorithm is modified

by adding the Weber-fraction computation (Eric Melz, personal commu-

nication, June 1995).
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cates in a schema share about the same number of semantic

features with objects and predicates in the target, but they in-

clude fewer unshared features. (Objects and predicates in a

schema represent general classes rather than specific instances.)

A target analog will therefore tend to activate a small abstraction

based on a subset of its features (i.e., a schema) much more

readily than it will activate a remote analog that includes the

same subset of the target's features embedded among many

additional mismatching features (as the remote analog will have

larger denominator terms in the Weber law input rule). In re-

sponse to the objects and predicates in any given target, the

objects and predicates in a schema will tend to become more

active than the objects and predicates in any distant analog. This

same property of a schema will tend to extend to the level of

propositions: A distant analog is likely to contain propositions

that do not fit (i.e., are not structurally consistent with) a target,

whereas a schema, which is an abstraction containing only the

relevant propositions, will tend to contain fewer such non-

matching propositions. This difference will also tend to result

in a higher retrieval index from any particular target to a schema

than to a distant analog. At the same time, however, a near

analog will tend to become more active than a schema: Due to

the non-zero constant (0.5) in the denominator of the Weber

law, additional propositions in an analog only "penalize" that

analog when they do not fit with the driver (target). A near

analog with, say, ten propositions, all of which fit the driver,

will become somewhat more active than a schema with only

five propositions, all of which fit the driver.

Competition and role binding in access. Wharton et al.

(1994, in press) have demonstrated that analogical access is

inherently competitive (Phenomenon 4). These investigators

showed both that retrieval is sensitive to role binding (greater

access to analogs in which similar objects play similar roles as

in the retrieval cue; cf. Ross, 1989) and that access to any

individual analog is decreased by the presence of a strong com-

peting case stored in LTM. LISA was used to simulate a simpli-

fied version of Experiment 2 as reported by Wharton et al.

(1994). Each analog was a single proposition. A sample set

consisted of three interrelated analogs, such as:

1. The judge was alerted by the rescue worker, (cue)

2. The lawyer was warned by the paramedic, (consistent role

assignments)

3. The attorney cautioned the firefighter, (inconsistent role

assignments)

In the original experiment, participants first studied a series of

such sentences. After a brief delay, they saw a series of cue

sentences and were asked to write down any sentence of which

they were reminded. Wharton et al. varied two factors. First,

relative to the cue (e.g., sentence 1), a studied sentence either

had consistent role assignments (similar objects in similar roles,

as in sentence 2), or inconsistent assignments (cross-mapped,

as in sentence 3). Second, for a given cue, the study set included

either one related sentence (e.g., either 2 or 3), or both.

Table 5 summarizes the results from Wharton et al. (1994),

which revealed that access was more likely when (a) the role

bindings were consistent rather than inconsistent, and (b) only

one related sentence (singleton condition) rather than two (com-

petition condition) had been studied. To simulate this pattern of

results, we gave LISA the eight sentences used by Wharton et

Table 5

LISA'S Luce Retrieval Index (Nonitalic) and Observed

Retrieval Proportions (Italic)

Cue condition

Source analog Singleton Competition

Consistent .37 ,80 .31 .$4

Inconsistent .28 .67 .20 .42

Note. Observed retrieval proportions (data) are from Wharton et al.
(1994, Experiment 2).

al. to serve as the contents of LTM, including sentences 2 and

3 above. Sentence 1 always served as the retrieval cue (i.e., the

driver). Three runs were performed: (a) singleton consistent

condition, in which sentence 2 but not 3 was in LTM; ( b )

singleton inconsistent condition, in which sentence 3 but not 2

was in LTM (with the missing sentence being replaced in each

of the above by an unrelated filler item); and (c) competitor

condition, in which both sentences 2 and 3 were in LTM. Table

5 presents the Luce retrieval index in each condition. (Recall

that the Luce index, L in Equation 2, is an index of competition.)

The simulation results capture the major ordinal relations of

the human recall data. In particular, in both the singleton and

competition conditions, the Luce index is higher for consistent

than inconsistent sentences; moreover, for both consistent and

inconsistent sentences, the index is higher in the singleton than

in the competition condition. For LISA, the advantage for con-

sistent over inconsistent sentences is slightly greater in the com-

petition condition than in the singleton condition. Although such

an interaction was not observed in the particular experiment we

simulated, it has been obtained in three similar experiments

(Wharton et al., 1994, 1996).

The access advantage that LISA exhibits for the consistent

over the inconsistent cases has the same basis as the model's fit

to the comparable finding from Ross (1989; the advantage of

the +/+ over the + /- conditions). The competition effect

arises directly from LISA'S use of lateral inhibition between

stored cases (as reflected in the Luce retrieval index).

Familiarity and access. The final access phenomenon in

Table 1, Phenomenon 5, is that highly familiar source analogs

(e.g., people as an analog for other living things, or the Vietnam

War as an analog of a new foreign crisis facing the United

States) are especially likely to be retrieved (more likely than

can be explained on the basis of similarity to the target). In its

current state, LISA does not simulate this finding, bul it is

straightforward to understand how such an effect might obtain

in terms of LISA'S operation and architecture. Consider how

LISA would learn a new analog. Encoding an analog into mem-

ory would entail establishing a new set of within-analog connec-

tions (e.g., from semantic units to object and predicate units,

and from objects and predicates to SPs, etc.) to encode the

analog's propositional content (see Hummel & Holyoak, 1996,

in press). If this learning is assumed to be incremental (like

virtually all learning in connectionist systems), then highly fa-

miliar analogs (i.e., analogs that have been encountered many

times) would be expected to have higher within-analog connec-

tion weights than unfamiliar analogs. These higher weights
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would manifest themselves in higher activation values for struc-

ture units (most important, proposition units) in familiar ana-

logs than in less familiar analogs, so the former would be more

readily retrieved from memory than the latter (see Equation 1).

Analogical Mapping

We now present a series of simulations that focus specifically

on phenomena involving analogical mapping (Table 1). The

impact of isomorphism (Phenomenon 6) and semantic similarity

(Phenomenon 7), as well as the manner in which they interact,

have already been illustrated in the simulations of the mapping

results of Ross (1989), described earlier. We will now consider

pragmatic centrality (Phenomenon 8) and multiple mappings

(Phenomenon 9).

Pragmatic centrality and the resolution of ambiguous map-

pings. Spellman and Holyoak (1996) reported a series of ex-

periments that investigated the impact of processing goals on

the mappings generated for inherently ambiguous analogies. In

Experiment 2, participants read two science-fiction stories about

countries on two planets. These countries were interrelated by

various economic and military alliances. Participants first made

judgments about individual countries based on either economic

or military relationships and were then asked mapping questions

about which countries on one planet corresponded to which on

the other. Schematically, Planet 1 included three countries, such

that "Afflu" was economically richer than "Barebrute,"

whereas the latter was militarily stronger than "Compak."

Planet 2 included four countries, with ' 'Grainwell'' being richer

than "Hungerall" and "Willpower" being stronger than

"Mightless." These relationships can be summarized in simple

two-proposition representations, which were used as input to

LISA:

Planet I

PI (richer Afflu Barebrute)

P2 (stronger Barebrute Compak)

Planet 2

PI (richer Grainwell Hungerall)

P2 (stronger Millpower Mightless).

The critical aspect of this analogy problem is that Barebrute

(Planet 1) is both economically weak (like Hungerall on Planet

2) and militarily strong (like Millpower) and therefore has two

competing mappings that are equally supported by structural

and similarity constraints. Spellman and Holyoak found that

participants whose processing goal led them to focus on eco-

nomic relationships tended to map Barebrute to Hungerall rather

than to Millpower (43% vs. 35%, respectively), whereas those

whose processing goal led them to focus on military relation-

ships had the opposite preferred mapping (29% versus 65%).

The variation in pragmatic centrality of the information thus

served to decide between the competing mappings.

Spellman and Holyoak (1996) simulated the impact of prag-

matic centrality using the ACME model, under the assumption

that information about the analogs that is relatively less im-

portant to the active processing goal is inhibited. LISA'S archi-

tecture provides a similar mechanism that makes mapping sensi-

tive to the relative importance of information in active memory.

As noted earlier, we assume that people tend to think about

information they regard as important more often and earlier than

information they regard as unimportant. We simulate this in

LISA by selecting important propositions in the driver earlier

and more often than less important propositions. We tested the

impact of pragmatic centrality in LISA using the above preposi-

tional representations of the two analogs, with semantic repre-

sentations in which all planets were equally similar in terms of

feature overlap. Planet 1 served as the driver. Five levels of

pragmatic focus were defined. In the Econ-hi condition, the

economic proposition PI was selected three times, after which

the military proposition P2 was selected once; in Econ-lo, PI

was selected once followed by P2 once. Two conditions favoring

the military proposition (P2) over the economic proposition

(PI) to varying degrees (Mil-hi, Mil-lo) were defined by re-

versing the above biases. In all four of these conditions, the

mapping connections were updated after each proposition was

selected (i.e., there was always only one proposition in the

phase set), so that earlier propositions were able to influence the

mapping weights before the latter propositions were selected. In

the Neutral condition, PI and P2 were both selected once in a

single phase set, thus eliminating any variation in either fre-

quency or order of selection.

Table 6 presents the mean weights on the two competing

connections for the ambiguous country, Barebrute, based on

two sets of runs for the seven conditions. These simulations

reveal an orderly shift in the difference between the strength of

the economic-based mapping (Hungerall) and the military-

based mapping (Millpower) with the frequency and order of

selection of the two driver propositions. These results show both

that LISA is sensitive to pragmatic centrality and that it can

resolve an inherently ambiguous mapping.

We also simulated the schematic design of Spellman and

Holyoak's (19%) Experiment 3, which is presented in Table 7.

In this experiment, participants read plot summaries for two

elaborate soap operas. Each plot involved various characters

interconnected by professional relations (one person was the

boss of another), romantic relations (one person loved another),

and cheating relations (one person cheated another out of an

Table 6

LISA'S Mappings for Ambiguous Country ("Barebrute") as a

Function of Emphasis on Economic Versus

Military Propositions

Emphasis

Weight on mapping connection"

"Hungerall" "Millpower"

(economic) (military) Difference

Econ-hi

Econ-lo

Neutral

Mil-lo
Mil-hi

.63

.79

.68

.74

.08

.05

.71

.64

.77

.65

.58

.08

.04
-.03
-.57

Note. Econ-hi = high emphasis on the economic relation; Econ-lo =

low emphasis on the economic relation; Neutral = emphasis on neither

the economic nor the military relation; Mil-lo = low emphasis on the

military relation; Mil-hi = high emphasis on the military relation.
a Means over two simulation runs.
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Table 7

LISA's Schematic Prepositional Representations of the Relations Between Characters in the

"Soap Opera" Experiment of Spellman and holyoak (1996)

Plot 1 Plot 2

Bosses (Peter, Mary)
Loves (Peter, Mary)
Cheats (Peler, Bill)

Bosses (Nancy, John)
Loves (John, Nancyj

Cheats (Nancy, David)
Cheats (Lisa, John)

Bosses (David, Lisa)
Loves (Lisa. David)

inheritance). Each of the three relations appears once in Plot 1

and twice in Plot 2. Based solely on the bosses and loves rela-

tions, Peter and Mary in Plot 1 are four-ways ambiguous in their

mapping to characters in Plot 2: Peter could be mapped to any

of Nancy, John, David, or Lisa; Mary could be mapped to any

of those same characters. If the bosses propositions are made

more important than the loves propositions (i.e., if a processing

goal provided a strong reason to map bosses to bosses and hence

the characters in the bosses propositions to each other), then

Peter should map to either Nancy or David and Mary would

correspondingly map to either John or Lisa. There would be no

way to choose between these two alternative mappings (ignoring

gender, which in the experiment was controlled by counterbal-

ancing ). However, if the cheats propositions are considered,

then they provide a basis for selecting unique mappings for

Peter and Mary: Peter maps to Nancy so Mary maps to John.

