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The Proper Treatment of Symbols
in a Connectionist Architecture

Keith . Holyoak
John E. Hummel
Hiversity of Califormia, Los Angeles

PHYSICAL SYMBOL SYSTEMS

A loundational principle of modemn cognitive science is the physical
symbol system hypothesis, which states simply that human cognition is
the product of a physical symbol system (PSS). A symbol is a pattern that
denotes something else; a symbol system is a set of symbols that can be
composed into more complex structures by a set of relations. The term
Pphysical conveys that a symbol system can and musl be realized in some
physical way to create intelligence. The physical basis may be the circuits
of an electronic computer, the neural substrate of a thinking biological
organism, or in principle anything else that can implement a Turing
machine-like computing device. Classical presentations of the PSS hy-
pothesis include Newell and Simon (1976) and Newell (1980); more recent
discussions include Newell (1990) and Vera and Simon (1993, 1994).
The PSS hypothesis, which implies that structured mental repre-
sentations are central to human intelligence, was for some time uncon-
troversial, accepled by most cognitive scientists as an axiom of the field
scarcely in need of either theoretical analysis or direct empirical support.
In the mid-1980s, however, the hypothesis came under sharp attack from
some proponents of connectionist models of cognition, particularly the
advocates of models in the style of “parallel distributed processing,” or
PDP (Rumelhart, McClelland, & the PDP Research Group, 1986; more
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recently, Churchland, 1995; Elman, 1990; Elman et al., 1996; Seidenberg,
1994, 1997; and many others; see Marcus, 1998, for a review). The repre-
sentations used in such models are often described as “subsymbaolic”
because the elementary units correspond to (relatively) low-level features,
over which meaningful concepls are represented in a distributed fashion.
Insofar as models based on “subsymbolic” representations arc actually
nonsymbolic yet adequate as accounts of human intelligence, the need
for symbol systems is eliminated; hence models of this general class con-
stitute “eliminative” connectionism (Pinker & Prince, 1988), Eliminative
connectionism offers a direct challenge to the PSS hypothesis and thereby
transforms the latter from an axiom of cognitive science into a controver-
sial theoretical position, which has been vigorously defended by Fodor
and Pylyshyn (1988), Pinker and Prince (1988), and Marcus (1998), among
others,

Regardless of whether models based on distributed representations
provide genuine alternatives to physical symbol systems, it is apparent
that they have attractive properties as possible algorithmic accounts of
cognition. Discrete symbols represent entities in an “all-or-none” fashion,
thereby violating the principle of least commitment (e.g., using the pres-
ence or absence of the symbol dog to represent the presence or absence
of a dog affords no direct basis for expressing inconclusive evidence that
there may be a dog). Discrete symbols also fail lo express the semantic
content of the represented entities (e.g., the symbols deg and cat do not
signify what dogs and cats have in common and how they differ). Dis-
tributed representations overcome both these limitations and capture
some basic properties of human perception and thinking more effectively
than do classical symbolic representations. By allowing similar inputs to
elicit similar outputs, distributed representations capture broad regulari-
ties in human inductive inference and endow the system with error
tolerance. They also support a variety of learning algorithms that can
capture regularities in environmental inputs and that provide simple
types of automatic generalization.

Another desirable property of connectionist architectures is that they
are at least roughly consistent with neural architectures: Both consist of
discrete computing elements that communicate in densely connected net-
works. In contrast to symbols in a traditional symbolic systemn, which can
move around freely (e.g., from one function or role to another), nodes
occupy fixed locations in connectionist networks, much as neurons occupy
relatively fixed locations in the brain. As we see later, this difference
between symbolic systems on the one hand and connectionist or neural
systems on the other is important because it implies that nodes or neurons
in a network need some special properties to bind fillers to roles or values
to variables—the "binding problem” poses difficulties for the architecture
of connectionist and neural networks. More generally, connectionist mod-
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els provide a convenient language for linking cognitive phenomena 1o
their possible neural substrates.!

Is it possible, or even desirable, for connectionist models to eliminate
physical symbaol systems? This question really has two parts. First, can
distributed connectionist models eliminate symbols? The answer to this
question hinges on a terminological issue about what a “symbol” is. If a
symbol is narrowly defined as an atomic unit corresponding to a concept,
then feature-based models may indeed be subsymbolic. If a symbol is
defined more broadly as a representation that designates something, then
distributed representations are as symbolic as the localist variety (see
Touretzky & Pomerleau, 1994; Vera & Simon, 1994, for a debate that
focuses on this definitional issue). We find the less restrictive definition
to be more useful, but do not consider this part of the question further.
The second part of the question is more substantive: Can distributed
representations eliminate symbol systems? That is, is it possible to model
the full scope of human cognition—including reasoning, relational gen-
eralization, language use, and complex object and scene recognition—with
representations that do not allow the systematic composition of complex
structures from simpler elements?

We argue that the answer is No. If this answer is accepted, then it
follows that the PSS hypothesis is correct and the ultimate aim of elimi-
native connectionism is unattainable, However, the PS5 hypothesis itself
is an abstract description of the requirements for a cognitive architecture,
rather than a prescription for any particular architecture. The core differ-
ence between the S5 hypothesis and the eliminative connectionist hy-
pothesis is that the former postulates systematic, compositional mental
representations, whereas the latter rejects them; hence the resolution of
the debate hinges solely on the compositionality of human mental repre-
sentations, The failure of eliminative connectionism (which founders on
the compositionality of human mental representations) does not obviate
the potential virtues of more realistic connectionist instantiations of the
human cognitive architecture. What is required, then, is not eliminative
connectionism, but rather a proper treatment of symbols in a connectionist
architeeture—an architecture that simultaneously retains the strengths of
distributed representations and instantiates the PSS hypothesis—and
hence constitutes symbolic connectionism (Holyoak, 1991; Hummel & Hol-
yoak, 1998),

In the remainder of this chapter, we develop the case for symbolic
connectionism. We first review evidence that central aspects of cognition

't the same time, some apparent similarities between connes tnst poworks and twural
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similarity of current connectionist models b actual mevral etk e mone moihein gross
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depend on compositional symbol systems. We then suggest certain re-
quirements for a proper treatment of symbols in a connectionist netwaork.
Finally, we sketch an example of a connectionist architecture for reasoning
anad learning, that meets these requirements.

ROLES AND FILLERS: THE NECESSITY
FOR VARIABLE BINDING

The best-known argument for the necessity of symbolic representations—
the argument from systematicity—was made by Fodor and Pylyshyn
(1988). They observed that knowledge is systematic in that the ability to
think certain thoughts seems to imply the ability to think certain related
thoughts. For example, a person who understands the meanings of the
concepts John, Mary, and loves and can understand the proposition “John
loves Mary” must surely understand the proposition “Mary loves John.”
Eliminative connectionist models do not ensure such systematicity. (In fact,
aselaborated shortly, they ensure the absence of truly general systematicity.)
A network of the PDP type can leamn to respond in an appropriate fashion
to an input representing any particular proposition; however, there is no
assurance that learning one proposition enables a sensible response to a
systematically related proposition (see Marcus, 1998).

Systematicity is the hallmark of a system in which complex symbols
are composed in a regular fashion from simpler ones (see Halford, Wilson
& Phillips, 1998). More primitive varicties of cognition can safely rely on
specialized representational systems that do not require composition of
complex symbols; instead, every significant stimulus configuration can
be linked to appropriate responses, either innately or by associative learn-
ing. In this range, eliminative connectionist models may well be adequate.
Strong evidence for systematicity has been found only for higher primates,
maost notably humans, Newell (1990) characterized the development of
compaosilional symbol systems as the “Great Move” of evolution, triggered
by the pressure to represent and manipulate increasingly diverse infor-
mation about the physical and social environment. For example, humans
can recognize scenes in which known or novel objects enter into varied
spatial relations. Thus the relation above (Object 1, Object 2) can be instan-
tiated by a triangle above a square, above (triangle, square), or the reverse,
above (square, triangle). Human scene recognition is systematic with respect
to a limited set of spatial relations and for this reason requires models
based on composed symbols (i.e, structural descriptions; see chap. 7, this
volume). Thinking and language require systematicity on a grander scale,
because the pool of potential relations over which complex symbols can
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be composed is indefinitely large (e.g., loves (lover, beloved), sells (seller,
buyer, object), pretends (person (is [Object 1, Object 2]), and so on). There is
reason to think that the human ability to represent and manipulate do-
main-general relations is linked to evolutionary advances in prefrontal
cortex (Robin & Holyoak, 1994).

