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A theory of analogical mopping between source and target analogs based upon 
interacting structural, semantic, and pragmatic constraints is proposed here. The 

structural constraint of fsomorphfsm encourages mappings that maximize the 
consistency of relational corresondences between the elements of the two ana- 
logs. The constraint of semantic similarity supports mapping hypotheses to the 
degree that mapped predicates have similar meanings. The constraint of prag- 
matic centrality fovors mappings involving elements the analogist believes to be 

important in order to achieve the purpose for which the anology Is being used. 
The theory is implemented in a computer progrom called ACME (Analogical Con- 
straint Mapping Engine), which represents constraints by means of a network of 
supporting and competing hypotheses regarding what elements to map. A coop 

erative algorithm for parallel constraint satisfaction identifies mapping hypothe- 
ses that collectively represent the overall mapping that best fits the interactlng 
constraints. ACME has been applied to a wide range of examples that include 
problem analogies, analogical arguments, explanatory analogies, story analo- 
gies, formal analogies, and metaphors. ACME is sensitive to semantic and prag 
matic information if it is available,.and yet able to compute mappings between 
formally isomorphic analogs without any similar or identical elements. The theory 

Is able to account for empirical findings regarding the impact of consistenty and 
similarity on human processing of analogies. 

INTRODUCTION 

At the core of analogical thinking lies the process of mapping: the construc- 
tion of orderly correspondences between the elements of a source analog 
and those of a target. Identifying an appropriate mapping is crucial in allow- 
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ing useful transfer of knowledge. In this article a theory of analogical map- 
ping based upon a small set of constraints is provided and a cooperative 
algorithm that allows the graceful integration of these constraints is described. 
The algorithm is implemented in a computer program that computes map- 
pings between symbolic representations. The results of a number of applica- 
tions of the computational model to a variety of analogies will be presented. 
The theory and implementation here are similar in many respects to those of 
Gentner and colleagues (Falkenhainer, Forbus, & Gentner, 1986; Gentner, 
1983), but also differ in significant ways. Gentner has emphasized the im- 
portance of structural constraints in determining the correspondences be- 
tween two analogs, but it is maintained here that semantic and pragmatic 
constraints must also be taken into account. 

In order to formulate a theory of mapping, it is necessary to consider the 
relationship between mapping and other aspects of analogical thinking. The 
centrality of mapping is a point of general agreement among all theorists 
who have discussed the use of analogy, whether in problem solving (Car- 
bone& 1983,1986; Gick, & Holyoak, 1980), in explanation (Gentner, 1983), 
in case-based reasoning (Hammond, 1986; Kolodner, Simpson, & Sycara, 
1985) in theory formation (Darden, 1983; Thagard, 1988a), in the analysis 
of formal systems (Hesse, 1966; Polya, 1973), or in metaphor and other liter- 
ary uses (Black, 1962; Genmer, 1982; Holyoak, 1982; Miller, 1979). There 
has been less agreement, however, on the relationship between mapping and 
other subprocesses of analogy, and on the related issue of whether a com- 
mon set of principles governs mapping across different uses of analogies. 

The view here is that analogy, and inference in general, must be under- 
stood pragmatically, taking into account the goals and purposes of the cog- 
nitive system (Holland, Holyoak, Nisbett, & Thagard, 1986; Holyoak, 
1985). As many theorists have noted, it is useful to decompose analogy into 
four major components: (1) the retrieval or selection of a plausibly useful 
source analog, (2) mapping, (3) analogical inference or transfer, and (4) 
subsequent learning. In this article, the important issue of learning in the 
aftermath of analogy use will be set aside in order to focus on mapping and 
the components that immediately surround it: selection and transfer. These 
three subprocesses must collectively serve three crucial functions: picking 
out a plausibly useful source analog, identifying elements of the source that 
should determine transfer to the target, and effecting such transfer. 

Is there, in fact, a general purpose mapping component that operates in 
fundamentally the same way for different varieties of analogy, and if so 
what role does it play in this overall task? This question can be addressed, 
indirectly, by examining the functions performed by the subprocesses of 
selection and transfer, and then considering what remains. Clearly, the 
selection component is crucial to the success of analogy. Spontaneous re- 
trieval of a relevant source analog depends upon the presence of similar ele- 
ments in the source and target (Gentner 8c Landers, 1985), including (in the 
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case of problem analogs) similar constraints and goals (Brown, Kane, & 
Echols, 1986; Holyoak & Koh, 1987). In the absence of clear similarities, 
useful analogies are often missed (Gick 8c Holyoak, 1980); if misleading sur- 
face similarities are present, false analogies may be accessed and lead to 
negative transfer (Novick, 1988). 

Once a possible source analog is retrieved spontaneously or provided by 
a teacher, further selection must be made of the aspects of the source rele- 
vant to the analogy. Analogies are virtually always used to serve some known 
purpose, and the purpose will guide selection. If, for example, one is simply 
asked to compare what is known about Nicaragua with what is known about 
Cuba, all elements of the two representations are relevant. But if one is 
asked to assess likely political trends in Nicaragua by analogy to Cuba, then 
only a subset of what is known about Cuba-roughly, facts, which bear upon 
the development of its political system-need be mapped. For example, it is 
relevant to consider the degree to which Nicaragua’s Daniel Ortega resembles 
Cuba’s Fidel Castro. In contrast, suppose one is asked to predict the suita- 
bility of Nicaragua for sugar cane production, again by analogy to Cuba. 
The subset of knowledge about the source that is likely to be mapped will be 
very different-the similarity of Nicaragua to Cuba in terms of temperature 
and rainfall will loom much larger when the question concerns agriculture 
rather than politics. In examples such as these, the selection process can use 
pragmatic knowledge about the purpose of the analogy to identify not only 
a relevant source analog, but also which aspects of the source are important 
in the context. Much of the work of identifying aspects of the source that 
will determine transfer to the target can be done prior to mapping, based 
upon knowledge of the purpose of the analogy coupled with causal knowl- 
edge concerning the source. 

Similarly, knowledge can be brought to bear on the transfer process afer 
mapping has established correspondences between elements of the source 
and target. The mapping implicitly defines a set of inferences that could be 
made about the target, based upon correspondences with predicates and 
objects in the source domain. Thus if predicate P and object 0 in the source 
map onto P ’ and 0 ’ in the target, and the proposition P(0) holds in the 
source, then the proposition P ‘(0 ‘) can be constructed as a candidate infer- 
ence about the target. Whether a candidate inference will in fact be seriously 
considered as a plausible hypothesis about the target will depend upon such 
pragmatic factors as whether the inference is relevant to the analogist’s 
goals in using the analogy and whether the inference is consistent with what 
is already known about the target domain. 

Given what functions can reasonably be ascribed to the selection and 
transfer components of analogy, it appears that the central task of the map- 
ping component is to take as inputs representations of a target analog and a 
plausibly relevant source, augmented if possible with information about the 
apparent pragmatic importance of elements of each analog, and to compute 
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a set of correspondences between elements of the source and target that is 
likely to yield useful candidate inferences. Given that the analogist will 
often have imperfect knowledge of either or both analogs, a robust mapping 
process should be capable of operating even in the face of some uncertainty 
about what aspects of the two analogs are in fact most central for effective 
transfer. 

- A CONSTRAINT-SATISFACTION THEORY 

The fundamental problem of analogical mapping is how to find appropriate 
correspondences between two analogs. If the analogs each have m predicates 
and n constants, and it is assumed that predicates map only to predicates 
and constants to constants, and that the mapping is one-to-one, then there 
are m!n! possible mappings from which to select. Thus a typical analogy 
between analogs with 10 predicates and 5 constants each generates over 400 
million possible mappings. Efficient selection of the best mapping requires 
that some constraints be placed upon what it might be. This problem is simi- 
lar to that of stereoscopic vision (Marr & Poggio, 1976). Stereopsis requires 
that points in two visual images, one from each eye, be appropriately paired; 
however, there is no a priori basis for uniquely deciding which point should 
go with which. Similarly, given representations of two complex analogs, 
there is no a priori basis for establishing a determinate set of correspondences 
between elements in the two analogs. In order to account for stereopsis, 
Marr and Poggio proposed several qualitative constraints on the visual sys- 
tem. These constraints lead to the emergence of a unique set.of point-to-point 
pairings, with each pairing consisting of points in each image arising from 
the same spatial position in the environment. 

Numerous models of analogical mapping have been proposed by research- 
ers in cognitive psychology and artificial intelligence, and a thorough review 
will not be attempted here (see Hall, 1989; Thagard, 1988b). Three classes 
of constraints tend to recur in theoretical treatments of analogy: structural,* 
semantic, and pragmatic. After discussing these constraints, a set of princi- 
ples governing analogical mapping will be proposed. 

’ Throughout this article the term “structural” is used to refer to “structural consistency” 
between two analogs, following the terminology of Falkenhainer et al. (1986). This sense of 
%ructural” is to be distinguished from that used by Holyoak (1985) and Holyoak and Koh 
(1987), who defmed “structural” properties as the goal-relevant aspects within a single analog. 
Structural properties in the latter sense will be termed “pragmatically central” or simply “im- 
portant” properties in the present paper. A pragmatically useful analogy is one in which struc- 
tural consistency holds between the important properties of the source and target. Use of 
different senses of the term “structural” in the analogy literature has contributed to some 
theoretical misunderstandings (e.g., Gentner, 1989; Holyoak, 1985). 
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Structural Consistency 
Many theorists, particularly Gentner (1983), have stressed the importance 
of consistent structural correspondences as a criterion for an intuitively 
satisfying analogical mapping (Burstein, 1986; Falkenhainer et al., 1986; 
Gick & Holyoak, 1980; Hofstadter, 1984; Winston, 1980). Loosely speak- 
ing, a source analog can serve as a model for the target if objects in those 
two analogs can be placed into correspondence so that relations also corre- 
spond. A formal definition of structural consistency can be developed in 
terms of the concept of a morphism. Essentially the same characterization 
of structural consistency has been adopted in many different contexts, in- 
cluding formal model theory (Tarski, 1954), mathematical category theory 
(Maclane, 1971), and the theory of simulation (Ziegler, 1976). Within psy- 
chology, the concept of a morphism underlies the theory of measurement 
(Coombs, Dawes, & Tversky, 1970; Suppes dc Zinnes, 1963), as well as theo- 
retical treatments of mental representation (Halford, 1987; Halford & Wil- 
son, 1980; Palmer, 1978), mental models (Holland et al., 1986), and analogy 
(Holyoak, 1984,1985; Indurkhya, 1987; Palmer, 1989). In the case of anal- 
ogy, let T be an ordered n-tuple representing a target analog consisting of a 
set of objects, 0, and some number, n, of relations on 0, 

T= <O,Rt, Rz,. . .Rn>. 

The representation of the source can similarly be defined as 

S= CO’, R’r, R’2,. . .R’,,>. 

Let m be a mapping function that takes objects and relations in the target 
into objects and relations in the source, 

m: or-o’i; Ri- R’f, 

The mapping function m defines a valid isomorphism if, and only if, the 
mapping is one-to-one and for any objects and relations in T and S 

of & Oj implies m(or) m(Rk) m(oj). (1) 

A valid analogy, A, is thus an ordered triple consisting of the relational sys- 
tems T and S and a mapping function m with the above properties, 

A= <T, S, m>. 

Figure 1 depicts the essence of a structurally valid analogy. Relations in 
the two analogs and the mapping function m are represented by directed 
lines. The consistency requirement expressed in (1) corresponds to the prop- 
erty of commutativity of the diagram: Following the arc representing the 
relation &between oi and 01 in the target and then applying m produces the 
same result as first applying m to oi to arrive at o’i and then following the 
arc representing R’f between o’f and o> in the source. 
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Figure 1. Representing a structurally valid analogy as an isamorphism 

Although (1) is stated for relations with two arguments, the basic princi- 
ple can readily be generalized to n-place predicates (including n = 1, as an 
example below will illustrate). In more general terms, a proposition P in the 
target is in correspondence to a proposition P ’ in the source if, and only if, 
the predicate and arguments of P are mapped into the predicate and argu- 
ments of P ’ by a function m that leads to a structurally consistent analogy 
A. Note that the consistency requirement in (1) implies that it is not gener- 
ally possible to decide whether any pair P and P ’ are in correspondence 
without considering the entire set of correspondences between propositions 
in T and S. This interdependence inherent in the constraint of structural 
consistency poses one of the major problems that must be solved by a com- 
putational model of mapping. 

The strict formal definition of an isomorphism is clearly inappropriate as 
a characterization of the kinds of analogies of psychological interest, which 
virtually never have the structure of a valid isomorphism. Rather, some ele- 
ments of the target may have no apparent corresponding element in the 
source (or vice versa); some correspondences may be many-to-one (a homo- 
morphism) or one-to-many (violating the formal definition of a function); 
and the consistency requirement in (1) may occasionally be violated. None 
of these types of violations of the formal requirements for an isomorphism 
necessarily preclude the analogy being potentially useful to a human rea- 
soner. Nonetheless, useful naturalistic analogies intuitively can be viewed as 
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approximations to isomorphisms. In order to characterize mental represen- 
tations that violate the strict definition of an isomorphism, Holland et al. 
(1986) extended the concept to homomorphisms with exceptions, or quasi- 
homomorphisms. Similarly, the theory to be proposed here treats the struc- 
tural constraint of isomorphism as an ideal that can be satisfied to some 
imperfect degree, rather than as an absolute requirement for a successful 
mapping. 

Semantic Similarity 
The formal definition of an isomorphism makes no reference to the simi- 
larity of the objects and relations involved in the two analogs. Consider, for 
example, analogies between linear orderings (Halford, 1987). “John is taller 
than Bill, and Bill is taller than Sam” is analogous to “Mary is heavier than 
Susan, and Susan is heavier than Beth,” with mappings between John and 
Mary, Bill and Susan, Sam and Beth, and the relations “taller than” and 
“heavier than.” In this case both the objects and the relations being mapped 
are relatively similar. However, an equally valid analogy holds between the 
former analog and “communism is more radical than socialism, and social- 
ism is more radical than capitalism,” with mappings between John and 
communism, Bill and socialism, Sam and capitalism, and “taller than” and 
“more radical than.” Even though similarity of relations and objects is 
sharply reduced in the latter analogy, the degree of structural consistency is 
the same in both cases. 

Various theorists have suggested, and empirical evidence confirms, that 
object and predicate similarity influence the mapping process, with high 
semantic similarity leading to greater ease of mapping (Gentner & Toupin, 
1986; Holyoak & Koh, 1987; Ross, 1987; Winston, 1980). The question 
therefore arises whether semantic similarity should be viewed as a distinct 
constraint on mapping, or whether it can somehow be assimilated to more 
basic constructs. Object similarity can potentially be reduced to predicate 
similarity: two objects are similar to the extent they serve as arguments of 
similar predicates. Predicate similarity may in turn be analyzed in terms of 
feature overlap (Tversky, 1977). One possibility, therefore, is to assimilate 
semantic similarity to structural consistency by imposing an added restric- 
tion on the latter constraint: corresponding relations must either be identical 
(Falkenhainer et al., 1986)’ or share common features, such as a common 
superordinate (Burstein, 1986; Winston, 1980). A requirement of strict 
identity between corresponding relations does not seem satisfactory as a 
psychological model, since people can readily find mappings involving non- 

* Note that Falkenhainer et al. (1986) allow mappings between nonideritical one-place 
predicates and objects; they only impose the identity restriction on multiplace relations. Since 
Falkenhainer et al. represent functions as one-place predicates, SME can map nonidentical 
functions. 
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identical relations (Burstein, 1986). (A number of relevant examples will be 
presented below.) Restrictions stated in terms of feature overlap (thus allow- 
ing mappings between similar rather than just identical relations) are much 
more plausible. However, the prerequisite requirement to provide a satis- 
factory analysis of natural language concepts in terms of semantic features 
remains a formidable challenge. 

In addition to the sheer difficulty of reducing semantic similarity to struc- 
tural consistency, there is empirical evidence that the two types of constraints 
have distinct consequences. Semantic similarity has a more pronounced 
effect on the retrieval of a source analog than on the mapping process (Gent- 
ner & Landers, 1985; Holyoak t Koh, 1987). In addition, although judg- 
ments of the aptness or soundness of analogies and metaphors are positively 
correlated with structural consistency, they are negatively correlated with 
similarity (Tourangeau & Sternberg, 1982). People’s judgments thus reflect 
the intuition that although analogies based upon similar objects and rela- 
tions are easy to map, they are less interesting or esthetically pleasing than 
“deeper” analogies between disparate situations. These separable effects of 
structural consistency and semantic similarity motivate treating the two 
kinds of constraints as distinct. 