In a similar manner, if the loves propositions are made important

(absent cheats propositions), then Peter should map to John or

Lisa and Mary would correspondingly map to Nancy or David;

if the cheats propositions are also considered, then Peter should

map to Lisa and, hence, Mary to David.

Spellman and Holyoak (1996) manipulated participants' pro-

cessing goals by having them produce an analogical extension

of Plot 2 based on Plot 1, where the extension involved either

professional or romantic relations; the cheating relations were

always irrelevant. Participants' preferred mappings were re-

vealed on this plot-extension task by their choice of Plot 2

characters to play roles analogous to those played by Peter and

Mary in Plot 1. Afterwards, participants were asked directly to

provide mappings of Plot 1 characters onto those in Plot 1.

The results are presented in Figure 5A, which depicts the

percentage of mappings for the pair Peter-Mary that were con-

sistent with respect to the processing goal (collapsing across

focus on professional vs. romantic relations), inconsistent with

the processing goal, or some other response (e.g., a mixed map-

ping). The goal-consistent and goal-inconsistent mappings are

further divided into those consistent versus inconsistent with the

irrelevant cheating relation. The plot-extension and mapping

tasks both proved sensitive to the processing goal, as partici-

pants' preferred mappings in both tasks tended to be consistent

with the goal-relevant relation; however, this effect was more

pronounced in the plot-extension than the mapping task. In con-

trast, consistency with the cheating relation was more pro-

nounced in the mapping than the plot-extension task. Spellman

and Holyoak (1996) modeled this qualitative pattern using

ACME by assuming that goal-irrelevant relations were inhibited

to a greater degree in the plot-extension task (where the goal

focused directly on one type of relation, either professional or

romantic) than in the mapping task (which was only indirectly

influenced by the goal in the preceding plot-extension task).

To simulate the results of Spellman and Holyoak's (1996)

Experiment 3, LISA was given schematic representations of the

two plots on the basis of the propositions in Table 7. Plot 1

always served as driver. Four levels of pragmatic focus were

generated. To counterbalance the order in which the low-focus

propositions were selected, we ran two different selection orders

at each level of focus. For clarity, we denote the proposition (in

the driver) stating the professional relationship (the proposition

listed first in Plot 1; see Table 7) as P, the proposition slating

the romantic relationship as R, and the proposition stating the

cheating relation as C. High focus on the professional relation-

ships (P-hi) was simulated by selecting P four times for every

one time R and C were selected. The orders used were [P P R

P C P] and [P P C P R P]. Low focus on the professional

relationships (P-lo) was simulated by selecting P three times

for every two that R or C were selected, giving the orders [P

R C P C R P] and [P C R P R C P]. Note that, in addition

to being selected more often, P (the proposition stating the

professional relationship, which was the relationship of focus)

was also the first and last to be selected in both the P-hi and P-

lo orders. High and low focus on the romantic relationships (R-

hi and R-lo) were defined by switching the selection of R and

P in the P-hi and P-lo conditions, respectively; thus R-hi was

[R R P R C R] and [R R C R P R], and R-lo was [R P C R

C P R] and [R C P R P C R]. Each order was run 10 times,

for a total of 20 runs in each condition (P-hi, P-lo, R-hi, and

R-lo), and a total of 40 high-focus and 40 low-focus runs. On

each run, we recorded whether the dominant mappings (as given

by the strongest mapping weights for Peter and Mary in Plot 1)

were jointly consistent with the professional relationship, the

romantic relationship, or neither, and whether or not they were

also consistent with the cheating relation.

The results of the LISA simulations are summarized in Figure

5B, using a format that matches the data from Spellman and

Holyoak's (1996) Experiment 3 (presented in Figure 5A). The

simulations were based on the assumption that low pragmatic

focus corresponded to Spellman and Holyoak's mapping task

and that high focus corresponded to their plot-extension task.

The simulations thus simplified the situation posed to partici-

pants in Spellman and Holyoak's experiment by replacing an

inference task (plot extension) with a mapping task. However,

given that analogical inference necessarily depends on the corre-

spondences computed in the mapping stage, this simplification

appears reasonable.

We did not attempt to produce a detailed quantitative fit be-

tween the simulation results and human data; nonetheless, a
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Figure 5. A: Summary of the results of Spellman and Holyoak (1996), Experiment 3. Adapted from
"Pragmatics in Analogical Mapping," by B. A. Spellman and K. J. Holyoak, 1996, Cognitive Psychology,
31. p. 332. Copyright 1996 by Academic Press. Adapted with permission. B: LISA'S simulation results
under different levels of pragmatic focus.

close qualitative correspondence is apparent, with LISA gener-
ally yielding a cleaner form of the pattern obtained with people.
In the high pragmatic-focus simulations (collapsing across the
P-hi and R-hi conditions), LISA'S Peter-Mary mappings were
invariably consistent with the goal-relevant relation (either pro-
fessional or romantic) but were entirely independent of the irrel-
evant cheating relation. LISA effectively ignored the constraint
imposed by the cheating relation, instead producing, with equal
probability, one of the two Peter—Mary mappings consistent
with the goal-relevant relationship. In the low pragmatic-focus
simulations (collapsing across the P-lo and R-lo conditions.),
LISA was again more likely to produce mappings that were
goal-consistent rather than goal-inconsistent, but this preference
was much weaker than in the high pragmatic-focus simulations.
On the other hand, in the low-pragmatic focus simulations, LISA
reliably selected mappings that were consistent with the cheating
relation. Thus LISA, like people, produced mappings that were
dominated by the goal-relevant relation alone when pragmatic
focus was high but that were also influenced by goal-irrelevant
relations when pragmatic focus was low.

These results illustrate two important properties of LISA'S
mapping algorithm. First, as illustrated by the results of the high
pragmatic-focus simulations, LISA will stochastically produce
different mappings, each consistent with the goal-relevant rela-
tion but independent of goal-irrelevant relations, when the latter
are only given a limited opportunity to influence mapping. Sec-
ond, as illustrated by the low pragmatic-focus simulations, small
differences in selection priority (i.e., order and frequency) are
sufficient (when no single relation is highly dominant) to bias
LISA in one direction or another in resolving ambiguous map-
pings. More generally, the simulations of the Spellman and Holy-
oak (1996) results demonstrate that LISA is sensitive to the
constraint of pragmatic centrality (Phenomenon 8) and that it
can successfully find alternative mappings for a single ambigu-
ous analogy (Phenomenon 9).

Mapping performance with an "unnatural"analogy problem.
We now examine LISA'S ability to map variants of an "unnatu-
ral" analogy, illustrating how it deals with Phenomena 10 and
11 in Table 1. As noted earlier, LISA operates in parallel (or
semi-parallel) with respect to the proposition or propositions
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that fire together within a single phase set (i.e., prior to updating

the mapping connections). However, in so far as working-mem-

ory limits restrict the number and complexity of propositions

that can fit into a phase set, LISA must necessarily build map-

pings incrementally (in a similar manner to such systems as

I AM; Keane et al., 1994).

These properties cause major variations in the model's perfor-

mance as a function of the structure of the analogy. LISA'S

performance with the convergence analogs indicates that its

incremental approach to mapping can successfully mimic the

results of parallel constraint satisfaction under some circum-

stances, even when the analogs are relatively large and seman-

tically dissimilar. Despite their size and complexity, the conver-

gence analogs are natural in that (a) they contain semantically

similar predicates that aid in finding an approximately isomor-

phic structure, and (b) each analog exhibits a high degree of

textual coherence, with propositions interconnected by role-fil-

ler relationships. The first property plays a critical role in LISA's

ability to bootstrap the mapping (that is, to find at least a few

correspondences early in mapping), and the second plays a

critical role in its ability to use those established mappings to

constrain otherwise ambiguous future mappings.

Not all analogies have these desirable properties. We will

now examine LISA'S performance on the boys-dogs analogy

(Table 2), a mapping problem that lacks them. As we argued

earlier, this problem is intuitively unnatural. People seem to

solve it with difficulty, using re-representation strategies based

on counting the occurrences of objects and predicates in each

analog. Such strategies are unavailable to LISA, and initial ex-

plorations revealed thai LISA has great difficulty solving this

problem. It failed to generate the six correct correspondences

(three object mappings and three predicate mappings), not only

when one proposition at a time was placed in the phase set but

even when an entire analog (five propositions) was placed in

the phase set. Only when all propositions in both analogs were

placed in the phase set together did LISA succeed reliably using

the representations in Table 2. The size of the phase set required

for success (10 SPs) clearly exceeds the postulated capacity of

human working memory. LISA thus predicts that the boys-dogs

problem could not be reliably solved by humans without the

use of re-representation strategies or external memory aids.

We then explored LISA'S performance with variants of the

boys-dogs problem that increased either the referential coher-

ence of the individual analogs or the semantic similarity of the

analogs to each other. In all of these runs, the boys analog served

as driver. Keane et al. (1994) showed that human performance

on this problem improves if the analogs are presented in a

format that encourages participants to begin by forming a cor-

rect mapping between a pair of propositions. In their Experiment

2B, the two analogs appeared side-by-side on a sheet of paper.

One version was formatted much like Table 2, with no high-

lighting of correct correspondences. A second version used the

same propositions, but reordered so that the first proposition in

each analog described a singleton, an individual with only one

rather than two associated properties (i.e., "Steve is smart" and

"Fido is hungry"). These two propositions were thus visually

highlighted as a potential match, which is in fact correct. People

reached the correct solution more rapidly in the latter, singleton-

first condition.7

LISA can simulate this order effect by assuming that people

notice the first proposition in each analog list, and re-represent

it with some common predicate, such as first or singleton. Ac-

cordingly, we augmented the representation of each analog in

Table 2 with one additional proposition stating explicitly which

fact was first. When these marked propositions in fact corre-

sponded (singleton-first condition), LISA correctly mapped all

of the objects and predicates across the two analogs, even when

only one proposition at a time entered the phase set. In this

case, presentation format influences the semantic similarity of

the analogs; the similarity constraint then bootstraps the incre-

mentally emerging mappings, which are subsequently supported

by the repeated predicates and objects. This result indicates

that LISA can account for Phenomenon 10: An initial correct

correspondence aids in finding subsequent mappings.

In addition to showing an effect of proposition order, Keane

et al. (1994, Experiment IB) also demonstrated that people

map the boys—dogs analogy more easily if some or all of the

corresponding predicates are semantically similar. LISA was

applied to two modified versions of the analogy that matched

conditions used in Keane et al.'s study. In the one-similar condi-

tion, the "Fido is hungry" proposition in Table 2 was changed

to "Fido is clever," creating a similarity with the predicate in

the corresponding boys proposition, "Steve is smart." In the

all-similar condition, the predicate in each of the dogs proposi-

tions was replaced with one that was similar in meaning to the

corresponding boys proposition.