As all these examples suggest, composability of symbols requires rep-
resentations that distinguish variables from their values or, equivalently,
roles from their fillers. “John loves Mary” is similar to “Mary loves John
in that both propositions involve the same relation and objects, but the
two differ in that the assignments of objects as fillers of roles are reversed.
It is this combination of similarity and difference between systematically
related symbol structures that eliminative connectionist models fail to
capture. Lacking any capacity to explicitly bind roles to their fillers,
eliminative connectionist models must resort to various forms of conjunc-
tive coding to bind fillers to roles (as elaborated shortly). For example,
one node (or collection of nodes) may represent John in the agent role of
the love relation (the conjunction Joln + lover), with a completely separate
node (or pattem) representing John in the patient role (John + beloved).
As a consequence, such models do not preserve object identities across
relational contexts. This problem, already apparent with simple relational
structures, becomes even more pemicious as the complexity of composed
symbol structures increases. Eliminative connectionist models have only
one basic resource for representing propositions: a fixed-length vector of
units. This fixed vector thus becomes the procrustean bed into which all
symbols must be forcibly fit. Because symbol structures can be of varying
size and complexity, there is no way lo guarantee that a given symbol is
represented on the same (or even overlapping) set of units in two different
structures, Thus, the units that code “Mary” in “John loves Mary”™ may
not overlap with those that code “Mary” in “Mary loves John,” much less
with those that code “Mary” in “John believes that Peter’s anger toward
Mary caused him to write her a strongly worded letter.”

{Arguments {or robes) may suggest different shades of meaning as a function of the roles
{or fillers) 1o which they are bound. For example, “loves™ suggests a slightly different
interpretation in leves (folm Mary) than it does in loves (folm chocelale). However, such
conbextual variation does not imply in any general sense that the filler (or role) itself
neoessarily changes its identity as a function of the binding. For example, our ability to
appreciate that the “John” in loves (Joker Mary) is the same person as the “John™ in bife (Rover
Jakui) demands explanation in terma of John's invariance across the different bindings. I we
assume invariance of identity with binding as the general phenomenon, then it is possible
to explain contextual shadings in meaning when they eocur (Hummel & Holyoak, 1997).
However, if we assume lack of invariance of identity as the general rule, then it becomes
impaossible 0 explain how knowledge acquired about an individual in one conbext can be
connected to knowledge about the same individual in other contexts.
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The inadequacies of eliminative connectionist models are especially
apparent in reasoning tasks that require placing roles and fillers into
correspondence (Barnden, 1994). Consider a simple inference rule, “If
Person 1 loves Person 2 and Person 2 loves Person 3, then Person 1 is
jealous of Person 3.” We can readily recognize a match between the
antecedent (“if”) portion of the rule and the propositions “John loves
Mary” and “Mary loves George.” The resulting inference, “John is jealous
of George,” requires carrying over the correspondences established for
the “if" portion (John — Person 1, George — Person 3) to the “then”
portion and using them to create the structurally appropriate inference
(and not, for example, “George is jealous of John"). Such structural infer-
ences require more than detecting some global similarity between the
specific propositions and the “if” portion of the rule. The global similarity
between the propositions and the antecedent of the rule is (at best) enough
to suggest that someone is likely to be jealous of someone else; it is
inadequate to indicate who is jealous of whom. Drawing this specific
inference requires establishing, maintaining, and using a set of specific
correspondences between roles and fillers (i.e., a set of variable bindings).
Mo model that lacks the capacity to preserve object identities across roles
can make systematic inferences of this type.

These problems are not limited to reasoning based on established
general rules with explicit abstract variables, such as “Person 1. Funda-
mentally the same issues arise in reasoning by analogy to specific cases.
Suppose the reasoner lacked the “jealousy rule” but had encountered a
specific situation, “Alice loved Sam, and Sam loved Betty, so Alice was
jealous of Betty.” The reasoner now learns that John loves Mary and Mary
loves George, Analogical mapping (e.g., Falkenhainer, Forbus & Gentner,
1989; Holyoak & Thagard, 1989) can readily establish the correspondences
John —+ Alice, Mary — Sam, and George — Betty. When these correspon-
dences are passed to an inference engine capable of “copying with sub-
stitution” (Falkenhainer et al., 1989; Holyoak, Novick, & Melz, 1994) from
the source to the target analog, the conjecture "John is jealous of George”
can be inferred. Moreover, once the target is extended by this inference,
the full set of correspondences between the two analogs provides the
basic ingredients for forming a new relational generalization. If the rea-
soner can take the structured intersection between the two analogs, keep-
ing the commonalities while dropping the differences (i.e., generalizing
over John the man and Alice the woman to construct a “person” variable),
then the result is the “jealousy” rule. As has often been argued (Gick &
Holyoak, 1983; Ross & Kennedy, 1990), analogical mapping sets the stage
for relational generalization, which can yield abstract rules and schemas.
None of this is possible, however, for models that lack the capacity to
represent roles, fillers, and the bindings between them.
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As these examples illustrate, both rule-based and analogical inferences
depend on the capacity to detect and exploit linking relations between
role assignments (or mappings). In the rule-based example, the binding
John — Person 1 links the “if* portion of the rule to the “then” portion;
in the analogical example, the mapping John — Alice links the initial
mapping to the eventual inference. Marcus (1998; chap. 4, this volume)
has shown that eliminative connectionist models lacking the capacity for
variable binding are incapable of leaming generalizations based on such
linking relations. Instead, such models are inherently limited to learning
the specific instantiations of linkages that hold for the set of examples on
which they are trained. Although an eliminative connectionist model can
then make “inferences” on which it has been directly trained (ie., the
maodel remembers particular associations that have been strengthened by
leaming), the acquired knowledge may not generalize af all to novel
instantiations of the linking relations based on cases that lie outside the
training set (also see Phillips & Halford, 1997).

These limitations can be illustrated by the performance of a particularly
sophisticated example of an eliminative model, the Story Gestalt model
of story comprehension developed by St. John (1992; 5t. John & McClel-
land, 1990). In one computational experiment (St. John, 1992, Simulation
1), the Story Gestalt model was first trained with 1,000,000 short texts
consisting of propositions based on 136 different constituent concepts.
Each story instantiated a script such as “<person> decided to go to
<deslination>; <person> drove <vehicle> to <destination>" (e.g., “John
decided to go to a restaurant; John drove a jeep to the restaurant”; “"Harry
decided to go to the beach; Harry drove a Mercedes to the beach™). After
leaming a nelwork of associative connections based on the 1,000,000
examples, the generalization ability of the model was tested by presenting
it with a text containing a new proposition, such as “George decided to
go to the airport,” and having the model attempt to complete the “driving™
seript. St. John reported that when given a new proposition about deciding
to go to the airport, the model typically activated the restaurant or the
beach (i.e, the destinations in previous specific examples) as the destina-
tion, rather than making the contextually appropriate inference that the
person would drive to the airport. This type of error (which appears
unnatural in human text comprehension) results from the model’s lack
of a capacity to learn generalized linking relations (e.g., that if a person
wants to go somewhere, that place is the person’s destimation). As S
John noted, “Developing a representation to handle role Bing
to be difficult for the model” (1992, p. 2M).

A particularly simple example of a linking selation that reveals such
generalization failures is the identity relation. Hlolyoak and Thagard (1995)
-‘I'I“l‘BL‘d that ll'l'llj:l'nl'i.lln of I'dl'nlll'}' or saneinss ol ome odspect o another
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is the mwst basic lorm of systematic analogical reasoning, The concept of
identity apprears tobe an the cognitive capacity of both humans (including
young, clildren) and other primates, Both monkeys and chimpanzees are
ablis b first learn Lo solve match-to-sample problems (e.g., picking a target
object that is identical to a sample object) and then to successfully transfer

to problems based on novel objects (e, D'Amato, Salmon, Loukas, &
Tomie, 1985; Oden, Thompson & Premack, 1988). The ability to transfer
to niew objects suggests that these primates can recognize and respond
to the identity relation in a way that goes beyond the training examples.

Marcus (1998) analysed the limitations of eliminative connectionist
models in acquiring a function based on the identity relation. Suppose,
for example, that a human reasoner was trained to respond with “1* to
“1," 27 to “2,” and 3" to “3." Even with just these three examples, the
human is almost certain to respond to “4" with "4,” without any direct
feedback -that this is the correct output for the new case. In contrast, an
eliminative connectionist model (e.g,, a feed-forward or recurrent network
trained by back propagation®) is unable to make this obvious generaliza-
tion. Such a model will have leamed the specific input-output relations
on which it was trained, but lacking the capacity to represent variables,
generalization outside the training set is impossible. In other words, the
model will simply have leamed to associate "1” with ”1,” “2" with “2,"
and “3" with "3." A human, by contrast, will have leamned to associate
input (number) with output (mumber), for any number; doing so requires
the capacity to bind any new number {(whether in the training space or
not) to the variable manber. Indeed, most people are willing to generalize
even beyond the world of numbers. We leave it to readers lo give the
appropriate outputs in response to the following inputs: “A"; “B";
“flower”; “My ability to generate these responses indicates that I am
binding values to variables.”

