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1. INTRODUCTION

Analogical transfer from a source (o a target analog depends on several
component processes. Although proposed taxonomies of component processes
have differed in detail, there has been broad agreement that it is useful to
distinguish at least six major steps: (a) forming mental representations of the
source and target analogs, (b) retrieving a potentially useful source analog from
memory; (c) finding a mapping (i.e., set of correspondences) between the
elements of the source and target, (d) deriving inferences based on the mapping,
(e) evaluating and adapting the inferences to satisfy constraints required by the
target situation, and (f) learning new generalizations in the aftermath of
analogical transfer (e.g., Carbonell, 1983; Gentner, 1983, 1989; Gick &
Holyoak, 1980; Hall, 1989; Keane, 1988; Novick, 1988; Novick & Holyoak,
1991). These processes need not be performed in a strict serial fashion; rather,
there is reason to believe they operate partially in parallel and with considerable
interdependence (cf. Eskridge, this volume).
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In the present chapter, we will leave aside issues involving the crucial
processes of analog representation, retrieval, and learning to focus on the
“central” processes of analogical mapping, inference, and evaluation/adapta-
tion. When executed appropriately, these processes collectively yield what we
will refer to as analogical transfer. We will argue that the three processes are in
fact psychologically distinct—for example, an analogist may succeed in deriving
a reasonable mapping between a solved source problem and an unsolved target
problem, yet be unable to perform the inference and/or evaluation processes
required to use the mapping to generate a useful solution to the target problem
(also see Novick & Holyoak, 1991, on this point). In addition, we will consider
the extent to which these various subprocesses of analogical transfer are
amenable to modeling using connectionist-style mechanisms. Our theoretical
starting point will be the ACME (Analogical Constraint Mapping Engine)
model of mapping developed by Holyoak and Thagard (1989), a hybrid system
which combines symbolic representations of knowledge with connectionist-style
constraint satisfaction to model human analogical mapping (Holyoak, 1991). We
will argue that with some simple extensions, the ACME model can also account
for basic post-mapping analogical inferences; but that without much more
extensive augmentation, the more open-ended processes of evaluation and
adaptation lie beyond the model’s capabilities. More generally, the differential
success of humans at various stages of analogical transfer may suggest the need
to integrate connectionist mechanisms with rule-based reasoning (cf. Nelson,
Thagard, & Hardy, this volume).

L.1. Differentiating Mapping from Postmapping Processes

The central focus of theory and research on analogy has been the process of
analogical mapping: the identification of a set of orderly correspondences
between the elements of the source and target (e.g., Gentner, 1983; Falkenhainer,
Forbus, & Gentner, 1989; Holyoak & Thagard, 1989). There are compelling
reasons why mapping is viewed as the sine qua non of analogical reasoning. The
fundamental intuition underlying the concept of analogy is that two situations
can resemble each other by virtue of a kind of “configural™ similarity based on
systematic role correspondences, even though the specific objects that play
corresponding roles in the two analogs, or even the predicates applied to these
objects, may lack direct similarities. That is, the existence of a “good”
mapping, in the sense of an isomorphism (i.e., consistent one-to-one correspon-
dences), is what in fact defines an analogy. Accordingly, the effectiveness of the
retrieval process is largely judged by the extent to which it recovers from
memory source analogs that map well to their targets (see Lange & Wharton,
1994). Furthermore, the postmapping process of inference must use the set of
correspondences established by the mapping process in order to generate
plausible inferences about the target.
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Although mapping plays a central role in analogical transfer, transfer requires
additional postmapping processes as well. Somewhat unfortunately, psychologi-
cal research on analogical transfer has seemed to emphasize mapping to such an
extent that postmapping processes have been neglected (but see Novick &
Holyoak, 1991). Indeed, analogical transfer has sometimes been virtually
identified with mapping, and vice versa. For example, Gick and Holyoak (1980)
introduced a problem-solving paradigm in which subjects first receive, in an
incidental context such as instructions to memorize a story, a source analog
involving a problem and its solution. They are then presented with a target
problem to solve, first without any hint that the source story is relevant. If
subjects fail to give the analogous solution to the target, they are then given a
direct hint to try to apply the source story. The proportion of subjects who
generate the analogous solution prior to the hint (relative to control subjects who
received no analog) has generally been interpreted as a measure of how often
people retrieve the source and map it successfully to the target; the additional
proportion of subjects who generate the analogous solution only after a hint has
been interpreted as a measure of how many failed to spontancously retrieve the
source, even though they were capable of finding the appropriate mapping once
they tried. In other words, solution frequency after a hint is provided (which
obviates the need to spontaneously retrieve the source) is taken as a measure of
ease of mapping.

In fact, however, successful transfer of a problem solution requires not only
mapping, but also (at least) some follow-up inference process to generate the
analogous solution to the target. For example, consider the analogs used by Gick
and Holyoak (1980). The target problem was Duncker’s (1945) “radiation
problem,” in which a doctor must find a way to use rays to destroy an inoperable
stomach tumor, without damaging the healthy tissuc that the rays must pass
through on the way to the tumor. The source problem was provided by a story in
which a general needed to get a large army to a fortress located in the center of a
country, in order to capture it. Because the entire army could not pass safely
along any one road, the general divided the army into small groups and had each
group travel along one of several roads that each led to the fortress. The groups
converged simultaneously on the fortress, where the combined forces succeeded
in capturing it. )

What is required to generate an analogous “convergence” solution to the
radiation problem, given that the source is available for use? The mapping
process presumably must identify at least some of the potential role correspon-
dences between the source and target (e.g., the doctor corresponds to the
general, the tumor to the fortress, and the rays to the army). But in and of
themselves, such correspondences by no means provide an analogous solution to
the target problem. By definition, mapping can identify corresponding elements
between the two analogs, such as objects, predicates, and propositions. But in a
typical case requiring analogical transfer, as in solving the radiation problem, a
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solution to the target problem in initially lacking. It is therefore logically
impossible to directly “map” the source solution onto the target problem,
because the representation of the latter lacks the requisite elements to which the
source solution is supposed to map. Not only does the unsolved target
necessarily lack propositions describing its solution, but it may also lack objects
and/or predicates that are crucial to constructing the analogous solution. In our
example, the statement of the radiation problem does not mention the predicate
“divide,” which is a central element in the convergence solution to the fortress
problem, and which must be somchow transferred from the fortress problem to
the radiation problem in the course of generating an analogous solution of
“dividing the rays.”

1.2. Analogical Inference as Pattern Completion

It follows from the above analysis that those subjects in the Gick and Holyoak
study who succeeded in generating the convergence solution to the radiation
problem must have not only mapped at least some of the corresponding elements
in the source and target, but also must have gone on to generate inferences that
“filled in” missing information about the target analog. What is striking about
the results of these early experiments on analogical problem solving is that the
postmapping inferences scemed so easy for subjects as to virtually escape
notice. Roughly 80% of subjects succeeded in generating the convergence
solution once they received a hint to use the fortress problem, as compared to a
mere 10% of control subjects. Furthermore, subjects who talked aloud as they
solved the radiation problem typically did not reveal a laborious process of
mapping and inference; rather, they usually simply stated the solution in a fairly
direct way, with minimal reference to intermediate inference steps. Their
performance was thus consistent with the possibility that most of the mental
work involved in analogical mapping and inference is often performed rapidly
and largely unconsciously.

More generally, one might hypothesize that basic analogical inference
accomplishes something similar to what in connectionist networks is termed
“‘automatic pattern completion.” If a source and target analog can be suc-
cessfully mapped, it seems that people are able to readily use the mapping to fill
in “gaps” in one (or perhaps both) of the analogs. Of course, there is no reason
to assume that the mechanisms responsible for analogical pattern completion are
the same as those used in connectionist networks that perform pattern comple-
tion. In particular, people are clearly able to make analogical inferences from a
single source analog to a single target, without extensive prior training on
multiple examples of analogs of the same type, as is required by most
connectionist learning procedures. Nonetheless, there may be a natural “cut”
between components of analogical transfer that depend only on mapping and
pattern completion, versus subsequent components that depend on more elabo-
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rate reasoning. We will now consider in more detail both theoretical and
empirical arguments in favor of this possibility.

2. ANALOGICAL MAPPING, PATTERN COMPLETION,
AND ADAPTATION

2.1. Theoretical Bases for Distinguishing Component Processes

On what bases can we distinguish among mapping and other postmapping
components of transfer? Although the exact boundaries undoubtedly blur in
actual analogical transfer, it seems possible to distinguish three different
components, roughly corresponding to what we think of as mapping, pattern
completion (i.e., analogical inference), and further evaluation or adaptation. As
nearly all researchers have agreed on the centrality of mapping to analogy (e.g.,
Gentner, 1983; Holyoak & Thagard, 1989), the crucial issue concerns dis-
tinguishing the latter two processes from the mapping process and from each
other.

2.1.1. Mapping. Given the initial active representations of the source and
target, the mapping process derives a set of correspondences between the
elements of the two analogs, where the elements consist of objects, predicates,
and propositions. As we have emphasized, mapping can directly establish
correspondences only between elements that are present in the initial representa-
tions of the two analogs.

2.1.2. Pattern completion. If one wishes simply to verify the analogical
status of two isomorphic representations, the mapping process will suffice. In
situations of analogical transfer, however, in which information from the source
domain must be transferred to the target domain (for example, to provide a
solution to the target problem), the mapping process by itself is insufficient for
the task at hand. Rather, analogical transfer requires postmapping processes in
which new inferences are drawn using the correspondences established by the
mapping, in conjunction with the structure of the analogs. Such processes can
effectively fill in gaps of missing information when knowledge from a well-
understood domain is transferred to an analogous but less well-understood
domain. We will refer to the generation of inferences based on analogical
mapping as analogical pattern completion.

The simplest basic mechanism for analogical pattern completion is copying
with substitution (CWS), which in some form has been included in all
computational models of postmapping analogical transfer (e.g., Burstein, 1986;
Carbonell, 1983, 1986; Falkenhainer et al., 1989; Hofstadter & Mitchell, 1988,
this volume; Winston, 1980). The simplest form of CWS applies when the
mapping process has provided correspondences for all relevant objects and
predicates, but some propositions in one or both analogs are left unmapped. The
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intuition behind this procedure is that in analogical transfer, there is a pressure
for propositions in the source to have corresponding propositions in the target,
and vice versa. If some proposition exists in one analog, but has no correspond-
ing proposition in the other, and if all of the constituent elements of the existing
proposition map to elements in the other analog, we may reasonably conjecture a
new proposition in the other analog. Formally, the CWS procedure used to
generate propositions in the aftermath of mapping, in the extension of ACME we
describe in this chapter, is the following:

* Il a proposition P consisting of relation r and objects @ and b (notated
P:r(a,b)) exists in the source but does not map to any corresponding
proposition in the target, and

* if P’ relation and objects have the mappings

r—>r'
a->q'
b—>b',

* then create the new proposition P':r'(a’,b') in the target.

Although stated for two-place relations, the above procedure can readily be
generalized to apply to propositions based on n-place predicates, including
logical connectives and higher order predicates that take propositions as
arguments (Falkenhainer et al., 1989),

This version of CWS requires that the mapping process has provided
correspondences for all predicates and objects that participate in unmapped
propositions. But as we have seen in the fortress/radiation problem analogy, it is
possible that the source may contain predicates or objects that have no direct
correspondence to any element of the initial target representation (e.g., the
operator “divide” in the solution to the fortress problem has no immediate
match in the representation of the unsolved radiation problem). In such cases,
basic CWS must be augmented with procedures for retrieving or generating
additional predicates or objects in the more impoverished analog (cf. Kokinov,
this volume). To a first approximation, augmented CWS$ can operate by
identifying an unmapped proposition P as before, and then:

* if P contains an unmapped predicate or object, postulate an “image”
predicate or object in the other analog, and
* then proceed with CWS as usual.

CWS augmented with predicate/object generation (“copy with substitution and
generation,” or “CWSG") does not be itself fully determine the actual content
of the generated image elements. It does, however, automatically bind each
image object or image predicate into roles parallel to those of its corresponding
source object or predicate across all relevant propositions that are generated,
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CWSG thus produces a description of a “desired” image object or predicate,
where the detail of the description will depend on the richness of the set of
generated propositions in which the image element appears.

This description may trigger a memory search for a specific object or
predicate corresponding to that description (Kokinov, this volume), or the
description may serve as the basis for postulating a previously unknown concept.
We will consider the generation of a description of an image element to be the
final output of the process of analogical pattern completion, with subsequent
search and evaluation processes considered part of the later adaptation stage.
Element generation thus “straddles the line” between pattern completion and
subsequent adaptation,

2.1.3. Adaptation. Whereas mapping involves a consideration of the relation-
ships between active representations of the source and target analogs, and
pattern completion considers the mapping plus the structure of each analog,
there comes a point in analogical transfer at which attention must focus directly
on the unique aspects of the target. That is, analogical mapping and pattern
completion in effect propose plausible inferences about the target, but the
pragmatic test of whether the analogy is useful hinges on whether these
inferences are in fact sufficient to achieve the analogist’s goals with respect to
the target domain. The evaluation/adaptation stage may reject inferences that
prove to be erroneous, or add additional supplemental information derived from
the target domain itself rather than by analogy to the source. Such supplemental
information about the target domain may be supplied by memory retrieval in the
aftermath of pattern completion (as in the case of finding an actual instantiation
of an object or predicate for which CWSG has produced a description), or by
additional inferences about the target situation. These target-based inferences
may be integrated with analogy-based inferences to achieve the applicable goals
for the target domain, such as finding a solution.

The distinction between the roles of pattern completion and adaptation is
closely related to the difference between isomorphism of the source and target
domains versus isomorphism of the representations of the source and target
domains. Pattern completion embodies the tacit assumption that the underlying
source and target domains are in fact isomorphic. Thus, if the active representa-
tions are not isomorphic, pattern completion will attempt to fill the apparent
gaps, thus (re)constructing the underlying isomorphism assumed to hold
between the domains. But of course, there is no guarantee that the underlying
domains are in fact fully isomorphic; indeed, this will seldom be the case for
domains of realistic complexity. Adaptation will be required whenever the
underlying structures of the source and target domains are not completely

- ~isomorphic. If the source has elements that lack any correspondents in the target,

erroneous inferences about the target may be generated (unless pragmatic
knowledge can be used at earlier stages to block the generation of inferences
based on irrelevant aspects of the source). If the target domain has elements that
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do not correspond to anything in the source, then additional target-genecrated
inferences will be required to supplement those generated by analogy. The
process of adaptation is “open-ended” in the sense that it depends on general
reasoning procedures and memory-search processes that go beyond the informa-
tion provided by the analogy. Thus, in many cases, we would expect a sharp
“break” in transfer performance when adaptation is required: whereas mapping
and pattern completion are guided by the structural relationships between source
and target, adaptation depends upon knowledge of the target domain that gocs
beyond (and in fact may contradict) what can be generated by using the source-
target relations. We now consider empirical evidence that bears on this
hypothesis.

2.2. Empirical Evidence for Distinguishing Component Processes

Although ease of mapping can be inferred from ease of transfer, it does not
follow that difficulty of mapping can be inferred from difficulty of transfer. In
the latter case, subjects may have constructed the appropriate mapping,
encountering difficulty instead with the later adaptation process. Because the
typical dependent measure in the experimental literature has been success of
transfer rather than of mapping, the ease or difficulty of the mapping process is
uncertain, The resulting ambiguity concerning the contribution of mapping to
the difficulty of analogical transfer creates problems for assessing the role of
adaptation, Nevertheless, the existing data are consistent with the hypothesis
that mapping and pattern completion are easier to perform than adaptation.
2.2.1. Evidence that Mapping and Pattern Completion are Relatively Easy
to Perform. Work by Reed (1987) provided evidence that mapping and pattern
completion are fairly easy for “isomorphic” algebra word problems of two types
that are common in early algebra courses: “mixture” problems, in which
multiple entities of different concentrations or values are mixed together to form
an entity of some intermediate concentration or value; and “work” problems, in
which two or more agents work together to complete a task that each could
complete alone. Tables 2.1 and 2.2 present examples of the problems that Reed
used, along with the correspondences required to solve a mapping task that Reed
administered, and the percent correct obtained by subjects for each question.
Subjects (students enrolled in undergraduate psychology courses) were given six
numerical quantities from the source problem (e.g., “12hr,” “\g rank/hr,” *4.5
pt. X 8% acid”), and for the first of these they were told the corresponding
quantity in the target problem. Their task was to match the remaining five
source quantities to the corresponding target quantities. The subscript after each
target correspondent listed in Tables 2.1 and 2.2 indicates whether it can
theoretically be computed simply by: (a) constructing a mapping, (b) mapping
plus pattern completion, or (c) adaptation that goes beyond pattern completion.
For isomorphic problems, all the required correspondences can be computed
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Table 2.1,
“Isomorphic” and “Similar” Work Problems

Source (Pipe Problem)

A small pipe can fill an oil tank in 12 hours and a large one can fill it in 8 hours.
How long will it take to fill the tank if both pipes are used at the same time?

Solution equation: {1/12)h + (1/8)h = 1

“Isomorphic” Target (Typing Problem)

Ann can type a manuscript in 10 hours and Florence can type it in 5 hours. How
long will it take them if they both work together?

Solution equation: (1/10)h + (1/6)h = 1 [76% correct)

“Similar” Target (Tenk Problem)

A small pipe can fill a water tank in 20 hours and a large pipe can fill it in 15 hours.
Water is used at a rate that would empty a full tank in 40 hours, How long will it
take to fill the tank when both pipes are used at the same time, assuming that
water is being used as the tank is filled?