LISA successfully solved both variants with one proposition

at a time entering the phase set. An analysis of LISA'S mapping

performance during the first cycle revealed that, on average, it

approaches the solution more rapidly in the all-similar condition

than in the one-similar condition (although, in both cases, there

is an effect of the order in which propositions are selected to

fire). We ran LISA for one cycle on the one- and all-similar

analogies and recorded its mapping progress after one, two,

three, and five propositions. Mapping connections were updated

after each proposition. As a mapping score, we calculated the

number of correct predicate mappings from Analog 1 (boys) to

Analog 2 (dogs). (The number of correct object mappings did

not differ between the two similarity conditions.) As shown in

Figure 6, the number of predicates correctly mapped grows

more rapidly in the all-similar condition than in the one-similar

condition, although the difference is small. Perhaps more inter-

esting is the fact that the growth curve is smoothly negatively

accelerated in the all-similar condition but not in the one-similar

condition. This difference reflects the fact that, in the all-similar

condition, each predicate in Analog 1 can activate its corre-

sponding predicate in Analog 2 on the basis of semantics alone.

In the one-similar condition, only one predicate mapping (smart

7 Keane et al. (1994) attributed their finding of a singleton-first advan-

tage to the fact that a singleton proposition was listed first in each analog.

However, their results are consistent with the more general possibility

that mapping will be facilitated whenever the first propositions in each

of the two analogs in fact correspond to one another. That is, Keane et

al.'s design confounded "singleton is first in each analog" with "first

propositions in each analog correctly map to one another." In the absence

of evidence to the contrary, we assume that the latter, more general

interpretation holds (Phenomenon 10 in Table 1).
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Figure 6. Mean number of correct predicate mappings (from the boys

analog to the dogs analog) as a function of the number of propositions
fired (1, 2, 3, or 5) and the number of semantically similar predicates

(one similar vs. all similar). Means are calculated over two runs of
each selection order. There were 5 orders in the one-proposition case,
4 in the two-proposition case, 3 in the three-proposition case, and 6 in
the five-proposition case.

to clever) has this advantage; all others must be generated on the

basis of the structural constraints embodied in other emerging

mappings. These simulations illustrate that LISA is sensitive to

semantic similarity in mapping (Phenomenon 7 in Table 1).

Table 8 summarizes the qualitative results of the simulations

based on the boys-dogs problem. LISA is unable to reliably

solve the unnatural basic version of this mapping problem (Phe-

nomenon 11), unless it is granted a psychologically unrealistic

working-memory capacity. However, it can solve the problem

within realistic capacity limits when the representations are aug-

mented to establish a correct initial correspondence and when

similarity of predicates contributes to finding the isomorphic

correspondences.

Finding mappings that violate the n-ary restriction. LISA'S

failure to solve the basic boys-dogs analogy under realistic

assumptions about its working-memory capacity suggests that

the model (unlike ACME) is not overpowerful relative to hu-

mans in its ability to map unnatural analogies. A related question

concerns whether or not LISA is underpowerful in the way that

previous models are. As discussed earlier, all previous analogy

models obey an inviolable n-ary restriction, which prohibits

mapping a predicate with n arguments to one with a number of

arguments other than n. To test whether LISA can find appar-

ently natural mappings that require freedom from the n-ary

restriction, we gave it the two mapping problems based on siz£

relations that we discussed earlier. For the mapping from ' 'Abe

is tall" and "Bill is short" onto "Chris is taller than Dean,"

the semantic representations of tall and the first role of taller,

as well as of short and the second role of taller, were assumed

to share one common feature (out of a total of four features

each). This modest semantic overlap was sufficient to allow

LISA to map Abe to Chris and Bill to Dean—mappings that

require rejecting the n-ary restriction.

The second example involved mapping "Abe is taller than

Bill" and "Bill is taller than Charles" (i.e., two binary transi-

tive relations) onto one proposition based on the trinary predi-

cate "top-to-bottom," with three ordered arguments (top, mid-

dle, and bottom). We assumed that the semantic features of the

top role included three of four features representing the first

role of taller and that the features for the bottom role included

three of four features representing the second role of taller. The

features of the middle role were assumed to include the union

of the above features (reflecting the fact that the "middle"

person is the one who is both taller than someone and less

tall than someone). Although the exact numbers of unique and

overlapping features assumed for each role are arbitrary, this

general pattern of role overlap is consistent with a plausible

basis for learning the trinary predicate by summing the role

features of objects from two size orderings that are mapped on

the basis of binary relations (a point to which we return in the

General Discussion). Using the two binary relations jointly in

the phase set, LISA successfully mapped the two binary proposi-

tions onto the single trinary proposition, generating mappings

of Abe to top, Bill to middle, and Charles to bottom. These

simulations reveal that LISA is indeed able to find sensible

mappings that violate the n-ary restriction (Phenomenon 12).

The model thus demonstrates a degree of flexibility in mapping

Table 8

Summary of LISA'S Mapping Performance on Variants of the Boys-Dogs Problem

Variant
No. propositions in

phase set Performance

Basic (see Table 2)
No similar predicates I Failure
No similar predicates 5 (1 analog) Failure
No similar predicates 10 (both analogs) Success
With one similar predicate 1 Success
With all predicates similar 1 More rapid success

Augmented
With "first" propositions embedding singleton

proposition in each analog 1 Success
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that surpasses that of any previous computational model (but

appears to be equaled by human reasoners).

Phylogenetic and Ontogenetic Change

We now consider how LISA may account for the increases

in analogical ability that occur across species (Phenomenon 13)

and over the course of human cognitive development (Phenome-

non 14). LISA does not by any means provide a definitive

explanation or even description of phylogenetic and develop-

mental change; rather, as a theory of the adult human architecture

for analogical comparison, it provides a set of potential hypothe-

ses about constituent mechanisms that may have evolved and

may undergo maturation. Adult human competence in analogy,

as modeled by LISA, has the following requirements:

1. The capacity to perform dynamic binding (which is neces-

sary for propositional thought),

2. Hierarchically organized structure units that store bindings

in LTM,

3. Both parent and daughter modes of processing (to enable

mapping of hierarchical propositions despite the one-level

restriction),

4. The capacity to learn mapping connections, and

5. Attentional control of a phase buffer (working memory)

that strategically drives the comparison process.

This list, although not exhaustive, at least provides some

relatively specific hypotheses about capacities that may undergo

phylogenetic or developmental change. Our final set of simula-

tions explores one particularly simple variable in LISA that may

account for differences in the complexity of analogies that can

be mapped by different individuals. This variable is the size of

the phase set: the number of distinct role bindings (SPs) that

can be considered together before updating the mapping connec-

tions. Developmental and phylogenetic limitations on the size

of the phase set may reflect a number of specific factors. The

most intuitive is physiological: As noted in the Introduction, the

temporal properties of neural firing necessarily limit Ihe number

of groups that can be simultaneously active but mutually desyn-

chronized. However, this is by no means the only variable (or

necessarily even one of the variables) that might affect phase

set capacity. Others include (a) attentional and strategic vari-

ables (i.e., what an individual knows to place into the phase set

together, as related to requirement 5 above), (b) differences in

the way a problem is represented, and (c) differences in the

attentional-cognitive resources required by other aspects of the

task or by other tasks that must be performed concurrently (e.g.,

a person who is distracted may evidence a smaller phase set

capacity than a person who is free to devote full resources to

the mapping task). We are not committed to any strong claims

about the origins of developmental or phylogenelic differences

in phase set size. Rather, we are more interested in how such

differences may manifest themselves in an individual's ability

to perform mapping tasks of varying complexity.

Halford and his colleagues (Halford, 1992, 1993; Halford &

Wilson, 1980) have proposed that the maximum complexity of

mappings that can be processed by a reasoner is limited by

working-memory capacity, as defined by the number of indepen-

dent dimensions of variation that jointly constrain a decision.

They have also noted that each argument of a predicate (i.e.,

each role binding) can be interpreted as a dimension of varia-

tion. Halford et al.'s (1994) STAR model of mapping provides

a computational realization of this view of capacity limits by

using a tensor-product representation. In their model, each argu-

ment must be assigned to a separate dimension in the tensor

product. Although LISA achieves role binding in a very different

way (by synchrony rather than conjunctive units), its approach

is consistent with Halford's general analysis of the capacity

requirements for mapping. In particular, each additional avail-

able slot in the phase set permits an additional role binding

to be considered in parallel (i.e., prior to revising mapping

connections): Slots in LISA'S phase sets map (roughly) onto

dimensions in Halford et al.'s tensor products.

It follows that increases in the size of the phase set will be

accompanied by increases in the maximal complexity of the

analogical mappings that can be computed, where complexity

is defined according to a metric of the sort proposed by Halford

and colleagues. Halford (1993) argues that human cognitive

development involves maturational stages related to increases

in the number of dimensions that can be considered together.

He distinguishes four levels of mapping complexity based on

the maximal number of dimensions that can be processed in

parallel: one (attribute mapping, attained by roughly age 1

year), two (relational mapping, at about age 3 years), three

(system mapping, about age 5 years), and four (multiple system

mapping, about age 12 years).

Based on their performance on tasks such as match-to-sample,

it can be argued that primates in general, including monkeys,

are capable of mapping objects on the basis of similar attributes

(i.e., one-dimensional representations, equivalent to a single SP

in LISA; Holyoak & Thagard, 1995). Work by Gillan et al.

(1981) indicated that with training in explicit coding of binary

relations, chimpanzees can acquire the capability to map on the

basis of a single binary relation (i.e., two-dimensional represen-

tations, or two SPs). This capability is evidenced in the success

of "language"-trained chimpanzees on proportional analogies

based on familiar relations. Similar problems are within the

competence of 4-year-old human children (Goswami, 1989;

Goswami & Brown, 1989). There seems to be no compelling

evidence that any nonhuman species can reliably map problems

at higher complexity levels than relational mapping.

The direct equivalence of number of SPs in LISA and number

of independent dimensions according to Halford's taxonomy

breaks down at the level of system mapping and beyond. The

reason is that in Halford et al.'s (1994) taxonomy, the number

of independent dimensions can be fewer than the number of

overt role bindings. A good example is provided by transitive

inference, as in the mappings of size orderings considered ear-

lier. Halford et al. (1994) argued that a composition of two

binary relations (which in LISA must involve four SPs) is equiv-

alent in complexity (system level) to a single trinary relation

(three SPs in LISA). This type of equivalence between represen-

tations with different syntactic structures illustrates the impor-

tance of developing a mapping model that breaks free of the n -

ary restriction. As we demonstrated previously, LISA is indeed

able to map two binary transitive relations onto a single trinary

relation, thereby discovering the type of correspondence that

can be derived from Halford et al.'s formal analysis. LISA'S

ability to map syntactically distinct structures that are equivalent
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in information and formal complexity leads to the possibility

that inductive mechanisms could allow the model to form new

predicates that effectively compress the information in multiple

propositions into a single proposition (as in the translation from

two binary taller propositions to the single trinary top-to-bottom

proposition).