The power of human reasoning and learning, then, is dependent on
the capacity to represent roles and bind them to fillers. This is precisely
the same capacity that permits composition of complex symbols from
simpler ones. The human mind is the product of a physical symbol system;
hence any model that succeeds in eliminating symbol systems ipso facto
has succeeded in eliminating itself from contention as a model of the
human cognitive architecture.

*Although eliminative models are often based on back propagation keaming. their most
basic Hmitations arise not from the kearning algorithm per se, but rather from their lack of
explicit role-filler representations. As we discuss later, models of this sort are unable to
represent the knowledge necessary for true universal generalization and hence cannot
succeed in modeling human relational generalization even if the modeler is allowed 1o
hand-code the network.
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THREE REQUIREMENTS FOR A
SYMBOLIC-CONNECTIONIST ARCHITECTURE

As we noted earlier, establishing the validity of the PSS hypothesis places
broad constraints on the nature of the human cognitive architecture, but
does not suffice to identify any specific architecture as psychologically
real. Ultimately, the empirically correct model of the human cognitive
architecture, as a physical symbol system, must specify the neural code
for thought. A long road remains ahead before this goal is attained; little
is yet known about the detailed neural substrate for propositional repre-
sentation. Indeed, it appears in retrospect that the attraction of eliminative
connectionism was in part due to premature and overly restrictive pre-
sumptions about “neural plausibility,” according to which symbol sys-
tems (narrowly identified with specific “symbolic” architectures in the
cognitive science literature) were viewed as inherently neurally implau-
sible. The unknown often seems implausible. As Sherlock Holmes ob-
served, however, once we have eliminated the impossible, what remains,
however implausible, must be the truth. The human brain supports sym-
bol systems; rather than pretending otherwise, we need to investigate
how it does so.

There is nothing in the general notion of neural networks that precludes
variable binding and composition of symbol structures. Indeed, many
researchers in the connectionist tradition have seriously considered the
question of how symbol systems can be embodied in a neural network
(e.g., Feldman & Ballard, 1982; Hinton, 19%0); Hummel & Holyoak, 1997;
Plate, 1991; Pollack, 1990; Shastri & Ajjanagadde, 1993; Smolensky, 1990;
Touretzky & Hinton, 1988). Given that the PSS hypothesis is accepted
and that the brain is apparently a neural network (of some sort), the
search for the human cognitive architecture leads in the direction of
symbolic connectionism (Holyoak, 1991).

It is not our purpose here to describe and evaluate in detail the many
proposed symbolic connectionist models. Some models perform rule-
based inferences (e.g., Shastri & Ajjanagadde, 1993), and a few perform
analogical mapping (e.g., Halford et al., 1994}, but only our own model
(Hummel & Holyoak, 1997) performs a wide range of the types of struc-
tured comparisons typical of human symbol processing. Here we state
three apparent requirements for an adequate model of the human cogni-
tive architecture, which have motivated our own theoretical tack (Hum-
mel & Biederman, 1992; Hummel & Holyoak, 1993, 199, 1997; Hummel
& Stankiewicz, 1996), and which highlight limitations of alternative ap-
proaches (see also Hummel & Holyoak, 1998). Each of these requirements
is molivated by a mix of computational considerations and empirical
evidence about human cognition.
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Independent, Dynamic Variable Binding

First, the cognitive architecture must be a symbol system: It must enable
structured comparisons between complex symbol structures and allow
the computation of systematic role-filler bindings, analogical mappings,
and mapping of universal functions (see Holyoak & Thagard, 1995). This
requirement implies that the model must provide mechanisms for the
composition of symbol structures and therefore for variable binding. A
variable binding espresses a rolefiller or variable-value conjunction and
has two essential properties.

Dynamic Binding

A variable binding is dynamic in the sense that it can be created and
destroyed on the fly: John can be bound to the agent role of love (x y) on
one occasion and to some other role on another occasion.

Independent Binding

The binding must be independent of the entities it binds. Binding is
something that a symbol system does to elemental units such as roles and
fillers; it is not an intrinsic property of the units themselves, and it does
not change the identities of those elements. For example, a propositional
representation uses list position to express role-filler bindings: John is
bound to the agent role of loves (x y) by placing it in the first slot of that
predicate. This is a “true” variable binding because list position is external
to (i.e., independent of) the elements themselves, so that neither John nor
loves (x y) changes as a result of the binding. This independence is im-
portant because it allows the representation of John in the context of “John
loves Mary” to overlap in a perspicuous manner with the representation
of John in “Mary believes that Susan’s anger toward John caused her to
write him a strongly worded letter.” The independence of binding and
unit identity in human cognition is supported by the fact that people can
effectively use constituents as retrieval cues to access larger structures
stored in memory (e.g., Lesgold, 1972; Wanner, 1968). As discussed later,
it is also supported by our ability to generalize rules universally.

It is important to distinguish independent binding from conjunctive
coding, the dominant approach to binding in the connectionist literature.
Conjunctive coding uses separate units (or patterns of activation) to rep-
resent separate bindings. For example, to represent loves (John Mary), a
conjunctive code would designate one unit or pattern, A, to represent the
binding of John to the lover role, and a separate unit or pattern, B, to bind
Mary to the beloved role; loves (Mary John) would be represented by two
more patterns, C binding Mary to lover, and D binding John to beloved.
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Critically, A, B, C, and D must differ from one another to unambiguously
bind objects to their roles. As a result, John bound to lover (Unit A) differs
from John bound to beloved (Unit D). Conjunctive coding is similar to
variable binding in that it represents rolefiller (or variable-value) con-
junctions. It is also similar to variable binding in that it can be dynamic:
It is possible to create and destroy conjunctive codes on the fly, as in the
case of tensor product representations of binding (see Halford et al., 1994).
It differs from true variable binding, however, because it carries binding
information in the units themselves, rather than representing it inde-
pendently of those units (i.e., conjunctive coding fails the requirement of
independent binding): A unit that represents the conjunction John + lover
is simply a symbol for that conjunction; it does not explicitly bind the
symbol John to the role lover. As a result, conjunctive codes do not have
the expressive power of symbolic representations based on independent
dynamic variable binding (see also Hummel & Biederman, 1992).

Static Binding in Long-Term Memory

Second, although independent dynamic variable binding is a necessary
prerequisite for symbolic representation, a cognitive architecture must
also be able to establish static bindings—for example, by conjunctive
coding—to code facts and rules in long-term memory (Hummel & Hol-
yoak, 1993, 1997; Shastri, 1997). A code for independent dynamic binding
based on temporal patterns (e.g., binding by synchrony of firing, as
discussed shortly) is necessarily transient (hence naturally associated with
working memory) and therefore must be supplemented by a static rep-
resentation that stores bindings over extended periods. The static form
of the binding must be capable of responding to the corresponding dy-
namic form (or a similar structure) when the latter enters working memory
(recognition), and it must be able to reinstate the independent dynamic
form when the structure (e.g., proposition) is called back into working
memory (recall; Hummel & Holyoak, 1997).

It is interesting to consider whether something analogous to the dis-
tinction between dynamic and static binding arises in a traditional sym-
bolic representation. For example, does the symbolic representation of a
proposition on the hard drive of a computer differ—in a way analogous
to the dynamic-static distinction—from the representation of that propo-

sition in the computer’s random-access memory? Although these repre
sentations certainly differ in some respects (for cxample, the latter is
represented as a set of electronic currents in the registers that make up
the computer’s memory, whereas the former is a pattern of magnetic
states on the computer’s disk), it is unclear whether such ditferences map
onto the dynamic-static distinction that arnses for connectionist repre-
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sentations of symbolic structures. If not, then this requirement is unique
to symbolic connectionist systems.

Distributed Representations of Propositional Content

Third, these representations and operations must be sufficiently robust
to tolerate partial matches and imperfect correspondences. This capability
is essential to rule-based and analogical inference, as well as to relational
generalization. Therefore, concepts must have distributed representations
of their meanings to provide simple mechanisms for error tolerance and
similarity-based retrieval. In other words, symbols must be coded by
distributed patterns, rather than by atomic elements. Requiring that sym-
bols have distributed representations implies acceptance of the broader
definition of “symbol” advocated by Vera and Simon (1994).