Solution equation: (1/20)h + (1/15}h — (1/40)h = 1 [20% correct)

Percent Correct on Mapping Task
(boldface indicates information given to subjects)

Source Isomorphic Target Similar Target
(Pipe) {Typing) {Tank)

8 hr 5 hr 15 hr

12 hr 10 hr (91%)" 20 hr {86%)!

1/8 tank/hr 1/5 ms/hr (91%)? 1/15 tank/hr (84%)?

1/12 tank/hr
{1/8 tank/hr) x (h hr)
{1/12 tank/hr) x (h hr)

1/10 ms/hr {882%)?
(1/5 msthr) x (h hr) (88%)?
{1/10-msthr) x (h hr) (93%)2

1/20 tank/hr (84%)?
(1715 tank/hr) x (h hr) (B1%)?
{1/20 tank/hr) % (h hr) (60%)?

Note: Footnote numbers refer to the transfer stage theoretically required to compute
the correspondence: 1 = mapping; 2 = pattern completion; 3 = adaptation.

Adapted from “A Structure-Mapping Model for Word Problems,” by S.K. Reed,
1987, Journal of Experimental Psychology: Learning, Memory and Cognition, 13.
Reprinted by permission,

either by mapping alone (e.g., 12 Ar = 10 hr, where the mapped terms are each
directly provided by the problem statements), or by pattern completion (e.g., 1/8
tankihr = 1/5 msihr, where the source element appears in the solution equation
and the corresponding target element must be constructed by CWSG). Across
four isomorphic source/target pairs, an average of 79% of the subjects correctly

" " matched each quantity (Reed, 1987, Experiment 4). (Tables 2.1 and 2.2 report

the mean percent correct on the mapping questions, and on an equation-transfer
task described below, for the representative examples given in that table. We will
use these particular examples in an ACME simulation reported below.)
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Table 2.2.
“Isomorphic” and “Similar” Mixture Problems

Source (Nurse Problem)

A nurse mixes a 6% boric acid solution with a 12% boric acid solution. How many
pints of each are needed to make 4.5 pints of an 8% boric acid solution?

Solution equation: .06a + (.12){4.5-a) = (.08)(4.5)

“Isomorphic” Target (Grocer Problem)

A grocer mixes peanuts worth $1.65 a pound and almonds worth $2.10 a pound.
How many pounds of each are needed to make 30 pounds of a mixture worth $1.83
a pound?

Solution equation: 1.65a + (2.10){30-a) = (1.83)(30) [36% correct)

“Similar” Target (Alloy Problem)

One alloy of copper is 20% pure copper and another is 12% pure copper. How much
of each alloy must be melted together to obtain 60 pounds of alloy containing 10.4
pounds of copper?

Solution equation: .20a + {.12){60-a) = 10.4 (0% correct]

Percent Correct on Mapping Task
{beldface indicates information given to subjects)

Source Isomorphic Target Similar Target
{Nurse) (Grocer) (Alloy)

6% acid $1.65 20% copper

12% acid $2.10 {81%) 12% copper (91%)
8% acid $1.83 (84%) 10.4/60 copper (2%)?
45 pt 30 Ibs (86%)" 60 Ibs (81%)'

4,5 — apt 30 — albs (74%)? 60 — a lbs (77%)?

(4.5 pt) x (8% acid) (30) x ($1.83) (81%)* 10.4 Ibs (0%)?

Note: Footnote numbers refer to the transfer stage theoretically required to.compute
the correspondence: 1 = mapping; 2 = pattern completion; 3 = adaptation,

Adapted from “A Structure-Mapping Model for Word Problems,” by S.K. Reed,
1987, Journal of Experimental Psychology: Learning, Memory and Cognition, 13.
Reprinted by permission,

As noted above, Holyoak's work with Duncker’s (1945) radiation problem also
provided evidence for the ease of mapping and pattern completion (also scc
Keane, 1988). Gick and Holyoak (1980, 1983) found in five experiments that
when subjects were told to solve this problem using an earlier story about a
general capturing a fortress, 80% were successful in producing the analogous
“convergence” solution. Holyoak and Koh (1987) found a transfer rate of 78%
when the source story concerned the repair of a filament inside a lightbulb. In
contrast, only about 10% of subjects produced the convergence solution to the
tumor problem when no story was presented. Note that although the goals and

COMPONENT PROCESSES IN TRANSFER 123

solution constraints for all threc problems arc analogous (goal = attack a
centrally located target; constraint = a large force sent down a single path will
result in undesired destruction), the problems are not completely isomorphic.
For example, in the fortress problem the force itself (i.e., the army) will be
destroyed if the entire army marches down a single road. In the tumor problem
usc of a high-intensity ray from a single machine will kill the healthy tissue
surrounding the tumor, but it will have no deleterious effect on the ray. Thus,
these results indicate that a complete isomorphism is not a prerequisite for
successful mapping and pattern completion.

What about studies suggesting that mapping is difficult? In many cases, the
results are consistent with the hypothesis that the difficulty lies in the subsequent
adaptation process. In his mapping experiment described above, Reed (1987)
also had subjects determine corresponding quantities for source/target pairs that
were “similar” but not isomorphic (sec Tables 2.1 and 2.2). For these pairs, the
equation for the source problem had to be modified before it could be used to
sulve the target problem. For example, in the source mixture problem stated in
Table 2.2, 6% and 12% acid solutions were mixed to yicld 4.5 pints of an 8%
solution. The following equation can be used to determine how many pints of
cach solution were used: .06a + (.12)(4.5-a) = (.08)(4.5). Note that the amount
of acid in the mixture is obtained by multiplying the concentration of the
mixture (.08) by the number of pints in the mixture (4.5). In a similar but
nonisomorphic target problem, two alloys of 20% and 12% pure copper were
melted together to obtain 60 pounds of a new alloy containing 10.4 pounds of
copper. To solve this problem, the procedure for finding the amount of pure
ingredient in the mixture must be adapted from that of multiplying a con-
centration times a total quantity to that of retrieving the relevant amount from the
problem statement (i.e., a correct equation is: .20a + (.12)(60-a) = 10.4). Note
that on the surface, the required solution equation for the similar target problem
is simpler than that for the source problem, because the amount of pure
ingredient in the mixture is given directly in the target problem (10.4), unlike the
casc for the source where it must be calculated as a proportion of the mixture
((.08)(4.5)). But in terms of the analogical relationship between the two
quantities, the “simpler” part of the target equation cannot be derived by
mapping and pattern completion; hence, it requires adaptation.

Consistent with the hypothesis that mapping and pattern completion are
relatively easy to perform, when given the correspondence “6% acid maps to
20% copper,” an average of 83% of the subjects produced each of the following
correct mappings: 12% acid = 12% copper and 4.5 pt. = 60 Ib., both derivable
by mapping alone, and 4.5-a pt. = 60-a Ib, derivable by pattern completion. But,
consistent with the hypothesis that adaptation is difficult, none of the subjects
correctly mapped 4.5 pt. X 8% acid onto 10.4 Ib., and only 2% succeeded in
mapping 8% acid onto 10.4/60 copper.

Not all of Reed’s “similar” problems resulted in difficulties on the mapping
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task. Note that for the similar work target in Table 2.1, the nonisomorphism
results from the addition of an extra variable in the target (rate of water use) t.hal
is not present in the source. Because the change from source to target consists
entirely of an addition of elements, every source element. in fact has a
correspondent in the target that can be compulcfi bjf mapping alone or by
mapping plus pattern completion. Thus, for this mml!a‘r target problem,
mapping accuracy was uniformly high for all source quantities. Thus, even for
nonisomorphic problems, the mapping task was ‘not difficult as ]0[‘lg as
adaptation was not required to generate the appropriate correspondents in the
target. o .

Another study that provided evidence distinguishing z}daptallon ’frcm map-
ping was performed by Novick and Holyoak (1991). A reinterpretation of their
data also distinguishes pattern completion from the othe.r two transfer processes.
Table 2.3 presents two problems that were used in their research’(and also by
Novick, 1988) to investigate analogical transfer in mathematical p.roblerp
solving. College students first studied the “garden” prot?lcm, plus a solution to it
based on finding multiples of the lowest common multiple of se:vcra] numbers.
They then attempted to solve the target “band‘t problem using the garden
problem as a source analog. In addition, some subjects were exphcn_ly asked to
state'the source correspondents for various key concepts or numbers in the band
problem. For example, the band members should map onto plants, lpe number of
members in a row or column onto the number of plants of a kind, an.d .thc
successful divisor (5, which leaves a zero remainder) onto the successful divisor

i roblem,

(6)1\1;;‘?&:]1%‘?2(1;; tl:\)wo problems have many surface dissim.ilarilies (c.;.. ba:nd
members have no obvious resemblance to plants), contain some m:slead:r}g
similarities (e.g., the divisor 5 in the band problen? should map onto 6, not 5, in
the garden problem), and are far from isomorpm.c: for example, (a) the band
problem involves two people who consider a single total number gf band
members, whereas the garden problem involves three people who c01l131d:er two
different possible total numbers of plants; (b) the solution constraint in If'lc
garden problem is to find the smallest possib]c.tofal, wt_n:reas the constraint in
the band problem is to find a possible total within a given range; and (c) the
solution to the garden problem is based on the second .mu]tlpIc‘of the LCM,
whereas the solution to the band problem is based on the sixth multiple. There is,
therefore, good reason to expect that mapping these two a{)alogs would be
challenging. Nonetheless, the college students tested by Nowc?( and Holyoak
(1991) achieved over 80% accuracy in providing the correct mappings for the key
concepts and numbers. Oral protocols collected from some subjects fevealed feﬂ
overt signs of the mapping process, consistent with the use of an easily execute

and relatively fast mapping mechanism. o

Novick and Holyoak (1991) also obtained evidence that pattern compleu?n s
performed relatively easily. In two experiments, they found that of those subjects

bt St o

Table 2.3,
Analogous Mathematical Word Problems

Garden Problem (Source)

Mr. and Mrs. Renshaw were planning how to arrange vegetable plants in their new
garden, They agreed on the total number of plants to buy, but not on how many of
each kind to get. Mr, Renshaw wanted to have a few kinds of vegetables and ten of
each kind. Mrs. Renshaw wanted more different kinds of vegetables, so she
suggested having only four of each kind. Mr. Renshaw didn‘t like that because if
some of the plants died, there wouldn't be very many left of each kind. So they
agreed to have five of each vegetable. But then their daughter pointed out that
there was room in the garden for two more plants, although then there wouldnt be
the same number of each kind of vegetable. To remedy this, she suggested buying
six of each vegetable. Everyone was satisfied with this plan. Given this information,
what is the fewest number of vegetable plants the Renshaws could have in their
garden? :

Solution: Since at the beginning Mr. and Mrs. Renshaw agree on the total number
of plants to buy, 10, 4, and 5 must all go evenly into that number, whatever it is.
Thus, the first thing to do is to find the smallest number that is evenly divisible by
those 3 numbers, which is 20, So the original number of vegetable plants the
Renshaws were thinking of buying could by any multiple of 20 {that is, 20 or 40 or
60 or 80, etc.). But then they decide to buy 2 additional plants, that they hadn't
been planning to buy originally, so the total number of plants they actually end up
buying must be 2 more than the multiples of 20 listed above (that is, 22 or 42 or 62
or 82, etc.). This means that 10, 4, and 5 will now no longer go evenly into the total
number of plants. Finally, the problem states that they agree to buy 6 of each
vegetable, so the total number of plants must be evenly divisible by 6. The smallest
total number of plants that is evenly divisible by 6 is 42, so that's the answer,

Band Problem (Target)

Members of the West Side High School Band were hard at work practicing for the
annual Homecoming Parade. First they tried marching in rows of twelve. but
Andrew was left by himself to bring up the rear. The band director was annoyed
because it didn't look good to have one row with only a single person in it, and of
course Andrew wasn't very pleased either. To get rid of this problem, the director
told the band members to march in columns of eight. But Andrew was still left to
march alone. Even when the band marched in rows of three, Andrew was left out.
Finally, in exasperation, Andrew told the band director that they should march in
rows of five in order to have all the rows filled. He was right. This time all the rows
were filled and Andrew wasn't alone any more. Given that there were st least 45
musicians on the field but fewer than 200 musicians, how many students were
there in the West High School Band?

From “"Mathematical Problem Solving by Analogy,” by L.R. Novick & K.J. Holyoak,

1991, Journal of Experimental Psychology: Learning, Memory, and Cognition, 17,
Reprinted by permission.
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who attempted to transfer the source solution to the target problem, none
incorrectly substituted the band numbers into the operators used to solve the
garden source problem.' Although numerous errors in transferring the source
solution procedure to the target problem were observed once subjects had
correctly substituted the numbers, only a minority of them could be attributed to
the pattern completion process: 27% of the errors involved generation of some
but not all of the required image predicates in the target that corresponded to the
source operators,

Note that although the task of pattern completion appears relativcly easy to
perform, it is not necessarily accurate. When applying a represcntationally
complete source to generate inferences to complete a representationally im-
poverished target, we can only reasonably expect pattern completion to generate
useful inferences if the underlying source and target domains are in fact
isomorphic. For example, given a source problem and solution, and a super-
ficially similar target problem, it is a trivial matter to copy the source operators
and substitute the corresponding target elements into the source operators to
gencerate a potential target solution. However, if the solution procedure required
for the target problem differs at all from the source solution procedure, the
solution produced by pattern completion will at least require adaptation, and may
even prove useless (Novick, 1988). As we shall see, both human subjects and
ACME have little difficulty performing the task of pattern completion; however,
the accuracy of the inferences generated by this process depend on the degree to
which the source and target domains are in fact isomorphic.

2.2.2. Evidence that Adaptation is Relatively Difficult to Perform. Further
support for our hypothesis that the primary difficulty in analogical transfer lies
in adaptation comes from a comparison of the results of Reed's (1987) mapping
experiment, discussed above, to the results of an experiment in which he asked
subjects (students enrolled in a college algebra class) to use the source problems
to construct appropriate equations for the “isomorphic” and “similar” target
problems. As we noted above, for isomorphic problems the analogous equation
for the target can be constructed by mapping and pattern completion, whereas
for the similar problems adaptation is also required. Over all the problems Reed
used, the transfer (i.e., equation accuracy) rates for the isomorphic and similar
target problems were 53% and 11%, respectively (Reed, 1987, Experiment 3),
indicating that transfer was indeed much more difficult when adaptation was
necessary. Average accuracy rates for other subjects on the mapping task were
79% and 63%, respectively, for the isomorphic and similar targets (Experiment

' Approximately onc-third of the subjects failed to provide evidence in their written solution
protocols of attempting to solve the band problem by analogy to the garden problem. For (hese
subjects, it is impossible to tell whether they generated the appropriate image predicates in the target
problem but then did not know how to execute them, or whether they failed to even generate the
analogous operators.
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4). As we saw earlicr, the reduction in mapping accuracy for similar target
problems was almost entirely due to those specific questions for which
adaptation was required to generate the correct correspondent in the target. The
correlation between transfer and accuracy on the mapping task across the eight
target problems was .77, indicating a clear statistical link between the two tasks.
The difficulty observed in mapping and/or generating those quantitics in the
nonisomorphic problems that were involved in the required procedure adapta-
tion, coupled with the low rate of equation transfer for those problems, provides
evidence for the difficulty and importance of adaptation in the solution of
mathematical problems by analogy.

Reed, Dempster, and Ettinger (1985, Experiment 3) provided more direct
evidence for the difficulty of adaptation, based on their analysis of the crrors
subjects (enrolled in a college algebra task) made when they failed to construct
the correct equation. For the isomorphic target problems, the errors were evenly
distributed among quantity errors (wrong numbers substituted into the correct
equation), equation errors (generating an incorrect form of the equation), and
failures to generate any equation (11% in each category). For the similar target
problems, quantity errors were again rare (11% of solutions), but equation errors
were very commeon. The latter accounted for 51% of all solution attempts, with
64% of those errors representing a failure to attempt adaptation of the source
equation for use with the target problem, and 36% representing an incorrect
adaptation of the source equation. The difficulty of adaptation was further
evidenced by an increase in solution attempts that did not involve the usc of
equations (31% of solutions).

In the studies by Novick and Holyoak (1991) using the garden and band
problems, it was also the case that knowing the correct mapping did not
guarantee successful transfer of the solution procedure. As noted above, subjects
answered about 80% of the mapping questions correctly. Furthermore, in some
conditions subjects were directly told several mappings (either of concepts or of
numbers) before they attempted to transfer the solution procedure from the
source to the target. The most helpful of these mapping hints was to provide
correspondences between the numbers that played the same roles in the solution
procedures. (This hint ensures that subjects know the mappings that CWS and
CWSG require for substitution.) But even for subjects who received this number-
mapping hint, 40~50% (in two different experiments) failed to generate the
correct procedure for the target band problem. Furthermore, oral protocols,
which as we noted above revealed little direct evidence of the mapping process,
consisted largely of laborious efforts to work out the implications of the
correspondences found between the two analogs, after the initial mapping

. process was apparently completed.