The version of LISA presented here does not include such

compression mechanisms (although we have implemented them

in a different version); accordingly, our simulations of the mod-

el's performance on problems at the system level and beyond

were simplified by allocating enough slots in the phase set to

hold all of the overt SPs at a given complexity level (rather

than the formally definable minimal number). Our goal was to

ascertain whether the model, in fact, achieves reliability in map-

ping problems at successive levels of complexity as the phase

set is suitably expanded.

We have already shown that when the phase set can include

two binary relations, LISA can map them successfully onto an

equivalent trinary relation. This performance is at the system

level of Halford et al.'s (1994) taxonomy of complexity. We also

tested LISA'S ability to map two binary relations representing a

size ordering (e.g., "Abe is taller then Bill" and "Bill is taller

than Charles") onto two binary relations describing an ordering

on a semantically dissimilar dimension (e.g., "Communism is

left of socialism" and "Socialism is left of capitalism"). The

representations of the objects (people and political systems)

had no features in common; the relations (taller than and left

of) had one shared feature (out of four). When only one binary

relation at a time was allowed in the phase set (relational map-

ping), LISA was unable to reliably find the isomorphic map-

pings (i.e., Abe -» communism, Bill -> socialism, Charles -*

capitalism). However, when the phase set was expanded to in-

clude two binary relations (system mapping), LISA consistently

found all of the correct object mappings. This qualitative im-

provement in performance with increased size of the phase set

captures the shift from relational mapping (which depends on

similarity of first-order relations) to more abstract system map-

ping (which can find correspondences based on isomorphism

even when the mapped relations are highly dissimilar).

To determine whether a comparable shift in LISA'S perfor-

mance with size of phase set would obtain when the overall

size of the analogs was increased, we also simulated mapping

performance for a structure-learning task that Halford and Wil-

son (1980, Experiment 1) administered to 4-year-old and 5- to

6-year-old children. The children saw the spatial layout sketched

in Figure 7. This layout is based on a mathematical group struc-

ture, the cyclic 4-group. A cyclic 4-group is defined by four

cyclically ordered states (denoted by p, q, r, and s in Figure 7)

and up to four operators that transform an input state into an

output state. The possible operators are null (leaving the input

state unchanged, as in null [p, p]) ; clockwise (move one step

clockwise from the input, as in clockwise [p, q]), counterclock-

wise (move one step in the counterclockwise direction, as in

counterclockwise [p, s]); and diagonal (move across the diago-

nal, as in diagonal [p, r]).

In the initial learning phase, a white house was placed at each

corner of the layout, and a toy truck was placed in front of one

of the houses. The children were then shown three geometric

figures (e.g., triangle, circle, dumbbell) and had to learn by

Figure 7. Spatial layout of experimental environment used by Halford
and Wilson (1980, Experiment 1). The letters are shown for clarity of
exposition, but the corners were unmarked on the apparatus. Adapted
from "A Category Theory Approach to Cognitive Development," by
G. S. Halford and W. H. Wilson, 1980. Cognitive Psychology, 12. p.
381. Copyright 1980 by Academic Press. Reprinted with permission.

trial and error to move the truck in accord with the operator

represented by each geometric figure. For example, if the truck

was located at the house on corner p, and triangle represented

the diagonal operator, then the correct response was to move

the truck to corner r. For different groups of children, the three

figures represented null, clockwise, and counterclockwise, or

else null, clockwise, and diagonal. As the null operator is not

theoretically significant in interpreting Halford and Wilson's

(1980) findings, we did not include it in our simulations; hence,

we will refer to the two experimental groups as the clockwise-

counterclockwise and the clockwise-diagonal conditions, re-

spectively. After the children learned to interpret all of the geo-

metric figures correctly, they learned the system a second time

with a new set of figures representing the same operators. This

initial learning phase was intended to ensure that the participants

acquired a schema representing the underlying structure of the

layout and operators.

In the subsequent criterial phase of the experiment, the chil-

dren were presented with a series of additional problems embod-

ying the same relational structure as they had learned in the

initial phase (either clockwise-counterclockwise or clockwise-

diagonal), but with entirely new surface elements. The states

were represented by four toy houses of different colors (red,

green, blue, yellow). One of these houses was initially placed

on a corner of the layout (e.g., blue might be placed on r), and

the child was given the remaining three. The child then saw a

series of operators represented by circle, star, and cross, each

defined by a move from one colored house to another. The

operators were formally equivalent to those the child had learned

in the initial phase. For example, if star meant diagonal, and if

red belonged on state p, then the child had to learn (by trial

and error with feedback) that applying star to green (on r)

meant moving to red (on p). The child was encouraged to place

the three unassigned houses onto the layout in accord with the

meaning of the operators, rearranging the tokens as often as

they liked. When a learning criterion was reached (12 successive



454 HUMMEL AND HOLYOAK

correct predictions of the output state given an input and opera-

tor), or a maximum number of trials was presented (72), the

child advanced to a new problem, again with the identical under-

lying structure. The main dependent measure was the number

of problems (out of a maximum of three) for which the child

achieved criterion.

Because the underlying structure of the criterial problems

was isomorphic to that of the learning problems, each criterial

problem could potentially be solved by mapping propositions

describing the binary input-output relations in a criterial prob-

lem (target) onto an isomorphic representation of the schema

acquired during the initial phase (source). Table 9 presents the

prepositional representations that were provided to LISA, for

both the clockwise-counterclockwise and clockwise-diagonal

conditions. Propositions PI -P4 (representing the clockwise op-

erator) in the source and target are identical for the two condi-

tions; propositions P5-P8 represent either the counterclockwise

or the diagonal operator, depending on the condition.

These two conditions, despite being closely matched (both

involve analogs describable by eight binary relations based on

two operators and four states from a cyclic 4-group), differ in

their relational complexity, according to Halford and Wilson's

(1980) taxonomy. The clockwise-counterclockwise condition

only requires mapping at the relational level, as an isomorphic

mapping can be computed by considering just one binary rela-

tion at a time. The reason is that the target operators, cross and

star, can be mapped either to clockwise and counterclockwise,

respectively, or the reverse: Either assignment would generate

an isomorphic mapping. By contrast, clockwise and diagonal

are asymmetrical operators and, hence, are not interchangeable:

Cross must map to clockwise and star to diagonal. As such, the

clockwise-diagonal condition requires finding a mapping at the

system level by considering two binary relations (both clock-

wise and diagonal) together. As the difference in complexity

Table 9

LISA Representations Used to Simulate Structure-learning

Results of Halford and Wilson (1980)

Initial structure (source) Criterial structure (target)

Clockwise-counterclockwise condition

PI (clockwise p q)
P2 (clockwise q r)
P3 (clockwise r s)
P4 (clockwise s p)
P5 (counterclockwise p s)
P6 (counterclockwise s r)
P7 (counterclockwise r q)
PS (counterclockwise q p)

PI (cross red green)
P2 (cross green blue)
P3 (cross blue yellow)
P4 (cross yellow red)
P5 (star red yellow)
P6 (star yellow blue)
P7 (star blue green)
P8 (star green red)

Clockwise-diagonal condition

PI (clockwise p q)
P2 (clockwise q r)
P3 (clockwise r s)
P4 (clockwise s p)
P5 (diagonal p r)
P6 (diagonal r p)
P7 (diagonal q s)
PS (diagonal s q)

PI (cross red green)
P2 (cross green blue)
P3 (cross blue yellow)
P4 (cross yellow red)
P5 (star red blue)
P6 (star blue red)
P7 (slar green yellow)
P8 (star yellow green)

level predicts, Halford and Wilson found that children al both

ages almost always reached criterion in the clockwise-coun-

terclockwise condition but that 5- to 6-year olds performed

significantly better than 4-year-olds in the clock-diagonal

condition.

To simulate this Age X Complexity interaction, we had LISA

map the two pairs of structures in Table 9 either with a phase

set that included a single binary proposition (relational level)

or two binary propositions (system level). To simulate placing

one house correctly for the child, in all runs we coded the

blue house (target) with the same features as state p (source).

Because the critical interaction should emerge even when the

information about the target analog (which served as driver) is

ordered in an optimal fashion, LISA was tested with two order-

ings for each condition that satisfied the following constraints:

(a) all propositions involving the fixed object mapping (i.e.,

blue -»p) were selected before any others, (b) the first proposi-

tion selected had the fixed object as one argument; and (c)

propositions alternated systematically from one operator to the

other. In addition, the clockwise-diagonal orderings obeyed the

additional constraint that the second proposition selected (like

the first) also had the fixed object as one argument. For the

clockwise-counterclockwise simulations, the orders used were

(a) P3 P4 P7 P8 PI P2 P6 P5 and (b) P7 P8 P3 P4 P6 P5 PI

P2; for the clockwise-diagonal simulations, the orders were (a)

PI P5 P2 P3 P7 P4 P6 P8 and (b) P4 P6 P3 P2 P7 PI P5 P8.

Propositions were placed in the phase set individually, except

for the first two propositions in the two clockwise-diagonal

orders (which were buffered together). Each order was run

eight times, for a total of 16 simulations per condition.

We regarded a simulation run as a success if all mapping

weights corresponding to correct mappings were substantially

larger than any weight corresponding to an incorrect mapping.

Specifically, a mapping was regarded as correct if, for every

object, the weight from that object to the corresponding object

in the other analog was at least 10% greater than the weight lo

any noncorresponding object. The simulation results yielded an

"age"' (in LISA, phase-set size) by complexity level interaction

of the sort observed by Halford and Wilson (1980), under the

assumption that the size of the phase set increases at about age

5 years. The clockwise-counterclockwise analogs were mapped

successfully on all 16 runs, even though the phase set included

only one proposition (relational mapping). In contrast, LISA

correctly solved the clockwise-diagonal problem on only 2 of

16 runs in which the phase set was restricted to a single proposi-

tion but on 12 of 16 runs in which it was allowed to place the

first two propositions into the phase set together.

The above simulations focus on the shift from the relational

to the system levels in Halford's (1993) taxonomy of complex-

ity. We also applied LISA to a mapping problem at the multiple-

system level, which according to Halford's theory should only

be solved reliably if two trinary propositions (more generally,

four independent dimensions) can be considered together. The

analogy we gave LISA involved a chain of social introductions:

"Abe introduced Bill to Charles" and "Bill introduced Charles

to Dave" (driver) mapped onto "Alice introduced Barbara to

Cynthia" and "Barbara introduced Cynthia to Doris" (recipi-

ent). The people in each analog can only be uniquely mapped

if the information in the two driver propositions is integrated.
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As would therefore be predicted, LISA found the isomorphic

mappings when both trinary propositions entered the phase set

together, but not when they were entered one at a time.

According to Halford (1993), the level of multiple-system

mapping exemplified by the above problem is the highest com-

plexity level reliably attained by humans. However, as we al-

ready demonstrated for the boys-dogs mapping problem, LI-

SA'S mapping capability can be made overpowerful relative to

humans by granting the model a superhuman working-memory

capacity. We expanded the "introductions" example to the next

complexity level (five independent dimensions) by adding a

third trinary proposition to each analog: "Charles introduced

Dave to Ed" (driver) and "Cynthia introduced Doris to Edith"

(recipient). According to Halford's theory of complexity, find-

ing the isomorphic mapping between the two sets of five individ-

uals (in the absence of differentiating semantic overlap or, of

course, attending to the mnemonic first letters of the names)

requires processing all three trinary propositions in parallel. In

fact, LISA was able to solve this "level 5" problem only when

all three driver propositions (i.e., 9 SPs) were entered into the

phase set together.