Numerous connectionist models have been proposed that satisfy the
requirements for static binding for long-term storage and distributed
representations. However, localist connectionist models (e.g., Feldman &
Ballard, 1982; Shastri & Ajjanagadde, 1993) lack the benefits of distributed
representations (see Hummel & Holyoak, 1993), as do traditional symbolic
models (e.g., Anderson’s [1993] ACT-R and its precursors; Rosenbloom,
Laird, Newell, & McCarl’s [1991] SOAR). Most distributed models do
not satisfy the requirement for independent binding, in that the rep-
resentation of a symbol in isolation (or as a constituent in one symbol
structure) may have no overlap with the representation of the same
symbol as a constituent in some other symbol structure. The models that
exhibit this limitation include all eliminative models, as well as models
based on tensor products (Smolensky, 1990) and their relatives, such as
holographic reduced representations (HRR; Plate, 1991) and recursive
autoassociative memories (the RAAM model of Pollack, 1990). This failure
to satisfy the requirement for representing roles and fillers independently
of their bindings is the direct consequence of relying solely on conjunctive
bindings.

THE PROBLEM WITH TENSOR PRODUCTS
FOR VARIABLE BINDING

The fact that models based solely on static bindings fail to represent roles
and fillers independently of their bindings has generally been overlooked,
and we sketch the reason for the problem. To a first approximation, tensor
products and their relatives seem adequate as a solution to the variable
binding problem (first requirement). However, inasmuch as satisfying
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this requirement entails satisfying the requirement for independent bind-
ing, tensor-based approaches are inadequate as a general solution to the
binding problem. The limitations of tensor-based approaches—and the
importance of the requirement for independent binding—are important
but relatively subtle and so warrant detailed consideration.

A tensor product is an outer product of two or more vectors. For
example, in the case of a tensor, ab, formed from vectors a and b, the ijth
element of ab is simply the product of the ith element of a with the jth
element of b (see Fig. 9.1):

abu = aib". {1}

Tensors can be formed from any number of vectors in this way. For
instance, a tensor can be formed from three vectors by setting the ijkth
element of the tensor to the product of the ith element of the first vector, the
jth element of the second, and the kth element of the third (see Fig. 9.2).
Smolensky (1990), Halford et al. (1994), and others have shown that tensor
products can be used to bind variables to values or fillers to roles. For
example, as illustrated in Fig. 9.2, it is possible to represent the proposition

(a) run (John) (b)  walk (John) (c) eat(John)

Predicate Predicate Predicale
walk

Filler
John

FIG. 9.1. A tensor product is an outer product of two or more vectors.
(a) A tensor product representing a binding of the object John to the
single-argument predicate run (x). Black circles indicate values of 1 (active
units), and circles indicate values of 0 {(inactive units). Run (x) is represented
by the vector [1, 1, 0, 0, 0, 0]. John is represented by the vector [0, 1, 0, 1,
0, 1]. The ijth element of the tensor run (John) is the product of the ith
element of run (x) with the jth element of John. (b) A tensor product
representing a binding of John to the predicate walk (x). The vector for walk
(x) shares active units with (but is not identical to) the vector for run (x),
so that the tensor for walk (John) shares active units with (but is not identical
to) the vector for run (John). (c) A tensor product representing a binding
of John to the predicate eat (x). The vector for eat (x) shares no active units
with the vector for run (x), so that the tensor for eat (John) shares no active
units with the vector for run (John).
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(a) love (John Mary) (b) love (Mary John)

Predical
B/g’
.
()42
ovefe?

te

e®
e
g )
(™

Mary

Filler 1 (agent)

Filler 1 (agent)

Filler 2 (patient Filler 2 (patient
2 e i

FIG. 9.2. (a) A tensor representation of the proposition love (John Mary).
Black circles indicate values of 1 (active units), and white circles indicate
values of 0 (inactive units). (b) A tensor representation of love (Mary John).
Note that John, which is bound to different roles in the two propositions,
is represented by different vectors in the two propositions: John is
represented by the “vertical” (agent) vector in the first proposition and by
the “horizontal” (patient) vector in the second.

loves (John Mary) with a three-dimensional tensor, abe, in which one vector
(a) codes the predicate (loves), the second vector (b) codes the filler of the
agent role (John), and the third vector (c) codes the filler of the patient role
(Mary). Switching the roles to represent loves (Mary John) changes the
assignment of John and Mary to role slots and thereby changes the tensor
product. If loves (John Mary) is represented by abc, then loves (Mary John) is
represented by acb (compare Figs. 9.2a and 9.2b).

A tensor product is analogous to a weight matrix between the simple
vectors from which it is generated (the product rule for generating the
tensor is precisely a Hebbian learning rule; Smolensky, 1990). As a result,
it can be used to answer “questions” about the bindings of roles to fillers.
For example, consider the tensor representation of “John runs” in Fig.
9.1a. Imagine activating the tensor and the vector for “run” and leaving
the vector where John would be represented inactive. If the vector for
“run” is treated as an input and the tensor is treated as a weight matrix,
then the network activates John on the argument vector and effectively
answers “John” to the question “Who is running?” In this sense, the tensor
binds the argument “John” to the slot of the predicate “run” (see Halford
et al., 1994; Smolensky, 1990).

However, tensor products do not adequately model role binding in
human mental representation. Although a tensor can be used to generate
one element of a binding given another element as a cue (as in the previous
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example), the tensor itself does not explicitly represent those elements
and their bindings. As noted earlier, symbols in a symbol system are free
to change bindings without changing their identities. That is, the identity
of a symbol is invariant with whatever role bindings it happens to be
participating in at any given time.

The tensor representation of a variable binding is not invariant in this
way. Rather, the representation of a filler (or role) in a tensor changes as
a function of the role (or filler) to which it happens to be bound. For
example, consider the hypothetical tensor representations of run (John) in
Fig. 9.1a and walk (John) in Fig. 9.1b. The representation of run (x) is similar
but not identical to the representation of walk (x), so that the tensor for
run (John) is similar but not identical to the tensor for walk (John). Predicates
that do not overlap at all produce tensors that do not overlap. For example,
the representation of eat (John) in Fig. 9.1c does not overlap at all with
the representation of run (John) in Fig. 9.1a. The tensor thus captures the
binding of John to these various roles, but it fails to capture the fact that
John remains the same entity in each role. This point is somewhat subtle
because we (the modeler or the reader of a modeling paper) know that
John is the same in both cases; looking at the graphical representation of
the tensor, we can “see” John in both cases—the fact that John is the
argument in both cases is the reason that the first, third, and fifth units
(but not the second, fourth, and sixth) are active in active columns of the
tensor.

Although we know John is “in there,” the tensor itself does not. To
demonstrate this limitation more formally, let us define the similarity of
two vectors, a and b, in terms of the cosine of the angle between them:

a'b

cos(@ b) =1 il (2)

where lIxll is the length of vector x, and a-b is the inner product (or “dot
product”):

ab=Zapb,. 3)

The cosine is a measure of the similarity between two vectors. It is at a
maximum (1.0) when the vectors are identical (i.e., when they point in
the same direction, regardless of their lengths), zero when the vectors are
unrelated (i.e., orthogonal), and at a minimum (~1.0) when the vectors
are opposites (i.e., with positive values in one corresponding, (o negalive
values in the other; see Jordan, 1986). The cosine ol the angle between
any two tensors, ab and a’b’ (i.e., their similarity), scales with the product
of the similarities of the vectors from wluch they were created. For a
tensor created from two vectors, a and b
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a-a’xb.b’
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(4)

The cosine of the angle between two tensors goes to zero when either of
the more basic similarities [cos(a, a”) or cos(b, b’)] is zero and goes negative
when ecither of the more basic similarities is negative. In a tensor repre-
sentation, binding the same object to nonoverlapping roles results in
nonoverlapping tensors.

It is tempting to reply that this is not a problem because the tensor
really only needs to express binding information: The responsibility for
expressing similarity lies not with the tensor, but with the simple vectors
from which the tensor is generated. According to this reply, the preceding
analysis actually reveals a strength of tensor-based representations be-
cause it shows that the tensor can, in principle, unambiguously express
binding information.