Pragmatic Centrality 
Another major type of constraint on mapping that many theorists have pro- 
posed involves the pragmatic importance of the elements of the two analogs. 
Some treatments have emphasized the centrality of causal knowledge in 
determining the most appropriate mapping (Hesse, 1966; Winston, 1980); 
others have focused on the roles of high-level plans, goals, and functional 
knowledge (Anderson & Thompson, 1989; Burstein, 1986; Carbonell, 1983, 
1986; Kedar-Cabelli, 1985). Although these models have important differ- 
ences, they all share the view that the analogist uses explicit or implicit 
knowledge about the purpose the analogy is intended to serve to help direct 
the mapping process. 

Although few would dispute that pragmatic knowledge influences the use 
of analogy, there remains disagreement as to the locus of its influence. 
Pragmatic considerations clearly weigh heavily in the initial selection of a 
plausibly useful source analog and in the subsequent transfer process. But 
do pragmatic considerations affect the mapping process itself7 Gentner 
(1989, p. 215) proposes an architecture for analogy in which “plans and 
goals influence our thinking before and crfter the analogy engine” (i.e., the 
mapping mechanism) “but not during its operation.” Gentner argues, very 
plausibly, that the goal of the analogist will typically have an impact on the 
representation of the target analog in working memory, which will in turn 
influence the retrieval of a source analog. Furthermore, the goal structure 
of a stored source problem may influence the mapping process indirectly by 
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affecting the degree of structural consistency between the source and the 
target. 

There are reasons to suspect, however, that pragmatic considerations- 
the analogist’s judgments about which elements of the analog are most 
crucial to achieve a useful mapping-may also have a more direct influence 
on the mapping process. As noted earlier, the general form of analogical 
transfer is to find correspondences among elements of the source and of the 
target, and then construct candidate inferences about the target by essen- 
tially copying over propositions from the source after substituting the appro- 
priate corresponding elements from the target domain. This form of transfer 
is very flexible, and allows analogies to be used in an exploratory fashion to 
derive unanticipated candidate inferences about the target (Gentner, 1989). 
The cost of this flexibility, however, is that the inference process is not goal 
directed; there is no guarantee that candidate inferences constructed in this 
fashion will be relevant to the analogist’s purpose in using the analogy. In 
many uses of analogy, such as problem solving and explanation, the analo- 
gist has an implicit or explicit question in mind when trying to derive a map- 
ping, and therefore intends to use the source analog to derive inferences that 
will provide specific information about the target. For example, Holyoak 
and Thagard (1989) suggest that in analogical problem solving, people may 
aim to generate a mapping sufficient to transfer useful subgoals. 

When the analogist is trying to make a particular type of inference or to 
answer a specific question, a more goal-directed form of transfer is possible. 
In particular, if the target representation contains variables representing 
missing knowledge that the analogy is intended to provide, then the analogist 
may selectively favor possible correspondences that would allow these vari- 
ables to be appropriately instantiated. For example, if a person is trying to 
answer the question, “What was the likely cause of the stock market crash 
of 19871” by mapping the circumstances of that year to those involved in 
the crash of 1929, then it would be useful to favor correspondences that 
allow instantiation of the unknown cause of the crucial event in the target 
over correspondences that could not do so. Mappings guided by such ques- 
tions will in effect generate goal-relevant candidate inferences directly, 
rather than depending upon the unconstrained generation and assessment 
of all possible inferences in the aftermath of mapping. 

In addition to considerations of computational efficiency in guiding 
transfer, there is some suggestive empirical evidence indicating that prag- 
matic knowledge may influence the mapping process directly, rather than 
solely by affecting the representations over which the mapping is derived. 
Brown et al. (1986) found that young children’who were directed to attend 
to the goal structure of problems were better able to transfer solutions to 
analogous problems than were children who were not so directed. These in- 
vestigators found, however, that the latter children were nonetheless able to 
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recall the critical goal elements when directly asked to do so. Their poor 
transfer performance thus seemed not to be due to simple failure to remem- 
ber the goal elements (i.e., failure to include the goal elements in their repre- 
sentations of the source problems). Rather, the difficulty seemed related to 
selective attention, involving failure to view the goal elements as especially 
important during the mapping process. The theory to be proposed here 
assumes that the judged pragmatic importance of elements of analogs can 
directly constrain the mapping process, in addition to influencing earlier 
and later stages in the use of analogy. 

Statement of Theory 
The theory here assumes, as do many others, that analogical mapping can 
be viewed as a process of finding correspondences between elements of two 
structures. In propositional representations, the elements will include propo- 
sitions, predicates, and objects. In other kinds of representations, such as 
pictorial ones, different types of elements may have to be mapped. 

The major assertion of the theory is that mapping is governed by con- 
straints of the three basic types discussed earlier: structural, semantic, and 
pragmatic. None of these constraints is absolute; rather, they provide “pres- 
sures” (in the sense of Hofstadter, 1984) that guide the emergence of a 
global mapping as a consequence of numerous local decisions about ele- 
ment correspondences. 

Constraint 1. The structural constraint of isomorphism favors mappings 
that satisfy the consistency criterion in formula (1) and are one-to-one. 
Structural consistency requires that if a proposition ip the target corre- 
sponds to a proposition in the source, then the constituent predicates and 
arguments of the paired propositions should also correspond. One-to-one 
mapping requires that each target element should correspond to only one 
element of the source, and that no two target elements should correspond to 
the same source element. 

Constraint 2. Semantic simiibrity supports possible correspondences 
between elements to the degree that they have similar meanings. 

Constraint 3. Pragmatic centrality favors correspondences that are prag- 
matically important to the analogist, either because a particular correspon- 
dence between two elements is presumed to hold, or because an element is 
judged to be sufficiently central that some mapping for it should be found. 

The similarities and differences between the present theory and the struc- 
ture-mapping theory developed by Gentner and colleagues (Falkenhainer et 
al., 1986; Gentner, 1983, 1989) can be characterized in terms of the above 
principles. The basic assumption that mapping involves finding structural 
correspondences is common to both approaches, as well as to virtually all 
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other theoretical treatments. The isomorphism constraint here embodies the 
principles of structural consistency and one-to-one mapping employed by 
Falkenhainer et al.; however, in the present theory these principles are inter- 
preted as pressures rather than as requirements. Isomorphism is also related 
to Gentner’s systematicity principle, which states that mappings between 
higher-order relations (i.e, predicates such as “cause” and “implies” that 
take propositions as arguments) constrain mappings between first-order 
relations (i.e., predicates such as “kill” that take objects as arguments), 
which in turn constrain object mappings. Gentner’s systematicity principle 
characterizes one important type of information that can be used to identify 
isomorphic structures. 

The constraint of semantic similarity provides a stronger distinction 
between Gentner’s theory and the one described here, which postulates 
semantic pressures interacting with the isomorphism constraint. By treating 
semantic similarity as a pressure distinct from isomorphism, the restriction 
that multiplace relations must be identical in order to be mapped is elim- 
inated. As a consequence, this theory is able to provide a mechanism for 
mapping purely formal analogies that lack any identical or even similar rela- 
tions. At the same time, the mapping process is guided by similarity infor- 
mation if it is available. Nonetheless, this difference between the two 
approaches should not be overstated. If identity of predicates is understood as 
a limiting case of semantic similarity, then the semantic similarity constraint 
here can be viewed as a weakening of Gentner’s principle of finding corre- 
spondences between identical relations. The mapping model described by 
Burstein (1986) also allows mapped relations to be similar rather than iden- 
tical. In the present theory, degree of similarity leads to preferences, rather 
than strict requirements, in identifying optimal correspondences. 

The constraint of pragmatic centrality presented here departs most clearly 
from Gentner’s theory, which maintains that people use only structural in- 
formation in mapping. Gentner’s approach emphasizes that attention to 
pragmatic considerations is restricted to stages of analogical reasoning occur- 
ring before and after the mapping process. 

Further comparisons of the theory presented here with that of Gentner 
can be made at the level of the computational implementations of these 
theories. Below, the implementation of the theory in the program ACME 
will be contrasted with the implementation of Gentner’s theoretical approach 
in the SME program (Falkenhainer, Forbus, & Gentner, 1986, in press). 

‘The mapping component is of course only one piece of an overall proces- 
sing system for analogical reasoning. In addition to a natural-language in- 
terface, prior processes of analogical retrieval and selection are assumed 
that (a) propose a plausible source-target pair, and also may optionally pro- 
vide (b) information about the degree of semantic similarity between pairs 
of source-target predicates, and (c) information about the pragmatic impor- 
tance of elements of each analog. The present theory makes no assumptions 
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about the nature of the processes that compute similarity and importance 
information. The similarity computation may be based upon decomposition 
of meanings into identities and differences (Hesse, 1966; Tversky, 1977); the 
importance computation may be based upon some form of causal or expla- 
nation-oriented analysis (Kedar-Cabelli, 1985), prior expectations, or in- 
struction from a teacher. For the present purposes it will simply be assumed 
that the mapping component can receive a numerical index of the degree of 
semantic similarity between two predicates and of the pragmatic centrality 
of elements of the analogs. In general, this theory of mapping can be stated 
independently of any strong theory of similarity, memory retrieval, causal 
analysis, or of other subprocesses of analogical inference. The theory thus 
defines a mapping mechanism that can be potentially integrated within 
broader theories describing additional stages of analogical reasoning. 

ACME: A COOPERATIVE ALGORITHM FOR MAPPING 
The algorithm for evaluating mappings is suggested by Marr and Poggio’s 
(1976) treatment of stereoscopic matching, which was based upon a cooper- 
ative algorithm, ‘ ‘ . . . so-called because of the way in which local operations 
appear to cooperate in forming global order in a well-regulated manner” 
(Marr, 1982, p. 122). A cooperative algorithm is a procedure for parallel 
satisfaction of a set of interacting constraints. In the Marr and Poggio 
algorithm, a network of nodes is established, in which each node represents 
a possible pair of matched points, and excitatory and inhibitory connections 
between nodes represent constraints. The network is then allowed to run in 
order to find a globally optimal set of match hypotheses. 

More generally, Marr (1982) argued that cooperative methods capture 
two principles that appear to govern fluent information processing: (1) the 
principle of graceful degradation, according to which degrading the input 
data should allow computation of a partial answer, and (2) the principle of 
least commitment, which requires avoiding doing something that may later 
have to be undone. Theorists working within the connectionist framework 
have argued that cooperative methods may be applicable to human memory 
retrieval and higher level reasoning (Rumelhart, Smolensky, McClelland, & 
Hinton, 1986). Several properties of an information-processing task can 
provide cues that a cooperative algorithm may be appropriate. A coopera- 
tive algorithm for parallel constraint satisfaction is preferable to any serial 
decision procedure when: (a) a global decision is composed of a number of 
constituent’decisions, (b) each constituent decision should be based upon 
multiple constraints, (c) the outcome of the global decision could vary 
depending upon the order in which constraints are applied and constituent 
decisions are made, and (d) there is no principled justification for preferring 
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any particular ordering of constraints or of constituent decisions. (For a 
philosophical discussion of the importance of parallel computation, see 
Thagard, 1986.) 

Analogical mapping using constraints exhibits all of these features. Hof- 
stadter (1984) pioneered the use of a cooperative process model for analogi- 
cal mapping. In the Copycat model, a global mapping emerges from the 
parallel evaluation of evidence for interacting local hypotheses about ele- 
ment correspondences. Similarly, a cooperative algorithm for mapping 
analogies has been formulated and implemented here into a COMMON LISP 
program called ACME (Analogical Constraint Mapping Engine). ACME 
constructs a network of units representing mapping hypotheses and relaxes 
into a state representing the best mapping. 

Inputs to ACME 
In order to apply the isomorphism constraint, a mapping model must have 
input representations rich enough to distinguish (a) among predicates such 
as dog, constants representing objects such as Fido, and identifiers repre- 
senting propositions such as dog (Fido), and (b) between predicates with 
different numbers of arguments. For example, cow can be represented as a 
one-place predicate taking one argument, as in cow (Bossy), whereas loves is 
a two-place predicate taking two arguments, as in loves (John, Mary). The 
algorithm described below, like the SME mapping program of Falkenhainer 
et al. (1986) takes as input structures consisting of sets of sentences in 
predicate calculus. No particular devotion to predicate calculus as a repre- 
sentation language (Thagard, 1984) is maintained here; it is used because of 
its simplicity and familiarity. Other more complex representation languages 
should be amenable to similar treatment. 

Several more specific representational assumptions also deserve mention. 
Propositions may have hierarchical structure, with some predicates taking 
propositions as arguments. For example, cause is treated as a two-place 
predicate with propositions representing events or states as its arguments 
(Gentner, 1983). Functions of n arguments are treated as relations of n + 1 
arguments holding among n objects and a value. Thus height (John, afeet) 
represents the fact that the height of John has. the value six feet. 

In order to represent queries that serve to focus attention on the prag- 
matically central aspects of a target analog, ACME allows some arguments 
to be variables marked with a question mark, as in “value?“. Two kinds of 
queries are distinguished between here: 
1. Cross-stnrcfure queries indicate that the answer to the query should 

come from seeing the relevant correspondences in the other analog. For 
example, if I tell you that Ortega is like Castro, and ask you what 
Ortega’s political views are, then you could answer by transferring 
Castro’s political views over to Ortega. 
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2. Internal queries indicate that the answer to a query is to be found within 
the structure that contains the query, with some element already pre- 
sent in the structure answering the query. In comparing the stock 
market crash of 1987 to the crash of 1929, you may expect to map a 
structure describing the 1929 crash to a structure describing the 1987 
crash. In asking what caused the latter, you would expect to find some 
element of the 1987 structure that could provide the cause. This case 
differs from a cross-structure query in that you do not expect some ele- 
ment of the 1929 situation to answer your question for you directly. 
Rather, you hope that one result of mapping the 1987 and 1929 situa- 
tions will be to fill in the relevant element in the 1987 structure using 
another component of that structure. ACME uses two question marks 
to indicate internal queries. For example, cause (Pproposition?, crash- 
of-‘87) represents the question, “What aspect of the situation was the 
cause of the crash of 19871” As described below, internal queries are 
treated as variables that allow support to be passed to specific elements 
that might fill the role of the variable. 

Each possible hypothesis about a possible pairing of an element from the 
source with a corresponding element of the target is assigned to a node or 
unit. Each unit has an activation level, ranging between some minimum and 
maximum values, which indicates the plausibility of the corresponding hy- 
pothesis, with higher activation indicating greater plausibility. Inferential 
dependencies between mapping hypotheses are represented by weights on 
link-s between units. Supporting evidence is given a positive weight, and dis- 
confirmatory evidence is given a negative weight. 

Setting Up a Mapping Network 
The operation of the ACME program will now be described in greater 
detail. Figure 2 provides a schematic illustration of the kind of input that is 
provided to the program and of the kind of mapping network that the pro- 
gram builds. The input to the program consists of predicate-calculus repre- 
sentations of the source and target analogs, plus optional information 
about semantic similarity and pragmatic importance. It is assumed that a 
mapping may be computed either from a target analog to a source or vice 
versa. It is conjectured that the direction of mapping will vary depending 
upon the use of the analogy and the knowledge of the analogist. If the 
source is much more familiar than the target, then it may be best to try to 
map source elements to target elements. On the other hand, if the source is 
much more complicated than the target or if the target contains highly 
salient elements, then the analogist may attempt to map from the target to 
the source. In the example in Figure 2, the target is mapped to the source. 

When given two structures as input, ACME automatically generates a 
network in accord with the constraints postulated by the theory. Each of the 
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INPUT 

TARGET SOURCE Semantic 
Weight@ For: 

Pragmatic 
Information: 

Tl A(a) 
~2 Bib) 
T3 C(a.b) 
T4 D(b.a) 

S3 0tm.n) 
S4 P(n,m) 

A-M C=O IMPORTANT D 

PARTIAL RESULTING NETWORK 

Figure 2. A schematic example of an ACME mapping network. Numbered capital letters 
represent proposition identifiers, unnumbered capital letters represent predicates, and 
lowercase letters represent objects. Solid lines represent excitatory connections and dotted 
lines represent inhibitory connections. (See text for further explanation.) 

analogs in the simple abstract example depicted in Figure 2 includes four 
propositions, 2 one-place predicates, 2 two-place predicates, and 2 objects. 
The first step in building a mapping network is to construct mapping units 
corresponding to each possible hypothesis about pairings between elements. 
Two restrictions are used to limit the number of units formed. First, the 
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fype restriction limits possible correspondences to those between elements 
of the same basic type: propositions to propositions, n-place predicates to 
n-place predicates, and objects to objects.’ Second, theparl-correspondence 
restriction allows pairings only between propositions within corresponding 
major parts of the two analogs. The latter restriction only applies if the 
analogs are in fact divided into major parts. In the examples dealt with in 
this article, the part-correspondence restriction is only implemented for 
problem analogies. Problems can be divided into the basic parts of initial 
state, goal state, solution constraints, operators, and solution steps (Car- 
bone& 1983; Newell & Simon, 1972). ACME assumes that propositions 
describing initial states map to propositions describing initial states, propo- 
sitions describing goals to propositions describing goals, and so on. Simil- 
arly, it would be possible to restrict mappings involving story structures to 
propositions within such corresponding major parts as the setting and 
resolution. 