In summary, LISA is able to model phylogenetic (Phenome-

non 13 ) and ontogenetic (Phenomenon 14) increases in mapping

capability as the consequences of increases in the size of the

working memory (phase set) available to the driver analog. As

we noted earlier, LISA performs a close approximation to paral-

lel constraint satisfaction in mapping the proposition or proposi-

tions that enter the phase set together but maps in a more serial

manner across phase sets. Thus, increases in the size of the

phase set translate into greater capacity for parallel constraint

satisfaction, which in turn increases the maximum formal com-

plexity of the problems that can be successfully mapped.

General Discussion

Analogical Processing With Distributed Representations

Analogy plays an important role in many aspects of human

cognition, and the processes of analogical access and mapping

are fundamental to analogical thinking. Previous models of ana-

logical access and mapping have made important contributions

to our understanding of the constraints on human analogical

reasoning. However, these models are limited in that they fail

to capture both some of the strengths of human analogical

thought (such as our ability to discover correspondences be-

tween predicates that take different numbers of arguments) and

some of its limitations (such as the difficulty we have solving

"unnatural" analogies). More important, it is unclear how the

representations and processes these models use for analogical

mapping could be adapted for other cognitive operations, such

as schema induction, in which analogy plays an important role.

In large part, this limitation reflects a failure to represent knowl-

edge in a way that captures both the flexibility and structure

sensitivity of human knowledge representation.

We have presented a theory of analogical access and mapping

that exhibits both sensitivity to structural relations (the hallmark

of symbolic cognition) and flexibility in the face of imperfect

matches (a strength of distributed representations). LISA's per-

formance hinges on five assumptions that form the core of the

theory:

1. Propositions are represented in active memory as distrib-

uted patterns that specify the semantic content of predicates and

objects, with case roles dynamically bound to their fillers.

2. These structures are encoded in LTM in a way that stati-

cally binds semantic primitives into predicates and objects, and

role-filler conjunctions into propositions.

3. Analog retrieval is a process of guided pattern classifica-

tion, in which units representing stored propositions compete

to respond to the distributed patterns generated by an active

driver analog.

4. Analogical mapping is performed by augmenting analog

retrieval with a capacity to learn the correspondences generated

during the process of pattern classification.

5. Dynamically binding roles and objects into propositions

and learning analogical correspondences consume (finite) work-

ing-memory resources.

A number of properties follow from these assumptions. The

most apparent are a variety of properties related to the limita-

tions of working memory. The upper bound on the complexity

of the mappings that can be computed is determined by limits

on the capacity of working memory (as given by the size of the

phase set). In particular, performance on analogies that require

attention to interlocking structural constraints is limited by the

size of the phase set and the associated buffers that control

changes in mapping connection weights. LISA is also sensitive

to the semantic content of an analogy and strategic variables,

such as the order in which propositions are selected to tire, and

the grouping of propositions into phase sets. As a result, LISA'S

mapping capacity is not tied strictly to the formal complexity

of the mapping problem. For example, LISA can solve complex,

semantically rich analogies with greater ease than it can solve

formally simpler but semantically impoverished analogies. It is

important to note that the meaning of semantically rich is inti-

mately tied to what LISA "knows": Depending on how an

analog is represented, LISA can be made to perform like either

an expert or a novice.

Capacity limits, sensitivity to semantics, and sensitivity to

strategic variables constitute formal disadvantages of LISA's

approach to analogical mapping (in the sense that LISA is

weaker than mapping engines based on massively parallel con-

straint satisfaction and related algorithms), but they also consti-

tute a source of behavioral predictions. Human reasoners are

subject to some of these limitations (e.g., order effects; Keane

et al., 1994), and it is very plausible that they are sensitive to

others. In addition to formal disadvantages, LISA'S approach to

mapping also affords formal and theoretical advantages, includ-

ing freedom from the n-ary restriction, the unification of access

and mapping, and a form of knowledge representation that is

useful for other processes, such as inference and schema induc-

tion (Hummel & Holyoak, 1996, in press). Together, these prop-

erties make LISA both weaker and more powerful than other

models of analogical access and mapping.

LISA, like any model that integrates distributed representa-

tions of concepts with dynamic binding, is subject to the one-

level restriction: At the level of semantic primitives, activating

more than one level of a hierarchical structure in a single group

(i.e., time slice) creates ambiguity about the role-filler bindings.
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Accordingly, LISA activates only one level of hierarchy at a time

at the semantic level. LISA can nonetheless exploit hierarchical

structure to map propositions based on higher-order relations.

Central to this capacity is the ability of a P unit to act both as

an object filling a role in one proposition (daughter mode) and

as a pointer to its constituent role-filler bindings (parent mode).

Augmented with this duality of processing modes, the single

degree of freedom that synchrony (or alternative dynamic bind-

ing codes) provides for binding suffices to capture structural

relations within multilevel propositions.

More generally, LISA exploits both local and distributed rep-

resentations and both serial and parallel processing. The units

that encode structural relations are strictly localist, but the mean-

ings of individual concepts are distributed over multiple seman-

tic units. During mapping, driver propositions are activated seri-

ally; at a finer time scale, the firing of elements associated with

distinct roles are dcsynchroni/ed and, hence, serial. This serial

processing is crucial in representing the bindings of objects to

roles. At the same time, recipient propositions respond in paral-

lel to the semantic patterns generated by the role-filler bindings

of an active driver proposition. The integrated system provides

distributed representations of propositional meaning while

maintaining systematicity of knowledge, thus solving the core

problem for distributed representations posed by Fodor and Py-

lyshyn (1988).

Capacity-Limited Versus Massively Parallel Constraint

Satisfaction

LISA clearly demonstrates sensitivity to all of the mapping

constraints postulated by the multiconstraint theory of analogy:

isomorphism, semantic similarity, and pragmatic centrality. Yet

it does so using radically different representational and pro-

cessing assumptions than those embodied in ACME (Holyoak &

Thagard, 1989), the first computational instantiation of the

multiconstraint theory. ACME represents propositions as sym-

bolic list structures and does not provide any representation of

concept meaning. It uses symbolic processing to transform these

structures into a network of units that explicitly represent all

syntactically legal potential correspondences. The optimal set

of correspondences is then computed by massively parallel con-

straint satisfaction, with no theoretically motivated capacity lim-

its. In contrast, LISA represents propositions and their constit-

uent concepts as patterns distributed over semantic units. It does

not build any new units to represent correspondences; rather, it
learns correspondences by modifying weights on connections

between structure units. LISA, unlike ACME, operates under

inherent capacity limits. Across phase sets, LISA maps in an

incremental fashion that is highly sensitive to the order and

frequency with which propositions within the driver become

active.

One of the more surprising results of the simulations reported

here is that for many analogy problems, LISA'S more incremen-

tal approach to mapping yields results that closely approximate

those obtained by full parallel constraint satisfaction. A case in

point is the simulations of mapping convergence analogs, which

were performed using representations highly similar in size and

semantic overlap to those provided to ACME in previous work

(Holyoak & Thagard, 1989). Whereas ACME, in effect, consid-

ered the two analogs in their entirety at once, LISA was only

allowed to consider one driver proposition at a time. Nonethe-
less, both models yield the same sets of correspondences. The

reason for the equivalent performance is that semantically rich

analogs of this sort, even if drawn from disparate domains,

will generally include some corresponding concepts (possibly

higher-order relations) that tend to map on the basis of overlap-

ping semantic features. To the extent that the mapping is seman-

tically driven, it is not necessary to consider large structural

units at once to find the optimal correspondences.

For more formal analogies, however, LISA'S capacity-limited

and incremental constraint satisfaction results in performance

that differs sharply from that of ACME with its massively paral-

lel approach. To take the most extreme case, LISA is utterly

incapable of mapping two isomorphic analogs in the absence

of any overlap of semantic features between them. The initial

Iransmission of activation from the driver to the recipient is

necessarily routed through semantic units; in the absence of any

semantic overlap, the activity of the driver, however feverish,

will simply leave the recipient cold. For problems in which

the analogs do share semantic features (even minimally), the

mapping process will at least get started. However, if semantic

similarity does not suffice to determine the optimal mapping, so

that consideration of structural relations is critical, then LISA'S

performance on structurally complex analogies varies with the

size of the phase set and the order in which driver propositions

are activated. We have argued that LISA'S limitations in solving

such problems are, in fact, more psychologically realistic than

ACME's unbridled success.

The flip side of the comparison between LISA and ACME

(and all other previous mapping models) is that LISA is able

to map analogs that violate the n-ary restriction. LISA, unlike

any other model of which we are aware, can find sensible map-

pings between the elements of propositions with different num-

bers of arguments. This ability follows directly from LISA'S

fundamental representational innovation relative to previous

models: Arguments are represented not as static lists of localist

symbols but as distributed patterns of activation over semantic

units. Moreover, mapping is performed not by subjecting all

potential legal correspondences to parallel constraint satisfac-

tion but by using the semantic representation of elements in one

analog to directly activate elements of other analogs. Thus, even

though constraint satisfaction based on local representations is

more powerful as an approach to analogical mapping, pattern

matching based on distributed representations conveys a greater

degree of humanlike flexibility. This gain in flexibility sets the

stage for the computational integration of analogy with schema

induction.

Future Directions

Scaling up. The simulations reported here generally used

very small analogs. The representations were kept small for

both a theoretical reason (to highlight specific representational

properties to which LISA is sensitive) and a practical reason

(the computer resources at our disposal were severely limited).
It is clear that further work is required to establish (he degree

to which LISA scales up to larger representations and (espe-

cially with respect to analogical access) larger knowledge bases.
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Nonetheless, there are reasons to be optimistic. Because LISA

does not need to generate new "mapping units," the space it

requires to represent correspondences is proportional to the

square root of that required by ACME. Each proposition in

LISA is encoded by a small number of SP units (one per case

role). The number of SP units required to represent an analog

therefore grows linearly with the size of the analogs, and the

number of connections between SPs across analogs grows lin-

early with the product of the number of propositions in the

source and target.

The greatest challenge that must be faced for LISA to handle

large knowledge bases centers on the fact that the model depends

on a detailed semantic decomposition of concepts, including

predicate-argument structures. In our simulations we used very

informal semantic representations. More realistic applications

of the model will require careful attention to difficult issues in

meaning representation. We would argue, however, that these

issues must be faced in any case—-the nature of meaning lies

at the very heart of human cognition. Moreover, theorists have

recognized that human analogical thinking involves the capacity

to re-represent knowledge in ways that go beyond the limits of

current models (Centner, 1989). LISA'S theoretical tack leads

toward confronting the problem of understanding conceptual

semantics, whereas previous models of analogy have generally

postponed it.

In particular, LISA'S ability to overcome the n-ary restriction

sets the stage for the incorporation of representational schemes

more sophisticated than flat feature vectors. It has often been

argued (e.g., Jackendoff, 1983) that lexical concepts often have

a close conceptual relationship with more complex relational

forms. For example, causative verbs such as lift (e.g., "John

lifted the hammer'') have very similar meanings to structures

based on an explicit higher-order relation, cause (e.g., "John

caused the hammer to rise"). In such cases, the causative verb

serves as a "chunked" representation of a more elaborate predi-

cate-argument structure.