- For those subjects (in all conditions) who provided evidence of attempting to
apply the source solution procedure to the band target problem (approximately
two-thirds of the subjects in each of two experiments), Novick and Holyoak
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(1991) analyzed the source of the errors made. As indicated earlier, only 27% of
the errors (collapsed across the two experiments) can be attributed to the pattern
completion process. The remaining 73% of the errors are the result of difficulties
encountered during adaptation. These difficulties fall into two categories. The
largest source of difficulty, accounting for 48% of the errors, was in executing
the four major solution operators in the context of the band target problem. The
remaining 25% of the errors were due to adaptations required because of the
nonisomorphism between the garden and band problems. For example, most of
these latter errors (21%) were due to the fact (mentioned carlier) that the band
solution is based on the sixth multiple of the LCM, whereas the garden solution
is based on only the second multiple. Thus, the compute-multiples operator must
be adapted to apply a greater number of times (the solution provided with the
source problem showed four applications of that operator). Failure to adapt this
operator was very clear in subjects’ written protocols, as 88% of the subjects
who failed to generate enough multiples for the band problem generated either
three or four multiples. In sum, Novick and Holyoak’s results support the
conclusion that analogical mapping and pattern completion are quite robust, but
that adaptation is a far less reliable component of analogical transfer.
Although adaptations seem more difficult to articulate for nonmathematical
domains, the same principles should apply. For the tumor problem, transfer after
a hint is attenuated when the source and target are nonisomorphic in their goals
and/or solution constraints (although, as indicated earlier, other deviations from
isomorphism seem not to impair analogy use). Consider the parade story used by
Gick and Holyoak (1980, Experiment 2). Like the attack-fortress story described
earlier, this story had a fortress with roads leading out from it in all directions.
The goal was for a general to stage an impressive parade of soldiers that could be
scen throughout the country. Thus, whereas the goal in the attack-fortress story
and the tumor problem was to concentrate a large force at a particular central
location, the goal in the parade story was to distribute a large force over a wide
area. The solution constraint in the parade story was that if the parade was not
impressive enough, the general would be demoted to private. In the attack-
fortress story and the radiation problem, the constraint was that sending a large
force down a single route would cause unwanted destruction. Adaptation rather
than pattern completion is required to determine that the differing goals and
solution constraints nevertheless imply analogous solution procedures. In line
with this reasoning, the transfer rates after a hint for the attack fortress and
parade groups were 76% and 49%, respectively, Holyoak and Koh (1987) found a
similar result for versions of the lightbulb story that manipulated the similarity
of the solution constraint to that in the tumor problem (also see Keane, 1988).
Finally, we consider a study by Reed, Ernst, and Banerji (1974) in which
subjects solved the missionaries and cannibals (MC) and jealous husbands (JH)
problems, with the order counterbalanced across subjects. In each problem,
three people of each of two types must cross a river using a boat that holds two
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people. However, the solution constraints for the two problems differ. For MC,
the cannibals cannot outnumber the missionaries on either side of the river. For
JH, a wife cannot be in the presence of any man unless her husband is also
present. The solution to the latter problem is more constrained because husbands
and wives are paired, whereas'the various missionaries or cannibals are
interchangeable. When subjects received the second problem, they were told
mapping between the problems (husbands = missionaries;, wives = cannibals).
Nevertheless, solution of the second problem was facilitated only for the
direction JH to MC. In this order, the implications of the pairing constraint for
determining legal moves can be imported to MC or ignored. In either case,
solution of MC should be facilitated. Transfer from MC to JH, however, requires
adapting the familiar solution constraint and, therefore, the solution procedure to
account for the pairing of husbands and wives. For a similar reason, Gholson,
Eymard, Long, Morgan, and Leeming (1988) found better transfer from the
“fox/goose/corn” problem to MC than vice versa.

2.2.3. Are Mapping and Pattern Completion ever Difficult? A review of the
literature on analogical transfer reveals only one type of situation for which
mapping and/or pattern completion appears to be difficult: when novices must
overcome misleading surface similarities between the source and target, as in
the “cross-mapping” manipulation used by Ross (1987, 1989) and by Gentner
and Toupin (1986). Ross used mathematical problems involving clementary
probability theory. In the similar-role condition, the source and target involved
similar objects that played corresponding roles in the two problems (e.g., both
problems involved assigning computers to offices). In the different-role condi-
tion, the source and target again involved similar objects, but those objects
played different roles in the two problems (e.g., the source involved assigning
offices to computers). The correct formula was provided with each target
problem, so subjects simply had to instantiate the formula correctly. Neverthe-
less, instantiation (i.e., substitution) accuracy was greater in the similar-role
than the different-role condition (approximately 67% vs. 40%, respectively).
Gentner and Toupin (1986) found similar detrimental effects of cross-mapping
for children reenacting simple stories with new characters.

Although these results suggest that mapping is difficult when similar objects
play different roles in the source and target, the difficulty may interact with
expertise. Misleading surface features may be particularly problematic for
novices, such as Ross's subjects, who are unsure of the important structural
features in the domain and therefore highly weight similarity information (e.g.,
Chi, Feltovich, & Glaser, 1981; Schoenfeld & Herrmann, 1982; Silver, 1981). In
an explicit comparison of different expertise levels, Novick (1988) found that

" “'when appropriate structural information is present in a transfer situation, novices

have greater difficulty than experts in ignoring misleading similarity informa-
tion. Gentner and Toupin (1986) found similar results for their comparison of
different age groups: when relevant structural information was provided (their
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“systematic” condition), younger children (aged 4-6) but not older children
(aged 8-10) were adversely affected by the cross-mapping manipulation.

Because pattern completion has not been distinguished from mapping and
adaptation in any empirical studies of transfer, the factors that determine its
degree of difficulty are not known. We would venture two predictions. As is the
case for mapping, one important factor may be the solver’s level of expertise in
the source and target domains. In addition, because it should be easier to create
new target propositions when all of the appropriate object and predicate
mappings arc known (i.e., when inferences require only CWS) than when some
of the analogous objects and/or predicates must be generated in the target
domain (i.e., when inferences require CWSG), we would expect the success of
pattern completion to be dependent on the success of the mapping process. Using
a mapping task and algebra word problems similar to those used by Reed (1987),
Novick (1992) found support for both of these predictions concerning the
substitution component of pattern completion.

We now attempt to show how these theoretically and empirically motivated
distinctions among component processes in analogical transfer can be modeled
within a hybrid symbolic-connectionist system. Our starting point is the ACME
model of mapping proposed by Holyoak and Thagard (1989).

3. A SYMBOLIC-CONNECTIONIST MODEL OF
ANALOGICAL MAPPING AND PATTERN COMPLETION

We now describe the ACME model of mapping as it has been extended with
CWS and CWSG procedures for analogical pattern completion, and report
several computational tests and simulations of some of the relevant cmpirical
results described above. We begin with a computational experiment that tests the
robustness of the system, and at the same time provides transfer results that can
be compared to those obtained using a standard connectionist learning al-
gorithm, back-propagation (Rumelhart, Hinton, & Williams, 1986).

Although several models of analogical transfer that include the CWS principle
have becn proposed, no systematic tests have been renorted of the robustness of
such systems given impoverished analogs as inputs. Indeed, no systematic tests
of robustness have been reported for models of either mapping or postmapping
transfer processes. Models of mappings have typically been applied to represen-
tations that are nearly isomorphic; it is unclear how well the systems could map
less orderly representations. In natural settings, use of analogy typically involves
situations in which at least one of the analogs—the novel target—is imperfectly
understood. A model of human analogical transfer must be sufficiently robust as
to be able to identify systematic correspondences between analogs despite gaps
in the initial representations, and then procecd to generate plausible inferences to
fill those gaps.

COMPONENT PROCESSES IN TRANSFER 131

In this scction we report tests (described by Melz & Holyoak, 1991) of the
robustness of the ACME with CWS transfer system. We performed a number of
computational experiments in which we randomly deleted information from one
or both of two originally isomorphic analogs, and observed the degree to which
the system could reconstruct the damaged analogs. We compare our transfer
results with those produced by a back-propagation learning system proposed by
Hinton (1986). We first present the example that we used to test the robustness of
our transfer mechanism, and describe the system for which it was originally
constructed, Hinton's (1986) back-propagation model of rclational learning.
Then we describe ACME and its CWS pattern-completion algorithm, which
uses the output of the mapping process to transfer knowledge between two
analogs. Finally, we present a serics of computational experiments designed to
cxplore the robustness of the proposed transfer mechanism.

3.1. Learning Family Trees with Back-Propagation

Hinton (1986) described a back-propagation network that he trained on proposi-
tional representations of family trees. The primary purpose of Hinton's study
was to determine whether the hidden units of the network could develop
intuitively meaningful representations of abstract features of a corpus of
propositions. The basic family trecs that the network learned, and which were
also used in the present study, arc depicted in Figure 2.1. As is visually apparent,
these English and Italian families have an isomorphic structure (e.g., Christo-
pher enters into the same pattern of kinship relations as does Roberto). Using 12
common relational terms (father, mother, husband, wife, son, daughter, brother,
sister, uncle, aunt, nephew, and niece), cach family can be described by a set of
56 propositions about relationships among the 12 individuals. In Hinton’s project,
propositions of the form (personl relation person2) (e.g., Emilio has_father
Roberto)) were translated into a connectionist representation and presented to the
nctwork. The input layer consisted of 24 units representing localist encodings of
cach of the prople who could fill the personl role (12 Italians and 12 English),
and 12 localist encodings of the relations (e.g., has_mother, has_uncle, etc.).
The 24 personl units were connected to a 6-unit hidden layer, ad the 12 relation
units were connected to a separate 6-unit hidden layer. These two discrete hidden
layers were both connected to a further [2-unit hidden layer, which in turn
projected to another 6-unit hidden layer. This final hidden layer projected to an
oulput layer representing the 24 possible fillers of the person2 role.

The network was trained by clamping the appropriate personl and relation

: . units in the input layer, and person2 unit(s) in the output layer, and adjusting the
" weights using back-propagation. Training was based on approximately 96% of

the possible propositions, with 1,500 sweeps through the training set. After
training, clamping personl/relation pairs in the input layer could accurately
activate the correct person? unit(s) in the output layer (including multiple fillers
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Figure 2.1.
Isomorphic family trees. {From “Learning Distributed F_Iepresentatioqs of
Concepts,” by G.E. Hinton, 1986, Proceedings of the Eighth International
Conference of the Cognitive Science Society, Hillsdale: NJ:- Erlbalfm. Re':
printed by permission.) Note that =" signifies the relation “is married to.

Christopher = Penelope Andrew = Christine
l [ i = les
Margaret = Arthur Victoria = James Jennifer = Charle
| |
Colin Charlotte
Roberto = Maria Pierro = Francesca
Gina = Emilio Lucia = Marco Angela = Tomaso
| I
Alfonso Sophia

of the person2 role, as in the case of a person with two aunts). For example, if lh.e
input units for “Emilio” and “has_father” were clamped, the output unit
“Roberto” would be turned on. The hidden units in the network were al?le' to
abstract useful features, such as nationality and generation, from the training
set. When tested on its ability to complete the 4% of the propositiqns that had not
been used in training, the network was correct on 100% of these in one run and

75% in a second run.

3.2. Analogical Mapping and Pattern Completion in ACME

3.2.1. Mapping. Holyoak and Thagard (1989) frame.d the prol?Icm of
analogical mapping in terms of parallel satisfaction of multiple constraints that
jointly determine the optimal correspondenc.es bem:een elements of the source
and target analogs. Their ACME model receives as 'mput a source analog .and a;
target analog represented in predicate-calculus notfmon. Each analog coqmsts 0
a set of propositions, where each proposition consists 0!" an n-place predicate, a
list of constituent objects of the predicate, and a proposition label. For exar:np]e.
the fact that Emilio’s father is Roberto would be represented by the proposition:

(has_father(Emilio Roberto)Il).
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The full representations of each family would consist of 56 propositions, each
involving a two-place relation.

The central constraint on analogical mapping embodied in the ACME model
is the pressure toward isomorphism. Isomorphism requires that: (a) the elements
of the target and source analogs map one-to-one, and (b) if a proposition in the
target maps to a proposition in the source, the constituent predicates and objects
of the target proposition must map onto the corresponding elements of the
source. To enforce the isomorphism constraint, ACME constructs a network in
which nodes represent elemental mapping hypotheses and weighted links
between the nodes represent constraints between mapping hypotheses. Mapping
hypotheses are created for correspondences of elements of the same logical type
(i.e., propositions, n-place predicates, and objects). If the analogs can be divided
into major constituent units, or “ficlds"” (c.g., a problem representation might be
divided into propositions describing the initial state, the goals, and the solution),
then the above restrictions on unit formation are applied separately for each field
type. (For the family-tree problem, each analog is treated as a single undifferen-
tiated field.) Symmetric excitatory links are created between mapping hypoth-
eses that are consistent with each other, and symmetric inhibitory links are
created between hypotheses that are inconsistent. For each potential proposition
mapping, an excitatory cluster of units is formed by creating excitatory links
between the proposition mappings and the corresponding mappings of the
propositions’ predicates and arguments. Inhibitory links are placed between
alternative mappings of the same element, in order to enforce the pressure for
one-to-one mappings.

Figure 2.2 depicts a portion of the network ACME creates when presented
with the representations of the English and Italian families as source and target
analogs, respectively. Two excitatory clusters based on the proposition mappings
El=11 and EI =13 are shown, where EJ is “Arthur has_father Christopher,” /1
is “Emilio has_father Roberto,” and /3 is " Alfonso has_father Marco.” These
proposition mappings inhibit each other because they represent competing
hypotheses about the mapping of E! (similarly, the mappings EI=/! and E2 =]
are mutually inhibitory). In addition, the object mappings associated with the
conflicting proposition mappings are inconsistent, so they too inhibit cach other.
(Excitatory and inhibitory links are represented by solid and dashed lines,
respectively, in the figure.)

In addition to isomorphism, ACME postulates that the degree to which
predicates in the two analogs are semantically similar is an important factor
affecting mapping. ACME implements the constraint of semantic similarity by
connecting any mapping unit relating two semantically similar predicates to a

" special “semantic unit” that has its activation clamped to the maximum value.

Units relating identical predicates are automatically connected to the semantic
unit with relatively high values of excitation. In the experiments reported in this
paper, only mappings of identical predicates have connections to the semantic
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Figure 2.2, ) )
Partial mapping network, mapping the English family to the Italian family.
Note that ="' signifies the relation “"maps to.”

Christopher=Marco

has_lather=has_father

“hristopher=Roberto

Chrweetoiie 3

unit. In Figure 2.2, for example, a connection exists between the semantic unit
and the predicate mapping has_father = has_father.

A third mapping constraint incorporated in ACME concerns the degr.ee to
which elements or element correspondences are considered to be pragmauc‘a[]y
relevant to the analogist’s goals. If an element is deemed to be. especially
important, all mapping hypotheses involving that element are linked to a
clamped “pragmatic unit.” In addition, any correspondence (e.g., {51=H) that
is assumed to be known in advance of the mapping process may be linked to the
pragmatic unit. o

Each of the nodes in the network has an activation value, which is allowed to
continuously vary between a minimum and a maximum value (e.g., —.3 and 1).
To run the network, the semantic and pragmatic units are c]ampf:d to an
activation of one. All other units are initialized at some minimal activatmn (e.g.,
.01), which allows the settling process to begin even for an.a]oglcs _Ihé.lt lz?ck
semantic and pragmatic links. The network is then re]z.axeq using the actllva.uon
updating rule suggested by Grossberg (1978). The activation level of unit j on
cycle t+ 1 is given by

aft+1} = aft} (1—d} + enet, (max — af1)) + inet, (aft} — min),
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where d is a decay parameter, enel, is the net excitatory input, and inet; is the net
inhibitory input (a negative number), with min = —.3 and max = 1. The value
of eret,is equal to Zw,o(1) for w, > 0, and the value of inet, is equal to the same
quantity when w, < 0. The quantity o(r) is the output on cycle 1 of a unit with
activation a,, with of1) = maximum(a,t), 0). Activation updates are syn-
chronous, and the updating algorithm is currently implemented in *LISP on a
CM2 Connection Machine.

3.2.2. Pattern Completion. Once a sct of mappings for objects, predicates,
and propositions has been obtained by relaxing the system, we invoke the simple
CWS pattern-completion procedure described earlier to gencrate candidate
inferences based on the mappings and the structure of the analogs. Pattern
completion is accomplished by an explicit symbolic algorithm that operates on
the output of the relaxation algorithm. The criteria ACME uscs to generate a
proposition based on an unmapped proposition P is that the best mapping of P
must have an activation below some threshold value, and the predicate and
objects of P must have activations above the threshold. For all the simulations
reported in this chapter, this threshold was chosen to be .2 Note that the above
procedure for inference generation is inherently symmetrical; the new proposi-
tion can be added to either the source or the target analog. We investigated
whether transfer performance is in fact symmetrical when the input representa-
tions are degraded.

3.3. Transfer Tests of ACME with CWS

The family-tree problem has several virtues as the basis for computational tests
of an analogical transfer model. First, the two complete family structures are in
fact isomorphic, so analogical mapping and pattern completion should be
possible. Second, the full representations are a well-specified set of proposi-
tions, so we can quantify the degree to which analogs have becn corrupted by
eliminating propositions from the input representations. By deleting proposi-
tions from the inputs, we can systematically reduce the degree to which the input
representations (as distinct from the underlying family structures) are iso-
morphic, and examine the robustness of the mapping and pattern completion
mechanisms. Third, because Hinton (1986) investigated generalization by back-
propagation using essentially the same problem, we can make a rough com-
parison of the degree to which missing information can be restored by analogical
pattern completion to the success of generalization after learning by back-
propagation.