Neither of these restrictions on unit formation in the current implementa- 
tion of ACME should be considered definitive. The type restriction can be 
viewed as a means of setting a low threshold of minimal similarity that is re- 
quired in order to consider setting up mapping unit linking two elements. The 
part-correspondence restriction can be viewed as a type of serial application 
of the isomorphism constraint on mapping, in which prior correspondences 
between high-level parts are used to constrain more detailed correspondences. 
Possible modifications of these restrictions will be discussed in the General 
DiscussiDn. 

The mapping units in Figure 2 thus represents all possible pairings of ele- 
ments of the same basic type. For each two-place predicate in the target, for 
example, units are established for each possible pairing with a two-place 
source predicate (e.g., C= 0 and C=fl. The part-correspondence restric- 
tion is not illustrated in this simple example. Units corresponding to pair- 
ings between one-place predicates (e.g., A =M); pairings between objects 
(e.g., a=@, and pairings between propositions (e.g., Tl =SI) are also 
constructed. 

As the units are established, links are formed between them to implement 
the constraint of structural consistency. All links are symmetrical, with the 
same weight regardless of direction. For example, excitatory links (repre- 
sented by solid lines) are formed between TI = S1 and A = M, TZ = SI and 

’ ACME does not distinguish bawecn object con5tan~ and variablu representing chx55e5 of 
objects; hence the type restriction doe5 not preclude mapping an object to a variable. Also note 
that mapping unit5 may sometimes be formed for propositions with unequal numbers of predi- 
cates if 5uch a mapping is suggested by a mapping of higher-order relations. For example, if 
muse (Tl, 72) were mapped to CUKW (S3, SZ), then the mapping unit TI = S3 would be formed 
even if Tl ha8 one argument and S3 has two arguments. In this case, however, the type rutric- 
don would preclude forming a mapping unit linking the predicates of Tl and Sl. 
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u = m, and A = M and a = m. All excitatory links have a default excitation 
weight given by parameter e. For predicates that take more than one argu- 
ment, the argument mappings support each other, as in the link between 
u = m and b = n which is suggested by both 73 = S3 and T4 = S4. Weights on 
links are additive, so that the weight between a = m and b = m will be double 
the value of e. Links are also created between predicate-mapping units and 
their corresponding argument-mapping units. Each potential correspon- 
dence between propositions thus generates an interconnected subnetwork of 
mutually consistent correspondences among elements of the propositions.’ 
Figure 2 only shows a subset of the links that would be formed for this ex- 
ample. Figure 3 depicts the full set of excitatory links that would be created 
in the course of mapping two propositions with two-place predicates, T3 
and S3. 

After all the units have been formed, inhibitory links (represented in 
Figure 2 by dashed lines) with weights equal to parameter i are formed to 
connect all units that represent alternative mappings for the same element. 

a In an earlier version of ACME, propositions were not mapped directly using proposition 
identifiers; rather, mapping units were based solely upon correspondences between predicates 
and between their arguments. Structural consistency was enforced by placing excitatory con- 
nections from pre&r~~=predMe~ units to objec@=ob/ects units. In many instances this 
simpler architecture is satisfactory. However, it leads to error in certain cases. For example, 
consider the following fragments from target and source analogs: 

TI: D(a, b) Sl: M(x, y) 
S2: N(x, z) 
S3: N(w, y). 

Suppose that other evidence provides high activation to the object-mapping units c =x and 
b =y. Intuitively, this information should suffice to establish that predicate D maps to Mratha 
than to N. However, without mapping units for the proposition identifiers (e.g., Tl =SI), 
ACME erroneously would provide slightly higher activation to D=N than to D-M. The 
reason is that although excitatory links will be formed from u=.v and b=y to D=M (based 
upon the possible mapping of Tl and Sl), these winning object-mapping uniu will alao each 
have excitatory links to D= N. A link from a=x to D=N will be formed on the basis of the 
possible correspondence of Tl with S2, and a link from b=y to D= N will be formed on the 
basis of the possible correspondence of Tl with S3. Since, in addition, two possible proposition 
correspondences favor D = N whereas only one favors D =M, the overaIl result is a preference 
for linking D to N rather than to the intuitively correct choice, hf. 

Such errors arise because the mapping network fails to capture a crucial aspect of structural 
consistency, which depends upon mapping propositions as integral units. The present architec- 
ture of ACME avoids errors of this sort by introdudng proposition-mapping units which have 
excitatory commctions both to the corresponding predicate-mapping tits and to the object- 
mapping units. in addition to forming direct excitatory cotmections between the latter types of 
units. In the above example, the proposition-mapping tmit Tf = SI will be favored over its two 
competitors, which in turn ensures that D = M is preferred to D = N. We thank Dawn Cohen 
for identifying a chemistry analogy that first brought this problem with the earlier architecture 
to our attention. 
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Figure 3. The subnetwork of excitatory connections among mapping units formed in the 
course of mapping propositions T3 ond 53 (see Figure 2) 

Thus the units C=O and C=P will be mutually inhibitory, as will C=P 
and D = P. For clarity, Fiiure 2 depicts only a subset of all the links actually 
constructed, omitting, for example, the inhibitory links between 27 =SI 
and TI = SI. 

In addition to the units representing mapping hypotheses, the network 
includes two special units. The semantic unit is used to convey information 
about the system’s prior assessment of the degree of semantic similarity be- 
tween each pair of meaningful concepts in the target and source, and the 
pragmatic unit similarly is used to convey information about the pragmatic 
importance of possible correspondences. The semantic-similarity constraint 
is enforced by placing excitatory links from the semantic unit to all units rep 
resenting mappings between predicates. The weights on these links are made 
proportional to the degree of semantic similarity between the mapped con- 
cepts. Similarly, the pragmatic+entrality constraint is represented by weights 
on links connecting the pragmatic unit to relevant mapping units. 

The list of semantic weights provides numerical values that reflect the 
degree of semantic similarity between target-source predicate pairs.’ Seman- 
tic similarity values, which range from a minimum value smh representing 

* ACME represents objects by semantically empty constants; similarity of objects is repro- 
sented indirectly by similarity of the mapped predicates that apply to the objects. It is possible, 
however. that people arrive at judgmcuts of object-object similarity prior to the mapping stage. 
perhaps using additional information besides predicates available to the mapping process. The 
program could easily be extended to allow similarity weights to direcdy reflect object+bjcct as 
wdl as prcdicat~pR!dicate similarities. 
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no similarity to a maximum value smw automatically given to identical 
predicates, are given to ACME by statements of the form: 

(SIMKARcconcept-1> <concept-2> <degree>). 

If no similarity degree is given, then ACME assumes the minimum value. 
Thus in Figure 2, semantic weights are only explicitly provided for the units 
A = M and C= 0, which represent units linking concepts with some degree 
of similarity that lies between the minimum value and identity. 

Important elements are indicated by inputs of the form 

(IMPORTANT<element>) 

which sets up links with weights equal to parameter pl from the pragmatic 
unit to all units concerning the mapping of the element. Figure 2 shows D as 
an IMPORTANT element, so that there are excitatory links from the prag- 
matic unit to both of the units concerning how D could be mapped. 

ACME also allows pragmatic support to be provided to a particular cor- 
respondence that the analogist may presume to hold. The input 

(PRSSUIvlED < hypothesis >) 

sets up a mapping from the pragmatic unit directly to the unit representing 
that hypothesis, with a weight equal to parameter p2. Thus IMPORTANT 
provides support to the class of possible mappings for an important element, 
whereas PRESUMED provides support to a particular mapping hypothesis. 

In addition to its use of pragmatic weights, ACME also represents prag- 
matic information related to questions for which an answer is sought by 
special query variables. Table 1 provides a summary of ACME’s algorithm 
for forming a mapping network. 

Rumlng the Network 
The manner in which the network is run to arrive at a solution is a straight- 
forward application of constraint-satisfaction methods that have been in- 
vestigated extensively in other applications (see Rumelhart et al., 1986). To 
initialize the network, the activation levels of the semantic and pragmatic 
units are fixed at 1, and the activations of all other units are set to some 
minimal value. On each cycle of activity, all units (except the semantic and 
pragmatic units) have their activation levels updated on the basis of the acti- 
vation levels and weights associated with neighboring units and links. The 
updating procedure is based upon that suggested by Grossberg (1978). The 
activation level of unit j on cycle t + I is given by 

uj(t+ 1) =uj(f)(l -d) +ene@uzx-aj(t))+hefj(q(f)-min) 

where d is a decay parameter, enetj is the net excitatory input, and ine$ is 
the net inhibitory input (a negative number), with min = - 1 and max= 1. 



‘TABLE I 
Summary of the ACME Algorithms for Forming o Mapping Network and 

Performlng Conrtralnt Satlsfactlon 

Consider a mapping between structures T and S. Let propn be the ith proposition of struc- 
ture T, and let predn be the predicate ln the ith proposition of T, and let argTtk be the obfect 
or praposltlon corresponding to the kth argument of the lth proposition in T, with analogous 
deflnltlons of propq. pred~f. and arggfk. 

I. Setting Up A Mapping Network 
A. For each proposition propn in T. conslstlng of (pm& (orgTu orgTt2 . . . argnn). 

for each proposition propsf In S, conslstlng of (predsf (argqt argSf2 . . . arggtm), 
lf propn and props1 ore in the same part (e.g., goal) of their respective structure, 

and have the same number of arguments (I.e., n=m), 
then: (1) construct the units propn=propSf, predTt=predSf, ond each argTtk=orgSfk; 

(2) construct links between propn=propSf and predn=predgf; 
(3) construct links between propTt=propSf and each argTtk=argSlk; 
(4) construct Ilnks between predn=predSf ond each argTtk=orgStk; 
(5) construct llnks between each palr of orgTtk=orgSfk. 
Note I : These ore excitatory llnks wlth equal weights set by o default 

excitation parameter e. 
Note 2: A unit will not be formed If It would be redundant wlth a unit formed 

previously, but the weight on a link Is Incremented by e for each 
proposltlon that supports it. 

B. Construct lnhlbltory links between any two units that represent incompatlble mop- 
pings, wlth o negotlve welght set by a default inhibition parameter f. 

Note 3: If a mopplng unit connects an Internal-query variable to some other 
element (i.e., ?query?= <element >)# then construct excitatory 
(mther than lnhlbltory) llnks to other units representing possible 
mappings to <element >. 

C. For each predicate-mapping unit predn=predSf, construct a link from the semantlc 
unit based on the degree of semantic slmilarlty between the two predlcotes, wlth a 
weight mnglng from a mlnlmum value tmtn if there Is no slmllarlty to a maxlmum 
value smox if the predicates are ldentlcol. 

D. For each element (predicate, obfect, or proposltlon) listed as IMPORTANT. con- 
struct a link from the pragmatic unlt to each unit concerning o mopping for that 
element, with a weight equol to a parameter pi for pragmatic centrality for 
IMPORTANT mopplngs. 

E. For each unit Ilsted as PRESUMED, construct a llnk from the pragmatic unit with a 
weight equal to a parameter p2 for pragmatic centrollty for PRESUMED mappings. 

To summarize, A (1-S) and B Implement the structural constraint of lsomorphlsm, C 
Implements the semantic slmllarlty canstmlnt, and D and E (along wlth Note 3) lmple- 
ment the pmgmatlc centrality constrolnt. 

II. Running the Network 

The algorithm for synchronously updating the units In the network Is: 
Clamp the octlvations of the semantic and pragmatic units at the maximum value, 
Set activations of all other units to an lnltlal volue (e.g., .Ol). 
At each cycle, 

I. For each unlt u, calculate the new octlvatlon of u In accord with the equatlons 
In text, conslderlng each unit u’ llnked to u. 

2. Set the actlvotlon of u to the new activation. 

314 
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The value of enerJ is equal to Clw~or(t) for wu>O, and the value of inet) is 
equal to the same quantity when wuc 0. The quantity 0((f) is the output on 
cycle r of a unit with activation ur, with or(r) =max (u/(t), 0). On each cycle 
updating is synchronous across all units (see Table 1). Activation values are 
constrained to range from min to max.‘ 

The degree to which the activation levels of units satisfy the constraints 
imposed by the weights on links is approximated by a measure termed G, 
defined as 

G(t) = CiCjwuor(r)oj(f). 
The value of G can be interpreted as a rough index of the overall fit of the 
emerging mapping to the constraints of isomorphism, similarity, and prag- 
matic centrality.’ 

Comparison With Other Shuulation Models of Analogy 
As noted earlier, many previous simulation models of analogical mapping 
have been proposed (see Hall, 1989; Thagard, 1988b). Other models have 
included structural, semantic, and pragmatic constraints on mapping, but 
no single model has integrated these constraints as ACME does. The most 
closely related previous simulation is the SME program (Falkenhainer et al., 

‘ Various alternative variants of the updating procedure were explored. Performance is im- 
proved for some examples if the minimum and maximum activation values are made asym- 
metric (min = - .3), as advocated by Grossberg (1978). The formula employed in McClelland 
and Rumelhart’s (1981) model of word recognition was also used, in which the activation level 
of unit j on cycle I is given by 

u/(f+l)=u~(r)(l-d)+ 
i 

ner/(mw-q(t)) if ner/>O 
net&(t) - min) otherwise, 

where m/n = - 1 and mar= 1. The net input to unit /, neg, is equal to Clwuo[(Q; o/(f) is the 
output on cycle t of a unit with activation UL with oi(t) =m~~~(crr(&O). The Chossberg rule 
considers excitatory and inhibitory inputs separately in adjusting activations, whereas the 
McClellan’d and Rumelhart rule sums all inputs before making the adjustment. Although both 
rules yield simiiar results for most of the examples, the Grossberg rule proved more effective in 
some of the more complex cases. 

For both rules it proved important to impose a zero threshold on the outputs of units, SO 
that units with negative activations do not influence the units to which they are connected. 
Without this restriction, two units with negative activation levels that have an inhibitory weight 
on the connection between them will excite each other, yielding counterintuitive results for 
some examples. 

1 The formula for 0 used in ACME is a variant of that used by Rumelhart et al. (1986). The 
present algorithm operates only on internal weights, and does not involve any external inputs. 
In addition, outputs rather than activation values are used because of the introduction of a 
threshold on outputs. Links between units that both have negative activations thus do not 
affect the value of G. Although there is not a proof that the activation-updating procedure 
finds a local maximum of G, the measure has been found to be heuristically usefuf in inter- 
preting the behavior of the program. 
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1986, in press). SME is designed as a “tool kit” for implementing different 
possible mapping rules; the comparison here is with SME operating with 
rules based upon Gentner’s (1983, 1989) structure-mapping theory. ACME 
and SME have several important similarities; indeed, in many respects 
ACME can be characterized as an extension of SME, even though it oper- 
ates differently. Both models provide content-independent accounts of the 
mapping process, and both derive a global “best” mapping from a set of 
constituent hypotheses about element correspondences (the mapping units 
of ACME and the “match hypotheses” of SME). Both programs operate 
on predicate-calculus representations of analogs, and both emphasize the 
role of proposition mappings in enforcing mappings between corresponding 
elements of the propositions. 

In terms of the basic constraints, ACME’s isomorphism constraint is a 
generalized version of the constraints of structural consistency and one-to- 
one mapping that are employed by SME. Two differences in ACME’s treat- 
ment of structural constraints are notable. First, ACME treats isomorphism 
as a separate constraint from semantic similarity. Whereas SME requires 
multiplace relations to be identical in order to be mapped, ACME allows 
mappings between relations with no similarity beyond having the same 
number of arguments. ACME’s more abstract version of the isomorphism 
constraint allows the program to compute mappings beyond the scope of 
SME. ACME can exploit its sensitivity to abstract isomorphism to find 
important similarities between predicates, rather than depending upon the 
similarities being preceded in the initial representations of the analogs. This 
creative aspect of analogy is not well captured by models of mapping that 
are more highly dependent upon preexisting similarities or identities. 

As we noted earlier, Gentner’s systematicity principle, which is imple- 
mented in SME, describes one major type of information that can be used 
to identify isomorphisms: mappings of higher-order relations constrain 
mappings of first-order relations, which in turn constrain mappings of ob- 
jects. ACME is also sensitive to systematicity, although such information is 
viewed symmetrically (e.g., not only do relation mappings constrain object 
mappings, but object mappings constrain relation mappings). The systema- 
ticity principle can be viewed as a special case of the general use of inter- 
related propositions to identify isomorphisms. In both ACME and SME, 
interrelated fnst-order relations also convey information about isomor- 
phism, especially with multiplace relations. (The greater the number of 
arguments in a pair of mapped propositions, the greater the information 
provided about argument mappings.) Indeed, ACME (but not SME) can 
potentially find a unique mapping using no information except patterns of 
semantically unrelated monadic predicates (attributes), if these are in fact 
sufficient to create unique assignments of objects to sets of attributes. (An 
example of a mapping based solely upon attributes will be presented in the 
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section on applications of ACME to formal isomorphisms.) Thus ACME’s 
sensitivity to structure is by no means dependent upon’higher-order relations. 