The LISA architecture suggests at least two ways in which

such chunked information may be established and exploited.

The first relates to the parent-daughter distinction currently

implemented with P units. When a P unit is active in daughter

mode (i.e., as an argument of another proposition), it functions

as a chunked representation of its prepositional content. This

chunked representation is useful for mapping only insofar as

mapping connections have already been established between the

P unit and others: Because it cannot express its semantics di-

rectly, a P unit in daughter mode can only affect the recipient

analog through learned mapping connections. The similarity

between this mode of operation and chunking as it is often

discussed in the cognitive literature (e.g., Halford et. al., 1994)

is obvious: Efficiency (here, the need to occupy only a single slot

in the phase set rather than one slot per case role) is purchased at

the price of flexibility and generality (the proposition can only

affect other propositions with which it has established mapping

connections). In our current implementation, predicate and ob-

ject units behave as if they are permanently in a sort of modified

daughter mode: Each case role and object occupies only one

slot in the phase set, and in this slot, it is represented as a

flat feature vector without any articulated structure. Placing a

predicate or object into its own version of a parent mode would

mean treating each role (or object) not as a flat feature vector

but as a whole structure with its own SPs. For example, "lift"

could be expanded into "cause to rise," or "Mary" into a

structure expressing the relations among her attributes. This

kind of expansion would permit structured comparisons be-

tween predicates and objects (Markman & Gentner, 1993a;

Markman & Wisniewski, 1997), analogous to the structured

comparisons LISA currently performs on whole propositions.

A second way in which the LISA architecture addresses the

notion of chunked predicates is in its capacity to solve mappings

that violate the n-ary restriction. A mapping system that is free

of the n-ary restriction can potentially recognize correspon-

dences between chunked structures (e.g., as the "taller than"

propositions can be chunked into a linear ordering) despite their

differences in form. That is, freedom from the «-ary restriction

can permit mapping between chunked and fully elaborated struc-

tures without requiring an explicit prior process of lexical de-

composition to equate their forms (a process that is psychologi-

cally questionable; Fbdor, Fodor, & Garrett, 1975).

Symbol grounding and relations between analogical mapping

and perception. The potential for chunking in a LISA-style

architecture raises broader issues in meaning representation,

including symbol grounding and relations between perceptual

and cognitive representations (as discussed by Barsalou, 1993;

Jackendoff, 1983; and Lakoff & Johnson, 1980). With the no-

tion of chunked predicates and objects, LISA hints at a kind of

recursive representation for meaning that may ultimately ground

itself in basic perceptual primitives. In its current implementa-

tion, LISA can represent and map hierarchical propositions of

arbitrary depth (Hummel, Melz, et al., 1994). Analogously, it

is possible to imagine structures for roles and objects that are,

themselves, deeply embedded recursive structures. The depth to

which a role or object would need to be decomposed for the

purposes of mapping would depend on the task at hand. For

example, mapping "John lifted the hammer" onto "Bill raised

the book" may require little or no decomposition of the predi-

cates "lift" and "raise," which will have substantial overlap

in their semantic features. On the other hand, mapping "John

lifted the hammer" onto "Bill pushed the cart," where the

predicates have less feature overlap, may be more likely to

depend on decomposition of "lift" into "cause to rise" and

"push" into "cause to move laterally," thereby making explicit

the parallelism of their internal structures. Recursively, "rise"

and ' 'move laterally'' might be decomposed into structures re-

lating simpler predicates, with basic perceptual primitives repre-

senting motion and locations in space residing at the very bot-

tom. Such conjectures about the recursive decomposition of

concepts into relations among simpler concepts are by no means

novel. Nevertheless, LISA may be the first working model of

human cognitive architecture to suggest specific algorithms and

representations that can make such an approach computationally

realizable.

This optimism is encouraged by the close theoretical links

between LISA and models of perception, such as Hummel and

Biederman's (1992; Hummel & Stankiewicz, 1996) JIM model

of object recognition. LISA'S most basic operations—which

perform analog access by guided pattern classification—rest on

representations and processes that permit the classification of

distributed representations of structure. The upper layers of the
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JIM model perform exactly the same function (except that here,

the representations are structural descriptions of object shape).

As such, it is no accident that LISA resembles (and operates

like) the upper layers of JIM: Take away LISA'S mapping con-

nections and attach a front end to generate structural descrip-

tions from visual images, and the result would be JIM. Integrat-

ing LISA with a perceptual front end for symbol grounding

would therefore be straightforward. The architectures and opera-

tions necessary for structural description (of visually perceived

shapes) and LISA-style analogical mapping are virtually

indistinguishable.

There is one more parallel between LISA and JIM that war-

rants mention because it speaks directly to the consequences of

their shared approach to the representation of structure. As we

have discussed extensively throughout this article, LISA can

solve analogies that violate the n-ary restriction, mapping (for

example) a proposition with two arguments onto a subset of a

different proposition with three. The missing case role poses no

special difficulty for LISA. Similarly, JIM can map a two-part

structural description of an image onto a three-part structural

description stored in memory (a capacity that permits JIM to

recognize objects based on a subset of their parts, as when one

part is invisible because it is occluded by another surface).

LISA'S freedom from the n-ary restriction and JIM's capacity

to recognize objects from a subset of their parts both result

from the fact that the basic elements (case roles or object parts)

are not tied to specific positions in a list or vector. Most models

of analogy represent case roles as elements in an ordered list; in

a similar way, most models of object recognition (e.g., Poggio &

Edelman, 1990; Ullman & Basri, 1991) represent object features

as elements in a vector of coordinates. Coding elements as a

list (or vector) yields models that are exquisitely sensitive to

the number of elements (case roles or features) in the to-be-

compared structures: The match between a four-element feature

vector and a five-element vector in memory is mathematically

undefined. LISA'S departure from Ihis representational conven-

tion (like JIM's) frees it from this kind of sensitivity to list (or

vector) position.

Detailed analyses of analogical processing. Earlier models

(arguably with good reason) have generally been directed more

at understanding the basic constraints that govern human analog-

ical thinking than at understanding its psychological mecha-

nisms (cf. Keane et al., 1994). LISA, however, provides avenues

for theoretical analysis of analogical processing at a finer level

of detail than previously possible. In many cases, the model

leads to predictions that have yet to be empirically tested. For

example, LISA theoretically unifies analogical access and map-

ping by a single assumption: New structural correspondences

can be learned during mapping but not during access. The theory

therefore predicts that structural consistency will influence ac-

cess only when the relevant correspondences can be computed

from preexisting connections. This principle underlies LISA'S

simulations of the dissociations between access and mapping

observed byRoss(1989) but remains to be tested using analogs

that instantiate additional types of structural relations.

With respect to mapping, LISA accounts for the influence of

processing goals on mapping ambiguous analogies (Spellman &

Holyoak, 1996) in terms of variations in the order and frequency

with which driver propositions enter the phase set. It follows

that other factors that influence order and frequency of firing

should also alter people's preferred mappings for ambiguous

problems. Many other predictions can also be derived concern-

ing the influence of firing order on mapping. A basic principle

is that mapping will be facilitated if propositions that, when

considered alone, can be uniquely and correctly mapped are

selected before propositions that generate ambiguous mappings,

rather than the reverse order. When the flow of control obeys

this ordering principle, the clear initial mappings will be able

to help disambiguate later mappings that would otherwise be

ambiguous. This principle can manifest itself in many different

structures. In some cases, for example, a clear mapping of a

higher-order relation can disambiguate lower-level correspon-

dences; however, for other analogs, the constraints will be re-

versed such that clear lower-level correspondences can disam-

biguate the mappings for higher-order relations (Hummel, Melz,

et al., 1994).

LISA predicts that mapping performance will be influenced

not only by the order and frequency with which propositions

are fired but also by the manner in which propositions are

grouped together into phase sets. The simulations reported here

demonstrate that some analogy problems (e.g., mappings be-

tween two sets of transitively ordered objects) can only be

solved when multiple propositions are fired within a single phase

set. What we did not emphasize, but which is also predicted by

the model, is that for structurally complex analogies it also

matters which propositions are grouped together in a shared

phase set. In mapping tasks based on mathematical group struc-

tures (Halford & Wilson, 1980), for example, LISA'S perfor-

mance proved to be highly sensitive to both the order and group-

ing of propositions in the phase set. Further theoretical analysis

of the basis for such grouping effects should yield additional

predictions about the optimal flow of control in mapping.

Another area in which LISA may lead to novel predictions

concerns potential asymmetries in analogical access and map-

ping. There is empirical evidence that for some analog pairs,

transfer is asymmetrical. Asymmetries have been observed in

studies of analogical problem solving (Bassok & Holyoak,

1989; Burns, 1996; Gholson et al., 1988; Reed, Ernst, & Banerji,

1974), inference (Centner & Bowdle, 1994), and metaphor

interpretation (Glucksberg & Keysar, 1990; Ortony, 1979).

Most such asymmetries have been interpreted in terms of post-

mapping processes (but see Bassok & Olseth, 1995). Although

previous analogy models can account for asymmetries that arise

in the aftermath of mapping, they uniformly posit that the map-

ping process itself is inherently symmetrical: The correspon-

dences between two analogs will be identical regardless of the

direction of mapping (e.g., Falkenhainer et al., 1989; Holyoak &

Thagard, 1989).

In contrast, LISA predicts that the mapping process itself

(in addition to post-mapping processes) may sometimes yield

asymmetries in the correspondences between two analogs. The

basis for potential mapping asymmetries lies in the differences

between the operation of the driver and the recipient, a distinc-

tion that has no parallel in previous analogy models. For exam-

ple, the operation of the driver, but not the recipient, will be

influenced by the grouping of propositions in the phase set. It

follows that any variable (e.g., textual coherence) that affects

phase-set groupings could potentially generate asymmetries in
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mapping. For example, if one analog is more coherent than the

other, correspondences may be computed more readily when

the more coherent analog serves as the driver rather than the

recipient.

Analogical inference and schema induction. One of our ma-

jor arguments in favor of the use of distributed representations

for access and mapping is that such an architecture is advanta-

geous for generating inferences and inducing abstract schemas

in the aftermath of analogical mapping. Although detailed dis-

cussion of inference and schema induction is beyond the scope

of this paper, we have, in fact, implemented these processes in

LISA (Hummel & Holyoak, 1996, in press) and can sketch the

essence of the extensions.

The basic idea, adapted from a model of learning structural

descriptions of objects (Hummel & Saiki, 1993), is very simple.

During access, only existing propositions in a recipient are avail-

able to respond to the driver. However, during mapping, new

"unrecruited" structure units (i.e., structure units with initially

random connections to semantic units and to one another) are

added to the recipient analog. Driver-to-recipient mapping is

performed as usual. As a result, one of two things will happen

whenever a proposition is selected to become active in the driver:

If that proposition corresponds to an existing proposition in the

recipient, then it will simply activate that proposition. However,

if the active driver proposition does not activate any existing

proposition or propositions in the recipient, then unrecruited

units in the recipient will have the opportunity to respond. The

unrecruited units will learn to respond to the semantic patterns

generated by the active driver proposition (and to the role-filler

bindings embodied in those patterns): The recipient analog will

have created (inferred) a proposition where previously there

had been none. This guided encoding of new propositions into

LTM is USA's implementation of inference.

