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12 Symbolic connectionism: toward
third-generation theories of expertise

KEITH J. HOLYOAK

In discussing literary expertise, Scardamalia and Bereiter (chapter 7, this
volume) mention an intellectual who was accused of not actually reading
books, but of raiding them. 1 must confess that I have similarly raided the
chapters in this book, and other sources as well, looking for clues to the
directions that new theories of expertise are likely to take. Furthermore, given
my entering biases, I no doubt was primed to value some clues more than
others. In any case, I found that certain conjectures began to coalesce around
the themes linking the diverse approaches to expertise reflected in this vol-
ume. In this chapter I shall review the themes that caught my attention and
suggest what our current knowledge of expertise implies about the likely
course of future theory development in this area. I realize this is a dangerous
enterprise, for without a reliable crystal ball, today’s predictions can easily
tura into tomorrow’s embarrassments. Still, the sweeping scope of this collec-
tion of reports on the state of the art in expertise research, delivered as they
are at the turn of a decade and in the midst of theoretical ferment in cognitive
science, surely justifies the risk.

THE FIRST TWO GENERATIONS

Theories of expertise have now passed through two generations. The
first generation centered on the early insights of Newell and Simon (1972;
Newell, Shaw, & Simon, 1958): their conceptualization of problem solving as
search, and their specification of a small number of heuristic methods for serial
search (e.g., means-ends analysis and hill climbing) that could be applied
across an indefinitely broad range of domains, with minimal knowledge about
the specific content of any particular domain. The first fruits of work on artifi-
cial intelligence — the “Logic Theorist” and the “General Problem Solver” —
were based on general methods for heuristic search. The obvious first conjec-
ture about expertise was that an expert was someone particularly skilied at
general heuristic search.
That conjecture was short-lived. First in chess (Chase & Simon, 1973; de
Groot, 1965), then in physics (Chi, Feltovich, & Glaser, 1981; Larkin, Mc-
Dermott, Simon, & Simon, 1980), and then in myriad other domains it became
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apparent that expertise depended crugially on _dctailed domain ‘kn:lwlcq?;{s,
refiected in specialized memeory abilities and mfe.re.nce patterns. funl:'lc
search methods were general but weak, characteristic of novice rather dt :,n
expert performance. “Knowledge is power™ was the slqgan tha.t captured t (ei
essence of the second generation of lheorie§ of expertise, which dom;)nated
both cognitive psychology and artificial intglhgence throughout the 1970s an
1980s; for a capsule history, see Feigenbaum (1989). .
The second generation of expertise theories tran§formed tlle study of Eogm'-
tion, bringing the study of high-level prob‘lem solving - the p'rototyhpe arf:t:c
for expertise research — to a prominence it had not enjoyed since the era o

- Gestalt psychology early in this century. Complex problem solving was seen as

icularly worthy proving ground for cognitive theories, as il necessarily
?eﬂig:; Iis:ltggrationyoi; assur%lptions about the basic component procelsses (1);
memory, attention, and reasoning. Complex problem solving hz_xs rea -_worI
importance and ecological validity as an area of research. Expertise obvious 3;
depends on learning how to do something well; hence, the study of pn_'ocedufra
learning (rather than only declarative memory) became a c'rucml‘area (;Z
research. The sophisticated methodology of protocol analysis (Erlcss:.on ‘
Simon, 1980) was developed in conjunction w:th. the secqnd generation o
theories. Perhaps most important, sccond-genera}non theor!es were basc;cji on
a particular canonical cognitive architecture — ser.la_ll production systems ( -ﬁe?vi
ell, 1973} — that created direct ties between cognitive psyc‘hollolgy and arti icia
intelligence and hence contributed to the rise of interdisciplinary cognitive
science. In artificial intelligence, production syste-ms became the basis fqr
expert systems, the first major commerci?l applications of the ﬁcld; In c?gnl—
tive psychology, production systems provided the core of Anderson’'s evo vu:jg
ACT theory (Anderson, 1976, 1983, 1987), which became .the first gi?)i();
overarching theory of cognition since the Hull-Spence theories of the
anget:?)sn?is-generation theories of expertise provide a fundamentally snrqple
picture of the development of expertise, which has been most clearly art1c1.:-
lated and empirically motivated in Anderspn‘s (1983, '1987) theory of knowl-
edge compilation. Similar principles provide the 'bams for the Rosenbl()f;m
and Newell (1986) theory of chunking. The central idea of kn(_)wledge comé:)ll a-
tion is that operator sequences that yield a successful solunqn to a problem
can be “cached” as new, specialized production rules that will lead to more

-efficient solutions of similar problems in the future. Compilation can be

viewed as an instantiation of Chase and Simon’s (1973) hY[?OlheSlS that exper-
tise involves the acquisition of large integrated “chunks” of knm.vledge.;_n
knowledge compilation, chunks take the form of I:_n:ger, more detailed condi-
tions and actions of production rules. Larger conditions pfov:d_e more pre':CISt‘?
specification of the circumstances under_which the E!CIIOI’I“IS apprpprtfat;:,
larger actions allow more to be accorn_phshed by a single “rule-firing. In
addition, compilation involves a reduction in the- need to access declaratwe;
memory, as well as speeded-up rule-firing due to increases in the strengths o
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rules with each successful application. Knowledge compilation is closely re-
lated to Shiffrin and Schneider’s (1977) theory of the development of auto-
maticity with practice at a consistent task. The general picture is that a novice
first solves problems by weak methods (often working backward from the
goal), and successful solutions result in automatic generation of speciatized
productions {often allowing forward progress from the initial problem state

toward the goal). Relative to the novice, the expert is able to reach the correct
solution more quickly and efficiently.

WHY A THIRD GENERATION?

As Kuhn (1962) and others have told us, two great pressures drive
scientific change: problems encountered in using current theories to explain
empirical findings, and the rise of theoretical alternatives. Both of these condi-
tions are evident in the field of expertise research. The chapters in this vol-
ume, and other recent papers, describe findings about expert performance
that are unexplained and in some cases anomalous from the perspective of
second-generation theories. Many authors express dissatisfaction with the
current theoretical understanding (e. g.. Lesgold, 1989), and Patel and Groen
(chapter 4, this volume) and Sloboda (chapter 6, this volume) allude to the
potential of an alternative theoretical paradigm — connectionism - that has
invigorated other areas of cognitive science in recent years (Feldman &
Ballard, 1982; Rumelhart, McClelland, & PDP Research Group, 1986b). I
shall first survey the reasons for unease about our current understanding of

expertise, and then sketch an emerging framework that may yield a third
generation of theories of expertise.

Empirical inconsistencies and theoretical anomalies of expertise

The canonical second-generation view of expert preformance sug-
gests some major uniformities in the nature of expert performance and its .
acquisition across different domains. Among the supposed commonalities
widely cited in textbook treatments are the following: (1) experts perform
complex tasks in their domains much more accurately than do novices; (2)
experts soive problems in their domains with greater ease than do novices; (3)
expertise develops from knowledge initially acquired by weak methods, such
as means—ends analysis; (4) expertise is based on the automatic evocation of
actions by conditions; (5) experts have superior memory for information re-
lated to their domains; (6) experts are better at perceiving patterns among
task-related cues; (7) expert problem-solvers search forward from given infor-
mation rather than backward from goals; (8) one’s degree of expertise in-
creases steadily with practice: (9) learning requires specific goals and clear
feedback; (10) expertise is highly domain-specific; (11) teaching expert rules
results in expertise; (12) performances of experts can be predicted accurately
from knowledge of the rules they claim to use. These predicted characteristics
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of expertise have received empirical support in varyin_g degrees; noneth&lel:a:s;
surveys of expertise research (e.g., ‘Wa%dmann & Weinert, 1990) riff; ah
none provides a universal characterization qf expert performance. Althoug

not all of these inconsistencies are incompatible with secopd-gencrauon theo-
ries, none seems clearly illuminated by them. Let us examine some exceptions

that have been reporied.

Experts sometimes achieve mediocrity. Ca:_nerer and Johnsop, in their review :j)f :
research on expert clinical decision ma.kmg (chapter 8, this volume), prEv;j ]e
the foliowing summary: Expert dccisnfm-makers appear to do rffrnl:ar a l):
well, “generating hypotheses and inducing f:omplex-deas.lon rules. elresud
is a more efficient search of the available information directed by gpi S anl
aided by the experts’ superior store of knqwle(,jge. Unfortunately, thlF now :
edge and rules have little impact on experts’ performances. Sometimes C)Ii
perts are more accurate than novices (though not always), but they are rarely

better than simple statistical models.”