This reply, however, fails for two reasons. The first is that tensors
describing bindings of similar roles to similar fillers in fact are similar to
one another (Equation 4). Thus, even if we wished to grant that it is not
the tensor’s responsibility to carry similarity information, the mathematics
ensures that it inevitably is the tensor’s burden. This problem is most
extreme when the individual vectors (a, a’, b, and b’) are maximally
dissimilar. If cos(a, a’) = -1 (i.e.,, a and a’ are opposites), and cos(b, b’) =
-1, then cos(ab, a'b’) is positive 1.0 (see Equation 4): In this case, the dot
products are maximimally similar precisely because their constituent roles
and fillers are maximally dissimilar! A second and more serious problem
is that even the simple vectors from which the tensor is constructed are
not invariant across bindings, so that it does not help to assign the
“responsibility” for similarity to them. Consider a predicate, such as loves
(x y), that takes more than one argument (Fig. 9.2). Bound to the agent
role of such a relation, an object is represented in one vector space (i.e.,
collection of units); but bound to the patient role, the same object is
represented in a completely different vector space. For example, as the
agent of loves (x y), John is represented on the “vertical” units (Fig. 9.2a);
but as the patient, John is represented on the “horizontal” units (Fig. 9.2b).
The representation of John in one role does not overlap at all with the
representation of John in the other, even on the simple vectors.

The problems with tensor-based binding are compounded in schemes
based on “compressed” tensors (e.g., Plate, 1991; Pollack, 1990). For ex-
ample, in a holographic reduced representation (HRR) (Plate, 1991), a
tensor is compressed (by summing over reverse diagonals) into a vector
whose dimensionality is given by the diagonal of the original tensor.
Because the HRR is derived from a tensor, it inherits the binding-identity
tradeoff of the tensor; and because the dimensionality of the HRR is lower
than the dimensionality of the tensor, the HRR encounters the additional

———
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problem that it underconstrains the tensor. That is, for any given HRR,
multiple tensors can in principle produce it. The recovery of the tensor—
that is, the recovery of the binding—is ill posed in an HRR. The same
problems arise in other schemes for compressing tensors, including cir-
cular convolutions and recursive autoassociative memories (RAAMs; Pol-
lack, 1990).

DISTRIBUTING A SYMBOL SYSTEM
OVER SPACE AND TIME

The problems with the tensor approach to binding stem from the fact that
tensors are a brand of conjunctive coding: Each unit in a tensor represents
a role-filler conjunction (see Hummel & Biederman, 1992). As a result, the
representation of a role or filler is fundamentally in conflict with the repre-
sentation of role-filler bindings (Hummel & Holyoak, 1993): To the extent
that the tensor preserves one, it must sacrifice the other (Equation 4).

To satisfy the requirement for independent binding, a representational
system needs a second degree of freedom—independent of the units’
identities and their activations—to represent binding information: Units
need a “tag” to express binding (i.e., such that units in the same group
have the same value on their “tags”). The tag must be dynamic, so that
units representing roles can be rapidly but temporarily bound to units
representing the fillers of those roles. Recall that units in a connectionist
network (like neurons) are not free to “move around,” and list position
(the binding tag used in propositional representations) is unavailable. In
principle, however, many possible tagging systems are conceivable. For
example, units that are bound together could be spray painted with a
shared color; Mozer, Zemel, Behrmann, and Williams (1992) described a
network that uses imaginary numbers as a binding tag. At present, how-
ever, the only proposed basis for tagging with any apparent neural plau-
sibility is based on the use of time. In particular, it has been proposed
that units fire in synchrony with one another when they are bound
together and out of synchrony when they are not (Milner, 1974; von der
Malsburg, 1981/1994; see Gray, 1994, for a review). For example, to
represent loves (John Mary), units representing “John” fire in synchrony
with units for “lover,” while units for “Mary” fire in synchrony with units
for “beloved” (the John + lover set must fire out of synchrony with the
Mary + beloved set); loves (Mary John) is represented by the very same
units, but the units for “Mary” fire in synchrony with the units for “lover,”
while the units for “John” fire in synchrony with the units for “beloved”
(Hummel & Holyoak, 1992).

There is some neurophysiological evidence for binding by synchrony
in visual perception (e.g., in the striate cortex; Eckhorn et al., 1988; Gray
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& Singer, 1989; Konig & Engel, 1995) and in higher level processing
dependent on the frontal cortex (Desmedt & Tomberg, 1994; Vaadia et
al., 1995). Numerous connectionist models use synchrony for binding.
This mechanism has been applied in models of perceptual grouping (e.g.,
Eckhorn, Reitboeck, Arndt, & Dicke, 1990; von der Malsburg & Buhmann,
1992), object recognition (Hummel & Biederman, 1992; Hummel & Saiki,
1993; Hummel & Stankiewicz, 1996, 1998), rule-based reasoning (Love,
1999; Shastri & Ajjanaggade, 1993), episodic storage in the hippocampal
memory system (Shastri, 1997), and analogical reasoning (Hummel &
Holyoak, 1992, 1996, 1997).

Similarity in Dynamic Binding

Equation 4 characterizes how the similarity of different tensor products
scales with the similarity of the simple vectors from which they are
composed. It is possible to perform the same analysis on synchrony-based
representations of binding, as illustrated in Fig. 9.3. In synchrony-based
models, predicate roles and fillers occupy different regions of the same
vector space, and—more important—a given role or filler always occupies
the same part of the space (i.e., activates the same units) regardless of
whatever else is bound to it. (Geometrically, this is what it means for role
and filler identity to be invariant with binding.) Binding by synchrony
corresponds to activating two or more vectors at the same time (one for
the role and one for the filler); mathematically, binding by synchrony is
vector addition (see Fig. 9.3). (By contrast, recall that tensor-based binding
is vector multiplication: Equation 1.) As a consequence, the similarity of
different bindings in a synchrony-based representation scales additively
(rather than multiplicatively) with the similarity of the simple vectors
(Hummel & Holyoak, 1998):

cos(a+b,a’+b)=(aa’+ab’ +ba +bb')Ia+bll lla"+bll, (5)

where a + b is the vector generated by synchronizing a with b and a’ +
b’ is the vector generated by synchronizing a” with b’. If roles (a and a’)
and fillers (b and b’) are assumed to occupy nonoverlapping regions of
vector space (i.e., assumed to share no units; see Hummel & Holyoak,
1997), then a-b’ and b-a’ go to zero, and Equation 5 simplifies to:

cos(a+ba’+b’)=(aa’+bb’)/lla+blllla"+ bl (6)
Multiplication (as in the tensor scheme) corresponds to logical AND,

whereas addition (as in the synchrony-based scheme) corresponds to
logical OR. Tensor bindings are similar to the extent that their roles and
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FIG. 9.3. (a) Hypothetical vector representations of John, Mary, the agent
and patient roles of love (x y) (lover [L1] and beloved [L2], respectively) and
the agent and patient roles of fear (x y) (fearer [F1) and feared [F2],
respectively). Black circles indicate values of 1 (active units), and white
circles indicate values of 0 (inactive units). (b) Matrix of dot products
(similarities) of the vectors in (a). For example, the entry in Row J, column
M is the dot product of the vector for John with the vector for Mary. Empty
cells indicate values of zero. (c) Vectors formed by synchronizing (i.e.,
adding) each object vector in (a) with each role vector. For example, vector
J + L1 is the vector produced by synchronizing (adding) the vector for John
with the vector for lover. Pairs of vectors represent propositions. For
example, J + L1 and M + L2 represent the role-filler bindings in love (John
Mary) and jointly represent that proposition. (d) Matrix of dot products
(similarities) of the (synchronized) vectors in (c). Note that the dot product
for any pair of synchronized vectors (from c) is the sum of the dot products
of the corresponding simple vectors (from a). For example, the dot product
of J + L1 (John + lover) with M + F1 (Mary + fearer) (4) equals the dot
product of John with Mary (2) plus the dot product of lover with fearer (2).
The similarity of synchronized vectors scales with the sum of the similaritics
of the simple vectors from which they are composed. )
fillers are similar (Equation 4), whereas synchrony-based bindings are
similar to the extent that their roles or fillers (or both) are similar (Equation
6). The practical consequence of this property 1s thatl, in a synchrony-based
scheme, walk (Bill) is guaranwed to be wdentical to eat (1) on the units
representing Bill, even if walk (x) and cat (x) have nothing whatsoever in
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common. Morcover, because the numerator of Equation 6 is based on
addition rather than multiplication, negative simple dot products (i.e.,
where a2’ < 0 and b:b’ < 0) produces a negative value for cos(a + b, a’ +
b’) (rather than a positive value, as in tensor-based schemes). That is,
synchrony-based representations are similar precisely to the degree that
they express similar concepts.