A further difference between ACME and SME involves the “tightness” 
of structural constraints on mapping. SME begins the mapping process by 
identifying consistently mappable subsets of the analogs. Any violation of 
the strong restriction that mapped relations must be identical marks the 
limit of a consistently mappable subset. The program typically yields several 
such subsets, ranked in order of “goodness.” In contrast, ACME treats the 
constraints of isomorphism, semantic similarity, and pragmatic centrality 
as pressures that operate in parallel to find a single mapping that best satis- 
fies all of the converging and competing constraints to some (typically im- 
perfect) degree. The program on any one run finds a single set of “best” 
mapping units (although relatively high activation levels on other units will 
convey information about possible alternative mappings). Whereas SME 
explicitly constructs global mappings and evaluates them, the global map- 
pings selected by ACME are only implicitly determined by means of the 
links between mapping hypotheses. 

More generally, ACME includes semantic and pragmatic constraints on 
the mapping component, as well as purely structural constraints. ACME 
prefers mappings between elements that are semantically similar, whereas 
SME excludes such information as relevant only to stages of analogy out- 
side mapping. To implement the constraint of pragmatic centrality, ACME 
allows preferences for PRESUMED mappings and for mappings involving 
IMPORTANT’ elements. More subtly, it prefers mappings that have the 
potential to answer queries internal to a structure. Somewhat similarly, 
SME includes a preference for mappings that generate the greatest number 
of inferences; although not characterized as such by Falkenhainer et al. 
(1986), this preference might be construed as a pragmatic factor. However, 
the program does not consider whether the possible inferences are relevant 
to the goals of the analogist, as ACME does. In line with the emphasis on 
the pragmatic aspects of analogy, it is contended here that analogists will 
tend to prefer mappings that produce the inferences they are interested in, 
not inferences in general. 

In its use of a connectionist architecture ACME has important similaii~ 
ties to the Copycat program developed by Hofstadter (1984; Hofstadter & 
Mitchell, 1988), which also derives the globally best analogy from the out- 
comes of parallel competitions among interacting hypotheses about element 
correspondences. However, the constraints embodied in Copycat, like those 
used in SME, explicitly exclude pragmatic considerations. 

ACME, SME, and Copycat are all much more complex than the mapping 
schemes implicitly included in sin-ndation models that do not operate on 
cross-domain analogies .(or, in the case of Copycat, on novel relational 
intradomain correspondences). If one is modeling only analogies within a 
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highly structured domain, mapping can be virtually trivial (especially for 
small examples), since essentially the same predicates and arguments will 
exist in both domains. For example, in Anderson and Thompson’s (1989) 
model of using analogies in programming LISP, each piece of LISP code is 
represented with an explicit form and function. Mapping consists merely of 
applying similar forms to code with similar functions. Work on case-based 
reasoning also tends to be restricted to intradomain analogies (e.g., Ham- 
mond, 1986; Kolodner & Simpson, 1988). If analogy is restricted to a single 
domain in which the same predicates and arguments turn up in both struc- 
tures to be mapped, mapping becomes a very simple special case of the more 
complex processes used by ACME and SMB for cross-domain analogies. 

It should be noted that there are important ties between the theory’s treat- 
ment of the basic constraints on mapping and ACME’s use of an algorithm 
based upon parallel constraint satisfaction. In an abstract isomorphism, it is 
impossible to assess whether the mapping between any two propositions in 
the target and source is valid without considering the mappings of all other 
propositions, because the validity of any possible correspondence depends 
upon its relationship to the entire analogical structure. When the additional 
semantic and pragmatic constraints are included, the degree of interdepen- 
dence between mapping hypotheses increases even further. Parallel con- 
straint satisfaction is able to deal with this sort of extreme interdependence 
by allowing all local mapping decisions to emerge together in an incremental 
fashion. 

APPLICATIONS OF ACME 

Analogical reasoning can serve many different functions. Major contexts 
for analogy use include problem solving, when the solution to one problem 
suggests a solution to a similar one; argumentation, when similarities be- 
tween two situations are used to contend that what is true in one situation is 
likely to be true in the other; and explanation, when a familiar topic is used 
to provide understanding of a less familiar one. In addition, analogical 
reasoning is also used to understand formal analogies of the sort found in 
mathematics, as well as metaphors, which can be employed to serve both 
explanatory and more aesthetic functions. Given the fundamental assump- 
tion that all uses of analogy involve the same basic mapping mechanism, 
it follows that a theory of analogical mapping should apply to a full range 
of examples. 

Table 2 lists the principal analogies to which ACME has been applied, 
alOng with the number of units and links that were formed for each. All of 
these examples are discussed below, except for the chemical analogies pre- 
sented in Thagard, Cohen, and Holyoak (1989). Because translation of 
analogies in natural language into predicate-calculus inputs is somewhat 
arbitrary, these applications do not constitute strict tests of the theory imple- 
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TABLE 2 
Summary of Applications of ACME 

Number of 
Analogs Units 

Lightbulb/radtotlon problems (4 versions) W-192 
(Holyoak 8 Koh, 1987) 

f+tress/radlatlon problems 41 
(Glck 8 Holyoak. 1980) 

Connlbals and mlsslonartes/farmer’s dtlemmo problems 144 
(Gholson et al., 1988) 

Contras Inference 95 
Polltlcs inference (2 verslons) 55-67 
Water-flow/heat-flow explanatlon (2 verslons) 62-127 

(Folkenhalner et al., 1986) 
Solar system/atom explonatlon 93 

(Falkenhalner et al., 1986) 
Jealous animal stories (6 versions) 12t214 

(Gentner 8 Toupln, 1986) 
Addltion/unlon 162 
Attrlbute mapping 43 
Mldwlfe/Socrates (3 verslons) 97-203 

(Klttay. 1987) 
Chemical analogles (8 different analogies) 

(Thagard et al., 19B9) 

Number of 
Symmetric llnks 

1373-1773 

144 

973 

169 
308381 
317-1010 

733 

1048-1783 

1468 
220 

534-1702 

mented in ACME. Nevertheless, they show that ACME is applicable to 
awide variety of analogies and is consistent with experimental results that 
reveal when analogical mapping is difficult for people. 

In order to demonstrate that ACME can account for performance on a 
wide variety of analogies using a consistent set of parameters, all parameters 
were held constant across the entire set of applications. Unless otherwise 
stated, all runs employed the Grossberg updating rule with min = - 1, mux= 
1, and d= .l. Weight parameters were e= .l, i= - .2, smin=O, smut= .l, 
pl = .I, and p2 = .3. Mapping units were initialized at activation = .Ol. Inter- 
mediate similarity weights will be noted in those examples when they were 
used. The pragmatic centrality parameters were only used in a subset of the 
examples. The sensitivity of the program to variations in the parameter set 
will be described later. 

Problem Analogies 
Convergence Anafogiss. ACME has been applied to a number of problem 

analogies involving the use of a “convergence” solution, in which several 
weak forces are applied simultaneously to a centrally located object in order 
to achieve the effect of a single large force (Click & Holyoak, 1980, 1983; 
Holyoak & Koh, 1987). In experimental work using these materials, the 
target analog has typically been a “radiation problem,” in which a doctor 
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must find a way to use a ray to destroy a stomach tumor without harming 
the surrounding tissue (Duncker, 1945). Holyoak and Koh (1987) com- 
pared the effectiveness of four alternative versions of a source analog based 
upon a “lightbulb problem,” in which a broken filament in a lightbulb must 
be repaired. The four versions were defined by two types of variations. 
Surface similarity to the ray used in the target was varied by manipulating 
whether the force used in the lightbulb problem was a laser (highly similar 
to a ray) or an ultrasound beam (less similar). Similarity of problem con- 
straints was also varied. The similar constraint in the source was the necessity 
to avoid breaking the fragile glass bulb surrounding the filament (analogous 
to avoiding injury to the tissue surrounding the tumor). The dissimilar con- 
straint was that a force of sufficiently high intensity was not available. Table 
3 presents predicate-calculus representations of the “laser/fragile-glass” 
version of the lightbulb problem and of the radiation problem. These, to- 
gether with similar representations of the other lightbulb versions, were used 
as inputs to ACME. Each proposition in an analog is represented by a list 
consisting of a predicate, a list of arguments, and a name for the proposi- 
tion. In the surface-similar versions ACME was given a similarity weight of 
.08 for the mapping unit ray-source = laser. Pragmatic-centrality weights 
were not used in any of these examples of problem analogies, since all ele- 
ments of the representations were selected to be important. In each run the 
possible mapping hypotheses were limited by the part-correspondence restric- 
tion (i.e., goal elements must map to goal elements, and so on). 

Because of their complexity, a figure showing the full network created 
using the above input, with its 192 units and 1773 links, cannot be presented. 
However, Figure 4, reproduced directly from a screen dump of a graphics 
program running with ACME, shows the nodes connected to a typical unit, 
ray-source = laser Thick lines indicate excitatory links and thin lines indi- 
cate inhibitory links; the weight of the link is specified by a number midway 
in the line. Beneath each node is a truncated number indicating the activa- 
tion of the named unit. The network can be browsed to show the connectivity 
of another node simply by clicking on that node. 

Table 4 presents the output of ACME after mapping the radiation prob- 
lem with the laser/fragile-glass version of the lightbulb problem. This and 
all other tables of outputs to be presented gives the optimal mappings ob- 
tained after the network has settled at an asymptote, defined as the first 
cycle at which no unit has its activation adjusted by more than .OOl . For this 
example the network settles after 31 cycles. The asymptotic value of G is 
also printed, along with the best mapping for each object, each predicate, 
and each proposition used as the argument of a higher-order relation. (No 
propositions appear as arguments in this example.) The program defines the 
“best” mapping of an element as the corresponding mapping unit with 
highest activation level, regardless of absolute magnitude; however, it is 
natural to interpret cases in which the most active unit is very weak (e.g., 



TABLE 3 
Predicate-Calculus Representations of Lightbulb Problem 
(Laser, Fragile-Glass and Insufficient-Intensity Versions) 

ond Radiation Problems 

LIGHTBULB PROBLEM (source) 

Start: (laser (obi-laser) fl) 
(bulb (abj-bulb) f2) 
(filament (obj-filament) f3) 
(surround (obj-bulb obj-filament) f4) 
(outside (obi-laser obi-bulb) f5) 

For good-constraint version, add: 
(can-produce (obf-laser obj-beams-high) 196) 
(high-intensity (obf-beams-high- obi-filament) fg8) 
(can-destroy (obj-beams-high obf-bulb) fg9) 
(can-produce (obi-laser abi~beams~iow) fgl0) 
(law-intensity (obi-beams-low) fgll) 
(cannot-fuse (obi-beams-low obj-filament) fg12) 
(cannot-destroy (obi-beams-low obi-bulb) fgf3) 

Far poor-constraint version, add instead: 
(cannot-produce (obi-laser obf-beams-high) fp6) 
(high-intensity (obj-beams-high) fp7) 
(can-fuse (obj-beams-high abf-filament) fp8) 
(can-produce (obi-laser obf-beams-low) fpl0) 
(low-intensity (obi-beams-low) fpll) 
(cannot-fuse (obi-beams-low obf-filament) fp12) 

Goals: (fuse (obi-laser obj-filament) f21) 

For goad-constraint version, add: 
(not-destroyed (obi-bulb) fg22) 

For poor-constraint version, add instead: 
(con-produce (obi-laser obj-beams-high) fp22) 

RADIATION PROBLEM (target) 

Start: (ray-source (obi-ray) dl) 
(tissue (abf-tissue) d2) 
(tumor (obf-tumor) d3) 
(surround (obf-tissue obj-tumor) d4) 
(outside (obf-ray obf-tissue) d5) 
(can-produce (obj-ray obj-rays-high) d6) 
(high-intensity (obj-rays-high) d7) 
(can-destroy (obf-rays-high objfumor) d8) 
(can-destroy (obj-rays-high abj-tissue) d9) 
(can-produce (obi-roy obj-rays-low) dl0) 
(low-intensity (abf-rays-law) dll) 
(cannot-destroy (obf-rays-low obj-tumor) d12) 
(cannot-destroy (obj-rays-low obi-tissue) d13) 

Goals: (destroy (obi-ray obi-tumor) d21) 
(not-destroyed (obf-tissue) d22) 

SIMILARITY: (similar rav-source laser .08) 

321 
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Figure 4. Output of a gmphics pmgmm running with ACME. showing the subnetwork of 
excitatory and inhibitory connections to the unit my-source=loser 

activation less than 20) as target elements that have no good map in the 
source. (There are no such unmapped elements in this example.) 

ACME also displays any additional possible mappings for each element, 
defined a+ units other than the best, which have activations greater than a 
threshold set at 20. In most cases each element has a single clear best map- 
ping, but the occasional secondary mappings are also of interest. For exam- 
ple, the predicate can-destroy in the radiation problem has can-destroy in 
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the target problem as its best map (activation = .58), but has a secondary 
mapping to can-fuse (activation = .39). The reason for this dual mapping is 
apparent at the level of propositions (see Table 3). The high-strength ray can 
destroy the tissue just as the high-strength laser can destroy the bulb (i.e., 
d9 = fg9), but at the same time the high-strength ray can destroy the tumor 
just as the high-strength laser can fuse the filament (d8 = fg8). ACME finds 
the intuitively correct best mapping for both source propositions (uY=fg9 
has activation = .69, and d8 =fg8 has activation ~58). However, at the level 
of predicate mappings can-destroy = can-&t~y is preferred to can-dfzstroy = 
can-fuse because of the greater semantic similarity of the concepts in the 
former mapping. 

This analogy demonstrates that ACME can successfully map relations 
without requiring that they be coded as identical or even similar (e.g., de- 
stray =fuse, activation = .71). One could argue, of course, that these rela- 
tions overlap at the level of their underlying semantic structures, as both are 
causatives. However, this is a very abstract similarity; intuitively, the differ- 
ences between the two predicates (e.g., one involves destruction and the 
other construction) are at least as salient as their similarities. The operation 
of ACME suggests how the overall structure of an analog can force dissimi- 
lar predicates into correspondence. The mapping thus leads to (rather than 
results from) discovery of underlying similarities. Once two predicates have 
been mapped, their similarities are highlighted while their differences are 
forced into the background. 

The output provided in Table 4 does not reflect the history of activation 
of units as the network settles. Such information can be displayed, however, 
by using a graphics program that runs simultaneously with ACME and 
graphs the activation values of selected units. Figure 5 depicts activation 
histories of all the units concerning the mappings of ray-source, tissue, and 
tumor. In each graph, the x-axis is for time over 60 cycles of updating, and 
the y-axis shows activations ranging between 1 and - 1, with the horizontal 
line indicating activation of 0. For example, the unit ra)csource = laser rises 
steadily and then asymptotes, while the other units concerning the mapping of 
ray-source asymptote at negative activation values. This graph illustrates the 
characteristic stability of the asymptotic activation levels of individual units. 