Experts sometimes feel more pain. Scardamalia and Bereiter (chapter 7, this
volume) point out that studies of writing provide important exceptions 1o t_h;
idea that experts aiways accomplish with ease what novices do only wit

difficulty. As they summarize the field, “expert writers generally are found to -

work harder at the same assigned tasks lhaq are nonexperts, engaging in n:ic;fe
planning and problem solving, more revision of goals and methods,l'an ,:E
general more agonizing over the task.” Tt?e reason, as Scarc:jama 1bal e:n ‘ :
Bereiter point out, is that writing tasks are mheremly- ili-define pn?] f:'t .
The resuit is that expert writers tend to define the task_ in such‘ awayt f:.=.t i 'lls
problematic, so.that it cannot be accomplished by routine apphf:atlon of avail-
able skills, but instead requires them to work at the nge of theif competer(ljced
This situation, of course, is not unique to expert writers, Iabonpus_exten e
efforts have been documented through the noteboqks of scncn:nsts t(e.gi;
Tweney’s, 1985, analysis of the work of l_:‘araday) and in the verbi':lg g);)o 0co
of physicists attempting to solve nonroutine problems (Clement, .

Means—ends analysis can impair learning. According to second—generaugln
theories, problem solutions initially attained by weak methcrds,. most ctllc;lta CZ
means—ends analysis, provide the grist for knowledge f:ompllanon ano en&
expertise development. But the work of Sweller and his colleague.s ( wen ;
Sweller, 1985; Sweller, Mawer, & Ward, 1983) has shqwn that ha'vmg §ub]§c‘s
solve algebra-word problems by means—ends analysis actl}ally impairs their
performances on subsequent transfer tests. A more effecnve l!lltl?l_l le;rmrtlf
strategy invoives free forward search from the given information in the ab

sence of an explicit goal.

Conditions and actions sometimes can be flexibly recoupled. In _second-gf:nera;
tion theories, expertise is viewed as the result of automatic evocation 0
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specialized actions in response to specialized conditions, a connection typi-

cally formalized with production rules. However, Allard and Starkes (chap-

ter 5, this volume) report a series of studies of motor performance in which

subjects displayed striking abilities to adjust to altered condition-action

links. Their evidence indicates that the greater the skill level of the per-

former, the less the performance decrement resulting from being forced to

alter the action required by a given condition — opposite to the prediction

that would seem to follow from the hypothesis that expertise involves increas-

ingly automated firing of condition-action rules. Such evidence is reminis-

cent of classic demonstrations that visual perception adapts quite rapidly to -
the effects of distorting prisms, with minimal aftereffects when the prisms -
are removed (Stratton, 1897). In a more cognitive procedural task, learning

to use a text editor, Anderson (1987) reported that subjects were able to

switch from one text editor to another with relative ease.

Expertise sometimes can be decoupled from memory performance. Ever since
the seminal work of de Groot (1965) and Chase and Simon (1973) on chess
expertise, a standard finding has been that experts have superior memory for
stimuli related to their domains. This is, of course, especially the case when
the domain of expertise is actually memory performance, as documented in -
the work of Ericsson and Staszewski (1989) on skilled memory. Nonetheless,
expertise and memory performance sometimes are decoupled. Perhaps the
most striking example was provided by a study of computer programmers by
Adelson (1984), in which she found that novices actualty had better memory
for details of code than did experts. The reason appeared to be that experts
attended more to the overall goal structure of the programming task, rather
than to actual code. The experts found it easier to solve a programming task
again rather than memorize a detailed solution, whereas the reverse was the
case for novices.

Other dissociations of problem-solving and memory performances are re-
ported by Patel and Groen (chapter 4, this volume) for medical diagnosis and
by Charness (chapter 2, this volume) for chess. Patel and Groen report that
memory for clinical cases does not always increase (and may even be non-
monotonic) with medical expertise. In studies of chess, Holding and Reynolds .
{1982) found that skilled players chose better moves for disorganized but legal =
chess positions, even though they showed no recall advantage for such posi-..
tions; and Charness (1981) found that older players had poorer memory for
board positions than did equivalently skilled younger players. Such exceptions
call into question the common assumption that domain-specific memory skiil
is directly related to expert problem solving.

Expertise sometimes can be decoupled from pattern perception. Closely related
to the typically superior memory performances of experts is their greater
ability to perceive patterns in stimuli drawn from their domains {e.g., the
chess expert can more quickly detect a potential fork). But Allard and Starkes
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(chapter 3, this volume) report an exception for expert volleyball players (in
contrast to experts in dance, basketball, and hockey, who show the typical
expertise advantage in processing structured stimuli). Better votleyball play-
ers do not show a consistent advantage over weaker players in perceiving
offensive volleyball patterns; however, they do show an advantage in sheer
speed of detecting a volleyball (but not a referee!) in photographic slides
showing game positions. Allard and Starkes argue that this exception arises
because in volleyball, offensive positions typically are designed to deceive the
defenders and hence are best ignored in favor of continuous focus on the ball.

Expert search strategies are extremely varied. Work on solving routine physics
problems indicates that acquisition of expertise is accompanied by a shift from
backward search to forward search. In computer programming, however,
both novices and experts emphasize backward search from goals (Anderson,
Farrell, & Sauers, 1984; Jeffries, Turner, Polson, & Atwood, 1981). The
reason appears to be that in computer programming, unlike routine physics
problem solving, the initial state places few constraints on the solution path.
The search processes are not simply identical for novice and expert program-
mers; experts do a kind of breadth-first search for a global program design,
whereas novices tend to get lost in depth-first searches. Even in physics,
nonroutine problems evoke backward search by experts (Tweney, 1985).
More generally, expertise in complex tasks often is distinguished not by some
single canonical search strategy but by flexible switching among alternative
strategies (Domer & Schélkopf, chapter 9, this volume).

Performance may not show continuous improvement with practice. Performances
on many tasks seem to improve smoothly with practice, typically following a
power function. Yet exceptions are common for complex tasks. As Scardamalia
and Bereiter (chapter 7, this volume) put it, “vague notions of ‘experience’ and
‘practice’ obscure what is undoubtedly the socially most significant issue in the
study of expertise, the issue of why there are such great differences in compe-
tence among people with equivalent amounts of experience and practice. No
one is disturbed by the fact that experienced physicians are better at diagnosis
than interns. We are all disturbed by the possibility that our health may fall into
the hands of physicians whose diagnostic expertise has not kept pace with their
years of experience.”

The acquisition of expertise, even when it does not prematurely “asymp-
tote,” does not always follow a smooth path. Ericsson and Staszewski (1989)
describe the development of memory skill in their subject SF, who was able to
dramatically improve his short-term memory ability by using specialized strate-
gies. His learning curve exhibited flat periods followed by dramatic incre-
ments corresponding to qualitative changes in his evolving strategy. Higher
levels of expertise may sometimes require not just greater speed and effi-
ciency in processing but a more radical restructuring of the task itself {Cheng,
1985). The development of typing skill, for example, depends on a shift from
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serial to parallel planning and execution of finger movements (D. R. Gentner,
1983; Salthouse, chapter 11, this volume).

Learning need not require goals or feedback, The canonical second-generation
account of skill acquisition emphasizes that learning depends on clear feed-
back about the success or failure of attempts to achieve goals (Anderson,
1987), and in many contexts there is good evidence in favor of this view.
However, studies of the acquisition of musical expertise (Sloboda, chapter 6,
this volume) suggest that children typically learn the basic chordal structure of
music by age 7 simply from exposure to music and that premature stress on
achievement of goals in musical performance may actually be detrimental.
Such complex forms of perceptual learning seem to lie outside the scope of
second-generation theories. In a much more explicit problem-solving context,
Koedinger and Anderson (1989) found that subjects skilled in geometry
solved proof problems on the basis of perceptual chunks related to canonical
diagrams. The subjects planned solutions in considerably fewer steps than
were actually required to execute the proofs, and the nature of the abbrevi-
ated planning phase was inconsistent with standard models of knowledge
compilation. :

Knowledge can be transferred across domains. A central tenet of second-
generation theories has been that high levels of performance reflect special-
ized domain knowledge that by its very nature is of little or no use in perform-
ing tasks in other domains (or even novel tasks within the same domain).
And, indeed, demonstrations of failure to achieve transfer of solution meth-
ods across domains are commonplace in the problem-solving literature; for a
recent review, see Gick and Holyoak (1987). Nonetheless, there is a growing
body of evidence to indicate that with appropriate instruction, knowledge
often can be transferred effectively to novel problems (e.g., Brown, Kane, &
Echols, 1986; Catrambone & Holyoak, 1989; Gick & Holyoak, 1983). Dorner
and Schélkopf (chapter 9, this volume) report that experienced executives
were more successful than college students in coping with an unfamiliar prob-
lem involving management of a complex dynamic environment. This finding is
consistent with other evidence that abstract types of reasoning skills acquired
through systematic training can be applied in contexts quite different from
that in which training occurred. Nisbett and his colleagues (Cheng, Holyoak,
Nisbett, & Oliver, 1986; Fong, Krantz, & Nisbett, 1986; Nisbett, Fong, Leh-
man, & Cheng, 1987) have found that training in statistics or in everyday
deductive reasoning can improve performances on problems with novel con-
tent. Theorists such as D. Gentner (1983) and Holyoak (1985) have empha-
sized the power of analogical thinking as a tool for transfer of knowledge
across domains.