- 3.3.1. Mapping the Intact Family Trees. The first requircment was to
demonstrate that ACME could in fact map the two analogs if the complete
representations (i.e., 56 propositions for each family) were provided as inputs.
This is a nontrivial computational problem simply because the mapping network
formed is very large (3,424 mapping units interconnected by 381,224 symmetri-
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cal links), due to the fact that all propositions involve two-place relations (so that
any proposition in one analog could potentially map to any proposition in the
other). The major parameter values used were .005 for decay, excitation, and
similarity of identical predicates, and — .16 for inhibition. The network settled
into a stable asymptotic state after 196 cycles of activation updating, producing a
complete and correct set of correspondences between elements of the two
structures. Table 2.4 presents the winning mapping units for predicates and
people. As shown in the table, all the correct mappings had asymptotic
activations close to the maximum possible value of one.

3.3.2. Reconstruction of Damaged Analogs With Identical Predi-
cates. Having established that ACME can map the intact analogs, we next
performed a series of computational experiments in which we randomly deleted

Table 2.4,
ACME Solution for Family-Tree Problem With Intact Analogs

English Family ttalian Family

Corresponding Predicates, with Asymptotic Activations of Winning Mapping Units

HAS_FATHER HAS_FATHER (0.95)
HAS_MOTHER HAS_MOTHER (0.95)
HAS_HUSBAND HAS_HUSBAND (0.92)
HAS_WIFE HAS_WIFE (0.92)
HAS_SON HAS_SON (0.95)

HAS_DAUGHTER (0.95)
HAS_BROTHER (0.89)

HAS_DAUGHTER
HAS_BROTHER

T HAS_SISTER (0.89)
::g:ﬁﬁcfs HAS_UNCLE (0.94)
HAS_AUNT HAS_AUNT (0.94)
HAS_NEPHEW HAS_NEPHEW (0.95)
HAS_NIECE HAS_NIECE (0.95)

Corresponding Persons, with Asymptotic Activations of Winning Mapping Units

CHARLES TOMASO (0.94)
MARGARET GINA (0.94)
CHRISTINE FRANCESCA (0.94)
PENELOPE MARIA (0.94)
JENNIFER ANGELA (0.96)
ANDREW PIERRO {0.94)
CHARLOTTE SOPHIA (0.92)
COLIN ALFONSO (0.92)
JAMES MARCO (0.96)
VICTORIA LUCIA (0.96)
ARTHUR EMILIO (0.96)

CHRISTOPHER ROBERTO (0.94)
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propositions from the family-tree representations provided as inputs to ACME.
Deletion of a proposition implies that no mapping units are formed for it. We
then used ACME to map the damaged representations, after which we applied
the CWS pattern-completion mechanism to attempt to reconstruct the complete
analogs. The results of our first series of experiments on analog reconstruction
are presented in Figure 2.3.

In our first experiment, we randomly deleted propositions from both analogs,
and observed the proportion of deleted propositions that were correctly or
incorrectly created by the transfer mechanism previously described, The results
of this experiment are shown in Figure 2.3A. The abscissa represents the
proportion of propositions that were deleted from the entire set of propositions in
the two analogs. The ordinate represents the proportion of the deleted proposi-
tions that were either created correctly (labeled “‘correct”) or incorrectly
(labeled “commission error”). Each data point on this and subsequent graphs
represents the average of the results of two runs. ACME was able to reconstruct
100% of the missing propositions when 4% had been deicted, and 53% of those
missing when 10% had been deleted, without making any commission errors.
Correct restorations diminished to 23% when the deletion rate was increased to
20-30%, and at higher levels of deletion correct inferences were essentially
eliminated. Commission errors were very infrequent even at the highest levels of
damage to the analogs.

The above experiment involved symmetrical damage to the two analogs, with
bidirectional transfer between the two analogs. In contrast, naturalistic analogi-
cal transfer typically involves asymmetric transfer from a well-understood
source to a poorly understood target. o more closely approximate the
naturalistic asymmetry of analogical transfer, we ran a second experiment in
which we restricted proposition deletions to only a single analog (in this case, it
happened to be the Italian family). As the results in Figure 2.3B clearly indicate,
transfer was far better than in the previous experiment, Full recovery of deleted
propositions was possible at deletion rates of up to 50%, and even at a deletion
rate of 70% ACME was able to recover 43% of the missing propositions.

The difference in robustness between the two deletion procedures is extreme
indecd. For example, deleting 60% of the propositions in one analog produces
the same quantity of missing information as does deleting 30% of the
propositions across both analogs. Yet the former procedure yields almost perfect
recovery (Figure 2.3B), whereas the latter procedure allows recovery of almost
none of the missing information (Figure 2.3A). We next explored potential
structural explanations for this difference in robustness as a function of whether
deletions were made from one or two analogs.

One possible explanation for the greater robustness of pattern completion
after deletion from a single analog is that when random deletions occur across
both analogs, then corresponding propositions (e.g., EI and 71) may both be
deleted, in which case the CWS mechanism is guaranteed to fail (because there
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Proposition reconstruction for three computational experiments.
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will be no proposition from which to gencrate an analogous inference). (Of the
deleted propositions, the proportion of propositions for which we can expect
such an event to occur is simply p, the proportion of the total propositions that
are deleted.) In contrast, if one analog is left intact, it is guaranteed that one
member of each proposition pair is available (namecly, the proposition in the
source), To test the effect of this structural advantage for the latter procedure, we
introduced a third deletion scheme that allowed propositions to be deleted from
both analogs, with the restriction that at most one proposition from each pair of
corresponding propositions could be deleted. The resulls, shown in Figure 2.3C,
indicate that although this procedure produces somewhat more robust transfer
than docs free deletion from both analogs (Figure 2.3A), it remains much worse
than when deletions are performed from only a single analog (Figure 2.3B),
These results suggest that some other structural factor must account for the
greater robustness .of transfer when deletions are restricted to a single analog.

Another structural factor that varies when deletions are made from one versus
two analogs involves the possible generation of incorrect proposition mappings.
In the case where deletion is restricted to a single structure, for any proposition
such as IS5 in the target structure that is deleted, the strongest (incorrect)
mapping of its corresponding source proposition (E5), for example,E5 =110, will
be inhibited by the correct mapping unit, here EIQ=110. Because EI0=110
represents the mapping of corresponding propositions, it will have a high
activation and will drive the incorrect mapping ES = 110 well below the threshold
required for generating transfer candidates. Hence, Proposition ES in the source
will be left unmapped, making it a candidate for generation of an inference about
the target by CWS,

The single-structure-deletion case may be contrasted with the case in which
proposition deletions occur in both analogs. In this case, incorrect proposition
mappings do not necessarily experience the devastating inhibition described
above. For example, consider the case in which Proposition EJ0 is deleted from
the source and /5 is deleted from the target. If /0 and ES share a common
relation or object, they may produce a reasonably strong mapping. Because
neither EJ0=110 nor E5=1I5 exists, the mapping ES=/I0 faces no serious
competition, and thus is able to produce an activation level above the transfer
threshold, preventing subsequent transfer from ES.

It follows that more errors in proposition mappings can be expected when
deletions are made from two analogs rather than one. An indeed, this prediction
was confirmed in our ACME simulations. When deletions were made from both
analogs (in both the unrestricted and restricted deletion experimcnts), errors in
proposition mappings began to appear at the 10% deletion level (an average of
three errors), rising quickly to an average of more than 25 such errors at the 40%
and 50% deletion levels. In contrast, when deletions were made from only one
analog, proposition mismappings did not occur at all until the 70% delction
level, which produced an average of just four such errors. Thus, the greatly
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increased frequency of proposition mismappings that results when deletions are
made in both analogs appears to be the main reason for the reduced robustness of
pattern completion in that condition.

3.3.3. Analogical Pattern Completion Compared to Generalization by Back-
Propagation. These computational experiments with the family-tree problem
reveal that ACME with a CWS pattern-completion mechanism was' able to
produce accurate and robust transfer when deletions were restricted to a single
analog. If as many as 50% of the propositions in the target analog werc deleted,
the system was able to recreate all of the missing information without error;
significant recovery was obtained cven if as many as 70% of the target
propositions were deleted. Transfer was much more impaired when deletions
were made from both analogs, rather than just the target. Mclz and Holyoak
(1991) reported an additional set of experiments in which the semantic pressure
supporting mappings of identical elements is removed. The basic pattern of
results for the experiments reported here was found, with only a mild reduction
in the robustness of transfer. Hence, transfer with CWS appears to depend
primarily on the structural configuration of the analogs, rather than any
superficial similarity between them. These computational results lead to the
prediction that transferring knowledge from a well-understood source to a poorly
understood target will be easier than transferring knowledge between two
moderately understood analogs, because mismappings are more likely to occur
in the latter case. As far as we know, this prediction has not yet been directly
tested for human analogical transfer.

It is of interest to compare the performance of ACME with Hinton's (1986)
model of learning by back-propagation as applied to the family-tree problem.
Our system appears better able to recover implicit missing information for the
family trce problem. Moreover, its superior performance is based on only a
single presentation of the problem, rather than on 1,500 training trials. It is
important to note, however, that obvious and significant differences exist
between the two systems. On one hand, ACME requires that the propositions
about the two families be explicitly separated into target and source analogs,
whereas Hinton’s system received all propositions intermixed, and in fact
learned that the distinction between English and Italian people was an important
regularity. On the other hand, Hinton’s generalization task involved giving the
system the first argument and relation and asking it to generate the second
argument, whereas ACME was asked to generate entire new propositions without
any explicit partial cues. In addition to these differences in the transfer task
performed by the two systems, the general aims of each system are quite
different. Hinton’s system is primarily intended to abstract general features from
a body of propositions. ACME, on the other hand, has no such generalization
capability, but rather conjectures the existence of unstated information based
solely on structural correspondences between two sets of propositions. It is
possible that the two approaches to transfer can be integrated so that they
usefully complement each other.
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4. ANALOGICAL TRANSFER IN PROBLEM SOLVING
4.1. The Need for Element Generation and Pragmatic Constraints

The ACME-plus-CWS model tested on the family-tree problem is not, by itself,
adequate to model analogical problem solving. One basic deficit, noted earlier,
hinges on the fact that transfer of a source solution to an unsolved target problem
typically requires not only substitution of mapped elements, but also the
generation of additional target objects and predicates to fill corresponding roles
to previously unmapped objects and predicates in the source solution. For
example, if an operator is introduced in the solution to the source, a correspond-
ing operator must be generated in the target representation in order to construct
an analogous solution.

To address this requirement, we further augmented the pattern completion
mechanism in ACME by allowing the model to generate new elements. As we
noted earlier, element generation “straddles the line” between what we are
terming “pattern completion” versus “adaptation.” In our usage, pattern
completion can generate an abstract description of an element to be added to the
target representation; however, identifying an actual object or predicate in the
target domain that meets this description will require additional analysis of the
target domain itself, and hence would be classificd as adaptation. For our present
purposes, we wished to model the pattern-completion aspect of generation,
rather than provide a full account of subsequent adaptation as well. Accordingly,
our “copy with substitution and generation” (CWSG) algorithm simply postu-
lates target elements. For objects, nothing more is done: the semantic properties
of a generated target object are simply implicit in the predicates that apply to it.
For predicates, we made the simplifying assumption that as a dcfault, a
generated predicate in the target will be assumed to be identical to the
corresponding source predicate. Thus, if a certain operator is used in the source,
ACME with CWSG transfers the same operator into the target. Although this
assumption is clearly oversimplified (as it is easy to construct cases where the
required target predicate is a superordinate or coordinate of the source predicate;
see Kokinov, this volume), the “identity default” is adequate for initial
explorations. The algorithm can be applied to generate “higher order” proposi-
tions that take propositions as arguments; however, this feature is not necessary
for the examples discussed here.

A crucial issue that must be addressed when an element-generation algorithm
is used is specifying when it is allowed to apply. The ACME-with-CWS model
discussed above tends to be conservative in generating transfer inferences
because an unmapped source proposition is only used to generate a target

" inference if all elements of the source proposition have been mapped. But if

unlimited CWSG is introduced, then any unmapped source proposition will
generate a transfer inference, because if any of the elements of the source
proposition are not already mapped to target elements, a correspondent in the
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target will simply be postulated. Such a loose criterion for inference generation
will lead to rampant commission errors unless the source is in fact isomorphic to
the target domain (or to a subset of the target domain), which is virtually never
the case for complex realistic problem domains.

This issue raises the general problem of how pragmatic knowledge can be
used to constrain inference generation. The approach we take here is based on
the assumption that the problem solver knows something about what parts of the
source are particularly relevant to the purpose for which the analogy is being
used. As we noted earlier, ACME allows analogs to be divided into major
constituents, or fields. For problems, the fields might include the initial state,
the goals, and the solution. Typically, a problem solver would attempt to
establish correspondences between the initial state and the goals of a source and
target, and then use the resulting mapping to transfer the source solution to the
target. It follows that at the pattern-completion stage, it is the solution field of the
source that is crucial for generating inferences, to fill the previously empty
solution field for the target. Accordingly, in the tests we will report here, we
restrict the application of CWSG to the solution field of the source analog.

4.2. Applications of ACME-plus-CWSG to Transfer Between Algebra
Word Problems

As an initial test of ACME-plus-CWSG as a model of human analogical problem
solving, we used the system to simulate the mapping and equation-transfer
results obtained by Reed (1987), which we described earlier, using the work and
mixture problems presented in Tables 2.1 and 2.2, respectively. The first step
was to formalize the algebra problems in predicate-calculus representations of
the sort that ACME takes as inputs. Appendix I, Parts A and B, present the
fepresentations constructed for the work and mixture problems, respectively,
The specific details of the formalization are rather arbitrary, but we enforced a
number of consistent conventions. All variables are given names with the suffix
“*", names of values of numerical variables are additionally distinguished by
the prefix “val.™ Specific numerical values have the prefix “num,” and other
objects have the prefix “obj.” The relation between specific values and their
corresponding variables is represented by the special predicate “instantiates.”
We assume that all predicates stated for variables are inherited by their
instantiations (e.g., in the representation of the “pipe” problem, because
“num8" is an instantiation of the variable “val_hrs*,” and proposition P6 states
that this variable is a “time," it follows that nums8 is also a time.) Although this
assumption allows us to reduce redundancy in the representations, it does not
directly affect the operation of ACME, which treats “instantiates” the same as
any other predicate for the purpose of mapping.

Mathematical functions such as “‘quotient-of”" are expressed as three-place
predicates, in which the first two arguments represent inputs and the third

o s Tkt a

b g o T oA Skt ot bt

)

"

1. u.,r-;-zﬁ'ﬁer:-

3 ehrn g v A o i A

COMPONENT PROCESSES IN TRANSFER 143

represents the output. Operators are given the suffix “1”: (e.g., “multiply!”
represents an instruction to perform a multiplication). Other details concerning
the interpretation of the representations are provided as comments (lines that
begin with ;™). Note that the “solution” field is empty in the representations of
target problems.

Table 2.5 summarizes the size of the ACME networks formed for the four
mapping simulations based on the work and mixture problems, and the number
of cycles required for the network to settle in each run, All parameter values in
these runs were identical to those employed in the simulations of the family-tree
problem described above. Note that cycles to settle remains constant over a
roughly two-fold increase in the network size from the work to the mixture
problems, indicating that mapping difficulty is largely independent of the size of
the representations. Settling time was somewhat longer for the mapping between
“similar” mixture problems, which as we will see pose the most serious
departure from isomorphism.

Tables 2.6-2.9 present the basic mapping and transfer solutions generated by
ACME for each of the four runs. The winning mappings units and their
asymptotic activations are given for all predicates, operators, and objects. Note
that in each run all the operators and several numerical objects introduced in the
source solution (representing computed quantities) are left unmapped (i.e.,
mapped to “NIL”), simply because the initial representations of the target
analogs lack solutions. With these exceptions, the winning correspondences in
the first three runs (isomorphic work, similar work, and isomorphic mixture
problems; see Tables 2.6 and 2.8) are entirely correct.

Tables 2.7 and 2.9 present the solutions generated by ACME's CWSG pattern-
completion algorithm, using the mapping results and the structure of the source
analog. The left column gives the source proposition from which each target
proposition was constructed (see Appendix I for details on the source proposi-
tions), and the middle and right columns give the corresponding constructed
inferences for the isomorphic and similar targets, respectively. (The inferences
are not given proposition labels.) Recall that the basic pattern completion

Table 2.5,
Network Size and Settling Time for ACME Solutions to Reed's (1987)
Algebra Analogs

Work Problems Mixture Problems

Similar
(Nurse--> Alloy)

Similar
(Pipe--> Tank)

Isomorphic
{Nurse--> Grocer)}

Isomorphic
{Pipe--> Typing)

* units 421 553 959 904

links 4691 7091 . 18521 16485
cycles to 175 176 185 232
settle




Table 2.6.