Using Synchrony to Form Symbolic Representations

It is one thing to show that synchrony-based bindings preserve the simi-
larity structure of the entities they bind; it is another to show that the
resulting bindings constitute useful symbolic representations. To count
as symbolic, a knowledge representation must function as part of a system
that can perform symbolic computations. We have recently developed a
model that uses synchrony-based bindings to form representations that
are meaningfully symbolic in this sense. This model, learning and infer-
ence with schemas and analogies (LISA), is a model of the major stages
of analogical inference and relational generalization, namely, retrieval
from long-term memory, mapping of structures in working memory,
analogical inference, and schema induction (Hummel & Holyoak, 1996,
1997; for earlier versions of the model, see Hummel, Burns, & Holyoak,
1994; Hummel & Holyoak, 1992; Hummel, Melz, Thompson, & Holyoak,
1994). We describe LISA in only very general terms here. The details of
LISA’s operation as an analogical retrieval and mapping engine can be
found in Hummel and Holyoak (1997), and the details of its operation as
an inference and schema induction engine can be found in Hummel and
Holyoak (1996).

LISA represents role-filler bindings in working memory as synchro-
nized patterns of activation distributed over a collection of semantic units.
For example, “John loves Mary” is represented by units for “John” firing
in synchrony with units for the agent role of “loves,” while units for
“Mary” fire in synchrony with units for the patent role. Propositions are
represented in LISA’s long-term memory by a hierarchy of structure units
(see Fig. 9.4). Predicate units (triangles in Fig. 9.4) bind semantic features
into predicate roles, object units (circles) bind semantic features into objects,
subproposition (SP) units (rectangles) bind roles to their fillers, and propo-
sition (P) units (ovals) bind role-filler conjunctions into complete propo-
sitions. Note that all the bindings in LISA’s long-term memory are static
in that they are coded conjunctively (as dictated by the requirement for
distributed representations). As such, these units do not directly represent
the semantic content of a proposition; rather, they serve only to store that
content in long-term memory and respond to it when it enters working
memory (i.e., as patterns of activation on the semantic units). An analog
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Structure Units:

Proposition
{P) units

Sub-Proposition
($P) units John+lovel Mary+lovel

Predicate
and
Object Units

FIG. 9.4. Illustration of the representation of the proposition love (John
Mary) in LISA’s long-term memory. See text for details.

in LISA is represented as a collection of structure units coding the propo-
sitions in that analog. Separate analogs consist of nonoverlapping sets of
structure units, but share the semantic units. Note that structure units are
created as needed, rather than prestored; as we illustrate next, they can
be learned by an algorithm for unsupervised learning.

Based on these representations, LISA performs analog retrieval and
analogical mapping as a form of guided pattern recognition. When a
proposition becomes active in one analog (a driver analog), it generates
synchronized patterns of activation on the semantic units (one pattern for
each role-filler binding). In turn, these patterns activate structure units
in other recipient analogs. This process is analog retrieval: Patterns of
activation generated by the driver activate (i.e., retrieve from long-term
memory) units in other analogs. Mapping differs from retrieval solely by
the addition of modifiable mapping connections between units of the same
type in the driver and recipient analogs. During mapping, weights on the
mapping connections grow larger when the units they link are active
simultaneously and grow negative when one unil is active bul the other
is not. These connections permit LISA to learn the correspondences gen
erated during retrieval. They also serve Lo constrain subsequent memory
access and thus to constrain subsequent mappings. By the end of a,
simulation run, corresponding structure units have large positive welghts
on their mapping connections, and noncorresponding units have strong
negative weights, Using these operations, LISA stmulaten o large body of
findings in human analog retrieval and mapping and accounts for some
complex asymmetries between retrieval and mapping (Hummel & Hol
yoak, 1997) These same operations also form the basis of LISA' capacity
lor schema induction, analogy -based mference (Hummel & Holyoak,
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1996), and explicit rule-based inference. Let us consider analogy- and
rule-based inference first.

Analogical Inference and Rule Use

Imagine that we give LISA an analog (henceforth Analog 1) containing
the following two propositions (Fig. 9.5a):

P1 = input (X)
P2 = output (X),

where P1 and P2 are the names of the propositions, input (x) and output
(x) are simple one-argument predicates (e.g., let input be connected to the
semantic units role and input, and let output be connected to role and
output), and X is a simple semantically empty object (e.g., let X connect
either to the semantic unit variable or to no semantics at all; as we shall
see, it does not matter which). Analog 1 is a kypical analog in LISA notation
(Hummel & Holyoak, 1997), and it can also be interpreted as a rule stating
“X is input” and “X is output.” That is, Analog 1 is LISA-ese for the identity
function. Next, let us give LISA Analog 2 (Fig. 9.5b):

P1 = input (1),

input+X |output+X

input role output number 1

FIG. 9.5. (a) LISA representation of the rule, “X is input (proposition P1)
and X is output (proposition I’2).” (b) LISA representation of the question,
“1 is input. What is output?” LISA “answers” the question in (b) by
mapping the analog in (b) onto the analog in (a) (which binds the value 1
to the variable X) and then mapping back, creating the proposition P2 =
“1 is output” in the analog in (b). See text for details.
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where the predicate unit input is connected to the very same semantics
as input in Analog 1 (but note that the predicate input (x) is represented
by separate units in Analog 1 and Analog 2; Figs. 9.5a and 9.5b), and the
object unit, 1, is connected to semantics indicating that it is a number and
that its value is one. Critically, 1 is connected to none of the same semantics
as X in Analog 1, so that it bears no similarity whatsoever to that object
(i.e., the variable X in the rule). As we shall see, this property distinguishes
LISA from all eliminative connectionist approaches to modeling the iden-
tity function.

Now let us map Analog 2 onto Analog 1. P1 (in Analog 2) is a single-
place proposition and therefore has only one SP (namely, input + 1; Fig.
9.5b). When this SP fires, it activates the predicate unit input and the object
unit 1, which activate (in synchrony) their respective semantic units (input,
role, number, and 1). Although the semantics number and 1 excite nothing
in Analog 1, role excites both input and output (in Analog 1), and input
(the semantic unit) excites input (in Analog 1). Because the predicate input
(in Analog 1) is receiving more bottom-up excitation than the predicate
output, input “wins” the inhibitory competition, becomes fully active, and
inhibits output to inactivity. The predicate unit input (in Analog 1) in turn
excites the SP input + X, which excites the object X. As a consequence, X
in Analog 1 is now active at the same time as 1 in Analog 2, so that the
mapping connection between them grows: LISA has bound the value 1
to the variable X and stored this binding as a connection between them.
Similarly, input (Analog 1) has learned an excitatory mapping connection
to input (Analog 2) (because they were active at the same time). Output
(Analog 1) was inactive while input (Analog 2) was active, so that output
(Analog 1) has learned a negative (inhibitory) mapping connection to input
(Analog 1).

Next let us make Analog 1 the driver and Analog 2 the recipient. When
P1 fires in Analog 1, it simply reinforces (i.e., strengthens) the mapping
connections from input (in Analog 1) to input (in Analog 2) and from X
to 1. It also strengthens (i.e., makes more negative) the inhibitory connec-
tion between output (Analog 1) and input (Analog 2).

However, when P2 fires, something more interesting happens. P2 ac-
tivates the SP output + X, activating output and X, which activates (in
synchrony) the semantics role and output. At the same time, X activates
1 (in Analog 2) directly by way of the mapping connection between them.
Meanwhile, the semantic unit role excites the predicate unit input (in
Analog 2), but output (in Analog 1) inhibits input (in Analog 2) owing to
the negative mapping connection between them. In fact, although the
object 1 is receiving excitatory input over its mapping connection, all the
predicates in Analog 2 (all one of “them”) are receiving inhibitory input
over their mapping connections, a situation that indicates that no predi-
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cates in Analog 2 correspond to the currently active predicate in Analog 1.
This situation serves as a cue that it is necessary to “invent” a new predicate
corresponding to whatever predicate is currently active in Analog 1 (a
variety of “copy with substitution and generation”; Holyoak et al., 1994).
LISA invents a new predicate (call it *output, where the “*” indicates that
LISA invented it, and “output” indicates that it corresponds to output in
Analog 1) and connects it to whatever semantic units (corresponding to
predicates) are currently active (in this case, output and role).

The predicate *output is now coactive (in synchrony) with the object
unit 1 in Analog 2. For the same reason input was inhibited by output,
the SP input + 1 (in Analog 2) is inhibited by the SP output + X (Analog
2), and P1 is inhibited by P2. As a consequence, LISA invents the SP
*output + 1 and the P unit *P2 (in Analog 2), connects them to each other,
and connects *output + 1 to the predicate “output and the object 1. (LISA
knows what to connect to what on the basis of the units’ co-activity. It
simply connects all the active units.) Together, these operations—mapping
from Analog 2 to Analog 1, mapping back from Analog 1 to Analog 2,
and filling in the gaps in Analog 2—cause LISA to infer the proposition
P2 = output (1). That is, given the identity function (Analog 1) and the
question input (1), LISA answers output (1) (i.e., “the output of the identity
function run on the input 1 is 1”).