Scardamalia and Bereiter (chapter 7, this volume) raise the possibility that
expert writing is really a kind of expert thinking, which could have a direct
impact on performances at the frontiers of an indefinitely wide range of disci-
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plines. Another candidate source of broad expertise is knowledge of mathemat-
ics, which provides formal representations of wide potential applicability.
Bassok and Holyoak (1989) found training in algebraic sequences (by direct
instruction in the relevant concepts and equations, coupled with practice in
solving example word problems) was sufficient to allow most students to recog-
nize immediately the relevance of the learned procedures to isomorphic prob-
lems with novel content (constant-acceleration problems in physics). Novick
{1988; Novick & Holyoak, 1991) found that high levels of expertise in mathe-
matics (as indexed by high scores on the quantitative section of the Scholastic
Aptitude Test) was predictive of successful analogical transfer of a novel mathe-
matical procedure. Anzaij (chapter 3, this volume) describes a transfer study in
which a subject was able to apply general procedures for constructing diagrams
to novel types of physics problems. All of these demonstrations of relatively
flexible transfer seem to require explanations that go beyond a characterization
of expertise as the product of increasingly specialized domain knowledge.

Teaching expert rules may not yield expertise. If expert knowledge can be funda-
mentaily represented as a set of production rules, as second-generation theo-
ries assume, then the most direct way to improve students’ expertise would
seem to be to teach them the experts’ rules. The “overlay” paradigm for build-
ing intelligent tutoring systems assumes that a student’s state of knowledge at
any time is a subset of that of the expert and that a tutor should incrementally
add expert rules to the student’s knowledge base (Carr & Goldstein, 1977). In
fact, however, several researchers in the area of automated tutoring systems
have argued that the overlay paradigm is inadequate (e.g., Clancey, 1986;
Wenger, 1987).

Rules elicited from experts may not predict their performance. An even more
obvious prediction of the view that expertise can be represented by a set of
production rules is that if we know what rules experts are using to perform a
task, we should be able to predict their performances. This prediction has
been challenged by the findings in a study by Lundell (1988; Huat, 1989):
University students were exposed to five hundred displays representing possi-
ble readings of instruments for an imaginary but realistic power plant; they
were asked to provide a diagnosis for each display and were then told the
correct diagnosis. By the end of the session the subjects were accurate on 75%
of trials (as opposed to initial chance performance of 25%}). Using structured

interviews based on techniques for knowledge engineering, Lundell devel-

oped a rule-based system to represent each subject’s knowledge. The rule-
based system for each student was then used to predict the student’s perfor-
mance on a set of new transfer cases. The programs produced the correct
diagnoses for just 55% of the new cases, whereas the students were again
correct 75% of the time; but worse, the system tailored to an individual
student was no more predictive of that student’s performance than were sys-
tems tailored to other students. In contrast, Lundell found that connectionist
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networks constructed for each student by an incremental error-correction
algorithm classified 72% of the transfer trials correctly, and each student’s
performance tended to be better predicted by his or her own network than by
someone else’s.

Caution is clearly cailed for in generalizing from Lundell’s results, as the
amount of training used was modest, and the validity of the method used to
extract rules from subjects could be questioned. Nonetheless, the greater
predictive success of the connectionist networks is at least suggestive.

Summary. When we survey the overall field of expertise research, we find
what is surely a disconcerting lack of constancy in the correlates of expertise.
There appears to be no single “expert way” to perform all tasks. Perhaps the
most apt general characterization of expert performance is that suggested by
Dérner and Schdlkopf {chapter 8, this volume): An expert is someone capa-
ble of doing the right thing at the right time. This characterization is, of
course, nearly vacuous; nonetheless, it does suggest a way of understanding
some of the variations noted earlier. In general, an expert will have succeeded
in adapting to the inherent constraints of the task. If the task can be done
most efficiently by forward search, the expert will search forward: if backward
search is better, the expert will search backward. If certain patterns of cues
are crucial to performing the task well, the expert likely will perceive and
remember them; if patterns are not so important, the expert will not selec-
tively process them. The tendency of experts to adapt to task constraints
would account for the fact that whereas novices differ widely in the way they
organize domain-relevant concepts, experts tend to resemble each other (and
differ from novices) in their conceptual organizations (McKeithen, Reitman,
Rueter, & Hirtle, 1981; Olson & Biolsi, chapter 10, this volume).

Given the importance of task constraints, as emphasized many years ago by
Simon (1969), it might be useful to analyze expertise systematically in terms of
the kind of “rational analysis™ proposed by Anderson (1990), which attempts
to eliminate the need to specify process models. But even this general ap-
proach must confront the unfortunate experts at clinical diagnosis, whose
adaptation to their task fell short of that afforded by simple linear regression
models. It may well be the case that their failures can be explained as the
products of generally useful learning strategies that have been confounded by
the inherent randomness and poor feedback associated with their target task.
But if so, a complete model of expertise acquisition will necessarily require a
clear account of human learning mechanisms and their processing limitations,
rather than rational analysis alone. =

Second-generation theories certainly are capable of explaining some of the
diversity in expert performance surveyed earlier. However, to do so they must
be elaborated to incorporate learning mechanisms other than knowledge com-
pilation and its variants. A number of researchers have suggested that exper-
tise depends largely on the induction, retrieval, and instantiation of schematic
knowledge structures (e.g., Gick & Holyoak, 1983; Koedinger & Anderson,
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1989; Schank, 1982; Sweller et al., 1983). Such processes seem quite different
from the acquisition and use of specialized production rules. In addition, a
great deal of evidence suggests that skilled performance in tasks ranging from
the perceptuomotor level (e.g., word recognition and typing) to higher cogni-
tive levels (e.g., discourse comprehension and analogical reasoning) depends
on the parallel integration of multiple sources of information. This style of
processing cannot be gracefully implemented in serial production systems, the
typical architecture for second-generation models.

Routine versus adaptive expertise

The diversity of expert learning and performance suggests the impor-
tance of distinguishing qualitatively different varieties of expertise. As Erics-
son and Smith (chapter 1, this volume) have argued, it is likely that “research
on superior expert performance is benefited more by the development of a
taxonomy of different types of mechanisms acquired through different types
of learning and adaptation processes than by restricting the definition of
expertise to a specific type of acquisition through learning.”

A broad distinction between two classes of expertise is suggested by two
tentative definitions of expertise raised by Sloboda (chapter 6, this volume}.
One possible definition is that expert performance involves “the reliable at-
tainment of specific goals within a specific domain.” A more demanding
definition is that “an expert is someone who can make an appropriate re-
sponse to a situation that contains a degree of unpredictability.” These alterna-
tives correspond to the distinction drawn by Hatano and Inagaki (1986;
Hatano, 1988) between routine expertise and adaptive expertise. (Salomon &
Perkins, 1989, elucidated a related distinction between “low-road” and *“high-
road” mechanisms of transfer.) Whereas routine experts are able to solve
familiar types of problems quickly and accurately, they have only modest
capabilities in dealing with novel types of problems. Adaptive experts, on the
other hand, may be able to invent new procedures derived from their expert
knowledge. Hatano and Inagaki (1986) suggested that the key to adaptive
expertise is the development of deeper conceptual understanding of the target
domain. Such understanding, they argued, is heavily dependent on the condi-
tions under which learning takes place. Understanding is more likely to result
when the task is variable and in some degree unpredictable, rather than
stereotyped, and when the task is explored freely without heavy pressure to

_achieve an immediate goal. Understanding can result from sensitivity to inter-

nally generated feedback, such as surprise at a predictive failure, perplexity at
noticing alternative explanations for a phenomenon, and discoordination due
to lack of explanatory links between pieces of kaowledge that apparently
should be related. Understanding is also fostered by social support and encour-
agement of deeper comprehension, and by efforts to explain a task to others.