Table 5 presents results of running ACME on four versions of the con- 
vergence problem. The top row of the table presents the number of ‘%ycles 
to success” for each version, defined as the number of cycles required for 
each correct mapping unit (for objects, predicates, and propositions used as 
arguments) to exceed the activation of its nearest competitor. It has gener- 
ally been found that cycles to success provides a useful measure of relative 
difficulty of analogical mappings. Holyoak and Koh (1987) measured the 
percent of undergraduates who produced the convergence solution to the 
radiation problem after reading one of the four versions of the lightbulb 
problem, both before a hint to use the source was given, and in total, after a 
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TABLE 4 

Activation Values of Best Mappings of Radiation Problem to Lightbulb Problem 
(Laser/Fragile-Glass Version)* 

Network has settled by cycle 31. 
Test: TEST0 Totol times: 32 
Thu May 5 15:17:40 EDT 1988 
Laser analogy: basic. good constraint. 
Units not yet reached asymptote: 0 

Goodness of network: 4.84 
Calculating the best mappings after 32 cycles. 
Best mapping of RAY-SOURCE is LASER. 0.69 
Best mopping of TISSUE is BULB. 0.59 
Best mopping of TUMOR is FILAMENT. 0.59 

Best mopping of SURROUND is SURROUND. 0.77 
Best mopping of OUTSIDE is OUTSIDE. 0.77 
Best mapping of CAN-PRODUCE is CAN-PRODUCE. 0.88 
Best mopping of HIGH-INTENSITY is HIGH-INTENSITY. 0.71 
Best mopping of CAN-DESTROY is CAN-DESTROY. 0.58 

Mopping with CAN-FUSE is also possible: 0.39 
Best mopping of LOW-INTENSITY is LOW-INTENSITY. 0.71 
Best mopping of CANNOT-DESTROY is CANNOT-DESTROY. 0.58 

Mapping with CANNOT-FUSE is also possible: 0.39 
Best mapping of DESTROY is FUSE. 0.71 
Best mopping of NOT-DESTROYED is NOT-DESTROYED. 0.71 
Best mapping of OBJ-RAYS-LOW is OBJ-BEAMS-LOW. 0.88 

Best mopping of OBJ-RAYS-HIGH Is OBJ-BEAMS-HIGH. 0.88 
Best mopping of OBJ-TUMOR is OBJ-FILAMENT. 0.90 
Best mapping of OW-TISSUE Is OW-BULB. 0.91 
Best mopping of OBJ-RAY- is OW-LASER. 0.92 

l Volues ore activations of units after settling. This table and all other tables of mopping 
results are token directly from ACME outputs, except thot all numbers have been rounded 
to 2 decimal places. 

hint was provided. For comparison with ACME’s mapping results, these 
data are provided at the bottom of Table 5. Since ACME is modeling map- 
ping only, not retrieval, the more relevant comparison is with the number of 
solutions after a hint was given. ACME is able to find the correct set of 
mappings in all four cases. Cycles to success does not differ as a function of 
surface similarity. All versions of the analogy have such extensive structural 
correspondences that the extra weight from the semantic unit to the mapping 
unit corresponding to the more similar predicate pair, ray-source=furef, 
has no measurable impact upon mapping difficulty. As the data from the 
Holyoak and Koh (1987) study indicate, people are also able to derive the 
mapping equally well in the laser and ultrasound conditions once a hint is 
provided. 

Cycles to success does increase slightly for the two poor-constraint ver- 
sions. Most seriously, proposition d22 in the radiation problem, which 
expresses the major constraint of not destroying the healthy tissue, has no 
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Figure 5. The activation history of several selected mapping units over 6Ocycles of updating 

map at all in the poor-constraint versions of the lightbulb problems. This 
breakdown of the analogy is likely to be a major part of the reason tiansfer 
was impaired for human subjects in the poor-constraint conditions of the 
Holyoak and Koh (1987) experiment. 

ACME has also been applied to another convergence analogy, in which 
the target is the radiation problem and the source is the “fortress problem” 
used by Gick and Holyoak (1980). In the latter problem a general divides his 
tiy intb small groups and has them converge simultaneously on a fortress 
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TABLE 5 
Ease of Mapping Four Versions of Lightbulb/Radiotlon Problem Analogy 

Laser/ Ultrasound/ 
Laser/ Ultrasound/ lnsuff Iclent- lnsuff icient- 

Fmglle-glass Fmglle-gloss Intensity Intensity 

Cycles to Success 3 3 5 5 
Percent Convergence 

Solutions Prior to Hint* 69 38 33 13 
Percent Convergence 

Solutions with Hint* 75 81 60 47 

l Data from Holyook and Koh (1987) 

to capture it. ACME is also able to find the appropriate mapping for this 
additional convergence analogy. 

Homomorphs of Mhionaries-and-Cannibals. ACME’s performance on 
the convergence analogies indicates that it can find useful mappings in the 
absence of a strict isomorphism. Humans can sometimes show problem- 
solving transfer between homomorphs that require more extensive one-to- 
many or many-to-one mappings. Once such example has been provided by 
Gholson, Eymard, Long, Morgan, and Leemii (1988). In the “missionaries- 
and-cannibals” problem, it is necessary to get a number of missionaries and 
cannibals across a river in a boat without leaving any missionaries outnum- 
bered, and hence eaten, by cannibals. The homomorphic “farmer’s dilemma” 
problem requires a farmer to take a fox, a goose, and some corn across a 
mountain in his wagon without having the fox eat the goose or the goose eat 
the corn. These problems are not isomorphic since multiple missionaries 
and multiple cannibals map equally well to a single corn and a single fox, 
respectively. Gholson et al. (1988) found that third- and fourth-grade chil- 
dren who had learned a solution to the farmer’s dilemma problem were 
facilitated in subsequently solving a simple version of the missionaries-and- 
cannibals problem (with three missionaries and two cannibals). However, 
no transfer was obtained in the reverse direction, from missionaries-and- 
cannibals to farmer’s dilemma. A similar transfer asymmetry was obtained 
with adult subjects by Reed, Ernst, and Banerji (1974), using other mission- 
aries-andcannibals homomorphs. 

nble 6 shows predicate-calculus representations of the two problems in 
the form in which they were given to ACME. These representations are 
simplified in that the constraints on which objects can be left together are 
not explicitly included; however, the representations contain the basic infor- 
mation required to indicate that each missionary and each cannibal have the 
same properties, so that the optimal mapping should be a homomorphism. 
Given that ACME forms inhibitory links in order to encourage one-to-one 
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TABLE 6 

Predicate-Calculus Representations of Missionaries-and-Cannibals 
and Farmer’s Dilemma Problems 

MlSSlONARlES-AND-CANNIBALS 

Start: (missionary (obj~mlsstonaryl) ml) 
(missionary (ob/-missionary2) m2) 
(missionary (obi_missianaryJ) m3) 
(cannibal (obf-cant-&all) m4) 
(cannibol (obj-cannibal2) mS) 

(boat (obfbaat) m6) 
(carries (obiboat vbl-rower vbl-passenger) m7) 
(eat (obf-conniball ob/-mlssionoryl) me) 
(eat (obi-cannibal1 ob/-missionaty2) m9) 
(eat (abf-cannibal1 obj-missionaty3) m10) 
(eat (obj-cannibal2 obj-misslonatyl) ml 1) 

(eat (ob/-canntbal2 obi-missionaty2) m12) 
(eat (obj-cannibal2 obj-missionoty3) m13) 

Goals: (cross-river (abj-missionaryl) m14) 
(cross-river (ob/-missionary2) m15) 

(cross-river (obi-missianary3) m16) 
(cross-river (objsonniball) m17) 
(cross-river (obj-cannibal2) ml8) 
(not-eaten (obj-missionotyl) m19) 

(not-eaten (ob/-missionary2) m2O) 
(not-eaten (ob/-missionaty3) m21) 

FARMERS DILEMMA: 

Start: (former (obi-farmer) fl) 

(fox (obi-fox) f2) 
(goose (obfgoase) 13) 
(corn (obf-corn) f4) 
(wagon (obj-wagon) 15) 
(carries (obj-wagon obi-farmer vbl-thing) f6) 

(eat (obi-fox obigoose) f7) 
(eat (obi-goose obf-corn) f8) 

Goals: (cross-mountain (obf-farmer) f9) 
(cross-mountain (obf-fox) f10) 
(cross-mountain (ob/_gaase) fll) 

(crass-mountain (abi-corn) f12) 
(not-eaten (ob/_goose) fl3) 
(not-eaten (obi-cam) f14) 

mappings, it is not obvious that the program could find many-to-one or 
one-to-many mappings. However, as the outputs presented in Table 7 demon- 
strate, ACME in fact sorts out the relations among the elements of the two 
problems very well, both when mapping from missionaries-and-cannibals to 
farmer’s dilemma (many-to-one mappings, l[gble 7A) and from farmer’s 
dilemma to missionaries-and-cannibals (one-to-many mappings, Table 7B). 



TABLE 7 

Results of Mapping Missionaries-and-Cannibals to Farmer’s Dilemma and Vice Versa 

A. Missionaries-and-Cannibals to Farmer’s Dilemma: 

Network has settled by cycle 41. 

Test: TEST22 Total times: 42 
Mon May 2 17:09:OB EDT 1988 
Mapping cannibals 8 missionaries (3) to farmer’s dilemma. 
Units not yet reached asymptote: 0 
Goodness of network: 2.26 
Calculating the best mappings after 42 cycles. 

Best mapping of OBJ-MISSIONARY1 is OBJ-CORN. 0.37 
Mopping with OBJ-GOOSE is also possible: 0.26 

Best mapping of OBJ-MISSIONARY2 is OBJ-CORN. 0.37 
Mapping with OBJ-GOOSE is also possible: 0.26 

Best mapping of OBJ-MISSIONARY3 is OBJ-CORN. 0.37 
Mapping with OBJ-GOOSE is also possible: 0.26 

Best mapping of OBJ-CANNIBAL1 is OBJ-FOX. 0.52 
Mapping with OBJ-GOOSE is also possible: 0.21 

Best mapping of OBJKANNIBALP is OBJ-FOX. 0.52 
Mapping with OBJ-GOOSE is also possible: 0.21 

Best mapping of OBJ-BOAT is OBJ-WAGON. 0.80 
Best mapping of VBL-PASSENGER is VBL-THING. 0.75 

Best mapping of VBL-ROWER is OBJ-FARMER. 0.75 
Best mopping of NOT-EATEN is NOT-EATEN. 0.78 
Best mopping of CROSS-RIVER is CROSS-MOUNTAIN. 0.82 
Best mopping of EAT is EAT. 0.90 
Best mapping of CARRIES is CARRIES. 0.79 
Best mapping of BOAT is WAGON. 0.57 
Best mapping of CANNIBAL is FOX. 0.63 

Best mapping of MISSIONARY is CORN. 0.61 

B. Farmer’s Dilemma to Missionaries-and-Cannibals: 

Network has settled by cycle 41. 
Test: TEST23 Total times: 42 

Mon May 2 17;ll:ll EDT 1988 
Mapping farmer’s dilemma to cannibals 8 missionaries (3). 
Units not yet reached asymptote: 0 
Goodness of network: 2.26 

Calculating the best moppings after 42 cycles. 
Best mapping of FARMER is BOAT. -0.52 
Best mapping of FOX is CANNIBAL. 0.63 
Best mapping of GOOSE is MISSIONARY. -0.14 
Best mapping of CORN is MISSIONARY. 0.60 

Best mapping of WAGON is BOAT. 0.57 
Best mopping of CARRIES is CARRIES. 0.79 
Best mapping of EAT is EAT. 0.90 
Best mopping of CROSS-MOUNTAIN is CROSS-RIVER. 0.82 
Best mapping of NOT-EATEN is NOT-EATEN. 0.78 
Best mapping of VBL-THING is VBL-PASSENGER. 0.75 
Best mapping of OBJ-WAGON is OBJ-BOAT. 0.80 
Best mapping of OBJ-CORN is OBJMISSIONARYS. 0.37 

Mapping with OBJ_MISSIONARY2 is also possible: 0.37 
Mapping with OBJ-MISSIONARY1 is also possible: 0.37 

328 
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TABLE 7 (Continued) 

Best mapping of OBJ-GOOSE is OBJ_MISSIONARYS. 0.26 
Mopping with OBJ-CANNIBAL2 is also possible: 0.20 
Mopping with OBJ-CANNIBAL1 is also possible: 0.20 
Mopping with OBJ_MISSIONARYP is also possible: 0.26 
Mapping with OBJ-MISSIONARY1 is also possible: 0.26 

Best mopping of OBJ-FOX is OBJKANNIBAL2. 0.52 
Mapping with OBJ-CANNIBAL1 is also possible: 0.52 

Best mapping of OBJ-FARMER is VBL-ROWER. 0.75 

Thus in the former direction each missionary maps equally well to the corn, 
and each cannibal maps equally well to the fox. The goose is a weaker secon- 
dary map for both the missionaries and the cannibals; at the level of predi- 
cates, however, the only successful mapping units are missionary = corn and 
cannibal = fox. ACME is able to find many-to-one mappings at the level of 
objects because the positive evidence favoring each of several object-object 
mappings (e.g., each cannibal to the fox) provides total excitation that ex- 
ceeds the inhibition generated by inhibitory links between the competing 
units. In ACME the structural constraint of one-to-one mapping, like that 
of structural consistency, is treated as a pressure rather than a requirement. 

The mappings found by ACME may also help account for the asymmetry 
in transfer between the two problems observed by Gholson et al. (1988). 
Although subjects may map the problems in either direction, they of course 
only know the solution to one of them at the time of transfer. For simplicity, 
let us assume subjects were mapping from target to source, so that the map- 
ping from missionaries-and-cannibals to farmer’s dilemma (Table 7A) repre- 
sents the basis for transfering knowledge about the farmer’s dilemma to the 
various characters of missionaries-and-cannibals. It is clear from examining 
the solutions required for the two problems that there are no useful corre- 
spondences at the level of moves. However, subjects may have been able to 
use their experience with the source to help construct appropriate tests for 
legal moves. The basis for the analogy is that in each problem, to avoid 
illegal moves it is necessary to check, during the process of move selection, 
that objects are neither threats to, nor threatened by, other objects. If the 
source problem is the farmer’s dilemma, then the mapping in Table 7A gives 
relatively clear guidance about the test required for each object in the mission- 
aries-and-cannibals problem: each cannibal should be viewed as a potential 
threat (like the fox), and each missionary should be viewed as potentially 
threatened (like the corn). This is the direction in which Gholson et al’s 
subjects were able to Lransfer successfully. 

In contrast, subjects who receive the missionaries-and-cannibals problem 
as the source will have less adequate guidance in dealing with the farmer’s 
dilemma characters. As Table 7B indicates, the fox maps to each of the can- 
nibals, and the corn maps to each of the missionaries; the predicate map- 
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pings fox= cannibal and corn = missionary emerge unambiguously. These 
mappings will correctly lead subjects to decide to view the fox as a threat 
and the corn as threatened. Note, however, that the mapping provides no 
clear guidance about how to treat the goose. The goose maps weakly to each 
of the missionaries and cannibals; the predicate goose has no good map at 
all. Intuitively, the goose in the farmer’s dilemma problem is sometimes 
threatened and sometimes a threat; the missionaries-and-cannibals problem 
provides no clear information about how to deal with such ambiguity. 
Accordingly, transfer in this direction will be greatly impaired, as Gholson 
et al. observed. 

Pragmaties in Analogical Arguments 
In analogical arguments, one implies that what is true of one situation is also 
true of another situation. Such arguments have a long history in philosophy, 
being used, for example, to argue for the existence of other minds and the 
existence of God. (I know that I have a mind because of my experiences, 
and I infer that you also have a mind because you are similar to me in many 
other respects. Less metaphysically, I may infer that since my favorite can- 
didate for the United States presidency is like former president John F. 
Kennedy, my candidate too will win the election.) 

Analogical arguments may rely upon an unbiased assessment of similar- 
ities, but often people are motivated to reach particular conclusions. It is 
conjectured here that such motivations may bias people’s judgments of 
similarity, just as Kunda (1987) has shown that generalization can be biased 
by personal motivation. Motivated analogical arguments would provide 
striking examples of the pragmatic nature of analogy, since judgments about 
what corresponds to what will be biased by the conclusion the analogy is 
intended to produce. 

To illustrate the possible role of biases in analogical argumentation, 
ACME was used to simulate a very simple example of a motivated use of 
analogy, involving the issue of assessing the nature of the Contras’ attempt 
to overthrow the government of Nicaragua in 1987. Table 8 shows the in- 
put representations provided to the program. The “Contras” structure 
contains only the minimal information that the Contras aim to overthrow 
the government of Nicaragua, leaving open the question of whether the 
U.S. should support them, and whether they should be viewed as terrorists 
or freedom fighters. The unknown but desired information about the Con- 
tras is signalled by variables representing cross-structure queries, such as 
support?. The “Others” analog contains substructures corresponding to 
Hungarians wanting to overthrow their communist government, who are 
categorized as freedom fighters, and to the PLO wanting to overthrow the 
Israeli government, who are categorized as terrorists. The Contras structure 
has the same degree of structural and semantic similarity to each of the 
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TABLE B 
Predicate-Calculus Representations for Contras Example 

CONTRAS 
(country (Nicaragua) cl) 

(govern (Sandinistas Nicaragua) c2) 
(aim-to-overthrow (Contras Sandinistas) c3) 
(terrorists? (Contras Contra-terror?) c4) 
(freedom-fighters? (Contras Contra-freedom?) c5) 

(should-support? (US Contras support?) c6) 

OTHERS 
(country (Hungary) hl) 
(govern (communists Hungary) h2) 

(aim-to-overthrow (Hungarians communists) h3) 
(freedom-fighters? (Hungarians freedom-fighters-yes) hS) 
(terrorists? (Hungarians terrorists-no) h4) 
(should-support? (US Hungarians support-yes) h6) 

(country (Israel) il) 

(govern (Israelis Israel) i2) 
(aim-to-overthrow (PLO Israelis) 13) 
(terrorists? (PLO terrorists-yes) i4) 
(freedom-fighters? (PLO freedom-fighters-no) 5) 
(should-support? (US PLO support-no) 16) 

PRESUMED: support?=support-yes 

Hungarian and Israeli substructures, and maps to them equally well if no 
additional information is provided. 