Results of ACME Mapping For Work Problems Used by Reed (1987}

Source (Pipe)

Isomorphic Target (Typing)

Similar Target {Tank)

Predicate Mappings with Asymptotic Activations

PIPE

TANK
COMBINE
FILL-TIME
TIME
FILL-RATE
RATE
QUOTIENT-QOF
NUMBER

ONE
INSTANTIATES
TWELVE

EIGHT

KNOWN
PORTION-COMPLETED
PROPORTION
EQUAL

Operator Mappings

DIVIDEI
MULTIPLY!
ADDI

PERSON (0.73)
MANUSCRIPT (0.58)
COMBINE (0.81)
TYPE-TIME (0.95)
TIME (0.70)
TYPE-RATE (0.77)
RATE (0.69)
QUOTIENT-OF (0.81)
NUMBER (0.87)
ONE {0.69)
INSTANTIATES (0.96)
TEN (0.54)

FIVE (0.58)

KNOWN (0.70)

NIL

NIL

NIL

NIL
NIL
NIL

Object Mappings with Asymptotic Activations

NUM_H

‘NUM8

‘NUM12

NUM1

VAL_1/HRS*
OBJ_PIPE®
VAL_HRS*
OBJ_TWO-PIPES
OBJ_OIL_TANK
OBJ__PIPE_LG
OBJ_PIPE_SM
SUM_WHOLE_TASK
PRODUCT_PIPE_LG
PRODUCT_PIPE_SM
VAL_1/HRS_LG
VAL_1/HRS_SM

NUM_H (0.89)

NUMS (0.97)

NUM10 (0.89)

NUM1 {0.85)
VAL_1/HRS* {0.88)
OBJ_PERSON* {0.95)
VAL_HRS* (0.95)
OBJ_TWO-PEOPLE (0.90)
OBJ_MS (0.96)
FLORENCE (0.91)
ANN (0.91)

NiL

NIL

NIL

NIL

NIL

PIPE (0.49}

TANK (0.71}
COMBINE (0.81)
FILL-TIME (0.95)
TIME (0.71}
FILL-RATE {0.81)
RATE (0.70)
QUOTIENT-OF (0.83)
NUMBER (0.87)

ONE (0.69)
INSTANTIATES (0.96)
TWENTY (0.54)
FIFTEEN (0.58)
KNOWN {0.70)
NIL

NIL

NIL

NIL

NIL

NIL

NUM_H (0.90)

NUM15 (0.97)

NUM20 (0.89)

NUM?1 (0.87)
VAL_1/HRS* {0.88)
OBJ_PIPE*(0.95)
VAL_HRS* (0.95)
0BJ_TWO-PIPES (0.90)
OBJ_WATER-TANK (0.96)
OBJ_PIPE_LG (0.90)
OBJ_PIPE__SM (0.90)
NIL

NIL

NiL

NIL

NIL

Note: Source elements preceded by the symbo! “+" indicate those used by Reed (1987)

in his mapping task.
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algorithm is to: (a) substitute the appropriate target element if one is available
from the mapping output; or if the source element was left unmapped, then (b)
for predicates/operators, transfer the identical element from source to target; and
(c) for objects, postulate a new target object with an arbitrary label.

The solutions generated for the two isomorphic mappings (middle columns of
Tables 2.7 and 2.9) are entirely correct. Reed’s (1987) subjects also were
relatively successful in generating the correct equations for the isomorphic
problems. (Human subjects, unlike ACME, were less successful on the mixture
than the work isomorphs.) Note that the object-generation component of CWSG,
because it introduces a single new target object to replace all occurrences of the
unmapped source object, necessarily preserves all analogous variable bindings.

One caveat to the claim that ACME is fully successful in equation generation
for the isomorphs should be noted. For the work problems (Appendix I.A), the
representations include some information about the “start state” that we assume
subjects are likely to infer, but which is not actually included in the problem
statement. In particular, the representations introduce the concept of “typc rate"
for the isomorphic Typing problem (Proposition T7). Because this concept is
present in the target representation, ACME is able to correctly map “fill rate” in
the source (Pipe problem) to “type rate” in the target (see Table 2.6). The
pattern-completion mechanism then simply substitutes the corresponding predi-
cate “type rate” for “fill rate” in the source Proposition P31, along with the
appropriate corresponding objects, to create an analogous target proposition (see
Table 2.7). Suppose, however, that we did not introduce the concept “type rate”
in the start state for the target problem. In that case ACME's CWSG algorithm
would simply copy over the concept “fill rate” from the source to the target,
which would of course result in an overgeneralization of the conceplt.

The fact that Reed's (1987) subjects performed quite well on the equation-
transfer task for this pair of problems suggests either that: (a) they inferred the
concept represented by Proposition T7 while encoding the target problem, or that
(b) they were able to use semantic knowledge to appropriately modify “fill rate”
when transferring that predicate to the target domain. Regardless of the
appropriate explanation in this case, it is clear that a more complete implementa-
tion of CWSG will require greater semantic knowledge to guide search for the
most appropriate predicate in the target domain to substitute for the generating
predicate in the source (cf. Kokinov, this volume),

One aspect of the solution transferred for the work isomorphs is of particular
interest because it provides a counterexample to the claim that analogical transfer
can be appropriately constrained by transferring only relations from the source to
target, and not one-place predicates or objects (Gentner, 1983; Falkenhainer et
al., 1989). Note that from source Propasition P27, which calls for division of 1 by
12 to produce a quotient, ACME constructs a targel proposition calling for
division of 1 by 10 to produce a quotient. The numerator | (“numl”) is
transferred by virtue of the identity mapping, numl=numi. In this case a
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particular object—the number 1—is transferred from the source to the target.
This example thus contradicts the proposal that analogical transfer always "l'g = —
involves ignoring object identities and one-place predicates. e 5 gc.:
For the similar work analogs, the source problem involves two agents working T ) g - _
together to complete a task, whereas the target problem also involves an 2 % X g o
additional negative contribution (use of water as the pipes fill the tank). Thus, F ,“Tf < Z 2
although the correct mappings are obtained for all source elements, the target - o o ; S .
solution generated is inadequate because it fails to include any representation of b3 N E AP 8
the water usage (see Table 2.7). Modifying the equation to reflect this additional a _ gl % B g_-‘ g w § g
constraint would require adaptation, which the current ACME model, like most E g = gu—:: RS & s g s
of Reed's (1987) subjects, is unable to perform. - %g E‘ 2.0 &I dT BT 7 £
Finally, Tables 2.8 and 2.9 present the results for the most difficult of the = I «? . g 2 e _ ed = 2
analogy problems that Reed tested, the similar mixture problems. In the source x _ S¥ss g_J Pi@ 3 © @ 3 20 g g c
problem, the solution equation calculates the amount of acid in the mixture by ?? ‘E 285382 Gawwlug F82=s535 =% 5
multiplying the acid concentration (8%) by the pints of solution (4.5), a step Y :":. S 3 © < 30 $2° $3298 068838828
stated as N48 in the representation of the Nurse problem in Appendix I.B. The o g§|5258Kg8= §923 81888855 ¢
target Alloy problem is actually simpler, in that the pounds of copper in the l'-: HE E E _E_g E g' )= g > E goga E % E EE &
mixed alloy (the analog of the amount of acid in the mixed solution) is directly 8 &8 T3 IR = FR-< gooaa o &
given (10.4). However, this simplification violates isomorphism, and leads both 2| E(3E22F2528522833 222283
human subjects and ACME to both make mapping errors and to generate an N2 PlE=====sStststivzzeszze 2
erroneous equation for the target. The object “num8% in the source is mapped o3 o
to “num_10.4" in the target, even though the former is a percentage and the a8 § f
latter is a weight (and the predicate “eight-one-hundredths” is mapped to “ten- = %‘ _ S 8
point-four™). This mismapping arises because each of the mapped elements & 5 S 2
lacks a good “mate”: the target does not provide a percentage corresponding to g _F F= = S ;
num8%, and the source does not provide a weight corresponding to num_10.4. o S2 oR8F ¥g 3
Because both are numbers related to the respective mixtures, in the absence of o 5.3 8% 94 £
oy iy .. oo |~ o Lo _
any better possibility they are similar enough to map to each other. S S &J Szlz z =1 3 >
Because of this mismapping, ACME’s pattern-completion mechanism pro- ﬁ K s El > '578 £« s r“—'zl _“N:A 2
duces an erroneous equation, via an inference derived from N48 in the source. To E s sa § ©9 § 2 235 W 2 562 3| 2
mimic the structure of the source equation, ACME simply substitutes the target 3 £159%5y -g‘l_u': o SSo S ] = mmmm=| D
object num_10.4 for the source object num_8%. The result is that instead of £ & z g neSo & %iﬁ 3 §,§ 5288888 i
recognizing that num__10.4 directly represents the weight of copper in the mixed ; :;'3 o § o E § E = 3 285282 “leg‘ g .E‘:O?Jg‘g o
alloy, this value is instead multiplied by another weight, num60. This may seem ; a HETEY- :—f > EE > = S erea P ;
like a ludicrous mathematical howler, but in fact it is the most common error that g g E & ;z,_: w o E 8 = <X = o 2 I80050 § 5
human subjects made for this analogy problem in an earlier study by Reed and ; S E|S¢ 25%0 5 35¢95¢98 3 S32=2:2 S §
his colleagues: “They continued to multiply two numbers together (10.4 and 60) 3 - 2lQs0kSaZaa3aqwz €222 o
even though the quantity of copper in the mixture was directly stated in the test @ £
problem” (Reed et al., 1985, p. 122). Thus, ACME's transfer mechanism seems i 8% dlrnmmo o IR DD DO e N <D :ﬁ
to rather accurately model the performance of human subjects who are able to do i 2|3 EE AN Y eeeeeosysy & 5 glg'
analogical mapping and pattern completicn, but are unable to evaluate or adapt @ = 2
the solution generated by pattern completion, because they do not fully i
understand the target domain. &
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(COPPER-CONTENT {OBJ_ALLOY_MIX obj164))
{MULTIPLY! (NUM_10.4 NUM60 obj164))
y problem is incorrect. Source elements preceded

{ADD! (0obj156 obj160 obj164))

(COPPER-CONTENT (OBJ_ALLOY__BAD obj160))
(NUMBER {obj156))

(COPPER-CONTENT (OBJ_ALLOY_GOOD obj156))
{MULTIPLY! (NUM12% NUM_B obj160))

Similar Target {Alloy) .

(SUBTRACT! (NUM60 NUM_G NUM_B))
(MULTIPLY! (NUM20% NUM_G obj156))
{INSTANTIATES (0bj156 VAL_CU*))
(INSTANTIATES (obj160 VAL_CU*})
(INSTANTIATES (obj164 VAL_CU*))

{NUMBER (obj160))
(NUMBER (obj164))

Table 2.9,

Results of ACME Pattern Completion to Generate Equations for Target Mixture Problems
Used by Reed (1987)

TOTAL-PRICE (OBJ_ALMONDS obj160))
MULTIPLYI {NUM_2.10 NUM_A obj160})

TOTAL-PRICE (OBJ_MIX obj164))
MULTIPLY! (NUM_1.83 NUM30 obj164))
ADD! {obj156 obj160 obj164))

MULTIPLY! {NUM_1.65 NUM_P obj156))
NUMBER (obj156})

TOTAL-PRICE (OBJ_PEANUTS obj156)}

NUMBER {obj164})
{INSTANTIATES (obj156 VAL_$*))

{SUBTRACT! (NUM30 NUM_P NUM_A))
NUMBER (obj160})

Isomorphic Target (Grocer)
(INSTANTIATES (obj160 VAL_$*))
(INSTANTIATES (obj164 VAL_3$*))

Source
{Nurse)

Prop.

*N42

N43

N4a

N45

N46

N47

*N48

N49

N50

N51

N52

N53

N54

N55
by the symbol “«” indicate those used by Reed (1987) in his mapping task.

Note: The bold, italicized propaosition generated for the allo
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Finally, let us consider the responses ACME would produce to the mapping
questions that Reed (1987) administered to his subjects, the results of which
were reported in Tables 2.1 and 2.2. We assume that for clements that can be
mapped directly, ACME would report the winning mapping; and for elements
that lack direct correspondents, ACME would report the target expression that
would be generated during pattern completion. It should be clear from the
previous discussion and the results shown in Tables 2.6~2.9 that ACME produces
entirely correct responses except for the two mismappings for the similar
mixture problems. This pattern of successes and failures is extremely similar to
that produced by Reed’s subjects, who were usually correct on all except these
same two questions, on which they virtually always failed. Thus, ACME with its
CWSG transfer mechanism is able to provide a fairly detailed and accurate
simulation of human mapping and solution transfer for algebra word problems.

4.3. Simulating Mapping and Transfer for Nonisomorphic Arithmetic
Word Problems

The performance of ACME with CWSG in simulating Reed’s (1987) findings
reveals some of the complexities that arise when we consider situations in which
the underlying source and target domains are not completely isomorphic. The
success of the CWS and CWSG procedures depends upon the model’s tacit
assumption that the source and target situations, despite any apparent “gaps” in
their representations, are in fact isomorphic. But if the source includes
propositions that lack parallels in the target situation, commission errors (i.e.,
erroneous inferences about the target) are likely to result. For example, for the
similar mixture problems discussed in the previous section, CWSG generates
the incorrect inference that solving the alloy problem involves multiplying 60 by
10.4. Conversely, if the target requires operators for which no correspondent
exists in the source problem, omission errors are likely. For example, this was
the case for the tank problem discussed in the previous section, in which CWSG
failed to generate an operator to account for the water usage.

It should be clear, then, that successful transfer between nonisomorphic
analogs will depend upon additional pragmatic information that: (a) either
prevents erroneous inferences from being generated (by blocking the application
of CWSG to source propositions identified as irrelevant to the target) or weeds
them out after they are generated (by identifying the inferences as incorrect in
the target situation), and (b) identifies the unique aspects of the target problem
s0 as to create appropriate new operators. In our simulation of Reed's
. experiments, ACME's use of CWSG was restricted to the solution field, an

“example of a pregeneration constraint on inference generation. Posttransfer
evaluation of inferences, as well.as the creation of target-specific operators,
necessarily involves adaptation, a capacity that ACME lacks.
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We will now report sevcral additional applications of the ACME system,
augmented by its pattern-completion mechanisms, to simulate empirical data on
human analogical transfer between mathematical problems. These data involve
the garden (source) and band (target) problems presented in Table 2.3, which
were used by Novick (1988) and Novick and Holyoak (1991) to investigate
analogical problem solving. These problems are both more complex and less
isomorphic than any of the examples we have yet discussed. Successful transfer
with these problems requires posttransfer e¢valuation of infercnces.

4.3.1. Representations of the Problems Used by Novick and Holyoak
(1991). Appendix 1I, Parts A and B, respectively, present representations of the
garden and band problems in the type of predicate calculus notation that serves
as the input to ACME. We attempted to represent the central information that is
either directly given in the problems (see Table 2.3) or readily inferable. As in
the representations of Reed’s (1987) problems, each representation has threc
major fields: a description of the initial problem state, of the goals, and of the
solution (if given). Arguments in propositions are either names of objects (e.g.,
“obj_band”" in the band problem denotes the band, “numl1” denotes a certain
number) or embedded propositions (e.g., Proposition B6 in Appendix II.B
states that numl is the remainder of the division operation denoted by BS). The
solution procedure represented in Appendix II.A contains operators, such as
“find-lem!," which could be decomposed into more detailed steps. (As before,
procedural operators are distinguished from declarative predicates by an
exclamation point.)

These formalizations of the garden and band problems make it clear that the
relationship between the two problems is quite complex. The problems arc
superficially dissimilar and far from completely isomorphic. In particular, the
garden problem involves three initial attempts to divide the plants into kinds
given a certain possible number of plants, denoted by “num_total_GO,”
followed by four additional attempts using a revised total, “num_total _GlI,"
which finally results in a solution. In contrast, the band problem involves only a
single total number of band members, “num_total_B,” and only four attempted
divisions; these should map onto the fourth through seventh attempts in the
garden problem. The garden and band problems further differ in that the goal of
the band problem includes a range restriction (the total must be at least 45 but
less than 200) that has no counterpart in the garden problem. In addition, the
compute-multiples operator must be applied six times in order to solve the band
problem, compared to only twice for the garden problem. There are also several
differences of a more incidental kind (e.g., the band problem involves two
people, the director and Andrew; whereas the garden problem involves three
people, Mr. and Mrs. Renshaw and their daughter). Of course, the overall cover
stories involve almost completely different predicates, and the specific numbers
involved differ (except for the number 5, which appears in both problems but
plays a different role in each).
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Except for the knowledge that both problems involve people giving orders or
making suggestions, the major shared predicates which could serve as retrieval
cues are such mathematical concepts as “divide,” “remainder-of,” and “num-
ber,” which are common to numerous mathematical problems with quite diverse
structures. The mapping is complex, and transfer of the LCM procedure to the
band problem requires that the solution to the garden problem be adapted to
account for: (2) the additional required applications of the compute-multiple
operator, and (b) the range restriction. On the face of it, then, we would expect
that retrieval, mapping, and adaptation could all contribute to the difficulty of
using the analogy.

4.3.2. Simulation Results for Mapping. As we noted earlicr, Novick and
Holyoak (1991) found that their subjects were able to correctly map about 80% of
the corresponding concepts and numbers in the garden and band problems. We
performed a series of simulations of the mappings produced by ACME when
given representations of the two problems. Three hint conditions were simulated,
corresponding to conditions tested with human subjects by Novick and Holyoak.
In the no-mapping-hint condition, the analogs werc mapped using only the
information contained in the problem representations (see Appendix 1I). In the
remaining conditions, mapping hints were provided by using the feature of the
program that gives extra pragmatic support to mapping units that are “pre-
sumed” in advance. The presumed mappings were selected to correspond as
closely as possible to those given to subjects in Novick and Holyoak's
experiments. In the concept-mapping hint condition, the following mapping
units were presumed: the predicate mappings band-members = plants, grouping-
of =kind-of, number-per-group = number-per-kind, and number-left-out = num-
ber-extra-spaces; and the proposition mappings B63=G74 and B64=G75,
which represent the parallel goals of dividing the total number of objects by a
number that leaves zcro remainder. In the number-mapping hint condition, the
crucial numerical correspondences were presumed, as follows: numi2 = numl0,
num8 =num4, num3=num5 (the mappings of divisors that leave nonzero
remainders), num5 =num6 (divisors that lecave zero remainder), and
numl = num?2 (the nonzero remainders).