We ran LISA on exactly this problem and on several others like it
(Hummel & Holyoak, 1998). In each case, it gave the right answer as
output: input (1) — output (1), input (2) — output (2), input (3) — output
(3). We also ran it on the non-numerical problems input (flower) and input
(Mary). Not surprisingly, it also gave the correct responses to these prob-
lems. It is important to emphasize that LISA was able to solve the identity
problem in spite of the fact that there was no semantic overlap whatsoever
between the object (X) in the rule (i.e., Analog 1) and the objects in the
problems on which it was tested (1, 2, 3, flower, and Mary). Like a human
reasoner, but unlike any eliminative connectionist model (see chap. 4, this
volume), LISA generalized the identity function universally. Its ability to
do so stems directly from its ability to bind values (such as 1, flower, and
Mary) to variables (such as X).

Note also that LISA would have been far less successful in solving this
problem had it represented variable-value (or role—filler) bindings with
tensors (or their variants) rather than with synchrony. The ease with which
LISA maps the identity function hinges on the fact that the predicate input
(x) is represented in exactly the same way regardless of what its argument
happens to be (the requirement for independent binding and Equation
6): It is the mapping of input (in Analog 2) to input (in Analog 1) that
binds the value (1, 2, etc.) to the variable (X) and bootstraps the solution
to the problem. Had LISA bound input (x) to its argument (the object X)
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by using tensor products, then the resulting tensor would depend on both
the predicate (input [x]) and its argument (X), so that there would be no
guarantee that the tensor representing input (X) (in Analog 1) would
overlap at all with the tensor representing input (y) (where y denotes any
arbitrary object) in Analog 2 (recall Equation 4). This is not to say that
tensor-based models might not solve the identity function in a different
way, for example, by treating the tensor as a weight matrix, as discussed
previously. Mapping the identity function in this way, however, is for-
mally equivalent to the approach of the eliminative connectionist models
(inputs are represented by one vector, outputs by another, and the func-
tion is mapped by the weights between). As such, this version of the
tensor-based approach is subject to all the same limitations as traditional
eliminative connectionist models (discussed next; see also Marcus, 1997).

Analogy-Based Rule Induction

It might be objected that our demonstration of identity mapping in LISA—
and especially our comparison of LISA with traditional eliminative mod-
els—is misleading. After all, the eliminative models learn to solve the
identity function by example; we simply gave LISA the rule. Granted the
rule, it is no surprise that LISA solved the problem.

This objection fails for two reasons. The first is that the eliminative
model could not solve the identity function even if we gave it the rule
(or more accurately, tried to give it the rule). “Giving” an eliminative
model the identity rule is a matter of giving it N input units and N output
units and connecting the ith input unit to the ith output unit (for all i =
1...N). In such an arrangement, the network simply copies to the output
units whatever it is given on the input units. Voilai—we have given the
eliminative model the identity function—or have we? Note that even this
model does not generalize universally because there are a finite number
of inputs it can represent in the first place (given by the dimensionality,
N, of the input and output vectors). That is, this model expects—indeed,
demands—its inputs and outputs to be representable in a particular feature
space, as given by N (see chap. 4, this volume). LISA, by contrast, does
not care how its inputs are represented. (Recall that it maps the function
even though there is no semantic overlap between X and any value bound
to X.) LISA’s solution to the identity function hinges instead on the
predicate input (x); once Analog 1 is established, LISA can then map the
identity function on any argument bound to input (x). We have indeed
given LISA a rule, in the true sense of a function that binds values to
variables. The trouble is not that we gave LISA the rule, but that there is
no way to give the eliminative model such a rule, even if we wanted to.
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The second answer to the objection is that, although the previous
demonstration assumes the pre-existence of the rule, LISA is capable of
learning the rule by example. Moreover, as we show, LISA can learn to
generalize universally from only one or two examples. Whereas the elimi-
native model requires a number of examples that scale with the number
of problems it is eventually asked to solve, LISA can solve any problem
(i.e., an infinity of them) after just one or two examples. LISA induces
the identity rule in the same way as it induces any schema—by unsuper-
vised learning (of the kind that allows it to “invent” structure units, as
in the previous example) along with intersection discovery (see Hummel &
Holyoak, 1996).

Imagine that we give LISA the following example:

Analog 1 Analog 2
P1 = input (1) P1 = input (2)
P2 = output (1) P2 = output (2),

and have it map Analog 1 onto Analog 2 as in the previous example. The
predicate unit input in Analog 1 maps to input in Analog 2, output maps
to output, 1 maps to 2, and the corresponding SPs and P units likewise
map to one another. Because every structure unit in Analog 1 has a
corresponding unit in Analog 2, this mapping does not require LISA to
invent (i.e., learn or infer) any new structures in Analog 2.

Now let us create a third analog, Analog 3, which initially contains no
structure units at all. Once P1 in Analog 1 maps to P1 in Analog 2, these
units excite one another directly via their mapping connection. Analog 3
contains no units; there is no unit to develop positive mapping connec-
tions to P1 in Analog 1 (or P1 in Analog 2). That is, nothing in Analog 3
maps to P1 in Analog 1. Recall that this lack of mapping is LISA’s cue to
invent new structure units. In Analog 3, LISA invents the P unit *P1, the
SP *input + 1, the predicate *input, and the object *1 (let us assume that
Analog 1 is the driver and that the names of invented units are taken
from the driver; hence, the new object is *I rather than *2 or *number).
The principles underlying learning in Analog 3 are so far just the same
as those underlying the “copy with substitution and generation” (i.e.,
inference) in the previous example.

However, analogs that are learning to be schemas, such as Analog 3,
are subject to one additional constraint: The object and predicate units in
these analogs have a connection-level threshold that prevents them from
learning connections to any semantic units with activations below a certain
value, ® (Hummel & Holyoak, 1996). Otherwise, these units update their
connections in the “usual” fashion (i.e., via a modified Hebbian rule; see
Hummel & Holyoak, 1996). In addition, predicate and object units in the
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recipient (Analog 2, if Analog 1 is the driver) send activation back to the
semantic units. As a result, semantic units that are connected to active
units in both the driver and the recipient tend to have about twice as
much input as semantic units that are connected to one but not the other.
For example, the semantic unit number is connected both to the object 1
(in Analog 1) and to the object 2 (in Analog 2). When P1 in Analog 1
maps to P1 in Analog 2, number therefore has two sources of input. By
contrast, the semantic unit 1 is connected to the object 1 in Analog 1, but
is not connected to anything in Analog 2; the semantic unit 2 is connected
to the object 2 in Analog 2, but to nothing in Analog 1. The semantic unit
number thus receives about twice as much excitatory input as either 1 or
2 and therefore becomes more active.

In combination with the threshold, ©, on the predicate and object units
in the schema (Analog 3), this feedback from recipient analogs to seman-
tics causes Analog 3 to perform a kind of intersection discovery. Units in
Analog 3 learn connections to only highly active semantic units—that is,
semantics that are common to the driver and the recipient. In the case of
Analog 3, this means that the object unit *1 in Analog 3 learns only a
connection to the semantic unit number. *1 represents numbers generally,
not just the numbers 1 and 2, from which it was induced by example.
The same process operates on the predicate unit *input in Analog 3. In
this case, input in Analog 1 has all the same semantics as input in Analog
2; all their semantic units receive two sources of input. Therefore, *input
in Analog 3 learns connections to all those semantic units and ends up
connected to exactly the same units as both examples from which it was
induced. Once these operations have run on both P1 and P2 (in Analogs
1 and 2), Analog 3 is the equivalent of:

P1 = input (number)
P2 = output (number).

Based on Analog 3, LISA can now map the identity function for any
number. In fact, Analog 3 is prepared to generalize much more universally
than that. Let Analog 4 be P1 input (flower), where flower is assumed to
have no semantic overlap whatsoever with number in Analog 3. Our first
example showed that LISA can map the identify function even when the
object (1, 2, flower, etc.) has no semantic overlap with the variable in the
function (X in the previous example). Because flower has no semantic
overlap with number, mapping Analog 4 onto Analog 3 is just a repeat
of that first example: LISA infers *P2 = *output (flower) in Analog 4.
(Hummel & Holyoak, 1998, ran these simulations, and this is exactly what
it does.) Hence, after just one training example (mapping Analog 1 onto
Analog 2 and inducing Analog 3), LISA can generalize universally. If,
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while Analog 3 is being mapped onto Analog 4, a new empty analog,
Analog 5, is allowed 1o learn a schema (rule) from their intersection, then
Analog 5 ends up being the equivalent of:

P1 = input (X)
P2 = output (X)

where X is semantically empty (it connects to the intersection of flower
and number, which is the empty set). LISA has now induced the rule we
gave it in the very first example.