Suppose, however, that the analogist is motivated to support the Contras. 
This person will want support? to correspond to support-yes. To represent 
this type of bias in the mapping process, ACME’s input in Table 8 includes 
the information that this is a PRESUMED mapping. Results of running 
ACME are shown in Table 9. The result of ACME’s bias toward support? = 
support-yes is not only that the network indeed settles upon the mapping 
support? = support-yes, but that the Contras map to Hungarians rather than 
to PLO, so that Contra-terror? maps to terrorists-no and Contra-freedom? 
maps to freedom-fighters-yes. A very different result is produced if ACME 
is told that it is desirable to reach the conclusion that the Contras should not 
be supported: the Contras then map to the PLO and take on their character- 
istics. Thus a single entering bias can potentially alter the entire mapping 
that will be found. 

Also modeled was a similar case of motivated analogy using three possi- 
ble analogs. Suppose you are inferring some of the policies of your favorite 
political candidate. Then you will be motivated to infer that the candidate 
has. properties that will make election possible. If you believe that a moder- 
ate will have the best chance of being elected, then you will be prone to view 
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TABLE 9 
Output for Contras Example 

Network has settled by cycle 103. 
Test: TEST7 Total times: 104 
Mon May 2 14:46:02 EDT 1988 
Support the Contras? 
Units not yet reached osymptote: 0 
Goodness of network: 2.53 
Colculotlng the best mappings ofter 104 cycles. 
Best mopping of NICARAGUA Is HUNGARY. 0.75 
Best mopping of SANDINISTAS is COMMUNISTS. 0.73 
Best mopping of CONTRAS is HUNGARIANS. 0.75 

Mopping with PLO is also possible: 0.42 
Best mopping of CONTRA-TERROR? Is TERRORISTS-NO. 0.68 
Best mopping of CONTRA-FREEDOM? Is FREEDOM-FIGHTERS-YES. 0.68 
Best mopping of SUPPORT? Is SUPPORT-YES. 0.77 
Best mopping of US is US. 0.81 
Best mopplng of SHOULD-SUPPORT? Is SHOULD-SUPPORT?. 0.84 
Best mopping of FREEDOM-FIGHTERS? Is FREEDOM-FIGHTERS? 0.77 
Best mopping of TERRORISTS? is TERRORISTS?. 0.77 
Best mopping of AIM-TO-OVERTHROW Is AIM-TO-OVERTHROW. 0.78 
Best mopping of GOVERN Is GOVERN. 0.76 
Best mopping of COUNTRY is COUNTRY. 0.69 

your candidate as most similar to another moderate; accordingly, you will 
infer that your candidate is more analogous to a known moderate politician 
than to a conservative or liberal. ACME models this behavior when it maps 
a target politician to an “Others” analog consisting of a liberal, a moder- 
ate, and a conservative. If the target is about equally similar to the three 
alternatives in structure and in semantic properties, then treating the map- 
ping of “politics-value” to “moderate” as PRESUMED is sufficient to 
cause the target to map to the moderate candidate and take on that politi- 
cian’s characteristics. 

Note, however, that such pragmatic biases can only select among mappings 
that are reasonably close in terms of the structural and semantic constraints. 
Pragmatic biases will not suffice, for example, to view an arch conservative 
as a moderate simply’because moderates are believed to be electable. In a 
second version of the “politics” simulation, the target politician is repre- 
sented as having the same propeties as the known conservative, and then the 
program was run with a pragmatic weight indicating that the target was a 
moderate, as in the version described above. In early cycles the target mapped 
most strongly to the moderate politician, but eventually the structural and 
semantic pressures dominated. At asymptote, ACME mapped the target 
politician to the conservative despite its pragmatic bias, Thus although 
pragmatic considerations can guide the mapping process, they cannot over- 
whelm other information. 



ANALOGICAL MAPPING 333 

Pragmatics in Explanatory Analogies 
ACME has been applied to the explanatory analogies discussed by Gentner 
(1983, 1989) and Falkenhainer et al. (1986): the analogy between the flow 
of water caused by differential pressure and the flow of heat caused by dif- 
ferential temperature; and the analogy between the motion of planets around 
the sun and of electrons around an atomic nucleus. These examples allow a 
close comparison of the ACME and SME programs, since Falkenhainer et 
al. (1986) describe the representations used as input to SME in sufficient 
detail so that essentially the same information could be provided about each 
analog to ACME. 

Table 10 presents predicate-calculus representations of the water-flow/ 
heat-flow analogy that were used as inputs to ACME. Two versions were 
used. The basic version is based directly upon an example used as a test of 
SME by Falkenhainer et al. (1986). This version is of interest because it rep- 
resents an analogy in which considerably more information is known about 
the source (water flow) than about the target (heat flow), as is often the case 
when a novel situation is explained in terms of a more familiar one. Despite 
surface representational differences, our predicate-calculus representations 
encode essentially the same information as that which Falkenhainer et al. 
provided to the SME program. The major exception is that ACME received 
an explicit representation of the pragmatic purpose of using the analogy. 
The internal query ?proposition? in proposition hl 1 of the heat analog rep- 
resents the unknown cause of heat flow. 

Table 11A presents the activation levels of selected mapping hypotheses 
after the network settles in 80 cycles. Falkenhainer et al. constructed the 
example to include three impediments to a successful map from water flow 
to heat flow. ACME, like SME, is able to handle all three difficulties. First, 
the attribute clear in the water-flow analog has no acceptable map in the 
heat-flow analog, as is evident from the fact that no mapping unit for clear 
has an activation above 0. Second, the information that both water and 
coffee are liquids and have a flat top tends to encourage water to map to 
coffee rather than to heat. Despite this misleading similarity information, 
the structural information encoded in the network enables ACME, by cycle 
3, to provide higher activation to the unit representing the hypothesis that 
water maps to heat. As the values in Table 11 indicate, the mapping from 
water to heat emerges as a clear victor over the alternative possibility of 
mapping water to coffee. 

The third and most serious impediment to a successful map is the irrele- 
vant information concerning the diameters of the beaker and vial, encour- 
aging the map of diameter to pressure in competition with the correct map 
of temperature to pressure. SME selects the correct map on the basis.of 
Gentner’s principle of systematicity, interpreted as a preference for map- 
pings that yield the greatest number of possible inferences. In contrast, ‘the 
preferability of the temperature-pressure map is viewed here as largely a 
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TABLE 10 

Predicate-Calculus Representation of Water-Flaw and Heat-Flow Analogs, 
and Extended Versions 

WATER-FLOW (source) 

(liquid (obi-water) wl) 
(flat-top (obj-water) w2) 
(clear (obi-beaker) w3) 
(diameter (obi-beaker abi-vail) w4) 

(diameter (obj-vial obj-va12) w5) 
(greater (obj-vail obi-va12) w6) 
(pressure (obi-beaker obj-va13) w7) 
(pressure (obi-vial obj-va14) wg) 

(greater (obj-va13 obj-val4) w9) 
; flow: from x to y of w via 2 
(flow (obi-beaker obf-vial obf-water obj-pipe) ~10) 
; pressure difference causes flow: 
(cause (w9 WlO) wll) 

Extended version adds: 
(volume (obi-beaker obj-val5) wll) 
(volume (obi-vial obj-va16) ~12) 
(greater (obj-va15 obj-va16) ~13) 
; diameter difference causes volume difference 

(cause (w6 ~13) ~14) 

HEAT-FLOW (target) 

(liquid (obisoffee) hl) 
(flat-top (obf-coffee) h2) 
(temperature (obf-coffee obj-vall3) h7) 
(temperature (obi-ice-cube obj-vall4) hg) 
(greater (obj-voll3 obf-val14) h9) 
(flow (obi-coffee obj-ice-cube obf-heat obj-bar) hlg) 
; what causes heat flow? 

(cause (?proposition? h10) hll) 

Extended version adds: 

(volume (obi-coffee bbj-vall5) hll) 
(volume (ob/-ice-cube obj-val16) h12) 
(greoter (abj-val15 obj-vol16) h13) 

pragmatic matter of the intended use of the analogy. If water flow is being 
used to ejcplain heat flow, then aspects of water systems that affect its flow 
(pressure differences rather than diameter differences) should be favored in 
mapping. 

In the representation of the heat-flow analogy in Table 10, the informa- 
tion-seeking purpose of the analogy is captured by the proposition (cause 
(?~ropositiont h10) hll) in the heat-flow representation, where “?proposi- 
tion?” represents the unknown cause of heat flow. This internal-query 
variable signals that the purpose of the mapping is to identify an actual 



TABLE 11 

Output for Heat-Flow Exomple 

A. Basic version: 

Network has settled by cycle 80. 
Test: TEST2 Totof times: 81 
Thu Dee B 09:41:16 EST 1988 

Analogy between woter flow and heat flow 
Units not yet reached asymptote: 0 
Goodness of network: 2.84 
Calculating the best moppings after 81 cycles. 
Best mopping of LIQUID is LIQUID. 0.53 
Best mopping of FLAT-TOP is FLAT-TOP. 0.53 

Best mopping of CLEAR is LIQUID. -0.02 
tied with FLAT-TOP. 

Best mopping of DIAMETER is TEMPERATURE. 0.04 
Best mopping of GREATER is GREATER. 0.76 
Best mapping of PRESSURE is TEMPERATURE. 0.78 
Best mopping of FLOW is FLOW. 0.82 

Best mopping of CAUSE is CAUSE. 0.76 
Best mapping of W9 is H9. 0.78 

Mapping with ?PROPOSlTlON? is also possible: 0.78 
Best mapping of WlO is HlO. 0.85 
Best mopping of OBJ-PIPE is OBJ-BAR. 0.79 

Best mopping of OBJ-VAU is OBJ-VAL14. 0.79 
Best mapping of OBJ-VAL3 is OBJ-VAL13. 0.79 
Best mapping of OBJ-VIAL is OBJ-ICE-CUBE. 0.85 
Best mopping of OBJ-VAL2 is OBJ-VAL14. 0.02 
Best mopping of OBJ-VALl is OBJ-VAL13. 0.02 
Best mopping of OBJ-BEAKER is OBJ-COFFEE. 0.86 

Best mapping of OBJ-WATER is OBJ-HEAT. 0.79 

8. Extended version: 

Network has settled by cycle 92. 
Test: TEST6 Total times: 93 

Thu Dee 8 10:02:42 EDT 1988 
Extended map from water to heat. 
Units not yet reached asymptote: 0 
Goodness of network: 4.08 
Calculating the best mappings after 93 cycles. 

Best mapping of LIQUID is LIQUID. 0.52 
Best mapping of FLAT-TOP is FLAT-TOP. 0.52 
Best mapping of CLEAR Is LIQUID. -0.004 

tied with FLAT-TOP. 
Best mapping of DIAMETER is TEMPERATURE. 0.10 
Best mapping of GREATER is GREATER. 0.84 

Best mapping of PRESSURE is TEMPERATURE. 0.74 
Best mopping of FLOW is FLOW. 0.83 
Best mopping of CAUSE is CAUSE. 0.76 
Best mapping of VOLUME is VOLUME. 0.84 
Best mapping of W6 is H9. -0.14 
Best mapping of W14 is H14. 0.70 

335 
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TABLE 11 (Continued) 

Best mopping of OBJ-VAL6 is OBJ-VAL16. 0.81 

Best mopping of OBJ-VALS is OBJ-VALlS. 0.81 
Best mopping of W9 is H9. 0.78 

Mopping with ?PROPOSITION? is also possible: 0.78 
Best mopping of WlO is HlO. 0.85 
Best mopping of OBJ-PIPE is OBJ-BAR. 0.80 
Best mopping of OBJ-VAL4 Is OBJ-VAL14. 0.75 

Best mopping of OBJ-VAL3 is OBJ-VALl3. 0.75 
Best mopping of OBJ-VIAL is OBJ-ICE-CUBE. 0.89 
Best mopping of OBJ-VAL2 is OBJ-VAL14. 0.09 
Best mopping of OBJ-VALl is OBJ-VAL13. 0.09 
Best mopping of OBJ-BEAKER is OBJ-COFFEE. 0.89 

Best mopping of OBJ-WATER is OBJ-HEAT. 0.80 

proposition in the heat situation that can fill the empty argument slot. Since 
w9 concerning the greater temperature has this desired feature by virtue of 
its appearance in the proposition (cause (w9 ~10) wll), whereas ~6 con- 
cerning the greater diameter does not, units for mapping the former are pre- 
ferred to units for mapping the latter. Because the mapping of w9 to h9 is 
therefore preferred to the mapping of ~6 to h9, the mapping of pressure to 
temperature is preferred to the mapping of diameter to temperature. (Note 
that because ?proposition? is treated as a variable that supports rather than 
competes with specific values such as h9 (see Table 1, Note 3), ACME reports 
both ?proposition? and h9 as the best maps for w9.) 

Although SME and ACME both find the appropriate mappings in this 
example, some minor extensions serve to differentiate the performance of 
the two programs. For SME it is crucial that the identical predicate “flow” 
be used in the water-flow and heat-flow situations, or else this correspon- 
dence would not be found. For ACME this identity is not essential. The 
basic version of the analogy was also run with the predicates “water-flow” 
and “heat-flow,” respectively, substituted for “flow” in the two analogs. 
The two distinct predicates were given a minimal similarity weight. Given 
that these predicates were the only four-place predicates in the analogs, and 
hence forced to map by the type restriction, this variation is not a serious 
challenge for ACME. The resulting asymptotic solution, which is reached 
after 78 cycles, is virtually identical to that shown in Table 11A; the mapping 
unit water-flow = heat-flow asymptotes at an activation of .80. 

As noted above, SME prefers the mapping of pressure to temperature 
over the mapping of diameter to temperature for a different reason than 
ACME does. Whereas ACME bases its choice on the fact that only the 
former mapping is directly relevant to the purpose of the analogy, SME 
bases its choice upon the fact that only the former allows a causal inference 
to be constructed, because only temperature change is the cause of some- 
thing in the water-flow situation. These two criteria can be separated by a 
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small extension of the two analogs, as indicated in Table 10. In the extended 
version of the water-flow situation, it is assumed the analogist has noticed 
that the greater diameter of the beaker relative to the vial is the cause of the 
former having greater volume. It is further supposed that the analogist has 
observed in the heat-flow situation that the volume of the coffee exceeds 
that of the ice cube. If the internal query is not included in the latter repre- 
sentation, then the systematicity principle provides no basis for choosing 
between the two competing mappings involving temperature in this extended 
version. For, if pressure maps to temperature, than it is possible to infer 
that temperature differences cause flow; whereas if diameter maps to tem- 
perature, it is possible to infer that temperature change is the cause of the 
observed differences between the volumes of the coffee and the ice cube. 
The latter inference is of course erroneous, but worse, it is irrelevant to the 
analogist’s presumed goal of understanding heat flow. In contrast, as the 
output in Table 11B indicates, ACME’s internal-query mechanism continues 
to produce a clear preference for mapping pressure to temperature in the 
extended version of the analogy. 

ACME is also able to produce the appropriate mapping for the solar- 
system/atom analogy that Falkenhainer et al. (1986) used to test SME. Since 
this analogy does not provide any additional complexities (the network 
settles with the correct solution after 40 cycles), the results will not be de- 
scribed further. 

ACME has also been applied to analogies used by chemistry teachers to 
explain difficult concepts to students, but these results are reported else- 
where (Thagard et al., 1989). 

Competing Constraints in Mapping Story Analogs 
Additional evidence concerning ACME’s ability to account for empirical 
evidence relating to the effect of systematicity on mapping is provided by a 
study performed by Gentner and Toupin (1986). This experiment investi- 
gated the effects both of systematicity and transparency: the degree to which 
similar objects serve similar functions in the analogy. Gentner and Toupin 
presented two groups of children, aged 4-6 years and 8-10 years, with a 
series of simple stories. After the child had acted out one version of a story 
with props, the experimenter asked him or her to act out the same story with 
different characters. 

Table 12 presents a simplified version of one of these stories that served 
as the basis for a simulation by ACME, and Table 13 presents the actual 
predicate-calculus representation provided to the program. As indicated in 
Table 14, each source story was used across children in either a “systematic” 
or a “nonsystematic” form. The systematic version differed from the non- 
systematic version in that it added additional information relevant to the 
causes of events in the story (e.g., the cat’s jealousy caused its anger). Trans- 
parency was varied by manipulating the similarity of the animals in the 



TABLE 12 
Precis of a “Jealous Animol” Story OS Used in ACME Simulation, 

in Systematic and Nonsystematic Versions 

The cat was iealous. 
(Nonsystematic version: The cot was strong.) 