ACME applicd its general constraints to the representations to build a network
of over 1,600 mapping units representing possible correspondences, connected
by over 31,000 excitatory and inhibitory links. The parameters used were
identical to those used in the previous simulations. In addition, the mapping
between the similar verbs “orders™ and “suggests™ was given a weight of .0025,
half the value of the weight for identical predicates.

Each of the three runs of ACME found a stable set of mapping units
representing the optimal correspondences between the band and garden prob-
lems after approximately 500 cycles of updating. In all three cases the correct
mapping emerged as the clear victor for each of the critical concepts and
numbers. Table 2.10 reports the asymptotic activation level of each of several
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Table 2.10.
Selected Results of Mapping the Band Problem to the Garden Problem

Presumed Mappings

Source Target None Concepts Numbers
NUM10 NUM12 0.91 0.91 0.98*
NUM4 NUMB 0.9 0.91 0.98*
NUMS5 NUM3 0.91 0.91 0.98*
NUM2 NUM1 0.94 0.94 0.98*
NUMG6 NUMS 0.91 0.91 0.98*
NUMBER-PER-KIND NUMBER-PER-GROUP 0.90 0.98* 0.90
KIND-OF GROUPING-OF 0.95 0.98* 0.95
NUMBER-EX TRA-SPACES NUMBER-LEFT-OUT 0.77 0.97* 0.77
PLANTS BAND-MEMBERS 0.60 0.97* 0.60
G74 BE3 0.85 0.98* 0.85
G75 - BbB4 0.72 0.97* 0.72

Note: * indicates a "presumed” mapping.

winning mapping units. Without any mappings presumed, each correct mapping
unit achieved an activation that is both substantial in absolute magnitude
(ranging from .60 to .95) and higher by at least .20 than its ncarest competitor.
The results for the two hint conditions reveal that units that are “presumed”
achieve somewhat higher activation levels (about 98%), but that the rest of the
mapping is essentially unchanged from the no-mapping-hint condition.

These simulations are broadly consistent with the mapping data presented by
Novick and Holyoak (1991), in that ACME’s mapping performance for the
important concepts and numbers is accurate in all three conditions. As noted
earlier, the empirical results indicated that the number-mapping hint was more
effective than the concept-mapping hint in promoting successful transfer of the
LCM solution procedure to the band problem. The ACME model implies that
this difference is not due to the mapping stage (since for the simulation, mapping
is accurate regardless of which hint, if any, is given). The pattern-completion
algorithm, however, suggests that the number-mapping hint is more closely
related to the requirements for postmapping inference: None of the concepts
provided by the concept-mapping hint appear in the representation of the
solution to the garden problem (see Appendix II.A); rather, only the numbers
that must be manipulated to derive the solution are mentioned. Thus, in
attempting to solve the band problem by analogy to the garden problem,
successful pattern completion (in particular, substitution) depends on the
availability of the correct number mappings (also see Novick & Holyoak, 1991,
on this point). The concept mappings presumably play an important role in
deriving the number mappings (because the two types of mappings are mutually
supportive), but for pattern completion (and perhaps also adaptation) the latter
are crucial.
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An important issue is whether ACME’s predictions for these materials are
highly dependent on the particular parameter values selected. Accordingly, we
simulated several variations of the no-mapping-hint condition to determine
whether the correct mappings would still emerge. First, we sharply changed the
relative balance of excitation and inhibition by reducing the inhibition parameter
by half to —.08. In another run, we collapsed the parameters for semantic
weights linking similar or identical predicates to a single value, 0025, which
was half of the value for identical predicates used in the basic version. In both
cases, all the crucial correspondences still emerged. In fact, the activations in the
various runs rarely differed by more than .05, and the most extreme difference in
activation was about .20.

4.3.3. Pattern Completion. Clearly, ACME, like people, is capable of
producing a correct sét of mappings between the crucial elements of the
nonisomorphic band and garden analogs with relative ease. However, in the
Novick and Holyoak studies, a majority of the subjects who obtained the correct
mappings nevertheless failed to correctly solve the target problems, indicating
that mapping alone is not sufficient for successful solution transfer. Subjects’
failure to adequately transfer the source solution can be attributed to one or more
of the following factors: (a) difficulty of performing pattern completion, (b)
inaccuracy of pattern completion, or (c) difficulty and/or inaccuracy of adapta-
tion. As we have previously discussed, we believe that inferences based on
pattern completion ought to be relatively easy to compute, but that pattern
completion will tend to produce inappropriate inferences when applied to
nonisomorphic domains. To test the effectiveness of ACME on postmapping
inference generation for the nonisomorphic band and garden analogs, we applied
our pattern completion mechanisms in two ways. First, we performed an
experiment analogous to the family-tree deletion experiments: we randomly
deleted propositions from the source and the target, and observed the extent to
which mapping followed by CWS could regenerate the deleted propositions.
Second, we applied CWSG to the solution field of the target, as in our simulation
of Reed’s experiments. Both of these simulations point up limitations of the
pattern completion mechanism, and demonstrate that additional (and presum-
ably more complex) mechanisms may be necessary to effectively extend a
mapping between nonisomorphic analogs.

To test the CWS mechanism, we randomly deleted propositions from the two
analogs, in two separate sets of runs which replicated the first two deletion
experiments reported for the family-tree problem. In the first set of runs, we
randomly deleted propositions from both analogs. These simulations modeled a
situation in which both the source and target are imperfectly understood. In the

.second set of runs, we restricted deletion to a single analog (in this case, the
band target problem). These simulations modeled the situation in which the

source problem is understood well, but the target problem is understood
relatively poorly. It is likely that students usually attempt to solve a target
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. . . Table 2.11.
problem by analogy to an earlier example problem when the carlier problem is CWS Pattern-Completion Results after Deletions from the Band and Garden
better understood than the later problem. In Novick and Holyoak’s (1991) ] Problem

research, it is likely that many subjects had an imperfect understanding of the

target problem, and possibly also the source problem. The problem representa- Transfer: Deletion from Both Garden and Band

tions provided to ACME were written by the authors, who presumably have a adetod " recrentod with orror propomtien seneraion | 1ora commission

better understanding of the problems than did the undergraduate subjects. + redundant generation)
The results of these simulation experiments are shown in Table 2.11. Although % # # # # #

there are fewer data points here than for the family-tree experiments, the pattern

of results is obvious: virtually none of the deleted propositions were correctly ] 2‘5 ; g ; 2 :

regenerated. In the most successful simulation—40% deletion from the band . 10 17 1 1 2 3

problem only—only 11% of the deleted propositions were inferred. In addition, a 20 35 2 0 0 0

small number of commission errors were made, as well as occasional “redundant 40 70 0 2 0 2

regeneration” of propositions that had not, in fact, been deleted. (Note that the gg 1122 g (13 ; g

sum of these two types of errors plus correct inferences can exceed the number of 90 156 0 0 0 0

propositions deleted.) This result sharply contrasts with the case where the .
domains are isomorphic, as in the family-tree experiment. In that case, ACME Transfer: Deletion from Band Only :
is highly effective at regenerating information which has been removed from the ;  Propositions  Correctly Generated Redundant Total commission

representation of the target domain. However, when the domains are not : deleted recreated with error proposition generation errors (erroneous
. . o . . . . . + redund ati
isomorphic, ACME is virtually incapable of regenerating any information which rocundant genaration)
has been deleted from the target domain. This behavior leads to the untested .- o # # # # #
prediction that humans ought to be much less capable of making appropriate ] 5 4 0 3 4 7
analogical inferences when presented with impoverished representations of 10 8 1 1 2 5
nonisomorphic domains than when they are presented with impoverished g ig ;g ; : 4 ;
representations of isomorphic domains. L 80 53 5 2 4 6

The failure to obtain useful pattern completion for this example can primarily : 80 70 2 1 0 1
be attributed to proposition mismappings. Because the analogs are not iso- 80 78 3 1 0 1

morphic, each has a number of extraneous propositions which are not mapped to
anything before deletion. When a mapped proposition from one analog is
deleted, its “mate” will often remap to a similar but previously unmapped
proposition, and will thus be over the threshold required for transfer candidacy.
To illustrate a simple case where mismappings occur, consider the following
example. In the band problem, we have three “orders” propositions:

Before deletion, ACME obtains the mappings Bl4=GI3, BIS=GIl4, and
BI6=GI5. Here GI6 is an extraneous, unmapped proposition, but which could
replace GI5 as the mapping from BI6. When we delete GI3 and rerun the
simulation, the mappings shift a bit. The mapping B15 = GI4 remains the same,
but now BI6 maps to GI6 (an accurate slippage), and B4 maps to G5, since the
two propositions are somewhat similar, and since nothing clse maps to GIS.
Hence, ACME fails to generate a transfer inference from BI4, even though BI4
has no truly analogous proposition in the other analog. Because of such
mismappings of propositions, CWS, in general, tends to fail to regenerate
_deleted propositions. It should be noted, however, that mapping of the basic
" concepts and numbers remains robust even when a significant number of
propositions are deleted. For instance, ACME was able to correctly produce
about 80% of the crucial mappings when 40% of the propositions were randomly

Bl4: The director orders division by 12,
B15: The director orders division by 8, and
B16: The director orders division by 3.

The corresponding set of propositions in the garden problem is:

G13: Mr. Renshaw suggests division by 10,
G14: Mrs. Renshaw suggests division by 4,
GIS: Mr. Renshaw suggests division by 5, and
G16: Mrs. Renshaw suggests division by 5.
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deleted from the source and the target. This approximates the level of mapping
performance observed by Novick and Holyoak (1991) for their human subjects.

To see how ACME fares when transferring a solution from a source problem
to a non-isomor phic target, we applied the CWSG procedure to the solution field
of the garden problem to generate an analogous solution for the band problem.
The results, shown in Table 2.12, may be interpreted in English as follows:, First,
find the lowest common multiple (Icm) of 12, 8 and 3: the result will be a number
(0bj32328). Then generate a set of multiples of the lem; the result of this
operation will be a list (0bj32333). Next, add 1 to each number in the list,
generating a new list (0bj32339). Finally, find the smallest number in the list
obtained that is evenly divisible by 5 (0bj32345).

This solution is entirely correct, except for the last operation. ACME
incorrectly transports the source's solution constraint (i.e., find the lowest
multiple divisible by the ultimate divisor in the problem), whereas the solution
constraint actually indicated in the target problem (find a multiple greater than
45 and less than 200) is completely ignored. Additional mechanisms capable of
making the connection between the target problem statement and the target
solution are needed in order to mold the freshly imported source solution to fit
the stated requirements of the target problem. This gap illustrates where pattern
completion ends and adaptation begins. Although some adaptations are very
difficult for solvers (as indicated earlier in the summaries of the empirical
results of Reed, 1987, and Novick & Holyoak, 1991), it seems that this particular
adaptation is fairly easy. Failure to perform this adaptation would lead subjects to
indicate 25 as the answer to the band problem (rather than the correct answer of
145), because that is the smallest number in the corrected list that is evenly
divisible by 5. However, only 3 subjects out of a total of 207 made this error.

The relative success of the CWSG transfer mechanism in generating an
approximate solution to Lhe target problem, in contrast to the relative failure of
the CWS mechanism in restoring randomly deleted propositions from either the
target problem alone or both the source and target problems, illustrates the need
for pragmatic guidance of pattern completion when attempting to relate

Table 2.12,
CWSG Pattern Completion Results for Transferring the Garden Problem
Solution to the Band Problem

Proposition Target (Band) Proposition

G83 (FIND-LCM1 (NUM12 NUM8 NUM3 obj32328))

G84 (NUMBER (obj32328))

G85 (FIND-MULTIPLESI (0obj32328 0bj32333))

Gas {LIST (obj32333))

Ga7 {LIST-PLUSI (NUM1 0bj32333 0bj32339))

Ges (LIST (0bj32339))

G89 (FIND-LEAST-MULTIPLEI {NUM5 0bj32339 0bj32345))

028 ORI
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nonisomorphic problems. In the CWS experiments, ACME did not receive any
information about what propositions should be treated as most important in
generating inferences, and hence was easily misled by inappropriate proposition
mappings. In contrast, in the CWSG experiment ACME was told to restrict
pattern completion to the crucial solution field, thus greatly reducing the adverse
impact of nonisomorphic propositions in other parts of the source and target
representations.

5. GENERAL DISCUSSION

S.1. Summary

In this chapter, we reviewed evidence that analogical transfer can be usefully
decomposed into three substages, corresponding to mapping, inference by
pattern completion, and evaluation/adaptation. We described an extension of the
ACME model that can perform mapping by constraint satisfaction followed by
pattern completion using *“copy with substitution” (CWS) and “copy with
substitution and generation” (CWSG) mechanisms. Our basic pattern of
simulation results may be summarized as follows. When transferring knowledge
from a source analog to a fundamentally isomorphic but incompletely under-
stood target analog, pattern completion mechanisms are highly effective at
generating an accurate and comprehensive set of inferences. However, when the
source and target are not isomorphic, pattern completion is less effective in its
capacity to generate appropriate inferences, although mapping tends to be fairly
robust. Given guidance that focuses attention directly on transfer of the source
solution (rather than allowing global pattern completion), ACME generates
target solutions that are accurate up to the point at which adaptation based on
direct knowledge of the target is required. Beyond that point, ACME necessarily
fails to produce the correct solution to the target, because the model lacks any
capacity for adaptation. In general, the model is consistent with the hypothesis
that human analogical transfer involves a rather sharp break in performance
between mapping and pattern completion on the one hand, which can be
executed relatively casily, and adaptation on the other, which often is quite
difficult,

5.2. Comparison with Other Connectionist-Style Models of Analogical
Transfer )

It is useful to compare the extended ACME model described here to other
connectionist and symbolic-connectionist models of analogy. The most similar
model is CARE (Nelson, Thagard, & Hardy, this volume). CARE is also based
on the ACME model of analogical mapping, and uses a similar pattern-
completion mechanism to generate analogical inferences. CARE's pattern-
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completion mechanism resembles a hybrid of the CWS and CWSG algorithms
we described in this paper. In CARE, propositions are eligible for transfer only
if they contain some element that is also present in the goal field of the source
analog’s representation; it thus uses pragmatic knowledge to guide pattf:rn
completion. CARE does not use a fixed threshold based on argument-mapping
activations to prevent profligate transfer; however, for each inference it uscs t!w
activations to generate a confidence value. CARE goes beyond ACME in_lts
ability to handle the adaptation phase of transfer. In CARE, rules of a localist-
connectionist sort are triggered in parallel with the analogy process. Hence,
domain-specific inferences about the initial representations, and about the
analogical inferences generated by pattern completion, can effectively enhance
the basic solution generated by the mapping and transfer processes. Unlike the
extended version of ACME described here, the more complex transfer mecha-
nisms embodied in CARE have yet to be tested against detailed experimental
data concerning human problem solving. '
Hofstadter and Mitchell's Copycat model (this volume) processes letter-string
analogies, such as “if abc is changed to abd, how would ijk bg changed ‘in the
same way?'" Copycat implements analogical pattern completion: based on the
relationship between abe and abd, and between abe and ijk, it is capable .of
“filling in” the missing component of the target. Copycat is notablg for its
capacity to flexibly construct elaborated representations of the letter strings [cf.
Chalmers, French, & Hofstadter, 1991). In this respect it resembles CARE,
which also uses the products of analogical transfer to trigger rule-based
inferences that flesh out the original input, thus influencing the process of
forming an analogy. The generalizability of Copycat to domains oth.c!- than letter
strings, particularly problem domains that require complex propositional repre-
sentations, is yet to be established. _
Halford, Wilson, Guo, Gayler, Wiles, and Stewart (this volume) describe a
tensor-product network that processes analogy problems. For e:tfan"nple, when the
network is presented with the problem *“ mother:baby :: mare: 7" it can correctly
produce “‘foal™ as the missing element in the analogy. Like the Copycat model,
we would characterize this behavior as analogical pattern completion: once the
network has established the appropriate relationships between mother and baby,
and between mother and mare, the network completes the analogy based on the

obtained correspondences. The main appeal of Halford et al.’s model is that itis -

implemented in an extremely simple connectionist network. However, it is
unclear how this model could represent or process more complex analogies, such
as those involving problem representations.

5.3. Back-Propagation and Analogical Transfer
It is also of interest to compare the ACME model with a major class of

connectionist models, based on back-propagation learning, whicl? hold promise
for dealing with the problem of analogical transfer. A question of central
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importance is: Can the automatic generalization capabilitics of back-propagation
alleviate the need for complex symbolic implementations of analogy? Harris’s
work (1994) represents a direct attack on this question. Harris demonstrates that
when mapping sentences to meanings, a distributed connectionist network is
able to abstract invariants both within a particular domain and also between
domains. Genenalization within a domain might be construed as induction of
rules, and generalization between domains might be construed as analogy. Since
it is difficult to distinguish between the two types of generalization, Harris
characterizes the range of generalization capabilities as a rule-analogy con-
tinuum, rather than a strict dichotomy. This viewpoin is broadly consistent with
the philosophy of CARE (i.c., both rules and analogics can be processed by
constraint satisfaction)—although in CARE, rules and analogical processes are
explicitly programmed rather than learned.