Hatano (1988) exemplified the distinction between routine and adaptive
expertise with a cross-cultural contrast between two forms of mathematical
calculation skills: use of the abacus in Japan and other Asian cultures (e.g.,
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Hatano & Osawa, 1983) and the “street math” of Brazilian children working as
vendors. Expertise in use of the abacus leads to extremely rapid caiculations
and toincreased digit span; however, such knowledge cannot readily be general-
ized to repair “buggy” pencil-and-paper arithmetic procedures (Amaiwa, 1987}
or to use nonconventional abacuses with a different base value. In contrast,
unschooled Brazilian children who acquire arithmetic skills in the context of
selling merchandise on the street can adapt general components of their proce-
dures, such as decomposition and regrouping, to solve novel problems both on
the street and in classroom mathematics (Carraher, Carraher, & Schliemann,
1987; Saxe, 1988). The primary difference between the two skills, according to
Hatano, is that representations of number relations on the abacus are impover-
ished in meaning, whereas those used in street math are semantically transpar-
ent, analogous to the wider range of activities involving goods and money. In
addition, abacus use is basically a solitary skill in which speed and accuracy are
the dominant goals, whereas street math is a social enterprise in which transpar-
ency to the customer, rather than speed, is crucial.

Other researchers have also noted that learning directed toward understand-
ing is associated with more adaptive forms of expertise. The advantage of
learning through free forward search, rather than through goal-dominated
means—ends analysis (Sweller et al., 1983), is consistent with this pattern.
Both scientific discovery (Clement, 1989) and advanced skills in writing
(Scardamalia & Bereiter, chapter 7, this volume) emphasize understanding as
an overarching goal. The kind of cognitive knowledge acquired in “open”
motor skills (Allard & Starkes, chapter 5, this volume) presumably reflects
the inherent variety of the performances through which learning takes place.
Skill at jazz improvisation (Sloboda, chapter 6, this volume) seems to be
acquired in the context of supportive social interaction involving free explora-
tion rather than fixation on a precise goal.

Hatano (1988) emphasized cases in which an entire skill lent itself more to
the acquisition of routine (abacus) or adaptive (street math) expertise. How-
ever, it is quite likely that individual differences in the acquisition of a given
basic skili may reflect differences in learning styles. For example, Chi,
Bassok, L.ewis, Reimann, and Glaser (1989) found that better students of
physics took a more active approach to learning from worked examples of
word problems than did weaker students. The better students continually
tried to explain why the steps of the illustrated solutions were required. As
other investigators have argued, motivation and ability to monitor one’s own
comprehension seem to be crucial to the acquisition of flexible expertise
(Dorner & Scholkopf, chapter 9, this volume; Scardamalia & Bereiter, chap-
ter 7, this volume).

The second-generation theories of expertise, with their emphasis on the
acquisition of more specialized production rules through knowledge compila-
tion, can be characterized as attempts to explain routine expertise. As
Ericsson and Smith (chapter 1, this. volume) point out, most empirical and
theoretical work has been directed at accounting for stable superior perfor-
mance on representative tasks, for which reproductive methods and specific
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knowledge are in fact central. Indeed, such theories typically are described as
models of “skill acquisition,” which, as Wenger (1987) has pointed out, is not
coextensive with expertise: “Whereas skill acquisition can be tested by
straightforward performance measures, expertise is a much more subtlg no-
tion. . . . [It] must also be evaluated by the capacity to handie novel situa-
tions, to reconsider and explain the validity of rules, and to reason about the
domain from first principles” (p. 302). In Hatano's terminology, skill acquisi-
tion results in routine expertise; adaptive expertise requires something else.
The second generation of expertise theories was born of the hope that
domain-specific knowledge, built up on top of a foundation of weak methods
for serial heuristic search, would have the power to fully model human exper-
tise. For some researchers in the area of expertise that hope has now faded,
and their loss of innocence is accompanied by theoretical quandaries and
increasing opeaness to new directions. A full account of expertise, it seems,
will require a new generation of theories.

THE THIRD GENERATION: SYMBOLIC CONNECTIONISM

I am, of course, trying merely to predict the future, not to describe a
present reality; thus, I intend to sketch not a new theory of expertise, or evena
framework for a theory, but simply an evolving paradigm within which I conjec-
ture that new theories of expertise will eventually emerge. The name I give to
this paradigm is “symbolic connectionism.” The knowledgeable reader may
find the label internally contradictory; there has been much discussion of
whether or not connectionism will allow cognitive science to do away with
symbolic representations altogether. In agreement with the severest f:ritics of
connectionism (Fodor & Pylyshyn, 1988; Pinker & Prince, 1988), | bffheve that
reports of the demise of symbols are premature. In particu!:clr, adaptive exper-
tise in tasks requiring high-level reasoning appears to Tequire representations
that by any reasonable definition are inherently symbolic, just as does the
ability to speak and comprehend a human language. But unlike its severest
critics, I believe that connectionism offers important new insights into infom?a-
tion processing that will sufficiently change the character of cognitive theom'es
that it will be reasonable to speak of a generational change. As was the case 1n

~ the second generation, these third-generation theories will first arise as models
of aspects of the human cognitive architecture, rather than of expertisc per se,
but then will be tested in part by their ability to account for various forms of
expertise. .
Symbolic connectionism, as the name implies, will be based on the integra-
tion of theoretical ideas drawn from symbolic models {including second-
generation models of expertise) and connectionist models. 1 shall first describe

connectionism and its apparent implications for undesstanding expertise and .

then provide some reasons why symbolic representations are also required. 1
shall then briefly describe some early examples of symbolic connectionist mod-
cis that may point the way toward new treatments of expertise.
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The connectionist view of expertise

Connectionist representations consist of networks of relanvely simple
processing units connected by links. Processing involves a series of cycles in
which in each cycle the units take on new states of activation as a function of
their own prior activations, the prior activations of units to which they are
connected, and the weights on the mtcrconnectmg links. Weights can be
either excitatory (tending to make the receiving unit active when the sending
unit is active) or inhibitory (tending to make the receiving unit inactive when
the sending unit is active). Connectionist models embody three central ideas.
First, decision making it based on parallel constraint satisfaction: A cycle of
processing tends to converge on an activation pattern over units that best
satisfies the constraints embodied in the weights on links. The units with the
highest asymptotic activations will tend to support each other and to inhibit
their competitors. Second, knowledge is, to varying extents, distributed over
sets of units, rather than identified with single units. Third, learning consists
in incremental revision of weights on the basis of internally or externally
generated feedback concerning the performance of the network. For detailed
introductions to connectionism, see Feldman and Ballard (1982) and Rumel-
hart ¢t al. (1986b).

The paralle]:sm of connectionist networks supports a style of knowledge
representation in which decisions are based not on individual rules with large
conditions and actions, as is suggested by the notion of knowledge compila-
tion, but rather on interactions between multiple, simpler connections. An
example of a connectionist network is depicted in Figure 12.1, which shows
the representation of knowledge used in a model of the generation of musical
expectations (Bharucha, 1987a, 1987b). The network consists of layers of
units representing different types of musical units, such as tones and chords,
densely interconnected by links.

There are general advantages to having smaller units of knowledge operat-
ing in parallel relative to having larger units of knowiedge (such as compiled
rules) operating individually. A rule with multiple clauses in its condition is
likely to be “brittle,” providing no information on how to behave in skightly
different situations. And because a rule with a highly specific condition will be
less likely to be tested than a rule (or connection) with a more general trigger,
any validity estimate will tend to be less reliable for the more specific rule,
simply because of the smaller associated sample size (Camerer & Johnson,
chapter 8, this volume). Complex rules of the sort produced by knowledge
compilation may indeed be useful for performmg routine tasks efficiently (see
Miyata, 1989, for a connectionist version of knowledge compilation); how-
ever, such rules are not likely to provide the key to adaptive expertise.

The connectionist perspective offers a number of possible insights into the
nature of expertise (Rumelhart, Smolensky, McClelland, & Hinton, 1986c;
Smolensky, 1986). Paralle!l constraint satisfaction can in principle capture the
most striking aspect of human expert performance: Experts tend to arrive
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Figure 12.1. A network representing relationships among tones, chords, and
keys. Links between units reflect the memberships of tones in chords and of
chords in keys. A musical context activates tone units, and the activation
spreads through the network, reverberating until it settles into a state of
equilibrium. The pattern of activation at equilibrium represents the array of
chordal expectations and key implications and influences the consonance and
recognition of events that follow. From Bharucha (1987a). Copyright by the
Cognitive Science Society Incorporated. Used by permission.

quickly at a small number (sometimes one) of the best solutions to a problem,
without serial search through alternative possibilities (de Groot, 1965; Patel &
Groen, chapter 4, this volume). Fundamentally, expertise is the product of the
acquisition of task-appropriate constraints. A “chunk” of knowledge will cor-
respond to a tightly connected excitatory subnet of mutually supportive units.
In contrast to the standard conception of chunking as an all-or-none phenome-
non, from the connectionist perspective it may be viewed as a matter of
degree of excitatory connectivity. Research has shown that muitiple, possibly
overlapping chunks appear to form the cores of expert representations of
board positions in chess and other games (Chase & Simon, 1973; Reitman,
1976). It is natural, from the connectionist view, for a unit to participate in
multiple chunks, and several chunks may be active simultaneously to repre-
sent a complex, possibly unique, problem situation. If units representing
board positions are connected to units representing possible moves, then the
weights on links connecting units for chunks with units for moves will provide
constraints that can be used to generate plausible moves in response to particu-
tar board configurations. :

Connectionist principles provide mechanisms for implementing a parallel,

Symbolic connectionism: third-generation theories 315

content-addressable memory-retrieval system (Hinton & Anderson, 1981).
Thus, any component of the representation of a problem situation can poten-
tially provide access to similar structures in memory that may provide informa-
tion relevant to a solution. The more links that connect problem cues to
representations of relevant prior knowledge, the more likely it is that such
knowledge will be activated. In addition, connectionist processing provides
automatic pattern completion, reflecting top-down processing and its interac-
tions with bottom-up processing. Thus, partial cues in the problem situation
may activate a cluster of units representing one or more schemes for interpret-
ing the situation, which will in turn provide a richer interpretation of the
problem.