The cot wos friends with a walrus. 

The walrus ployed with a seagull. 

The cot was angry. 

(Systematic version: Because the cot was iealous and the walrus played with the 
seagull, the cat was angry.) 

The cat was reckless. 
(Systematic version: Because the cat was angry, it wos reckless.) 

The cat got in danger. 
(Systematic version: Because the cat was reckless, it got in danger.) 

The seagull saved the cot. 
(Systematic version: Because the seagull saved the cat, the cat was friends with the 

seagull.) 

TABLE 13 

Predicate-Calculus Representation of o Jealous Animal Story: 
Similar Objects/Similar Roles (Systematic and Unsystematic Versions) 

(cat (obi-cat) bl) 
(walrus (obi-walrus) b2) 
(seagull (obi-seagull) b3) 
(friends (obi-cat obi-walrus) b4) 
(ployed (obi-walrus obj-seagull) b5) 

(angry (obi-cot) b6) 
(reckless (obi-cot) b7) 
(endongered (objsat) bB) 
(save (obi-seogull obj-cat) b9) 

Systematic version adds: 

(iealous (obi-cat) b10) 
(befriend (obi-cat obi-seagull) bll) 
(conjoin-event (bl0 bS) b12)’ 
(cause (b12 b6) b13) 
(cause (b6 b7) b14) 
(cause (b7 bB) b15) 

(cause (b9 bll) b16) 

Unsystematic version adds instead: 
(strong (obj-cat) b10) 

l The interpretation of o conjoin-event is that two events are conjoined to make o third 
event. This device is needed so that cause con remain a two-place relation despite conjunc- 
tive causes. 

338 



ANALOGICAL MAPPING 339 

TABLE 14 
Mapping~Conditians for “Jealous Animal” Stories 

Test 
Similar Objects/ 

Similar Roles Dissimllor Obiects 
Similar Objects/ 
Dissimilar Roles 

dog cat 

seal walrus 

penguin seagull 

camel 
lion 

giraffe 

seagull 
cat 
walrus 

various roles. In the example used in the simulation, the target analog in- 
volved a dog, seal, and penguin. In the S/S (similar objects/similar roles) 
condition, the source analog involved similar characters playing similar 
roles (cat, walrus, and seagull). In the D (dissimilar objects) condition, all 
the characters were quite different from those in the target (camel, lion, and 
giraffe). In the cross-mapped S/D (similar objects/dissimilar roles)’ condi- 
tion, similar characters were used, but these played different roles than did 
the corresponding characters in the target (seagull, cat, and walrus). 

Gentner and Toupin found that both systematicity and transparency 
affected the accuracy with which children enacted the target stories. The 
two effects interacted, in that performance was uniformly good, regardless 
of systematicity, in the S/S condition. As the transparency of the mapping 
decreased from the S/S to the D and the S/D conditions, performance 
declined, and the advantage of the systematic over the unsystematic version 
increased. The positive impact of systematicity was more pronounced for 
the older group of children. 

In order to stimulate these results, predicate-calculus representations of 
the stories were used as inputs to ACME (see Table 13). If the similarity of 
the characters in the source and target was high, the similarity weight for the 
corresponding predicate-mapfiing unit was set at .06; if the similarity was 
low, the weight was set at .Ol. Units for pairings of identical predicates were 
given similarity weights of .l, the value of smux in all the reported simula- 
tions. Table 15 presents the cycles to success (the first cycle at which the 
appropriate winning units emerged for all objects, predicates, and proposi- 
tional arguments) in each of the six conditions. Values of cycles to success 
increased very slightly from the S/S to D conditions, and more dramatically 
to the cross-mapped S/D condition. Only in the latter condition ,did sys- 
tematicity have an effect on cycles to success, as the network failed to settle 
on the correct mapping in the unsystematic S/D condition. In this most dif-, 
ficult condition, the network was unable to overcome the misleading impact 
of semantic similarity. Further exploration revealed that the correct solution 
can be obtained in the S/D condition if either the value of i is reduced from 
-.2to - .l or the value of min is raised from - 1 to - .3; however, cycles 
to success remains higher in the unsystematic than the systematic S/D con- 
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TABLE 15 

Results of ACME Runs for Six Versions of “Jealous Animal” Stories 

Version Cycles to Success 

Systematic: 
s/s 
D 

S/D 

Nonsystematic: 
s/s 
D 
S/D 

3 
4 

38 

3 
4 

no success 

dition. Although ACME seems to show relatively fewer differences between 
the S/S and D conditions than did Gentner and Toupin’s subjects, the pro- 
gram does capture the substantially greater difficulty of the cross-mapped 
S/D condition, and the role of systematicity in overcoming misleading 
semantic similarity. 

As noted above, Gentner and Toupin found that the younger children 
benefited less from high systematicity than did the older children. The 
authors suggested that focus on systematicity increases with age. In terms of 
the present theory, it is possible that with age children learn to place greater 
weight on isomorphism, and less on the similarity constraint. It is also possi- 
ble, however, that the younger children in the Gentner and Toupin (1986) 
study simply failed to grasp some of the causal structure provided in the 
systematic stories, and hence encoded the source stories imperfectly. Thus 
the lesser benefit they derived from the systematic versions need not imply 
insensitivity to the isomorphism constraint. 

Finding Isomorphisms Without !Semantic or Pragmatic Information 

A Formal Isomorphism. As pointed out in the comparison of ACME 
with SME, ACME is able to use structural information to map predicates 
that are not semanticalIy identical or even similar. In fact, if two analogs are 
isomorphic, it should be possible to derive an appropriate mapping even in 
the complete absence of semantic or pragmatic information. Table 16 pre- 
sents a formal analogy between addition of numbers and union of sets that 
was used to demonstrate this point. Both addition and union have the ab- 
stract mathematical properties of comrnutativity, associativity, and the 
existence of an identity element (0 for numbers, the empty set @ for sets). 
ACME was given predicate-calculus representations of these two analogs, 
with no identical elements (note that number equality and set equality are 
given distinct symbols), and with all semantic weights set equal to the mini- 
mal value. This analogy is quite complex, as many propositions have the 
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TABLE 16 
Formol Isomorphism Between Addition of Numbers and Union of Sets 

Property Addition 

Commutotivity: Nl+N2=N2+Nl 

Assoclativity: N3+(N4+N5)= 

(N3+N4)+N5 

Identity: N6+0=N6 

Predicate-Calculus Representations: 

NUMBERS: (sum (numl num2 numl0) nl) 
(sum (num2 numl numll) n2) 
(num-eq (numl0 numll) n3) 

Union 

Sl us2-8us1 

S3U[S4US5] = 

[s3Us4]US5 

S6U0=56 

(sum (num5 num6 num12) n3) 
(sum (num4 numl2 numlt) n5) 
(sum (num4 num5 num14) n6) 

(sum (numl4 num6 numl5) n7) 
(num-eq (numl3 numl5) n3) 
(sum (num2O zero num20) n9) 

SETS: (union (set1 set2 setlO) sl) 

(union (set2 set1 set1 1) 92) 
(set-eq (set10 set1 1) ~3) 
(union (set5 set6 set12) s4) 
(union (set4 set12 set13) 95) 
(union (set4 set5 set14) ~6) 
(union (set14 set6 set15) ~7) 

(set-eq (set13 set15) ~8) 
(union (set20 empty-set set20) 59) 

same predicate (sum or union), and many symbols representing intermediate 
results must be sorted out. Note that the representations given to the pro- 
gram did not explicitly group the components of each analog into three dis- 
tinct equations. In the absence of any semantic or pragmatic information, 
only weights based upon isomorphism, coupled with the type restriction, 
provided information about the optimal mapping. 

As the output in Table 17 indicates, ACME settles, to a complete solution 
to this formal mapping problem after 59 cycles. The model is thus able to 
derive a unique mapping in the absence of any overlap between the elements 
of the source and target. ACME’s ability to deal with such examples is 
crucially dependent upon its parallel constraint-satisfaction algorithm. 

Isomorphism without Explicit Relational Predicates. The best mapping 
for the addition/union analogy, as for all the examples considered so far, 
involves a rich set of relational correspondences. It is important to under- 
stand, however, that the structural constraint of isomorphism is not strictly 
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TABLE 17 
Output after Running Addition/Union Analogy 

Network has settled by cycle 59. 
Test: TEST0 Total times: 60 _ 
Mon May 2 10:40:03 EDT 1988 

Anology between numbers and sets. 
Units not yet reached osymptote: 0 
Goodness of network: 3.31 
Calculating the best mappings ofter 60 cycles. 
Best mapping of NUMlO is SETlO. 0.79 
Best mapping of NUM2 is SET2. 0.82 
Best mopping of NUMl is SETl. 0.82 
Best mapping of NUMll is SET1 1. 0.79 

Best mapping of NUM12 is SETlP. 0.82 
Best mapping of NUM6 is SET6. 0.82 
Best mapping of NUM5 is SETS. 0.82 

Best mapping of NUMl3 is SETl3. 0.79 
Best mapping of NUM4 is SET4. 0.82 
Best mapping of NUM14 is SET14. 0.82 
Best mopping of NUMl5 is SET15 0.79 
Best mapping of NUM20 is SET20. 0.66 

Best mapping of ZERO is EMPTY-SET. 0.66 
Best mopping of NUM-EQ is SET-EQ. 0.57 
Best mapping of SUM is UNION. 0.83 

dependent upon explicit relational predicates in the analogs. In fact, ACME 
can identify isomorphisms between analogs that lack not only higher-order 
relations, but any relational predicates at all. To illustrate this point, Table 
18A presents predicate-calculus versions of two completely arbitrary analogs, 
each involving three objects and three monadic predicates. Without any 
semantic or pragmatic information, ACME settles to a unique solution to 
this minimalist mapping problem after 71 cycles. The obtained mapping is 
given in Table 18B. 

The basis for the mapping in this example is the fact that there is a unique 
set of element correspondences such that attributes asserted of each object 
in the source map consistently to attributes asserted of some object in the 
target. This information could be described in terms of relations; for exam- 
ple, an attribute of Bill (“smart”) is the same as an attribute of Steve, just 
as an attribute of Rover (“hungry”) is the same as an attribute of Fido. The 
crucial point, however, is that such relational information is computed 
implicitly by the ACME algorithm, and need not be explicitly coded into the 
propositional input representations of the analogs. 

One might well question whether ACME’s ability to derive semantically 
empty isomorphisms based solely upon monadic predicates is overpowerful 
relative to human analogical reasoning. Accordingly, a small experiment 
was performed to find out whether people can find the mapping identified 
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TABLE 18 
Input and Output far Arbitrary Attribute-Mapping Example 

A. Input analogs: 

Source (smart (Bill) fl) 
(tall (Bill) f2) 
(smart (Steve) 13) 

(timid (Tom) f4) 
(tall (Tom) f5) 

Target (hungry (Rover) sl) 
(friendly (Rover) ~2) 
(hungry (Fido) ~3) 
(frisky (Blackie) 54) 
(friendly (Blackie) ~5) 

B. output: 

Network has settled by cycle 71. 
Test: TEST3 Total times: 72 
Wed May 11 lO:OB:53 EDT 1988 
Abstract similarity. 

Units not yet reached asymptote: 0 
Goodness of network: 0.61 
Calculating the best mappings after 72 cycles. 
Best mapping of SMART is HUNGRY. 0.70 
Best mapping of TALL is FRIENDLY. 0.71 
Best mapping of TIMID is FRISKY. 0.54 
Best mopping of TOM is BLACKIE. 0.70 
Best mapping of STEVE is FIDO. 0.54 

Best mopping of BILL is ROVER. 0.71 

by ACME for this example. The five sentences corresponding to the five 
propositions in each analog (e.g., “Bill is smart”) were listed in adjacent 
colunms on a piece of paper. Sentences related to the same individual were 
listed consecutively; otherwise, the order was scrambled. Across subjects 
two different orders were used. The instructions simply stated, “Your task 
is to figure out what in the left set of sentences corresponds to what in the 
right set of sentences.” Subjects were also told that the meaning of the words 
was irrelevant. The three individuals and three attributes of the analog on 
the left were listed on the bottom of the page; for each element, subjects 
were to write down what they believed to be the corresponding element 
of the analog on the right. Three minutes were allowed for completion of 
the task. 

A group of 8 UCLA students in an undergraduate psychology class served 
as subjects. Five subjects produced the same set of six correspondences iden- 
tified by ACME, 2 subjects produced four of the six, and 1 subject was 
unable to understand the task. These results indicate that finding the iso- 
morphism for this example is within the capability of many college students. 
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Structure and Pragmatics in Metaphor 
To explore the performance of ACME in metaphorical mapping, the pro- 
gram was given predicate-calculus representations of the knowledge under- 
lying a metaphor that has been analyzed in detail by Kittay (1987). The 
metaphor is derived from a passage in Plato’s Theuetetus in which Socrates 
declares himself to be a “midwife of ideas,” elaborating the metaphor at 
length. Table 19 contains predicate-calculus representations based upon 
Kittay’s analysis of the source analog r.?ncerning the role of a midwife and 
of the target analog concerning the role of a philosopher-teacher. Roughly, 
Socrates claims that he is like a midwife in that he introduces the student to 
intellectual partners, just as a midwife often serves first as a matchmaker; 
Socrates helps the student evaluate the truth or falsity of his ideas much as a 
midwife helps a mother to deliver a child. 

This metaphor was used to provide an illustration of the manner in which 
structural and pragmatic constraints interact in ACME. Table 19 presents 
predicate-calculus representations of two versions of the metaphor: an iso- 
morphic version based directly upon Kittay’s analysis, and a nonisomorphic 
version created by adding irrelevant and misleading information to the rep- 
resentation of the “Socrates” target analog. The best mappings obtained 
for each object and predicate in the target, produced by three runs of ACME, 
are reported in Table 20. The asymptotic activations of the best mappings 
are also presented. A mapping of “none” means that no mapping unit had 
an asymptotic activation greater than .20. 

The run reported in the first column used the isomorphic version without 
any pragmatic weights. The network settles with a correct set of mappings 
after 34 cycles. Thus Socrates maps to the midwife, his student to the mother, 
the student’s intellectual partner to the father, and the idea to the child. 
(Note that there is a homomorphic mapping of the predicates thinks-about 
and tests-truth to in-labor-with.) The propositions expressing causal rela- 
tions in the two analogs are not essential here; deletion of them still allows a 
complete mapping to be discovered. 