The rule-analogy continuum can be illustrated by considering the network
and domain of Hinton's (1986) project (described previously). If the proposition
Arthur has_father Christopher were removed from the entire set of propositions,
and then correctly regenerated during a transfer phase, we could invoke two
alternative explanations to account for the transfer success. First, we could claim
that the inference that Arthur’s father is Christopher is an analogical inference.
To support our claim we might demonstrate that the distributed represcntation of
Arthur (i.c., the pattern of activation in the second layer of the network) is
similar to the distributed representation of Emilio, that Christopher’s distributed
representation is similar to Roberto’s, and that this similarity is instrumental in
producing the appropriate output. This claim is tantamount to claiming that the

. hetwork mapped Arthur to Emilio, Christopher to Roberto, and applied some
* form of copy-with-substitution to complete the cross-domain transfer.

Alternatively, we could claim that the inference was of the rule-based variety,
rather than an analogical inference. To support this claim, we could demonstrate
that the missing proposition could be regencrated correctly when training was
performed only on the English family tree. If the network has capitalized on
within-domain relational regularities (e.g., the husband of the mother of X is

- ubiquitously the father of X), the network may be characterized as inducing
“tules, rather than making analogies. We suspect that Hinton’s network used a

combination of these two strategies to produce the generalization behavior that it

- did.

The issue of characterizing the nature and quality of generalization that back-
propagation networks are capable of performing remains somewhat murky. If
backprop-style generalization is equivalent to or even more powerful than the
requisite mechanisms of analogical transfer (i.c., mapping, pattern completion,

- and adaptation),then the problem of implementing these analogical mechanisms
_ becomes trivial: we need only train a network on a set of propositions, and query
- the network for the missing propositions. For example, we could train a network
. on the problem statement, goal and solution of the garden problem, and the
;. _problem statement and goal of the band problem. If the nctwork has learned to
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do analogical transfer from this training set, the network ought to be able to
produce the solution to the band problem when it is appropriately queried.

The actual outcome of such a hypothetical experiment may not be imme-
diately apparent. However, it is useful to examine the results of tests of a recent
back-propagation model that we believe suggest limitations stemming from
competing pressures to generalize within a domain versus between domains.
The model we consider is St. Joha's (1990) model of story comprehension. The
model is based on a recurrent architecture (Rumelhart, ct al., 1986), in which
propositional representations of the story are fed to the network in a sequential
fashion. A hidden layer called the story gestalt contains the current represenla-
tion of the entire story, and is fed back to the input layer at each time step. The
current representation of the story may be extracted by probing the network with
a particular predicate, which in turn produces the representation of an entire
proposition associated with the predicate.

In one experiment, the network was trained on three stories about going
places in a car. These stories involved driving to a beach, a restaurant, and an
airport, respectively. Both the beach and the restaurant stories contained a set of
propositions involving the details of driving to the destination (e.g., the distance
to the beach was far, Andrew got in the car, etc.), whereas the airport story did
not contain any similar set of propositions. When the airport story was fed into
the network and then probed with the predicates of the nonexistent driving
propositions, an interesting phenomenon occurred. Inferred propositions were
created on the output layer; however, the roles of the propositions were
incorrectly instantiated. For example, the network tended to activate either the
beach or the restaurant items for the filler of the location/destination role, rather
than the correct airport filler. In terms of our problem-solving materials, this
behavior would be cquivalent to the network producing the (source) garden
solution when probed for the (target) band solution. In short, the network clearly :_5
did not learn to perform general analogical transfer.

This seemingly anomalous behavior can be understood in terms of competing ¥
pressures to generalize within a domain versus between domains. While the .
ideal behavior form the perspective of the experimenter is for the network to
gencralize between domains, or to learn a variablized, domain-general rule e
(making it possible to instantiate the driving proposition by retricving orf_"m‘
inferring the particular destination involved in the current story), the network -
may instead “‘generalize” simply by assimilating a new domain to one or more
known domains. For example, the story gestalt for the new airport story may be f
sufficiently similar to that of the beach story as to elicit “beach™ as the
destination when the network is probed with a predicate in the driving &
subschema. That is, the network may behave as if an airport were just some sort ;i

Lo Bt I

of atypical beach. Although St. John suggests that additional specialized training ’ ;

concerning which items on the input layer are paired with identical items on the
output layer could remedy this mis-instantiation behavior, the effectiveness of
such a remedy remains to be demonstrated.

it Y g e e
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A different possible approach to using back-propagation to perform analogi-
cal transfer might exploit a recent branch of rescarch concerned with construct-
ing and processing reduced descriptions of complex symbolic structures using
back-propagation (e.g., Pollack, 1988, 1990; Chalmers, 1990; Blank, Meeden, &
Marshall, 1992; Lee, 1991). This work is mainly centered around Pollack’s
(1988) RAAM (Recursive Auto-Associate Memory) model (or variants of the
basic model), which is capable of encoding binary trees of arbitrary depth into a
fixed-width vector of features. A tree is constructed in RAAM by placing
representations of two subtrees on the input and output layers of the network;
aflter auto-associative learning by back-propagation, the pattern of activation
established on the hidden layer (the “reduced description™) is interpreted as
representing the entire tree. This pattern of hidden-unit activation can be used in
a recursive manner as an input component for other trees in which the original
sublrees are constituents. Chalmers (1990) and Blank et al. (1992) have shown
that back-propagation networks can be trained to perform syntactic manipula-
tions on reduced descriptions of simple subject-verb-object sentences. This work
is cxtremely provocative, since it raises the possibility that complex processing
mechanisms can be learned rather than programmed; and further, that these

- processing mechanisms can operate in parallel on an entire data structure,
represented by a vector-string reduced description, rather than requiring serial
procedures that take apart structures and operate on the components.
How far can we take the implications of such work, and what are its
implications for general processing mechanisms such as means-ends-analysis,
- analogy, and rule-based inference? Perhaps we might, for example, be able to
g,_lmin reduced descriptions of problems to produce reduced descriptions of the
i 3, correct solution to the problems. While this idea is certainly appealing, we are
; skeptical that things could be as simple as this. Barnden (1992) offers detailed
e l‘rgumcnlslas to why processing mechanisms based on distributed representa-
37 7+ tons remain inadequate for important types of inferencing. While the prelimi-

1

. bary results of experiments using such mechanisms are certainly intriguing, we

i belicve that significant research remains to be donc before anything resembling

___;,.lbc reduced-description approach can solve difficult computational problems
2 such as analogical transfer.

P

i
1£7. 5.4. The Prospects for Connectionist Models of Analogy
IF -

: 'r;f;_".‘CME. like many of the other models described in this volume (e.g., CARE
‘ﬂ: :.-“and Copycat), represents a hybridization of symbolic representations with

& eoancctionist-style processing mechanisms. In ACME, input representations are
Peovided in a “classical” symbolic form that resembles predicate calculus. The
mapping component dynamically forms a localist connectionist network, in
: hich cach possible mapping hypothesis is represented by a unit. Pattern

1 completion is accomplished by an explicit symbolic algorithm that opcrates on
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the output of the relaxation algorithm that finds the optimal mapping between
the source and target,

What are the prospects for “cashing out” the symbolic components of hybrid
models such as ACME in neural-style machinery? We view this as an open
question, which is closely related to the above discussion of possibilities for
developing distributed connectionist models capablec of general analogical
transfer. Because complex analogical thinking clearly depends on structured
representations, a major hurdle is to find suitable techniques for representing
relational structure in connectionist terms, without losing the flexibility of
human analogical processing. An adequate model of analogy requires a solution
to the difficult problem for connectionism of keeping bindings straight within a
complex structured representation; in addition, mapping crucially depends on
being able to find a novel binding between elements of two complex representa-
tions, without hopelessly muddling the two representations together. Whatever
eventual form a successful model of analogy takes, work in this area is likely to
have general implications for future developments in connectionist theory.
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APPENDIX 1
A. ACME Representations of Work Problems
Used by Reed (1987)
Pipe Problem (Source)

Start State

ithe important objects are a small pipe, a large pipe, and an oil tank
(pipe (obj_pipe_sm)P1)
(pipe(obj_pipe_lg)P2)
(tank(obj_oil-tank)P3)
ithe two pipes combine to form obj_two-pipes
(combine (obj_pipe_sm obj_pipc_lg obj_two-pipes)P4)
:number of hours for a pipe to fill tank is val_hrs*
(fill-time (obj_pipe* obj_oil-tank val_hrs*)P5)
(time(val_hrs*)Pg)
:rate at which a pipe fills tank is val_l/hrs*
(fill-rate (obj_pipe* obj_oil-tank val_I/hrs*)P7)
(rate(val_1/hrs*)P8)
(quotient-of(num! val_hrs* val_I/hrs*)P9)
(number (numl1)P10)
(one(numl)P11)
ival_hrs* to fill tank takes on different values in different situations
ifor the small pipe working by itself
(fill-time(obj_pipe_sm obj_oil-tank num12)PI12)
(instantiates (obj_pipe_sm obj_pipe*)P13)
(instantiates (numi2 val_hrs*)P14)
(number(num12)P15)
(twelve(num12)P16)
ifor the large pipe working by itself
(fill-time (obj_pipe_lg obj_oil-tank num8)P17)
(instantiates (obj_pipe_lg obj_pipe*)P18)
(instantiates (num8 val_hrs*)P19)
(number (num8)P20)
(cight (num8)P21)

_ +for the small and large pipes working together

(fill-time (obj_two-pipes obj_oil-tank num_h)P22)
(instantiates (obj—two-pipes obj_pipe*)P23)
(instantiates (num_h val_hrs*)P24)

(number (num_h)P25)

Goals

ithe goal of the problem is to determine the combined working time

{(known (num_h)P26)
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Solution

ithe two pipes take different amounts of time to fill the tank

ywe find the rate for each working alone
(divide! (num! numl12 val_1l/hrs_sm)P27)

(fill-rate (obj_pipe_sm obj_oil-tank val_l/hrs_sm)P28)
(instantiates (val_Ihrs_sm val_l/hrs*)P29)

(divide! (num| num8 val_Vhrs_Ig)P30)

(fill-rate (obj_pipe_lg obj_oil-tank val_I/hrs_lg)P31)
(instantiates(val_l/hrs_lg val_1/hrs*)P32)

ithe two pipes each do a portion of the complecte task of filling the tank

;the portion completed by obj_pipe_sm is producL_pipe_sm
(portion-completed (obj_pipe_sm product_pipe._sm)P33)
(multiply! (val_Ithrs_sm num_h product_pipe_sm)P34)
{proportion (product_pipe_sm)P35)

;the portion completed by obj_pipe_lg is product_pipe_Ig
(portion-completed (obj_pipe_lg product_pipe_lg)P36)
(multiply! (val_1/hrs_{g num_h product_pipe_Ig)P37)
(proportion (product_pipe_lg)P38)

;to write equation to solve for num_h
{add! (product_pipe_sm product_pipe_lg sum_whole_task)P39)
(equal(sum_whole_task numl)P40)

(number (val_l/hrs_sm)P41)
(number (val_L/hrs_1g)P42)
(number (product_pipe_sm)P43)
(number (product_pipe_lg)P44)
(number (sum_whole_task)P45)
(proportion (sum_whole_1ask)P46)

Typing Problem (Isomorphic Target)
Start State

;the important objects are two people and a manuscript
(person (ann) Tl)

(person (florence) T2)
(manuscript (obj_ms)T3)

;the two people combine to form obj_two-people
{combine (ann florence obj_two-people)T4)

;number of hours for a person to type manuscript is val_hrs*
(type-time {obj_person* obj_ms val_hrs*)T5)
(time (val_hrs*)T6)

;rate at which a person types manuscript is val_I/hrs*
(type-ratc (obj_person* obj_ms val_I/hrs*)T7)
(rate (val_1/hrs*)T8)

(quotient-of (num1 val_hrs* val_l/hrs*)T9)
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(number (num1)T10)
(onc (num)TI1)
ival_hours to type manuscript takes on different values in different situations
.for Ann working by herself
(type-time (ann obj_ms numl0)TI2)
(instantiates (ann obj—person*)T13)
(instantiates (numl0 val_hrs*)T14)
(number (numlQ)T15)
(ten (numl0)T16)
:for florence working by herself
(type-time (florence obj_ms num5)T17)
(instantiates (florence obj_person*)T18)
(instantiates (num3 val_hrs*)T19)
(number (num5)T20)
(five (num3)T21)
ifor Ann and Florence working together
(type-time (obj—two-people obj_ms num_h)T22)
(instantiates (obj_two-pcople obj_person*)T23)
(instantiates (num_h val_hrs*)T24)
(number (num_h)T25)

Goals

ithe goal of the problem is to determine the combined working time
(known (num_h)T26)

Solution: unknown

Tank Problem (Similar Target)
Start State

ithe important objects are a small pipe, a large pipe, and a water tank
(pipe (obj_sm_pipe)K1)
(pipe (obj—lg—pipe)K2)
(tank (obj_water-tank)K3)
_ ithe two pipes combine to form obj_two-pipes
(combine (obj_pipe_sm obj_pipe_lg obj_two-pipcs)K4)
inumber of hours for a pipe to fill tank is val_hrs*
(fill-time (obj—pipe* obj_water-tank val_hrs*)K5)
(time (val_hrs*)K6)
.inle at which a pipe fills tank is val_I/hrs*
(fill-rate (obj_pipe* obj_water-tank val_1/hrs*)K7)
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(rate (val_1/hrs*)K8)

(quotient-of (num1 val_hrs* val_I/hrs*)K9)
(number (numl)K10)

(one (numl)K11)

;number of hours for tank to empty by use is numd0
(empty-time (obj_use obj_water-tank num40)K12)
(time (num40)K13)

(number (num40)K14)
(forty (num40)K15)

;the rate at which it is empticd is num_cmpty-rate
(empty-rate (obj_use obj_water-tank num_empty-rate)K16)
(quotient-of (numl num40 num._empty-rate)K17)
(rate (num_empty-rate)K18)

(number (rum_empty-rate)KI9)

;val_hrs* takes on different values in different situations

ifor the small pipe working by itself
(fill-time (obj_pipe_sm obj_water-tank num20)K20)
(instantiates (obj_pipe_sm obj_pipe*)K21)
(instantiates (num20 val_hrs*)K22)

(number (num20)K23)
(twenty (num20)K24)

;for the large pipe working by itself
(fill-time (obj_pipe_Ig obj_water-tank numI5)K25)
(instantiates (obj_pipe_lg obj_pipe*)K26)
(instantiates (numl5 val_hrs*)K27)

(number (numl5)K28)
(fifteen (numl5)K29)

;for the small and large pipes working together
(fill-time (obj_two-pipes obj_water-tank num_h)K30)
(instantiates (obj_two-pipes obj_pipe*)K31)
(instantiates (num_h val_hrs*)K32)

(number (num_h)K33)

;the small pipe and large pipe combined act at same time as water use

(use-time (obj_use obj_water-tank num_h)K34)

Goals

;the goal of the problem is to determine the combined working time
(known (num_h)K35)

;corrected for the simultaneous water use
(corrected-for (num__h K34)K36)

Solution: unknown

COMPONENT PROCESSES IN TRANSFER

B. ACME Representations of Mixture Problems
Used by Reed (1987)
Nurse Problem (Source)

Start State

ithe important objects are a weak acid solution, a strong acid
isolution, and a combined acid solution (a mixture),
(solution (obj_soln_weak)N1)
(solution (obj—soln_strong)N2)
(combine (obj_soln_weak obj_soln_strong obj_saln_mix)N3)
(solution (obj_soln_mix)N4)
;acid-concentration, acid-content, and amount of
isolution are variables
ival_conc*, and similar expressions, are variable numerical values
(acid-concentration (obj_soln* val_conc*)N5)
(percentage (val_conc*)N6)
;amount of acid in solution
(acid-content (obj_soln* val_acid*)N7)

il % (volume (val_acid*)N8)

i+ samount of solution .

it (amount (obj_soln* val_pints*)N9)
§)  (volume (val_pints*)NI0)

sconcentration times amount of solution = amount of acid

§,  (product-of (val_conc* val_pints* val_acid*)NIl)

iacid concentration takes on different values for the different solutions

+for the weak acid solution
(acid-concentration (obj_soln_weak num6%)N12)

(instantiates (obj_soln_weak obj_soln*)N13)
(instantiates (num6% val_conc*)NI4)
(number (num6%)N15)

(six-one-hundredths (numé%)N16)

ifor the strong acid solution

! {acid-concentration (obj—soln_strong num12%)N17)

(instantiates (obj_soln_strong obj_soln*)N18)

(instantiates (numl2% val_conc*)N19)

(number (numl2%)N20)

(twelve-one-hundredths (numl2%)N21)

‘sfor the mixture of weak and strong acids
(acid-concentration (obj_soln_mix num8%)N22)
(instantiates (obj_soln_mix obj_soln*)N23)
(instantiates (num8% val._conc*)N24)

(number (num8%)N25)
(cight-one-hundredths (num8%)N26)

ithe acid concentrations are ordered from strong to mixture to weak

~ (greaterthan (numl2% num6%)N27)

(greaterthan (num12% num8%)N28)

e Tiodii
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(greater-than (num8% num6%)N29)
sthe goal of the problem is to determine how much of the weak and
istrong acid solutions arc necded for the specified mixture
;for the mixture of weak and strong acids

(amount (obj_soln_mix num_d.5)N30)

(number (num_4.5)N31D)

(instantiales (num_4.5 val_pints*)N32)

(four-point-five (num_4.5)N33)
;for the weak acid solution

(amount (obj_soln_weak num_w)N34)

(number (num_w)N35)

(instantiates (num_w val_pints*)N36)

(amount (obj_soln_strong num_s)N37)