A number of connectionist learning schemes have been devised to adap-
tively modify the weights on links. These learning rules, in effect, pick out
statistical regularities among clusters of inputs (Rumelhart & Zipser, 1986) or
among reinforced input—output relations (Rumelhart, Hinton, & Williams,
1986a). Schemes of this nature may play an important role in the basic pro-
cesses of perceptual learning (e.g., the process by which children learn musi-
cal patterns from exposure to music; Bharucha, in press), motor learning
(e.g., the gradual shift from serial to parallel movement planning in typing;
Miyata, 1989), and more central associative learning.

The idea that states of networks have varying degrees of “harmony™ or
coherence (Smolensky, 1986) suggests that networks can be augmented with
mechanisms that allow sensitivity to internal states of the system, thus generat-

- ing internal feedback. For example, a network may preactivate units repre-

senting potential perceptual inputs; deviations of the internally generated
activation pattern from actual perceptual inputs may trigger a “surprise” reac-
tion. An asymptotic activation pattern in which active units are inhibiting each
other is a sign that contradictory interpretations are simultaneously sup-
ported, triggering “perplexity.” Such information about the state of the sys-
tem could potentially contribute to learning by understanding.

.The need for symbolic representations

The reader will doubtless have noticed that the foregoing sketch of
connectionism as an approach to understanding expertise is laden with promis-
sory notes. There are as yet no serious connectionist models of expertise in
chess, physics, or any other domain involving high-level cognition. Further-
more, there are significant impediments to the development of such models,
Connectionist theorists are grappling with difficult questions concerning the
representational adequacy of their networks. The problems they face have
been articulated by critics ranging from the sympathetic (Dyer, 1991; Nor-
man, 1986) to the highly skeptical {Fodor & Pylyshyn, 1988).

The central difficulties all hinge on the need to represent various types of
knowledge that are inherently relational. To take a simple example, one might
suppose that the proposition “the dog chased the cat” could be represented by
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the simultanecous activation of units representing the concepts “dog,” “chase,”
and “cat.” However, this pattern would be indistinguishable from that acti-
vated by the proposition “the cat chased the dog.” or for that matter by the
word list “chase, cat, dog.” Keeping variable bindings straight, as is required
to use simple inference rules, poses similar problems. For example, if we
know the rule that “if a seller sells a possession to a buyer, then the buyer
comes to own the possession,” and find out that Bob sold a bicycle to Helen,
we can readily conclude that Bob is the seller, the bicycle is the possession,
Helen is the buyer, and therefore it is Helen who ends up owning the bicycle.
However, this inference requires more than simply activating the relevant
concepts; in addition, roles must be represented and bound to the appropriate
individuals. Although there have been serious attempts to deal with relational
knowledge in connectionist terms (e.g., Hinton, 1981; Smolensky, 1987;
Touretsky & Hinton, 1988), fully satisfactory solutions have yet to emerge.

The absence of such solutions makes it difficult for connectionist models to
provide accounts of many cognitive abilities that are linked to expertise, such
as learning from verbal instructions, representing goal hierarchies (Anderson,
1987; Newell & Simon, 1972), computing analogical mappings (D. Gentner,
1983), assessing similarity of relational structures {Goldstone, Gentner, &
Medin, 1989), and accounting for the role of relations in memory retrieval
(Ratcliff & McKoon, 1989). A general accouat of expertise, especially if it is
1o account for cross-domain transfer of knowledge, will require such inher-
ently relational constructs as goals, types of solution methods, abstract infer-
ence rules, and metacognitive procedures.

These representational problems are related to the basic questions of what
a unit in a connectionist network can represent. The fact that knowledge is
distributed over a set of units does not in itself constrain the “grain size™ of
what can be represented as a unit. Connectionist theorists have often been
extremely vague in defining what a unit can represent. For example, Mc-
Clelland and Rumelhart (1986) suggested that “a unit may correspond to a
neuron, a cluster of neurons, or a conceptual entity related in a complex way
to actual neurons” (p. 329). Although radical proponents of parallel distrib-
uted processing (PDP) often stress that units represent subsymbolic “mi-
crofeatures,” many of the most successful connectionist cognitive models have
included units representing such complex elements as lexical entries, con-
cepts, or propositions. For example, Bharucha’s (1987a) model of musical
expectations (Figure 12.1) includes units for abstract musical structures
(chords and keys), which are inhereatly relational in nature, in addition to
units for simpie tones. It has for some time been recognized that the most
serious issues of representational adequacy arise in networks in which con-
cepts that must have a complex internal structure are represented by diffuse,
overlapping sets of units (Feldman & Ballard, 1982). Localist connectionist
networks, of the sort proposed by Feldman and Batlard, represent individual
concepts by a small number of units (a dozen or less, and often just one). Such
networks can more readily perform symbolic functions.
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The lack of constraint placed on what a unit can represent might be inter-
preted as a weakness of the connectionist research program; however, it might
instead be taken as a clue that representational and processing is;ues can
usefully be separated. As I have noted elsewhere,

ffhr many purpases it is useful to extract the essential properties of connec-
no_msl models from their metaphorical neural trappings. In general terms
units represent hypotheses, and connections capture inferential dependencic.r:
among hypotheses. Thus if one unit has an excitatory connection to another
thzs_ l_ndicates that support for the first hypothesis provides some degree oE
positive eyidence for the second. . . . Summation of activation at each unit
serves 1o integrate multipte sources of converging or contradictory evidence
regarding a hypothesis. . . . [M]any of the processing principles embodied in
PDP models can be readily incorporated into models that choose to represent

hypgg;l;eses as symbol structures rather than primitive units. fHolyoak, 1987
iy ,

_ The symbolic connectionist paradigm simply accepts that units can poten-
tially represent “hypotheses” with substantial internal complexity. Standard
te.:chmques_for symbolic representation (or more connectionist-style tech-
nigues, as these are developed) can be used to represent relational informa-
tion; at the same time, connectionist processing techniques can be used to
manipulate the units to accomplish such cognitive tasks as memory retrieval
and decision making. Such models attempt to capitalize on the complemen-
tary strengths of symbolic representation and connectionist processing. As we
§haii see, this integrated approach proves to be especially useful in deriving
inferences from complex relational knowledge. Symbolic connectionist mod-
els can make inferences that standard symbolic systems often are too brittle to

derive, using knowledge that diffuse connectionist systems cannot readily
represent. :

Symbolic connectionism: case studies

A.number of artificial-intelligence models have been proposed to
reflect various hybridizations of symbolic represeatations and connectionist
processing (e.g., Ajjanagadde & Shastri, 1989; Cottrell, 1985; Dolan & Dyer
1988; Dolan & Smolensky, 1988; Hendler, 1989; Lange & Dyer, 1989; Shastri’
1988; Sh.:astri & Ajjanagadde, 1990; Touretsky & Hinton, 1988). These mod:
els are aimed at the development of new, connectionist-style techniques for
symbgl processing. Another group of models, which I shall sketch here, can
cor_nbme standard symbolic representations with connectionist constraint-
satisfaction procedures to account for psychological data concerning human
performance of high-level cognitive tasks, such as discourse comprehension
analogical thinking, and evaluation of explanations. These models suggest the:
potential breadth of the domains to which symbolic connectionism can be
applied, as well as some important commonalities in theoretical mechanisms.
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Discourse comprehension. Most of us have some degree of expertise at undgr—
standing spoken or written discourse. Comprehension typically 'succee'ds with
little apparent effort, despite the fact that discourse is fraught with Ie'xu:al and
syntactic ambiguities, as well as lacunae that must be filled by inference
processes. Traditional symbolic models typically have depended on the use of
parsing and inference rules carefully tailored to produce “correct” interpreta-
tions, leading just as typically to various forms of nonhumanlike brittleness.
Kintsch (1987) has developed a symbolic connectionist model that appears to
circumvent some of these difficulties. His “construction-integration™ model
has four main components: (1) initial parallel activation of memory ?qncepts
corresponding to words in the text, together with formation of propositions by
parsing rules; (2) spreading of activation 1o a smail number of close associates
of the text concepts; (3) inferring additional propositions by inferer.u:e rules;
and (4) creating excitatory and inhibitory links, with associated weights, !)e»
tween units representing activated concepts and propositions, and ailowmg
the network to settle. The entire process is iterative. A small portion of text is
processed, the units active after the settling process are maintained, and then
the cycle is repeated with the next portion of text. _

The central characteristic of the model is that it allows the parsing and
inference rules to apply in a loose, error-prone fashion, overgenerating con-
cepts and propositions that initially form an incoherent representation of the
discourse. For example, a parser is given this text: “The lawyer discussed the
case with the judge. He said ‘I shall send the defendant to prison.’ The
parser will create rival propositions that respectively will represent the:_ judge
and the lawyer as the referent of “he.” The constraint network that is con-
structed will then use parallel constraint satisfaction to identify a coherent
subset of the units, deactivating possible interpretations that do not fit the
discourse context.