A very different set of mappings is reported in the middle column of 
Table 20 for the nonisomorphic version of the “Socrates” analog. This ver- 
sion provides additional knowledge about Socrates that would be expected 
to produce major interference with discovery of the metaphoric relation 
between the two analogs. The nonisomorphic version contains the infor- 
mation that Socrates drinks hemlock juice, which is of course irrelevant to 
the metaphor. Far worse, the representation encodes the information that 
Socrates him’self was matched to his wife by a midwife; and that Socrates’ 
wife had a child with the help of this midwife. Clearly, this nonisomorphic 
extension will cause the structural and semantic constraints on mapping to 
support a much more superficial set of correspondences between the two 
situations. And indeed, in this second run ACME finds only the barest 
fragments of the intended metaphoric mappings when the network settles 
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TABLE 19 
Predicate-Calculus Representatlans of Knowledge Underlying the Metaphor 
“Socrates is a Mldwlfe of Ideas”‘(lsamarphlc and Nanlsomorphlc Verslons) 

MIDWIFE (source) 

(midwife (ob/-midwife) ml) 
(mother (obi, m2) 
(father (obl-father) m3) 
(child (oblshlld) m4) 
(matches (obl-mldwlfe obl-mother oblfather) mS) 
(conceives (obl,mother obl-child) m6) 
(cause (m5 m6) m7) 
(ln,labor,wlth (obi-mother ob/-child) ma) 
(helps (obl,mldwlfe obl-mother) m10) 
(give-birth-to (abl-mother obl-child) ml 1) 
(cause (ml0 mll) m12) 

SOCRATES (target) 

(philosopher (Socrates) 51) 
(student (ob/-student) 52) 
(Intellectual- partner (obl,partner) 53) 

(Idea (obl-Idea) 54) 
(introduce (Socrates obl-student obl-partner) 55) 
(formulates (obl-student obl-Idea) 56) 
(cause (55 56) 57) 
(thinks,about (obl,student ob/-Idea) 58) 
(tests-truth (obl-student ob/-Idea) 59) 
(helps (Socrates obl-student) 510) 
(knaws~truth~or~falsity (ob/-student obl-Idea) 511) 
(cause (510 511) 512) 

Nonlsomorphlc version adds: 
(father (Socrates) 520) 
(poison (obl,hemlock) 521) 
(drlnk (Socrates obl-hemlock) 522) 
(mldwlfe (ob/-sot-mldwlfe) 523) 
(mother (ob/,sot-wlfe) 524) 
(matches (obl,sot-mldwlfe ob/,soc-wife Socrates) 525) 

(child (obl-sot-child) 526) 
(conceives (obl-sot-wife ob/-sot-child) 527) 
(cause (525 527) 528) 
(in-labor-wlth (obl-sot-wife ob/-sot-child) 529) 
(helps (obl-sot-mldwlfe obl-sot-wife) 530) 
(give,birth-to (obl-sot-wlfe obl-sot-child) 531) 
(cause (530531) 532) 

after 105 cycles. Socrates’ midwife now maps to the midwife in the source, 
and Socrates’ wife and child map to the source mother and child. Socrates 
himself simply maps to the father. Most of the other crucial objects and 
predicates (other than cause and helps, which map to themselves) have no 
good mappings. The only major pieces of the intended analogy that survive 
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TABLE 20 
Best Mappings, With Asymptotic Activation Levels, for Objects and Predicates 

in Three Versions of the Socrates/Midwife’ Metaphor 

Versions 

Cycles to Settle 

Isomorphic, Nonisomorphic, Nonisomorphic, 
Nonpragmatic Nonpragmatic Pragmatic 

34 105 83 

Obiects: 

Socrates 
ob/-student 
obj-partner 
obi-idea 

*obj-sac-midwife 
*obj-soc-wife 
‘obf-sot-child 
*ob/-hemlock 

Predicates: 

phiiospher 

student 
Inteiiectuai~portner 
idea 
introduces 

formulates 
thinks-about 
tests-truth 
knows-truth-or-falsity 

helps 
cause 
‘poison 
*drink 
‘father 

*midwife 
*mother 

‘child 
*matches 
Qoncetves 
*in-labor-with 
‘gives-birth-to 

ob/-midwife 
obf-mother 
obifather 
obi-child 

- 
- 
- 
- 

midwife 
mother 
father 
child 
matches 

conceives 

.58 

.59 

.57 

.59 

.77 

.72 
in-labor-with 36 
in-labor-with .36 
gives-birth-to .72 

helps .77 
cause 34 

- 
- 

- 
- 
- 
- 
- 
- 

- 
- 

.07 

.69 
31 

.90 

obi-father .a0 obi-midwife 
ob/-mother .69 obj-mother 
none obi-father 
ob/-child .69 obj-child 

ob/-midwife 34 none 
obf-mother .69 obj-mother 
obi-child .69 obi-child 
none nane 

none 
none 
none 
none 
none 

conceives 37 
none 
none 

gives-birth-to .29 
helps .79 
cause 3.4 
none 
none 

father .70 
midwife .70 
mother .69 
child .69 
matches .70 
conceives 40 

in-labor-with .74 
gives-birth-to .46 

midwife 
none 
father 
child 
matches 

conceives 
none 
none 

.a6 

.69 

.70 

.69 

.65 

.81 

57 
50 
.67 

.31 

gives-birth-to .31 
helps .80 
cause .84 
none 
none 

none 
none 
mother .69 
none 
none 
conceives A3 

in-labor-with .74 
gives-birth-to .43 

* Elements with an asterisk oppeored only in nonisomorphic version. Elements that map 
to “none” have no mapping unit with activation greater than 20. 

are the mappings between the student and the mother and between the idea 
and the child. 

Note, however, that the original statement of the metaphor, “Socrates is 
a midwife of idea&” provides some direct pragmatic guidance as to the in- 
tended mappings. Clearly, Socrates must map to the midwife, and the idea 
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must map to something. This is precisely the kind of knowledge that ACME 
can represent using pragmatic weights. Accordingly, in a further run the 
mappings between propositions sl and ml and between the elements of those 
propositions (i.e., sl = ml, Socrates = obj-midwife, and philosopher = mid- 
wife) were marked as PRESUMED; and proposition s4 and its elements (i.e., 
~4, obj-idea, and idea) were marked as IMPORTANT. The right column of 
Table 20 reports the results for the nonisomorphic version of the metaphor 
after these pragmatic weights were introduced. The pragmatic information 
was sufficient to allow almost complete recovery of the abstract metaphoric 
mappings. The network settled after 83 cycles. Socrates again maps to the 
midwife, and the partner to the father; almost all of the appropriate predi- 
cate mappings, such as those between idea and child and between introduces 
and conceives, are also recovered. Note that some of the more superficial 
mappings of objects, such as between Socrates’ wife and the mother, also 
emerge. The behavior of the program across these versions of the metaphor 
thus dramatically illustrates both the power and the limitations of purely 
structural constraints, and the crucial role of pragmatic knowledge in fmd- 
ing abstract mappings in the face of misleading information. 

Stability, Sensitivity, and Complexity Analyses 
The discussion of ACME’s applications is concluded by describing analyses 
that have been done to answer important questions about the stability, sen- 
sitivity, and computational complexity of the system. The chief stability 
question is whether networks settle into states in which units have stable 
activation values. Questions about sensitivity concern whether the perfor- 
mance of ACMEdepends upon specific parameter values or representations. 
Computational complexity concerns the danger of combinatorial explosion 
arising with large examples. These analyses show that ACME fares well on 
all these dimensions. 

Localist cormectionist networks such as the one used by ACME are some- 
times unstable, undergoing oscillations in activation values of units. ACME 
is not subject to such instabilities for examples above, which in all of their 
versions have been run until stable activations have been reached by all 
units. In no case does ACME get a correct mapping and lose it by having an 
incorrect mapping catch up to, and surpass, the correct one. The stability of 
ACME is well typified by Figure 5, which illustrates -how the activations 
of units proceed to stable levels. How quickly ACME settles depends upon 
the values of the parameters, but in no experiment hasthe time exceeded 
220,cycles. The network typically settles in well under 100 cycles. 

ACME has several important parameters, and the question naturally 
arises how sensitive ACME is to particular values for those parameters. The 
three most crucial ones are decay rate d, excitation e, and inhibition i. AU of 
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the runs reported above have used the same values: d = .l, e = . 1, and i = - .2. 
Sensitivity experiments using the laser/radiation and basic water/heat-flow 
examples showed that ACME performs satisfactorily over a wide range of 
values for these parameters. Decay rates from .OOl to .2 work equally well, 
with the higher values producing a faster rate of settling. Higher values for 
excitation also lead to faster settling; values ranging from .Ol to .12 work 
for all examples. Excitation values higher than .12 are disruptive, however, 
because the gracefulness of the network depends upon reasonably small up- 
datings of activation. If excitation is above .12, then after dozens of cycles 
the net input to a unit can exceed 1, producing instability manifested in long 
settling times. Inhibition values can range all the way to -.9 without causing 
problems, except that high inhibition can prevent ACME from overcoming 
an initially promising but incorrect mapping. Although it is not crucial to 
the functioning of the networks, it was found desirable to have inhibition 
higher than excitation, because that produces greater separation in the 
asymptotic values of best and second-best units. In order to have a large im- 
pact, thep2 parameter for weights from the pragmatic unit for PRESUMED 
mappings works best at around .3; smaller values produce less differentia- 
tion while larger values do not produce significantly more differentiation. 

How sensitive is ACME to representation changes? Although several of 
the examples examined involved isomorphic representations, such examples 
as the poor-constraint versions of the convergence problems, the mission- 
aries-and-cannibals homomorphs, and the nonisomorphic version of the 
Socrates/midwife metaphor, show that ACME does not need to be spoon- 
fed isomorphic representations. The robustness of ACME in the face of 
representational changes was tested further by both complicating and sim- 
plifying existing examples. A bizarre analogy was created by combining the 
representations of the Contras and the Socrates analogs, and mapping it to 
a combination of the Hungarian and midwife analogs. ACME quickly par- 
titioned the bizarre analogy into the appropriate sub-analogies. “Ablation” 
experiments were also performed on the good-constraint laser example, 
first by deleting every third proposition of the lightbulb problem and sec- 
ond, by deleting every second proposition of the tumor problem. ACME 
stilI found the appropriate mappings, except that in the first case, in which 
the predicate “filament” had been deleted, the tumor was left without any 
mapping unit with positive activation. 

Finally, the computational complexity of ACME was analyzed. Mathe- 
matical analysis shows that the algorithm for constructing networks operates 
in time that is a polynomial (nonexponential) function of the number of ele- 
ments in the input representations of the two structures that are mapped. 
Let ml be the number of propositions in Structure 1, and m2 be the number 
of propositions in Structure 2. To simplify the algebra, let m be the higher 
of ml and m2. Similarly, let n be the greater of the numbers of objects in 
the arguments of Structures 1 and 2. Since there can be only one predicate in 



ANALOGICAL MAPPING 349 

a proposition, m also gives an upper limit on the number of predicates in a 
structure. Then 

the maximum possible number of units mapping propositions is m*m; 
the maximum possible number of units mapping predicates is m*m; and 
the maximum possible number of units mapping objects is n*n. 

So the maximum possible number of units altogether is 

Since there is at most only one link between any two units, if there are u 
units, then there can be at most u(u - 1) possible links, which is less than the 
number of units squared, or 

4m’ + 4mW + n’. 

The semantic and pragmatic units add an additional maximum 2u links. 
Clearly, the number of links is not an exponential function of the number of 
elements in the input representations. In practice, the number of units and 
links are far lower than the calculated second- and fourth-power limits 
because of the various restrictions used in setting up the networks. 

Unfortunately, no mathematical analysis can be given concerning how 
long it will take the network to settle as a function of number of units, since 
time of settling is a function of the degree to which the various constraints 
are satisfied as well as of the number of units. But the networks run so far 
do not take a long time to settle. Across the more than 20 examples, the 
greatest number of cycles to settling was 217 using the McClelland and 
Rumelhart updating rule and low excitation and inhibition values; the same 
example (the analogy between the radiation problem and the fortress prob- 
lem) took only 62 cycles to settle with high excitation and decay values using 
the Grossberg updating rule. On a Sun 3/160 workstation, the runs typically 
take a few minutes, with most of that time spent in running the network to 
asymptote after the correct mapping units have already emerged as winners. 
For Falkenhainer et al’s (1986) heat- and water-flow analogy, for example, 
ACME creates the network in less than 2 seconds of CPU time and settles in 
less than 25 seconds. 

The algorithm for updating the network is fully parallel, and hence can 
theoretically operate in constant time if there is a processor corresponding 
to each link. A version of ACME in *LISP has been implemented on a 16384- 
processor CM2 Connection Machine, which takes advantage of the inherent 
parallelism of the updating algorithm. The largest example tested so far, 
which is considerably larger than any of the examples mentioned in Table 2, 
involves mapping representations of synopses of the plays Hamlet and 
Macbeth (cf. Winston, 1980). Each of these representations contains about 
45 propositions, and the resulting network involves 730 units and 11801 
links. The network settles after 402 cycles. 
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GENERAL DISCUSSION 

A new theory of analogical mapping that integrates structural, semantic, 
and pragmatic constraints on how people map from one structure to another 
has been described here. The theory has been implemented in a connection- 
ist computer program, ACME, which has been applied to a wide variety of 
analogies. The examples presented illustrate such capabilities as finding 
many-to-one and one-to-many mappings, mapping dissimilar relations, 
identifying purely structural isomorphisms without any semantic or prag- 
matic information, and using pragmatic knowledge to find useful mappings 
in the face of misleading structural and semantic resemblances. The pro- 
gram was able to provide qualitative simulations of a number of experimen- 
tal findings concerning human analogical reasoning. 

All of the examples considered here involved finding mappings between 
analogs at the same level of abstraction. It should be readily apparent, how- 
ever, that ACME can also map structures that differ in level of abstraction, 
such as an instance and a schema. For example, rather than mapping a 
representation of the Contras onto a representation of the PLO, it would be 
possible to map the Contras onto a schema for “terrorists.” Similarly, the 
same basic mapping process could map the radiation problem either onto 
the laser problem or onto a more abstract convergence schema (Gick & 
Holyoak, 1983). The present theory thus provides a unifying account of 
analogical mapping and mapping to schemas. 

Although the constraint-satisfaction theory of analogical mapping appears 
powerful in its intended domain, many other important issues about analogy 
remain unsolved. Most notably, the model of mapping needs to be incorpo- 
rated into a broader theory of all phases of analogical reasoning (Holyoak 
8c Thagard, 1989). Of particular interest is the link between the initial spon- 
taneous retrieval of plausibly useful analogs and the subsequent mapping 
process. There is evidence that retrieval is more heavily influenced by 
semantic similarity of predicates than is mapping (Gentner & Landers, 
1985; Holyoak 8c Koh, 1987), although retrieval also seems to be influenced 
by deeper forms of structural similarity (Holyoak & Koh, 1987; Schank, 
1982). Complementary to ACME!, a program called ARCS (Analog Retrieval 
by Constraint Satisfaction) (Thagard, Holyoak, Nelson, & Gochfeld, 1989) 
has also been developed. ARCS is a constraint-satisfaction model of re- 
trieval that uses semantic, structural, and pragmatic constraints to help find 
relevant analogs stored in memory. In contrast to ACME, semantic con- 
straints take precedence in ARCS, with the retrieval of analogs being initi- 
ated through associations of semantically similar concepts. However, the 
retrieval process is also guided by structural correspondences and pragmatic 
import. ARCS represents an advance over ACME! in that it is able to compute 
both semantic similarity and pragmatic centrality from more basic knowl- 
edge, rather than requiring semantic and pragmatic weights to be specified 
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directly. ARCS computes semantic similarity from relations such as super- 
ordination and meronymy encoded in an automated thesaurus, WordNet, 
which is organized as a semantic network (Miller, Fellbaum, Kegl, & Miller, 
1988). Pragmatic importance is computed by an analysis of the structure of 
problems and explanations. The output of ARCS provides a partial mapping 
of the target to retrieved source analogs; it should be possible to pass the 
output of ARCS to ACME so that ACME can simply continue the mapping 
process in greater detail. (See Holyoak 8c Thagard, in press, for an overview 
of the ACME and ARCS systems.) 

The major issue not addressed here by the theories of mapping and re- 
trieval is re-representation. To find useful analogies between complex ana- 
logs, it will often be necessary to interweave the mapping component with 
strategic manipulation of the representations of the source and target. In 
order to find homomorphic correspondences involving many elements, for 
example, it is important to be able to group tentatively elements of each 
analog into sets, which could then be treated as unitary objects. 

More generally, it may often be advantageous to attempt mappings at dif- 
ferent levels of abstraction, with mappings found at higher levels then being 
used to constrain lower level mappings (Holyoak, 1985). The part-correspon- 
dence restriction is a first approximation to a more serial and hierarchical 
component of the mapping process, in which decisions about mappings at a 
more global level subsequently restrict the possible mappings at a more de- 
tailed level of representation. This hierarchical aspect of mapping is analog- 
ous to Marr’s (1982) model of stereoscopic vision, in which correspondences 
between images based upon low spatial frequencies are used to constrain 
correspondences between images based upon higher spatial frequencies. 
The overall mapping process, in this extended conception, is serial across 
major representational levels, but more parallel within each level. 

The availability of mechanisms for re-representation will make possible 
more flexible constraints on mapping. For example, ACME’s implementa- 
tion of structural constraints employs a rigid type restriction, requiring that 
n-place predicates map only to n-place predicates. A richer semantic repre- 
sentation would enable ACME to map predicates with different numbers of 
arguments so long as the available arguments fall into appropriate semantic 
categories. Similarly, a richer semantics would allow appropriate mappings 
between propositions involving converse relations, such as surround (x,y) 
and enclosed-by Q,x), which the present model cannot handle. 

Finally, it is noted that the general form of the theory proposed here for 
analogical mapping-a set of constraints satisfiable via a cooperative algo- 
rithm-may well be applicable to other high-level cognitive processes. 
Lehnert (1987), for example, describes a sentence analyzer that uses a con- 
straint network to parse sentences into case-frame meaning relationships. 
Similiarly, Kintsch (1988) proposes a model of discourse comprehension 
that illustrates a constraint-satisfaction approach. Thagard (1989) and 
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Thagard and Nowak (1988) show how scientific theories can be evaluated 
on the basis of principles of explanatory coherence that are implemented in 
a program that overlaps with ACME. These parallel constraint-satisfaction 
models belie the widespread interpretation of connectionism as a straight- 
forward revival of associationism. Cormectionism has a number of impor- 
tant aspects, which are conceptually quite separable. In particular, whereas 
connectionist learning theory indeed has a strongly behaviorist flavor, 
parallel constraint-satisfaction models, which depend upon an analysis of 
the structure of problems rather than on simple associations, are much 
more redolent of Gestalt psychology. An abstract isomorphism, which can 
be computed by constraint satisfaction, is a striking example of a whole that 
goes beyond the sum of its parts. The parallelism of human information 
processing, which is so evident in lower level perception and memory retrie- 
val, may extend to important aspects of reasoning and problem solving as 
well. 

W Original Submission Date: December 13, 1988. 
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