(number (num_s)N38)

Goals

(known (num_w)N40)
(xknown (num__s)N41)

Solution

;amount of strong solution = amount of mixture ~ amount of weak solution
(subtract! (num_4.5 num_w num_s)N42)
yamount of acid takes on different values for the different solutions
;for the weak acid solution
(acid-content (obj_soln_weak val_acid_w)N43)
(multiply! (num6% num_w val_acid_w)N44)
ifor the strong acid solution
(acid-content (obj_soln_strong val_acid_s)N45)
(multiply! (num12% num_s val_acid_s)N46)
;for the mixture of weak and strong acids
(acid-content (obj_soln_mix val_acid_m)N47)
(multiply! (num8% num_4.5 val_acid_m)N48)
110 generate equation to solve for num_w and num_s
(add! (val_acid_w val_acid_s val_acid_m)N49)
(number (val_acid_w)N50)
(number (val_acid_s)N51)
(number (val_acid_m)N52)
(instantiates (val_acid_w val_acid*)N53)
(instantiates (val_acid_s val_acid*)N54)
(instantiates (val_acid_m val_acid*)N55)

COMPONENT PROCESSES IN TRANSFER

Grocer Problem (Isomorphic Target)
Start State

ithe important objects are peanuts, alinonds, and a mixture of the two
(nuts {obj_peanuts)G1)
{nuts (obj_almonds)G2)
(combine (obj_peanuts obj_almonds obj_mix)G3)
(nuts (obj—mix)G4)
sunit-price, total-price, and Ibs of nuts are variables
(unit-price {obj_nuts* val_$/1b*)G5)
(price (val_$/1b*)G6)
(total-price (obj—nuts* val_$*)G7)
(pricc (vaL_$*)G8)
(Ibs (obj_nuts* val_lbs*)G9)
(weight (val_lbs*)G10)
(product-of (val_$/Ib* val_lbs* val_$*)G11)

iprice per pound takes on different values for the different nuts

ifor the peanuts
(unit-price (obj_peanuts num_1.65)G12)
(instantiates (obj_peanuts obj_nuts*)G13)
(instantiates (num_1.65 val_$/1b*)G14)
(number (num—_1.65)G1S)
{onc-point-six-five (num_1.65)G16)

¢ ifor the almonds

{unit-price (obj_almonds num_2.10)G17)
(instantiates (obj_almonds obj_nuts*)G18)
(instantiates (num_2.10 val_$/1b*)G19)
(number (num_2.10)G20)
(two-point-one-zero (num_2.10)G21)
for the mixture of peanuts and almonds
(unit-price (obj_mix num_1.83)G22)
(instantiates (obj_mix obj_nuts*)G23)
(instantiates (num_1.83 val_$/1b*)G24)
(number (num_1.83)G25)
(onc-point-cight-three (num_.1.83)G26)
the unit prices are ordered from almonds to mixture to peanuts
(greater-than (num_2.10 num_1.65)G27)
(greater-than (num_2.10 num_1.83)G28)
(greater-than (num_1.83 num_1.65)G29)
ithe poal of the problem is to determine how many pounds of
speanuts and of almonds are needed for the specificd mixture

.+for the mixture of peanuts and almonds

{Ibs (obj—mix num30)G30)
(number (num30)G31)
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(instantiates (num30 val_lbs*)G32)
(thirty (num30)G33)
ifor the peanuts
(lbs (obj—peanuts num_p)G34)
(number (num_p)G35)
(instantiates (num_p val_Ibs*)G36
;for the almonds
(Ibs (obj_almonds num_a)G37)
(number (num_a)G38)
(instantiates (num_a val_lbs*)G39)

(number (num20%)A15)
(twenty-one-hundredths (num20%)A16)
ifor the less pure alloy
(alloy-purity (obj_alloy_bad num_12%)A17)
(instantiates (obj_alloy_bad obj_alloy*)A18)
(instantiates (numi2% val_%*)A19)
(number (numi2%)A20)
(twelve-one-hundredths (num_12%)A21)
ithe alloy purities are ordered from low to high
(less-than (num!i2% num 209%)A22)
ithe purity of the mixture of the more and less pure alloys is not stated
ithe goal of the problem is to determine how much of cach component alloy
smust be melted together to get the specified mixture
ifor the mixture of morc and less pure alloys
(instantiates (obj_alloy_mix obj_alloy*)A23)
(Ibs (obj_alloy_mix num60)A24)
(instantiates (num60 val_lbs*)A25)
(number (num60)A26)
(sixty (num60)A27)
ifor the more pure alloy
{Ibs (obj_alloy_good num_g)A28)
(instantiates (num_g vat_lbs*)A29)
(number (num._g)A30)
for the less pure alloy
(lbs (obj_alloy_bad num_b)A31)
(instantiates (num_b val_Ibs*)A32)

Goals

(known (num_p)(G40)
(known (num_a)G4l)

Solution: unknown

Alloy Problem (Similar Target)

Start State

sthe important objects are a more pure copper alloy, a less pure copper alloy,
vand an alloy consisting of a mixture of the two
(alloy (obj_alloy_good)Al)
(alloy (obj_alloy—bad)A2)
(combinc (obj_alloy_good obj_alloy_bad obj_alloy_mix)A3)
(alloy (obj_alloy_mix)Ad)
+alloy-purity, copper-content, and Ibs of alloy are variables
ipurity is a relation belween amount of copper and amount of alloy.
(alloy-purity (obj_alloy* val_%*)AS)
(percentage (val_%*)A6)
(copper-content (obj—alloy* val_cu*)A7)
(weight (val_cu*)A8)
(Ibs (obj_alloy* val_lbs*)A9)
(weight (val_lbs*)AI0Q)
;alloy-purity times Ibs of alloy = copper-content
(product-of (val_%* val_lbs* val_cu*)All)
ipurity of alloy takes on different values for the different alloys
ifor the more pure alloy
(alloy-purity (obj_alloy_good num20%)A12)
(instantiates (obj_alloy_good obj_alloy*)A13)
(instantiates (num20% val_%*)A14)
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{(number (num_b)A33)

(copper-content (obj_alloy_mix num.__10.4)A34)
(instantiates (num_10.4 val_cu*)A35)

(number (num_10.4)A36)

(ten-point-four (num_10.4)A37)

Goals

(known (num_g)A38)
(known (num_b)A39)

Solution: unknown
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APPENDIX II
A. ACME Representation of Garden Problem (Source)
Used by Novick and Holyoak (1991)

Start State

;plants grow in a garden

(plants (obj—plants)G1)
(garden (obj_garden)G2)
{(grow-in (obj_plants obj_garden)G3)

ithe number of plants first considered is num_total_GO0
(number-of (obj_plants num_total _G0)G4)

;dividing num__total _GO by 10, 4, or 5 lcaves 0 remainder
(divide (num_total_GO numl0 quotient_GI1)GS5)
(remainder-of (G5 num0)G6)

(divide (num_total_GO num4 quotient_G2)G7)
(remainder-of (G7 num0)G8)
(divide (num_total_G0 num5 quotient_G3)G9)
(remainder-of (G9 num0)G10)

;Mr. Renshaw suggests dividing by 10, Mrs. Renshaw suggests

idividing by 4, and both suggest dividing by 5
(person (mr_renshaw)G11}

{person (mrs_renshaw)G12)

(suggests (mr_renshaw G5)G13)
(suggests (mrs_renshaw G7)Gl4)
(suggests (mr_renshaw G9)GI1S)
(suggests (mrs—renshaw G9)G16)

ithe Renshaws' daughter points out that the total number of plants,

;num_.tolal_G0, can be increased by 2 to num_total_Gl
(person (renshaw_daughter)G17)

(plus (num_total_GO num2 num__total_G1)G18)
(points-out (renshaw_daughter G18)G19)

;she paints out that dividing by 10, 4, or 5 into num_total_G1

;leaves a non-zero remainder of 2
(divide (num_total_G1 numl0Q quotient_G1)G20)
(remainder-of (G20 num2)G21)

(divide (num_total_G1 num4 quotient_G2)G22)
(remainder-of (G22 num2)G23)

(divide (num_total_G1 num5 quotient_G3)G24)
(remainder-of (G24 num2)G25)

(not-equal (num2 num0)G26)

(number-extra-spaces (obj_plants obj_garden num2)G27)
(points-out (renshaw_daughter G21)G28)

(points-out (renshaw_daughter G23)G29)

(points-out (renshaw_daughter G25)G30)

COMPONENT PROCESSES IN TRANSFER

ishe suggests dividing num_total_G1 by 6, leaving 0 remainder
(suggests (renshaw_daughter G32)G31)

(divide (num_total_G1 num6 quotient_G4)G32)
(remainder-of (G32 num0)G33)

idivision by 6 is a success because it leaves O remainder
(success (G32)G34)

(cause (G33 G34)G35)

:all the numbers mentioned are numbers

(number (num_.total_G0)G36)
(number (num__total _G1)G37)
(number (num0)G38)

(number (num2)G39)
(number (num10)G40)
(number (numd)G4l)
(number (num5)G42)
(number (num6)G43)
(number (quotient_G1)G44)
(number (quotient_G2)G45)
(number (quoticnt_G3)G46)
(number (quotient_G4)G47)

ivarious numbers have specific values
(zero (num0)G438)

(two (num2)G49)
(ten (numl10)G50)
(four (num4)G51)
(five (num5)G52)
(six (num6)G53)

«divisions by 10, 4, 5, and 6 constitute possible selcctions of

:kinds of plants
(kind-of (obj_kind10 obj_plants)G54)

(kind-of (obj_kind4 obj_plants)G55)
(kind-of (obj_kind5 obj_plants)G56)
(kind-of (obj—kind6 obj_plants)G57)

:10, 4, 5, and 6 are possible numbers per kind
(number-per-kind (obj_kind10 numl0)G58)
(number-per-kind (obj_kind4 num4)G59)
(number-per-kind (obj_kind5 num5)G60)
(number-per-kind (obj_kind6 num6)G61)

idividing num_total_GO by 10, 4, and 5, and num_total_G1 by 10, 4, 5

;and 6 are the first to seventh solution attempts, respectively
(first-try (G5)G62)

(second-try (G7)G63)
(third-try (G9)G64)
(fourth-try (G20)G65)
(fifth-try (G22)G66)
(sixth-try (G24)G67)
(scventh-try (G32)G68)
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;10, 4, 5, and 6 are the first to fourth divisors considered, respectively
(first-divisor (numl0)G69)
(sccond-divisor (num4)G70)
(third-divisor {(num5)G7I)
(fourth-divisor (num6)G72)

Goals

ithe goal is to determine num_total _G1
(known (num—total_G1)G73)

swhich can be divided by num_Gx to give quotientL_Gx with 0 remainder
(divide (num_total .G num_Gx quoticnt_Gx)G74)
(remainder-of (G74 numQ)G75)

;and is the smallest value possible
(subtract (num—_total_G1 num0 num_difference_G)G76)
(minimal (num_difference_G)G77)

;where num_Gx = 6 and quotient_Gx = quoticnt_G4
(equal (nun_Gx num6)G78)
(equal (quotienL_Gx quolient_G4)G79)
(number (num_Gx)G80)
(number (quotient_Gx)G81)
(number (num_difference _G)G82)

Solution

ifind the least commen multiple of 10, 4, and 5
(find-lem! (numl10 num4 num3 lem_G)G83)

(number (lem_G)G84)

;find multiples of lem_G
(find-multiples! (lem_G list-of-multiples_G)G85)

(list {list-of-multiples_G)G86)

;add 2 to each number in the resulting list of multiples
(list-plus! (num?2 list-of-muitiples_G corrected-lisL_G)G87)
(list (corrected-list_G)G88)

;num_total_G1 is the lowest multiple of 6 in the corrected list
(find-least-multiple! (num6 corrected-list_G num_total_G1)G89)

B. ACME Representation of Band Problem (Target)
Used by Novick and Holyoak (1991)

Start State

;band members march in the band
(band-members (obj—_members)Bli)
(band (obj_band)B2)

COMPONENT PROCESSES IN TRANSFER

(march-in (obj_members obj_band)B3)
ithe number of band members is num_total _B
(number-of (obj—members num_total_B)B4)
:dividing members by 12, 8, or 3 leaves a non-zero remainder of 1
(divide (num_total_B numi2 quotient_B1)B35)
(remainder-of (B5 numl)B6)
(not-equal (numl num0)B7)
(number-left-out (obj__members obj_band numl)B8)
(divide (num_total_B num8 quotient_B2)B9)
(remainder-of (B9 num1)B10)
(divide (num._total_B num3 quoticnt_B3)B11)
(remainder-of (B11 numl) B12)
ithe dircctor orders the above altempts
(person (obj_director)B13)
(orders (obj_director BS)B14)
(orders (obj—director B9)BIS)
(orders (obj_director BI1)B16)
Andrew orders division by 5, which results in 0 remainder
(member-of (andrew obj_members)B17)
(person (andrew)B18)
(left-out-of (andrew obj_band)B19)
(orders (andrew B21)B20)
(divide (num_total_B num5 quotient_B4)B21!)
(remainder-of (B21 num0)B22)
idivision by 5 is a success because the remainder is 0
(success (B21)B23)
(cause (B22 B23)B24)
.all the numbers mentioned are numbers
(number (num_total _B)B25)
(number (num1)B26)
(number (num0)B27)
(number (numi2)B28)
(number (num8)B29)
(number (num3)B30)
(number (num5)B31)
(number (quotient_BI1)B32)
{number (quotient_B2)B33)
(number (quotient_B3)B34})
(number (quotient _B4)B35)
:various numbers have specific values
(zero (num0)B36)
{one (numl)B37)
(twelve (numlI2)B38)
(cight (num8)B19)
{three (num3)B40)
(five (num5)B41)
wivisions by 12, 8,3, and 5 conslitute possible sclections of groupings
;of the members
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(grouping-of (obj_rowl2 obj_members)B42)
(grouping-of (obj—columng obj_members)B43)
(grouping-of (obj_row3 obj_members)B44)
(grouping-of (obj_row5 obj_members)B45)
(row-groups (obj_rowl|2)B46)

(column-groups (obj_column8)B47)
(row-groups (obj_row3)B48)

(row-groups (obj_row5)B49)

;12, 8, 3, and 5 are possible numbers per group
(number-per-group (obj—rowl2 numl2)B50)
(number-per-group (obj—column8 num8)B51)
(number-per-group (obj_row3 num3)B52)
(number-per-group (obj_row5S num5) B53)

;dividing by 12, 8, 3, and 5 are the first to fourth solution

;attempts respectively”

(first-try (B5)B54)
(second-try (B9)B55)
(third-try (B11)B56)
(fourth-try (B21)B57)

+12, 8, 3, and 5 are the first to fourth divisors considered, respectively

(first-divisor (numi2)B58)
(second-divisor (num8)B59)
(third-divisor (num3)B60)

(fourth-divisor (num5)B61)

Goals

sthe poal is to determine num_total_B
(known (num__total_B)B62) :
;which can be divided by num_Bx to give quotient_Bx with 0 remainder
(divide (num_total_B num_Bx quotient_Bx)B63)
(remainder-of (B63 num0)B64)
swhere num_Bx = 5 and quotient_Bx = quotient_B4
{equal (num_Bx num5)B65)
(equal (quotient_Bx quotient_B4)B66)
,and num__total _B is greater than 45 and less than 200
(greater-than (num_total._B num44)B67)
(less-than (num_total_B num200)B68)
(number (num_Bx)B69)
(number (quotient_Bx)B70)
(number (num44)B71)
(number (num200)B72)
(forty-four (numd44)B73)
(two-hundred (num200)B74)

Solution: unknown

3

Integ rating Analogy With Rulés
and\Explanations*

Greg Nelsony Paul Thagard, and Sy$an Hardy

INTRODUCTION

In the past decade, analogy has bsen one 4f the most progressive research areas
in cognitive science. Previously, Xher¢ had been isolated investigations in
philosophy, psychology, and artificigl intelligence, but the 1980s brought
substantial work on many aspects of/alglogy, particularly on how two analogs
can be mapped to each other and or/how aygalogs can be retrieved from memory.
Case-based reasoning, which is anlogy in vqrkaday clothes with a restriction to
single domains, became an actiyé research arsa in artificial intelligence.

There are, however, impogtant unresolved \issues concerning the role of
analogy in human cognition. One of the most predsing concerns the relation of
analogy to other central coghnitive processes. How,\or example, is analogical
problem solving related to £ule-based problem solving\n which chains of rules
are used in quasideductjfe fashion to accomplish goaly? One extreme view,
implied by some of the/advocates of case-based reasonin), is that there is no
such thing as rule-bas¢d reasoning. At the other extreme, the is the view that
analogy is of peripheal interest, at most a minor module to be added onto a rule-
based system whicl/handles basic cognitive operations. In betweNn, there is the
view that analogy’ and rule-based reasoning should be viewed 3 integrated
aspects of a gepéral cognitive system,

How rule-Jased reasoning can be integrated with analogical ryasoning
depends in Ifrge part on what computational mechanisms are seen as crixial to

* Thig'research was supported by contract MDA903-89-K-0179 from the Basic Research Offi
of the Krmy Research Institute for the Bebavioral and Social Sciences, and conducted at the
Princgfon University Cognitive Science Laboratory. We thank David Gochfeld for discussions and
progfamming that helped guide-us toward the current model, and Dmitry Gorenburgov for
deytloping the Gorbachev example. For helpful comments on a previous draft, we are grateful to
Jfha Barnden, Keith Holyoak, and Heather Pfeiffer.
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