In addition to accounting for psycholinguistic data on text comprehension,
the construction-integration model has recently been extended to account for
levels of expertise in planning routine computing tasks (Doane, Kintsch, &
Poison, 1990; Mannes & Kintsch, 1989).

Analogical thinking. One of the central mechanisms for transfer of knowlnge
is reasoning by analogy. Two of the basic components of analogical thinking
are retrieval of useful anatogies from memory and mapping of the elements of
a known situation (the source) and a new situation (the target) to identify
useful correspondences. Both of these components can be challenging, espe-
cially when the analogues have few direct similarities between their elerpents.
People often fail to retrieve potentially useful source analogues (Gick &
Holyoak, 1980, 1983), but performance improves when multiple analogues
allow induction of a more abstract schema (Bassok & Holyoak, 1989; Brown
et al., 1986; Catrambone & Holyoak, 1989; Gick & Holyoak, 1983). Also,

once people are directed to relate two analogues, they often succeed in using

remote analogues effectively. Indeed, cross-domain analogies are routinely
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used as devices to aid in teaching new concepts (e.g., Thagard, Cohen, .
Holyoak, 1989). )

Because analogical mapping sometimes requires finding relational corr
spondences in the absence of overt similarities, diffuse connectionist mode
lack the requisite representational tools. Purely symbolic models have dif
culty avoiding combinatorial explosion in searching either for possible an:
logues in a large memory store or for optimal mappings between two an:
logues, without being forced to impose unduly limiting restrictions on th
search process. Paul Thagard and 1, together with our colieagues, have re
cently constructed symbolic connectionist models of both mapping and an:
togue retrieval (Holyoak & Thagard, 1989a; Thagard, Holyoak, Nelson, «
Gochfeld, 1990}. Both the mapping model, ACME, and the retrieval mode
ARCS. operate by taking symbolic, predicate-calculus-style representatior
of situations as inputs, applying a small set of abstract constraints to build
network of units representing possible mappings between elements of tw
analogues, and then allowing parallel constraint satisfaction to settle the ne
work into a stable state in which asymptotic activations of units reflect th
degrees of confidence in possible mappings. The constraints on mapping lea
to preference for sets of mapping hypotheses that yield isomorphic correspon
dences, link similar elements, and map elements of special importance. Thes
same constraints (with differing relative impacts) operate in both the mappin
and retrieval models,

As in Kintsch’s model of discourse comprehension. ACME and ARCS firs
overgenerate a large pool of potential candidate hypotheses. and then us
constraint satisfaction to select a coherent subset. As an example, the Appen
dix presents two mathematical word problems that were used by Novick an
Holyoak (1991) to investigate analogical transfer in mathematical probler
solving. College students first studied the “garden problem,” plus a solutior
to it based on finding least common multiples. They then attempted to solv
the target “band problem™ using the garden problem as a source anaiogue. I
addition, some subjects were explicitly asked to state the correct mapping fo
various key concepts and numbers in the band problem. For example, the
band members should map onto plants, the number of members in a row o
column onto the number of plants of a kind, and the successful divisor in the
band problem (5, which leaves a zero remainder) onto the successful diviso
(6) in the garden problem. Note that the two problems have marny surface
dissimilarities (e.g., band members have no obvious resemblance to plants).
contain some misleading similarities (e.g., the divisor 5 in the band problen
should map onto 6, not 5, in the garden problem), and are far from iso-
morphic (e.g., the band problem involves two people who consider a single
total number of band members, whereas the garden problem involves threc
people who consider two different possible total numbers of plants). There
was therefore good reason to expect that mapping these two analogues woulc
be challenging for either a person or a computational model.

The ACME modecl was applied to predicate-calculus representations of the
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two problems. Each representation was quite detailed, requiring about 70
propositions to represent the band problem and over 80 to represent the
garden problem and its solution. The program proceeded to construct a con-
straint network consisting of over 1,600 units representing mapping hypothe-
ses (e.g., “band members = plants™) interconnected by over 30,000 excitatory
and inhibitory links. After about 200 cycles of settling, the network converged
on a set of best mappings for the elements of the band problem that were
consistent with the intuitively correct set of mappings. These included the
optimal mappings between dissimilar concepts, such as band members and
ptants, and between specific numerical values, such as 5 and 6,

Similarly, the college subjects tested by Novick and Holyoak (1991)
achieved over 80% accuracy in providing the correct mappings for the key
concepts and numbers. Oral protocols collected from some subjects revealed
few overt signs of the mapping process, consistent with the use of a paraliel
and relatively fast mapping mechanism. Interestingly, knowing the correct
mapping did not guarantee successful transfer of the solution method, as
about a third of the subjects who had appropriate mappings still failed to
develop the analogous solution; furthermore, protocols consisted largely of
laborious efforts to work out the implications of the correspondences found
between the two analogues, after the initial mapping process was appareatly
completed. These results suggest that general skill in anatogical mapping
develops quite naturally, but is only one component of skill in analogical
transfer. An implication is that adaptive expertise in humans is in part built on
powerful constraint-satisfaction mechanisms for finding mappings between
complex representations.

Explanatory coherence. The problem of evaluating competing explanations
arises in an enormous range of domains, including medical diagnosis (Patel &
Groen, chapter 4, this volume), legal reasoning, science (Anzai, chapter 3,
this volume), and everyday language comprehension and reasoning. A long-
standing problem in arriving at criteria for preferring one explanation to a
rival is that observations and their relations to possible explanations often are
intertwined in complex ways. As Quine put it, “our statements about the
external world face the tribunal of sense experience not individually but only
as a corporate body”™ (1961, p. 41). This extreme interdependence has de-
feated attempts to formulate strict rules for assessing explanatory adequacy.

Thagard (1989) has shown that the problem of evaluating competing explana-
tions can be addressed by a symbolic connectionist model of explanatory coher-
- ence: ECHO. The model takes as inputs symbolic representations of basic
explanatory relations among propositions corresponding to data and explana-
tory hypotheses. The system then builds a constraint network linking units
representing the propositions. As in ACME and ARCS, a few very general
constraints are used in network construction. In ECHO, the constraints sup-
port explanations with greater explanatory breadth {more links to data),
greater simplicity (fewer constituent assumptions), and greater correspon-
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Table 12.1. Input propositions for ECHO analysis of phlogiston and oxygen
explanations

Evidence

(proposition *E1 “In combustion, heat and light are given off.”)

(proposition ‘E2 “Inflammability is transmittable from one body to an-
other.™)

(proposition ‘E3 “Combustion only occurs in the presence of pure air.")

(proposition ‘E4 “Increase in weight of a burned body is exactly equal 10
weight of air absorbed.™) .

(proposition ‘ES5 “Metals undergo calcination.™)

(proposition *E6 “In calcination, bodies increase weight.™)

(proposition ‘E7 “In calcination, volume of air diminishes.”)

(proposition ‘E8 “In reduction, effervescence appears.”)

Oxygen hypotheses

(proposition “OH1 “Pure air contains oxygen principle.”)

(proposition ‘OH2 “Pure air contains matter of fire and heat.”)

(proposition ‘OH3 “In combustion, oxygen from the air combines with
the burning body.™)

{proposition ‘OH4 “Oxygen has weight.™)

(proposition *OHS5 “In calcination, metals add oxygen to become
calxes.”) L

(proposition *OH6 “In reduction, oxygen is given off.”)