Not only is LISA’s rule learning blindingly fast compared with back
propagation learning (as used in many eliminative connectionist models),
but the results are also much more general. After just one example, LISA
knows how to “play the identity function game” and can play it with
any new input. The learning trials required by people—and their sub-
sequent ability to generalize universally—are much more on the scale of
LISA than on the scale of an eliminative connectionist model or a model
based on tensor binding. The difference between LISA and both these
alternative approaches is that LISA can bind values to variables and
arguments to roles while preserving the similarity relations among the
constituent concepts. As a result, LISA is a connectionist implementation
of a symbol system that can map and learn symbolic functions (such as
the identity function). Tensor product models attempt to bind values to
variables, but fall short of the mark; as a result, their ability to generalize
also falls short of the mark. Eliminative connectionist models do not even
attempt to bind values to variables, and as a result, their performance
falls far below the mark. After hundreds or thousands (or even millions)
of iterations through its training set, a back propagation model is still just
as guaranteed to fail to generalize universally as it was before training
started. Universal generalization is in principle out of reach for any model
that cannot bind values to variables; it does not matter how long one
trains the back propagation model—it never truly learns the identity
function (Marcus, 1998).

A more important criticism of LISA’s ability to learn the identity
function is that we gave it the predicates input (X) and output (X) in the
examples from which the rule was induced. The question of how a human
reasoner discovers these predicates in the first place is an important one
for which we cannot yet offer a complete answer. However, it is safe to
assume that at least for trivial problems such as the identity function,
adult reasoners come armed with predicates corresponding to input (X)
(e.g., “This is the example on which I am being tested”) and output (X)
(“This is the response I am supposed to give”). Even if we assume the
existence of these predicates, it is not a trivial matter to specify how the
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reasoner can use them to solve the problem. Eliminative connectionists
would also be willing to postulate concepts such as “input” and “output,”
but their models are nonetheless incapable of using those concepts to
perform useful work. It is this capacity that requires symbol processing
and that the preceeding simulations are intended to demonstrate.

WHY SYMBOLIC CONNECTIONISM
IS NOT “MERE” IMPLEMENTATION

Fodor and Pylyshyn (1988) observed that a connectionist model might,
in principle, capture the systematicity (compositionality) of human cog-
nition, but that in so doing, the resulting model would simply implement
a (traditional-style) symbolic model. The “invited inference” was that
nothing is to be gained from the exercise of implementing symbol proc-
essing in a connectionist framework. Is symbolic connectionism just a
roundabout way of getting “back where we started”?

The answer is a resounding No. The issue of whether the mind is a
physical symbol system is a question at the level of computational theory
(Marr, 1982): What function is the mind computing? In the most abstract
terms, the answer is that the mind is performing symbol manipulation.
This question and its answer are very important, as the failings of elimi-
native connectionist models attest, but the answer does not tell us how
the mind is doing symbol manipulation, which is a question at Marr’s
level of representation and algorithm. It is here that symbolic connection-
ism represents a striking advance over traditional symbolic architectures
of cognition (e.g., Anderson, 1993; Rosenbloom et al., 1991).

One advantage of symbolic connectionism derives from an apparent
weakness: It is hard to do symbol manipulation in a connectionist archi-
tecture. This is because symbol manipulation requires dynamic binding,
and dynamic binding is difficult to perform in a connectionist architecture
(see Hummel & Stankiewicz, 1996, 1998). In the case of dynamic binding
by synchrony of firing, some mechanism has to get the right units into
synchrony with one another and (even more difficult) keep them out of
synchrony with all the other units. It takes work to establish synchrony
and (especially) asynchrony, and some process must perform this work.
By contrast, dynamic binding in a symbolic model is trivially easy: The
correct bindings are simply given. By definition, placing the symbol “John”
into the first slot of the predicate loves (x y) binds John to the agent role
of that predicate. There is nothing else to say and no other work to do.
If we then want to bind “John” to some other role, we can do it, as many
times as we want, with as many predicates as we want, and as many
other objects as we want.
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In a traditional symbol architecture, bindings are free, so we can have
as many as we need. Of course, a theorist may opt to impose some limit
on binding, in deference to the glaring fact that people have limited
capacity to make and break role bindings, but this is simply an ad hoc
“add-on” rather than a deep implication of the proposed symbalic archi-
tecture. It is here that the computational weakness of symbolic connec-
tionism becomes a psychological virtue. A model that represents bindings
with synchrony (such as LISA, and related models such as JIM; Hummel
& Biederman, 1992; Hummel & Stankicwicz, 1996) is inherently limited in
the number of things it may simultaneously have active and mutually
out of synchrony with one another (although there is no theoretical limit
to the number of entities in any one synchronized group). That is, there
i5 a limit on the number of distinct bindings such a model may have in
working memory at any one time (Hummel & Holyoak, 1997; Shastri &
Ajjanaggade, 1993). Humans, too, have limited working memory and
limited attention. Thus Hummel and Stankiewicz (1996, 1998) argued that
a primary function of visual attention is to keep the separate elements of
a visual display out of synchrony with one another. Symbolic connection-
ism—as an algorithmic theory of symbol systems—provides a natural
account of the fact that humans have a limited working memory capacity.
Similar symbolie-connectionist considerations predict various other limi-
tations of human symbolic reasoning as well (see Hummel & Holyoak,
1997). One thing to be gained by asking how the human cognitive archi-
tecture implements symbols (rather than simply assuming that it does, as
in the traditional symbolic approach) is an understanding of some of the
limitations of that architecture.

Symbolic connectionism also explains some strengths of the human
cognitive architecture, connections that are equally mysterious from the
traditional symbolic perspective. One is the capacity to map semantically
related predicates that take different numbers of arguments, for example,
mapping faller (A B) and taller (B C) onto tallest-to-shortest (D E F). LISA
can solve this mapping (Hummel & Holyoak, 1997). Traditional symbolic
models, by contrast, must enforce an inviolable “N-ary restriction™
(whereby a predicate with N arguments may map only to another predi-
cate with N arguments), which precludes such mappings (see Hummel
& Holyoak, 1997). Other strengths of symbolic connectionism derive from
the value of distributed representations of semantic content (see Hummel
& Holyoak, 1997). The carly connectionists were right about the value of
distributed representations, and symbaolic connectionism is just as able to
exploit those strengths as “traditional” (eliminative) connectionism. In
fact, it is better able to do so, because symbolic connectionism embeds
these representations into systemaltic structures. Armed with dynamic
binding, LISA can implement fast inductive learning of universal gener-
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alizations by using a simple variant of the Hebbian algorithm for unsu-
pervised learning. As an aside, it is interesting to note that LISA’s leaming
by analogy is a variety of leaming by example—a property that it shares
with back propagation. It is thus more constrained than traditional algo-
rithms for unsupervised leaming (e, Kohonen, 1982; Marshall, 1995;
von der Malsburg, 1973), At the same time, it is less “heavy-handed"—and
much more psychologically plausible—than the explicit error-correction
algorithm of back propagation. In LISA, the "teacher” is just a familiar
example (i.e., a source analog), not an all-knowing external device.

A further advantage of symbolic connectionism over either traditional
symbolic modeling or eliminative connectionist modeling is that it pro-
vides a vocabulary for talking about the relation between truly associative,
nonsymbolic processes and more complex symbelic processes. In sym-
bolic connectionism, these are all part of the same system: Take symbolic
connectionism, strip away dynamic variable binding, and the result is
simple (connectionist-style) associationism.

Finally, symbolic connectionism maintains the basic architecture of
earlier connectionist models (densely connected networks of local com-
puting clements) while adding a more fine-grained use of the informa-
tional capacity of time. As compared with the elements of traditional
symbolic models (lists of localist symbols, which can be constructed and
modified by explicit list operations), the elements of symbolic connection-
ism provide more direct links to neural architecture and hence set the
stage for addressing questions al Marr's (1982) implementation level. A
physical symbol system, as embodied in a human or other biological
organism, is realized in the brain. There is a neural code for thought, and
symbolic connectionism—the proper treatment of symbols—may guide
us in cracking the code.
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