Schema induction is similar except that the unrecruited units

reside in a completely different analog. These units are thresh-

olded so that they can only respond to (and learn about) seman-

tic primitives that are common to both the driver and recipient

analogs. The result is a kind of intersection discovery in which

a new schema is generated to represent what is common to the

two instances. LISA'S distributed representations of meaning

are critical to this process because they allow the intersection

to flexibly emerge from the individual analogs. In both inference

and schema induction, learning is completely unsupervised (i.e.,

it operates without external feedback), reflecting the fact that

analogical thinking is driven by sensitivity to its own internal

constraints rather than by an external "teacher." It is unclear

how a system without detailed representations of concepts (such

as ACME or SME) would perform this type of intersection

discovery.

In the extended LISA architecture that handles inference and

induction, the stages of analogical transfer can be interwoven

rather than being strictly serial. For example, the overall flow

of control might involve (a) using an incomplete target to access

one or more schemas in LTM, (b) using these schemas to make

inferences that elaborate the target, (c) using the elaborated

target to access related analogs in LTM, (d) using the retrieved

analogs to generate additional inferences about the target, and

(e) using multiple analogs to induce a new schema that captures

their commonalities. LISA leads to a conception of analogical

thinking in which performance depends on the integration of

relatively automatic comparison processes with strategic control

of driver operation and triggering conditions for inference and

learning.

Neural basis of analogical thinking. Although little is yet

known about the neural mechanisms that support analogical

thinking, the LISA architecture provides some hypotheses re-

garding the basic system requirements for analogy—aspects

that are likely to be biologically determined in a relatively direct

way. These include the capacity to perform dynamic binding,

the availability of hierarchically organized structure units that

store bindings in LTM (including new units that can be recruited

to make inferences and induce schemas), the capacity to learn

mapping connections, and attentional control of the phase buff-

ering and selection processes that drive comparison. It has

been suggested that the prefrontal cortex supports the working

memory required to manipulate complex structural relations

(Robin & Holyoak, 1994). Damage to that area would therefore

be expected to degrade analogical performance in roughly the

manner in which LISA's performance degrades when the size

of the phase set is reduced. It is important to note that the model

predicts that frontal damage will not lead to across-the-board

deterioration in analogical ability but rather to selective diffi-

culty in finding mappings that require integration of structural

constraints across multiple propositions. The ability to find map-

pings based primarily on preexisting semantic connections be-

tween the analogs would be expected to be relatively spared.

Conclusion

Although a great deal of additional work remains to be done,

LISA's success in simulating core phenomena associated with

human analogical access and mapping is encouraging. By intro-

ducing mechanisms to perform dynamic binding, it is possible

to achieve the flexibility afforded by distributed representations

while maintaining the structure sensitivity so critical to proposi-

tional reasoning. The cognitive architecture embodied in LISA

may help us to understand how human thinking can, at its best,

appear to transcend the constraints imposed by a limited-capac-

ity working memory.
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Appendix A

The USA Algorithm

The general sequence of events in LISA'S operation is summarized

below. The details of each of these steps are described in the subsections

that follow.

General Sequence of Events

1. Construct and initialize the network. Set all inputs, activations, and

mapping connection weights and buffers to zero.

2. Run the network for C cycles, where C is defined by the user. On

each cycle, repeat the following until no propositions are designated

(by the user) to be selected:

2.1. As designated by the user, select one analog, D, to be the driver,

a set of analogs, jR, to serve as recipients for mapping, and a set

of analogs, L, to remain dormant for retrieval from LTM. R or

L, or both, may be empty sets.

2.2. Initialize the activation state of the network: Set all inputs, activa-

tions, and outputs to zero.

2.3. As designated by the user, select one P unit, P$, in D to be

active. Set its activation to 1.0. If Ps is NIL then proceed to

step 3.

2.4. Repeatedly update the state of the network in discrete time steps,

t = 1 to MaxT, where MaxT is 300 times the number of case

roles on Ps. On each time step, t, do the following:

2.4.1. Update the modes of all P units.

2.4.2. Update the inputs to all units in D (except Ps).

2.4.3. Update the global inhibitor.

2.4.4. Update the inputs to all units in all recipient and dormant

analogs.

2.4.5. Update the inputs to all semantic units.

2.4.6. Update all units' activations (except Ps).

2.4.7. Update the buffers on all cross-analog connections.

2.5. If directed to do so by the user, update the mapping weights and

initialize the buffers.

3. Save the final values of the mapping connection weights.

2.4.1. Updating Proposition Modes

Because of the one-level restriction, P units operate in three distinct

modes: parent, child, and neutral. In parent mode, P units act as the

parent of a larger structure, exchanging input only with SP units below

itself, that is, SPs representing its case roles. A P unit in child mode

exchanges input only with SPs above itself, that is, SPs relative to which

it serves as an argument. A P unit in neutral mode exchanges input with

SPs both above and below itself. When the state of the network is

initialized (step 2.2 above), all P units enter neutral mode except Ps,

which enters parent mode. P units update their modes on the basis of

their inputs from SP units above and below themselves and, in the case

of P units in a recipient analog, from P units in the driver:

C Parent if S/Vi™ +

, =< Child if SP^w +

I Neutral otherwise

t ~ S/W* -

- 5PAbore -

> 0.01

< -0.01

(Al)

where ms is the mode of P unit i . 5PBeiow ,

are weighted activation sums:

™ * Pro/7Pareni ,

(A2)

j to P unit i. For SPBfiaw,j are SPs below i; for SPAbove,y are SPs above

i; for Proppnn-m, j are P units in D that are in parent mode; and for

PropcbuaJ are proposition units in D that are in child mode. Within an

analog (i.e., for SP*^ and S/V™), w^ are 1.0 for all i and; under the

same P unit and 0 for all other i and;. For Propp^^ and Propcbna* w>j

are mapping weights (-1.0- +1.0). Only P units in the recipient analog

or analogs update their modes based on the mapping connections. For

all other P units, Propp^i and Prop^M are set to zero.

2,4.2. Driver Inputs

Because the driver controls the operation of the network—and, in

particular, the generation of synchronized patterns on the semantic

units—inputs are updated differently in the driver than in recipient and

dormant analogs. Updating is nonetheless synchronous in the sense that,

throughout the network, all inputs are updated before any activations

are updated.

SP units. SP units in the driver drive the activity of the predicate,

object, and P units below themselves, and therefore of the semantic

units, and all units in the recipient or dormant analogs: Synchrony starts

in the driver SPs and is carried throughout the rest of the network. Each

SP consists of a pair of units, an excitor and an inhibitor, whose inputs

and activations are undated separately. Each SP inhibitor is yoked to the

corresponding excitor and causes the exciter's activation to oscillate. In

combination with strong SP-to-SP inhibition, the inhibitors cause sepa-

rate SPs to fire out of synchrony with one another.

In the driver, SP excitors receive input from three sources: (a) excit-

atory input from P units above themselves and from P, object, and

predicate units below themselves, (b) inhibitory input from other SPs

in the driver and from all driver P units except their parents and children,

and (c) inhibitory input from the corresponding SP inhibitor. On each

iteration, t, the net input, NE,, to SP excitor i is:

NE, = ^PJ: - 1.5P- + 0.5A, + Q.5R{ - 6 £ Ej - 31, + p, (A3)

j*'

where Pf is the activation of the P above SP excitor i, P~ is the sum

of activations of all proposition units relative to which i does not serve

as parent or child, A-, is the activation of f s argument unit (i.e., object

unit or child P unit), Rf is activation of i"s predicate unit, E, is the

activation of any SP excitor j (j * /) in the driver, It is the activation

of the inhibitor on SP,, and p is a random number in the range —0.1-

+0.1.

An SP inhibitor receives input only from the corresponding excitor.

/', the activation of SP inhibitor i at time t, changes according to:

A/; =

0.001, /; ^ 0.1 1
.E ;

0,1, /! > 0.1 J
> 0.5 and r\

-0.00105, /I a 0.9
(A4)

otherwise,

where af is the activation of unity, and w,y is the connection weight from

where r\ is a Boolean variable that is set to true whenever /; < 0 and

to false whenever 1\ a 1; r\ remains at its last set value on any t when

0 < /! < 1.

These operations cause the activation of an inhibitor to grow and

decay in four phases. (For a qualitatively similar algorithm, see von der

Malsburg & Buhmann, 1992.) When a proposition is first selected, all

/,- are set to zero and all r, are initialized to (rue, putting the inhibitors

in slow growth phase (top row. Equation A4). During this phase, /,
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grows by 0.001 whenever E, > 0.5. The inhibitor will remain in this

phase until its activation reaches 0.1, at which point /, grows rapidly

toward 1.0 (the fast growth phase; second row, Equation A4). Highly

active inhibitors drive their excirors to inactivity (Equation A3). The

slow growth parameter (0,001) was chosen to allow SP excitors to

remain active for approximately 100 iterations (it takes 100 iterations

for the inhibitor to enter rapid growth). When /[ > ], it is set to 1.0

and r, is set to false, putting the inhibitor into slow decay phase (third

row, Equation A4). The slow decay parameter (—0.00105) was chosen

to cause an inhibitor's activity to take 95 iterations to decay to 0.9, at

which point the inhibitor enters the fast decay phase. During fast decay,

/, drops more rapidly toward zero, giving E; an opportunity to grow in

response to an excitatory input from the P unit above itself (provided

the excitor is not being inhibited by another SP). When /! drops below

zero, it is set to zero and r( is set to true, putting the inhibitor back into

slow growth phase. Collectively, the growth and decay parameters in

Equation A4 make it possible for three SPs (the maximum number on

any linguistically natural proposition) to fire out of synchrony in a

"time-sharing" fashion: All three SP excitors will have the opportunity

to become active once before any excitor becomes active twice.

P, object, and predicate units. P's (i.e., whichever P unit in the driver

is selected at lime /) does not update its input. All other driver P units

(which will be in either neutral or child mode; see 2.4.2 above) receive

input only from SPs above themselves. Likewise, object and predicate

units receive input only from the SPs above themselves. Effectively,

activation in the driver is propagated downward only. The net input, N;,

to any P, object, or predicate unit in the driver is:

-V,- (e£} - 0.25 /,), (A5)

where j is any SP unit above unit i, t is 1.5 for P units and 2.0 for

predicate and object units, E, is the activation of the SP excitor, and 1,

is the activation of the SP inhibitor.

2.4.3. Global Inhibitor

All SP units have both excitors and inhibitors, but SP inhibitors are

updated only in the driver. This convention corresponds to the assump-

tion that attention is directed to the driver and serves to control dynamic

binding (see also Hummel & Biederman, 1992; Hummel & Stankiewicz,

1996). The activity of & global inhibitor (von der Malsburg & Buhmann,

1992) helps to coordinate the activity of structure units in the driver

and recipient or dormant analogs. The global inhibitor, F, inhibits struc-

ture units (except P units in parent mode) in all nondriver analogs, and

is itself strongly inhibited by SPs in the driver. Specifically, the global

inhibitor is inhibited to inactivity (F = 0) by any SP excitor in the

driver whose activation is greater than or equal to 0.7; it becomes active

(F - 1) whenever no SP excitor in the driver has an activation greater

than or equal to 0.7. During a transition between two driver SPs' firing

(i.e., when one SP's inhibitor grows rapidly, allowing the other SP

excitor to become active), there is a brief period when no SP excilors

in the driver has activations greater than 0.7, During these periods, F -

1 and inhibits all nondriver structure units (except P units in parent

mode) to inactivity. Effectively, F serves as a "refresh1" signal, permit-

ting changes in the patterns of activity of nondriver analogs to keep pace

with changes in the driver.