Phiogiston hypotheses
(proposition ‘PH1 “Combustible bodies contain phlogiston.™)
(proposition *PH2 “Combustible bodies contain matter of heat.™)
(proposition ‘PH3 “In combustion, phlogiston is given off.”)
(proposition ‘PH4 “Phlogiston can pass from one body 1o another.")
(propasition ‘PH35 “Metals contain phlogiston.™)
(propasition ‘PHé “In calcination, phlogiston is given off.™)

Source: From Thagard (i989).

dence to analogous explanations of other phenomena. Relations of mutual
coherence (modeled by symmetrical excitatory links) hold between hypotheses
and the data they explain; relations of mutual incoherence (inhibitory links)
hold between competing hypotheses. The resulting network thus typically con-
tains multiple contradictory propositions. Parallel constraint satisfaction then
settles the network into an asymptotic state in which units representing the
most mutually coherent hypotheses and data are active, and units representing
inconsistent rivals are deactivated.

As an example, Table 12.1 lists the sets of propositions relevant to Lavoisier’s
cighteenth-century arguments comparing the phlogiston and oxygen theories
of such phenomena as combustion and respiration. These consist of sets of

propositions representing observed evidence and sets representing the compo- .,

B
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Table 12.2. Input explanations and
contradictions for phlogiston and oxygen
explanations

Oxygen explanations
{explain ‘(OH1 OH2 OH3) 'El)
{explain *(OH1 OH3) ‘E3)
{explain ‘(OH1 OH3 OH4) ‘E4)
(explain ‘(OH1 OH5) ‘ES5)
{explain *(OH1 OH4 OHS5) *E6)
(exptain ‘(OH1 OHS) ‘E7)
(explain *(OH1 OHo6) 'E8)

Phlogiston explanations
(explain *(PH! PH2 PH3) ‘E1)
(explain '(PH1 PH3 PH4) ‘E2)
(explain ‘(PH5 PH6) ‘E5)

Coﬁrradicrions
{contradict *‘PH3 *OH3}
(contradict *‘PH6 *OHS5)

Data
data ‘(E1 E2 E3 E4 E5 E6 E7 ER))

Source: From Thagard {1989).

nent hypotheses for the two theories. Table 12.2 lists the explanatory relations
among the propositions that serve as the input to ECHO, and Figure 12.2
depicts a portion of the resulting constraint network. The solid lines represent
excitatory links between cohering propositions, and the inhibitory link exempli-
fies a relation of contradiction, here between the rival hypotheses that oxygen
or phiogiston is the product of combustion. After about }00 cycles, the network
settles into an asymptotic state in which the oxygen hypotheses are active and
the phlogiston hypotheses have been deactivated, reflecting Lavoisier’s conclu-
sion that the oxygen theory was giobally superior. Thagard (1989) showed that
ECHO is able to model a number of realistic cases of explanation evaluation in

~both scientific and legal contexts. The basic idea that explanations are evalu-

ated on the basis of their internal coherence and completeness is quite con_sis-
tent with findings concerning the reasoning of doctors performing medical
diagnoses (Patel & Groen, chapter 4, this volume).

Commonalities among the models

Although the examples of symbolic connectionist models described
earlier span quite different tasks and differ in many important ways, some
major commonalities are evident, and they distinguish these models from
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GHA OH2 OH3 OH4 OHS OH8

PH1 PH2  PH3 PHa4

PHS5 PHE

Figure 12.2. A portion of the constraint network formed by ECHO to repre-
+ sent Lavoisier’s argument comparing the oxygen and phlogiston theories.
From Thagard (1989).

those typical of strictly connectionist or symbolic approaches (Thagard et al.,
1990). First, all use highly general constraints, potentially applicable to an
unlimited range of examples, to transform symbolic structares into specific
constraint networks. The constraints may take the form of parsing rules,
inference rules, or other procedures for forming interconnected hypotheses.
This on-line construction process is quite different from typical connectionist
algorithms for building networks by learning algorithms operating incremen-
tally on numerous examples. A second, related commonality is that the result-

- ing constraint networks are essentially ephemeral, They are built to find a
coherent interpretation and then are discarded (although the asymptotic

states might readily be used for learning). In this respect these symbolic
connectionist models resemble connectionist models of perception (in which
ephemeral networks are formed in the process of interpreting sensory inputs)
more than typical connectionist models of learning. Third, ail the models
allow the network-construction procedure to operate in a loose and uncritical
manner, overgenerating a set of inconsistent hypotheses; they then rely on
parallel constraint satisfaction to select a coherent subset of the hypotheses
and discard the rest. This aspect of the models frees them from much of the
brittieness that plagues purely symbolic treatments of similar cognitive tasks.

THE FUTURE OF THE THIRD GENERATION

I hope I am not mistaken in taking these examples of symbolic connec-
tionist models as evidence that the third generation of theories of expertise,
though still in its infancy, has in fact been born. Although none of these models
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addresses the nature of expertise directly, they offer theoretical mechanisms for
modeling aspects of higher-level cognition that must surely figure prominently
in any model of expert performance. The most salient gap in the current models
is that none addresses the crucial issue of learning. Nonetheless, it seems reason-
able to expect that learning models can be developed within the symbolic
connectionist paradigm. Connectionist schemes for associative learning could
readily be incorporated, as could more knowledge-intensive mechanisms associ-
ated with symbolic models. The potential of learning mechanisms based on
selective recombination of useful existing representations (Holland, 1986; Hol-
land, Holyoak, Nisbett, & Thagard, 1986) deserves exploration. Such mecha-
nisms might, for example, help account for the flexible repairing of conditions
and actions found in studies of procedural transfer (e.g., Allard & Starkes,
chapter 5, this volume).

The coordination of multiple approaches to learning may in fact yield
synergistic .benefits. For example, simple models of generalization operate
by identifying similarities between elements in successive positive examples
of a category. A major limitation of this approach is that in complex rela-
tional structures (as opposed to simple feature vectors of the sort typically
provided as inputs to connectionist iearning algorithms), it is difficuit to
identify which elements ought to be compared. However, a model of analogi-
cal mapping, such as ACME, can in effect force previously unrelated ele-
ments (such as band members and plants in the algebra-word problems
discussed earlier) into correspondence, making salient the common rela-
tional roles that link them. This information could readily be used to guide
the process of generalization in the aftermath of analogical transfer (Holy-
oak & Thagard, 1989b}. '

Inconsistencies and anomalies revisited

Symbolic connectionism, in its current natal stage, certainly offers no
panacea for our incomplete understanding of the inconsistencies and anoma-
lies of expertise reviewed earlier. Still, it may be worthwhile to brieity recon-
sider these phenomena and offer some very preliminary speculations as to
what each may imply about future theoretical developments related to exper-
tise. In some cases the phenomena suggest potential applications of connec-
tionist mechanisms, in other cases the need for symbolic components, and in
some cases possible interactions between symbolic representations and con-
nectionist processing.

Experts sometimes achieve mediocrity. The deficiencies of experts in clinical
decision making, relative to simple statistical models that are closely related
to some connectionist learning procedures, suggest some important ways in
which these connectionist schemes may require modification or augmentation
to account for human learning. The most salient characteristics of the learning
situation confronting decision-makers in many areas, such as personnel selec-
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tion, is that the pool of relevant features is poorly constrained, and feedback
on accuracy of predictions is delayed . intermittent, and sometimes unretiable
Such learning situations are known to impair covariation detection (Hollanci
et al., 1986, chapter 5). It is possibie that people often assume that they are
correct when feedback is lacking (thus potentially reinforcing flawed deci-
snops): They may also switch attention to new cues when an established regu-
Ifmty is shown to lead to an error, fostering the learning of special-case excep-
tlons'. r.ather than the correction of erroneous weights relating old cues to.
predictions. In addition, top-down cxpectations generated by prior beliefs, to
the extent they are invalid, may impair bottom-up contingency learning. ‘

Experfs som.etimes feel more pain. The extended efforts at problem reformula-
tion, .planmng,. and revision of goals and methods that characterize experts
working at their creative edge remain poorly understood.

Means-e'nd.f analysis can impair learning. The work of Sweller and his col-
leagues indicates that free forward search from the given information in the
absenf:e of an explicit goal, rather than means-ends analysis, can lead 10
superior subsequent problem-solving performance. Relatively free problem
exploration would be expected to foster the acquisition of broad knowledge
pf problem constraints and regularities, perhaps using prediction-based learn-
Ing procedures. Such learning would yield a rich constraint network, which

Ln turn would facilitate the solution of relatively novel problems in the
omain.

- Conditions and actions sometimes can be Jlexibly recoupled. Such results may

havc. implications for the acquisition of constraint networks. For example
consider the situation facing a macrosurgeon learning to perform micro:
surgery (Allard & Starkes, chapter 5, this volume). The visual cues that elicit
a certain pattern of macromovements must now come to elicit a totally differ-
ent set of micromovements; yet the old condition-action links must be pre-
served to allow continued skill in macrosurgery. A connectionist-style solution
to this p‘roblem in skill acquisition might be to preserve the existing excitatory
connections among related visual cues, add new excitatory connections from
?he visual cues to the required micromovements, and at the same time add
inhibitory links between the two sets of visual-to-motor connections, so that
the context would be able to “flip a switch” to choose which set of connections
would be allowed to operate at a given time. The new skill thus would build
on the old (by using preexisting connections among condition cues) while
minimizing interference between the two. Similar mechanisms might allow
!.ISCfI..Il but imperfect generalizations to be preserved by coupling them to more
specific exception conditions that would override the default when they con-
flicted (Fahlman, 1979; Holland et al., 1986).

Most connectionist learning schemes have not built new knowledge on top
of prior knowledge in this sense; rather, new learning using these algorithms | -
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has involved explicit “unlearning™ of existing connections, creating intcrfer-
ence. However, recent proposals for learning mechanisms of a more incremen-
tal sort, in which established connections are “frozen™ before new connections
are added to the network, show promise of being better able to capture
humanlike flexibility in building new knowledge (Fahlman & Lebiere, 1990).

Expertise sometimes can be decoupled from memory pelfarnmnce.. Frorr} the
symbolic connectionist perspective, routine expert performance is basically
controlled by the activity of constraint networks. The same networks of con-
straint relations may help experts to form new memory representations for
problems, producing the typical expert advantage in memory tests (Chas_e &
Simon, 1973). However, such memory advantages may be fundamentally inci-
dental in nature. If the expert’s constraint network does not include nonessen-
tial problem-specific details (as may be the case in expert medical diagnosis;
see Patel & Groen, chapter 4, this volume}, or if other factors interfere with
setting up new memory representations {such as the effects of aging; Char-
ness, 1981), then expert problem solving may be decoupled to some extent
from expert memory performance.

Expertise sometimes can be decoupled from pattern perception. Similarly, changes
in pattern perception may accompany expertise only to the extent the new
patterns are required by the constraint network developed to perform the task.
In cases such as expertise in volieyball (Allard & Starkes, chapter 5, this vol-
ume}, a game in which some patterns may actuzally be misleading, the constraint
network of the expert player may not facilitate (or even may inhibit) their
detection.

Expert search strategies are extremely varied. If high-level heuristics and strate-
gies are represented by units in a constraint network, then contextual cues
provided by problem situations can potentially drive the flexible selection of
search strategies.

Performance may not show continuous improvement with practice. Although
connectionist learning afgorithms typically are slow and incremental in na-
ture, constraint-satisfaction models of decision processes can undergo rela-
tively radical reorganizations (e.g., Rumelhart et al., 1986c). A change in
activation of a unit at one place in the constraint network can trigger a major
revision in the overall state of the network. Such rapid changes can be ob-
served in the ECHO model of explanatory coherence when new evidence
overturns a crucial assumption of a previously dominant theory (Thagard,
1989). Such rapid changes in network states may underlie major conceptual
shifts that sometimes accompany changes in levels of expertise.

Learning need not require goals or feedback. Some connectionist learning
schemes can identify regularities in inputs without overt feedback (Rumelhart
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& Zipser, 1986); see Bharucha (in press) for an application to the learning
musical chords.

Knowledge can be transferred across doemains. Symbolic connectionist mode
of analogical reasoning provide potential mechanisms for cross-domain know
edge transfer (Holyoak & Thagard, 1989a).

Teaching expert rules may not yield expertise. The knowledge embodied in
constraint network typically will involve subtle interactions and contextu
shading that “expert” rules often may miss.

Rules elicited from experts may not predict their performance. For the sam
reason, experts may be unable to articulate the complex interactions betwee
small pieces of knowledge embodied in their constraint networks and thus wi
be unable to provide accurate descriptions of the basis for their superior tas
performances. A constraint network can represent the kind of difficult-tc
verbalize knowledge associated with expert “intuition.™

CONCLUSION

Although still more speculative than substantive, the symbolic connec
tionist paradigm appears to have at least the potential to blossom into a nes
generation of models of cognition and expertise. Whether or not it will in fac
do so, and what it will mean if it does, remain open questions. If more radica
connectionists are right, elegant general sotutions to the kinds of representa
tional issues discussed earlier will quickly enable them to sweep aside the finz
vestiges of symbol systems, rendering hybrid systems obsolete. But if sucl
solutions come slowly {or not at all), then symbolic connectionism offers a
least pragmatic advantages for those trying to construct models of expertise i
high-level cognitive tasks. Symbolic connectionists have the Juxury of remain
ing officially agnostic regarding the “ultimate™ resolution of debates about th.
status of symbolic representation. The pragmatic position is that by incorporat
ing symbolic representations as needed, we can take advantage of connec
tionist processing mechanisms to build models with more of the flexibility i
dealing with novelty and complexity that characterizes adaptive expertise. |
the radical connectionists are fundamentally right, but overly optimistic abou
the time scale of their progress, then the symbolic part of symbolic connec
tionism will serve as a useful stopgap, slowly being replaced by “pure” connec.
tionist mechanisms as these are discovered.

There are, of course, other possibilities. In particular, perhaps the radicals
are wrong; perhaps human intelligence is based in part on mental representa-
tions that by any reasonable set of criteria are symbol systems. As I survey the
current work directed at allowing connectionist networks to perform symbolic
functions, my impression is that the more promising lines of attack are better
characterized as connectionist-style implementations of symbolic representa-
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tions, rather than connectionist eliminations of symbols. This is not in any way
to slight the importance of such efforts; on the contrary, new implementations
of symbolic functions may have important psychological (and perhaps biologi-
cal) implications we cannot yet fully anticipate. However, these new symbolic
connectionist models will have identifiable components that will perform such
symbolic functions as representing variables and their bindings, objects of
betief, and other abstract types of knowledge; they will postulate processes by
which knowledge can become available for structured recombination and self-
reflection. At the same time, these models will use connectionist principles to
allow decisions about novel situations to emerge from the graceful integration
of muitiple constraints. In this possible future for models of high-level cogni-
tion, symbolic connectionism will flourish. Time will tell.

APPENDIX: ANALbGOUS MATHEMATICAL WORD PROBLEMS
USED IN MAPPING EXPERIMENT!

Garden problem (source)

Mr. and Mrs. Renshaw were planning how to arrange vegetable
plants in their new garden. They agreed on the total number of plants to buy,
but not on how many of each kind to get. Mr. Renshaw wanted to have a few
kinds of vegetables, and 10 of each kind. Mrs Renshaw wanted more different
kinds of vegetables, so she suggested having only four of each kind. Mr.
" Renshaw did not like that, because if some of the plants died, there would not
be many left of each kind. So they agreed to have five of each vegetable. But
then their daughter pointed out that there was room in the garden for two
more plants, although then there would not be the same numbers of ail kinds
of vegetables. To remedy this, she suggested buying six of each vegetable.
Everyone was satisfied with this plan. Given this information, what is the
fewest number of vegetable plants the Renshaws can have in their garden?

Solution. Because at the beginning Mr. and Mrs. Renshaw agreed on the total
number of plants to buy, 10, 4, and 5 must all go evenly into that number,
whatever it is. Thus, the first thing to do is to find the smailest number that is
evenly divisible by those three numbers, which is 20. So the original number
of vegetabie plants the Renshaws were thinking of buying could have been
any multiple of 20, that is, 20 or 40 or 60 or 80, and so forth. But then they
decided te buy two additional plants that they had not been planning to buy
originally, so the total number of plants they actually end up buying must be 2
more than the multiples of 20 listed earlier, that is, 22 or 42 or 62 or 82, and so
forth. This means that 10, 4, and 5 will now no longer go evenly into the total
number of plants. Finally, the problem states that they agree to buy six of each
vegetable, so the total number of plants must be evenly divisible by 6. The

! Adapted from Novick and Holyoak (1991).
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smallest total number of plants that is evenly divisible by 6 is 42, and that is
the answer.

Band problem (target)

Members of the West High School band were hard at work practicing
for the annual homecoming parade. First they tried marching in rows of 12,
but Andrew was left by himself to bring up the rear. The band director was
annoyed because it did not look good to have one row with only a single
person in it, and of course Andrew was not pleased either. To get rid of this
problem, the director told the band members to march in columns of eight.
But Andrew was still left to march alone. Even when the band marched in
rows of three, Andrew was left out. Finally, in exasperation, Andrew told the
band director that they should march in rows of five in order to have all the
rows filled. He was right. This time, all the rows were filled, and Andrew was
net atone any more. Given that there were at least 45 musicians on the field,
but fewer than 200 musicians, how many students were there in the West High
School band?
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