2.4.4. Recipient and Dormant Analog Inputs

Structure units in recipient and dormant analogs are updated in exactly

the same way except that the former receive input from the driver directly

via the mapping connections, whereas the latter do not. Jnput to structure

units can be divided into four sources: within-proposition excitatory

input, P; within-class (e.g., SP-to-SP, object-to-object, etc.) inhibitory

input, C: out-of-proposition inhibitory input, O (i.e., P units in one

proposition inhibit SP units in others, and SPs in one inhibit predicate

and object units in others); and both excitatory and inhibitory input, M,

received via the cross-analog mapping weights. The net input, N", to

any structure unit / in analog a is the sum:

A/? = Pf - CJ" - Of + (A6)

where p = 1 for a in R and a = 0 for a in L. For P units in parent

mode, 0 is always zero.

P units. The input terms for P units in R and L arc:

P" = &T 0.5 £ Ef + TT? 0.75 (A7)

where £? = 0 for P units, i, in child mode and 1 for all other i; TT? -

0 for i in parent mode and 1 for all other i;j are SP units below i; and

k are SP units above i. Recall that F is the activation of the global

inhibitor (0 or 1). P units in parent or neutral mode integrate their

inputs over time to a greater extent than P units in child mode. In aid

of this, for P units in parent or neutral mode, E" is the maximum

activation achieved by SP unit j over all r since Ps (in D) was initially

selected; for P units in child mode, E" is simply the activation of SP

unit k at time t.

K 2 3<

C7 = - (AS)

where A" - 1 if af > 0.01 and 0 otherwise. P units in parent or neutral

mode inhibit one another only; for such units, j are other P units in

parent or neutral mode, and K = 1.5. P units in child mode exchange

inhibition with one another and with object units; for such units, ;' are

P units in child mode and object units, and K = 1,0. P units in child

mode receive out-of-proposition inhibition from SP units relative to

which they do not serve as arguments:

0? = tfZ a,, (A9)

where; are SP units that are neither above nor below /, and a) = 0.25,

where fly is the action of P unit; in D, Wy ( — 1—hi) is the weight on

the mapping connection from; to /, and m(/,;) evaluates to I i f / and

j are in the same mode or / is in neutral mode, and to 0 otherwise.

SP units. The input terms for SP excitors in R and L are:

( A l l )

where «,- is the activation of the P unit,;', above SP /; <5y = 0 if; in child

mode and 1 otherwise; ak is the activation of any object unit or P unit,

k, below i; TT* is 0 if k is a P unit in parent mode and 1 otherwise: and

a, is the activation of predicate unit, I , below i.

Ca> (within-class inhibition) is given by Equation A8, where; (j

=£ /) are SP units in a, and K = 1.5. O" (out-of-proposition inhibi-

tion) is given by Equation A9, where; are P units in a that are in

parent mode and are not above SP f . (i.e., P units representing

propositions of which SP / is not a part), and u> = 1.5.

M° = £ («;№,,), (A12)

where aj is the action of SP unit; in D, and wu (-1 1) is the

weight on the mapping connection from; to i .
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Predicate units. The input terms for predicate units in R and L are:

Pf = 0.5 -^ + IX - IDF,
I + N,-

(A13)

where j are semantic units to which / is connected, Nf is the number of

such units, and k are SP units above i.

C" (inhibition from other predicate units in a. to predicate i in a)

is given by Equation AS, where j (j =£ /') are predicate units in a,

and K = 1.0. Of (out-of-proposition inhibition from SPs to predi-

cate unit / in a) is given by Equation A9, where j are SP units not

above predicate unit i (i.e., SPs with which / does not share an

excitatory connection), and u = 1.5. Mf (cross-analog input to

predicate unit i) is given by Equation All, where j are predicate

units in D.

Object units. The input terms for object units in R and L are:

P" (within-proposition excitatory input to object unit i in a) is

given by Equation A13, where j are semantic units to which / is

connected and k are SP units above /'. C? (inhibition from other

object units in « to object i in a) is given by Equation A8, where

j(j =£ i) are predicate units in a, and* = 1.0 Of (out-of-proposition

inhibition from SPs to object unit i in a) is given by Equation A9,

where j are SP units not above object unit i, and aj = 0.25. M?

(cross-analog input to predicate unit i ) is given by Equation A12,

where j are object units in D.

2.4.5. Semantic Unit Inputs

The net input to semantic unit i is:

, = I (A14)

where w"} = 1 for any predicate or object unit,y, in analog a (a E [R,

D\) that is connected to i; w" = 0 for all other y. The activation of a

semantic unit is equal to its input.

decay term, £/„, which are updated independently. The growth term grows

whenever units i and j are active simultaneously:

Ag', = a\a'r (A16)

Agy- is set to zero for proposition units in different modes. The decay

term grows to the extent that unit i (on the receiving end of the connec-

tion) is more active than unity (on the sending end):

Arfj, = Tj'la', - a ' j l , (A17)

where 77 ~, the decay rate parameter, is set to 0.00001.

2.5. Mapping (Cross-Analog) Connection Weights

At the end of each phase set (i.e., as designated by the user), the

mapping buffer growth and decay terms are converted to weight values

and then flushed, that is, initialized to zero. By Equation A16, buffer

growth and decay terms are unbounded, so before weight updating, they

are first normalized:

and

g-maxc

(A18)

(A19)

where c designates the class of the mapping weight (object, predicate,

SP, or P unit) and g-maxL is the maximum growth term on any mapping

connection in class c. Normalization is performed within classes of

structure unit connections (e.g., SP-to-SP connect!on buffers are normal-

ized on the basis of the largest SP-to-SP connection buffer growth term,

P-to-P buffers are normalized on the basis of P-to-P growth terms, etc.).

Due to the normalization in Equations A18 and A19, all buffer growth

and decay terms are bounded between zero and one.

The buffer growth terms are then subjected to a one-to-one (sub-

tractive) normalization in which the magnitude of each term, #,•,•, is

converted into a growth penalty and divided among all other growth

terms leading to the same recipient unit (i):

2.4.6. Activation

P units, SP excitors, predicate units and object units (excitatory units)

update their activations by:

«I = 0.3JVK1 - a'i) - (A15)

where <f> is 0.1 for units in driver and recipient analogs and 0.3 for units

in dormant analogs.

2.4.7. Mapping (Cross-Analog) Connection Buffers

Mapping connections are modified (learned) between driver and re-

cipient analogs only. The mapping connection from unity to unit i has

a weight, wi}-, and a buffer. The buffer has a growth term, g,y, and a

(A20)

where n, is the number of mapping connections leading into unit /.

As a result of this normalization, the sum, I,gi}, of all growth terms

leading into unit i is always zero. This normalization implements

the one-to-one mapping constraint by penalizing the correspondence

(buffer growth) between units i andy on the basis of the correspon-

dence between (' and all other k =* j .

Finally, the buffer growth and decay terms are used to update the

mapping weights, w^, and initialized:

) - dt,(\ (A21)

where rj+ the learning rate, is set to 0.5. When g,j < 0 and di} > 0,

w,-, decays toward —1. The weights are truncated below — 1.

(Appendixes continue)
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Appendix B

LISA Representations of Convergence Analogs

Prepositional Representations of Analogs

Target analog ("Radiation Problem"; Duncker, 1945)

PI (inside tumor stomach)

P2 (surround tissue tumor)

P3 (between tissue raysource tumor)

P4 (canmake raysource hirays)

P5 (candestroy hirays tumor)

P6 (candestroy hirays tissue)

P7 (canmake raysource lorays)

P8 (cannotdest lorays tumor)

P9 (cannotdest lorays tissue)

P10 (use doctor hirays)

Pll (destroyed tumor)

P12 (want doctor P l l )

P13 (destroyed tissue)

P14 (notwant doctor P13)

P15 (ifthenPIO P13)

Source analogs

Close analog ("The Surgeon"; Keane, 1986)

Pi (inside tumor brain)

P2 (surround tissue tumor)

P3 (between tissue raysource tumor)

P4 (canmake raysource hirays)

P5 (candestroy hirays tumor)

P6 (candestroy hirays tissue)

P7 (canmake raysource lorays)

P8 (cannotdest lorays tumor)

P9 (cannotdest lorays tissue)

P10 (use surgeon hirays)

Pll (destroyed tumor)

PI2 (want surgeon P l l )

P13 (destroyed tissue)

P14 (notwant surgeon P13)

P15 (ifthenPIO P13)

Far analog ("The General"; Gick & Holyoak, 1980)

PI (inside fortress country)

P2 (between villages army fortress)

P3 (canform army largeunit)

P4 (cancapture largeunit fortress)

P5 (canform army smallunit)
P6 (cnotcapture smallunit fortress)

P7 (use general largeunit)

P8 (captured fortress)

P9 (blowup mines largeunit)

P10 (blowup mines villages)

Pl l (want general P8)

P12 (notwant general P9)

PI3 (notwant general P10)

P14 (ifthen P7 P9)

P15 (ifthen P7 P10)

Schema ("Convergence Schema"; Gick & Holyoak, 1983)

PI (inside target location)
P2 (between asset forcesource target)

P3 (canmake forcesource hiforce)

P4 (canalter hiforce target)

P5 (canmake forcesource loforce)

P6 (cnotalter loforce target)

P7 (use goodguy hiforce)

P8 (altered target)

P9 (altered asset)

P10 (want goodguy P8)

Pll (notwant goodguy P9)

PI2 (ifthen P7 P9)

Semantic Features

Objects

tumor: object biological negative small tumorl

stomach: object biological positive organ stomach 1

tissue: object biological positive tissue tissue I

raysource: object artifact forcesource raysource 1

hirays: energy radiation strong force hiraysl

lorays: energy radiation weak force loraysl

doctor: object animate person profession medical doctorl

brain: object biological positive organ brain I

surgeon: object animate person profession medical surgeonl

fortress: object building military large fortressl

country: location place political large countryl

army: humangrp military large strong forcesource armyl

mines: object artifact explosive danger minesl

general: object animate person profession military generall

largeunit: humangrp military large strong force lunitl

smallunit: humangrp military small weak force sunitl

villages: location place humangrp small villagesl

target: object

loforce: weak force

forcesource: forcesource

location: location

hiforce: strong force

goodguy: object animate person profession

asset: object positive

Predicates

inside: state location inl

surround: state location around surroundl

between: state location intervene betweenl

canmake: trans potential change generate canmake 1

candestroy: trans potential change reduce candestroyl

cannotdest: trans potential neutral powerless cannotdestl

ifthen: conditional

use: trans utilize usel

want: mentalstate goal wantl

notwant mentalstate goal negative notwantl

destroyed: state change reduce destroyed I

canform: trans potential change generate canforml

cancapture: trans potential change reduce cancapturel

cnotcapture: trans potential neutral powerless cnotcapturel

blowup: trans change reduce explosive blowupl

captured: state change reduce capture 1

cnotalter: trans potential neutral powerless cnotalterl

canalter: trans potential change generate canmake I

altered: state change

harmed: state change reduce

Received March 11, 1996

Revision received July 1, 1996

Accepted July 1, 1996


