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C H A P T E R 6

Analogy

Keith J. Holyoak

Analogy is a special kind of similarity (see
Goldstone & Son, Chap. 2). Two situations
are analogous if they share a common pat-
tern of relationships among their constituent
elements even though the elements them-
selves differ across the two situations. Typi-
cally, one analog, termed the source or base, is
more familiar or better understood than the
second analog, termed the target. This asym-
metry in initial knowledge provides the ba-
sis for analogical transfer, using the source to
generate inferences about the target. For ex-
ample, Charles Darwin drew an analogy be-
tween breeding programs used in agriculture
to select more desirable plants and animals
and “natural selection” for new species. The
well-understood source analog called atten-
tion to the importance of variability in the
population as the basis for change in the dis-
tribution of traits over successive generations
and raised a critical question about the tar-
get analog: What plays the role of the farmer
in natural selection? (Another analogy, be-
tween Malthus’ theory of human population
growth and the competition of individuals in
a species to survive and reproduce, provided
Darwin’s answer to this question.) Analo-

gies have figured prominently in the history
of science (see Dunbar & Fugelsang, Chap.
29) and mathematics (Pask, 2003) and are of
general use in problem solving (see Novick &
Bassok, Chap. 1 4). In legal reasoning, the use
of relevant past cases (legal precedents) to
help decide a new case is a formalized appli-
cation of analogical reasoning (see Ellsworth,
Chap. 28). Analogies can also function to in-
fluence political beliefs (Blanchette & Dun-
bar, 2001 ) and to sway emotions (Thagard
& Shelley, 2001 ). Analogical reasoning goes
beyond the information initially given, using
systematic connections between the source
and target to generate plausible, although
fallible, inferences about the target. Analogy
is thus a form of inductive reasoning (see
Sloman & Lagnado, Chap. 5).

Figure 6.1 sketches the major compo-
nent processes in analogical transfer (see
Carbonell, 1983 ; Gentner, 1983 ; Gick &
Holyoak, 1980, 1983 ; Novick & Holyoak,
1991 ). Typically, a target situation serves
as a retrieval cue for a potentially useful
source analog. It is then necessary to es-
tablish a mapping, or a set of systematic
correspondences that serve to align the
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Figure 6.1 . Major components of analogical
reasoning.

elements of the source and target. On the
basis of the mapping, it is possible to de-
rive new inferences about the target, thereby
elaborating its representation. In the after-
math of analogical reasoning about a pair of
cases, it is possible that some form of rela-
tional generalization may take place, yielding
a more abstract schema for a class of situa-
tions, of which the source and target are both
instances. For example, Darwin’s use of anal-
ogy to construct a theory of natural selection
ultimately led to the generation of a more ab-
stract schema for a selection theory, which
in turn helped to generate new specific the-
ories in many fields, including economics,
genetics, sociobiology, and artificial intelli-
gence. Analogy is one mechanism for effect-
ing conceptual change (see Chi & Ohlsson,
Chap. 16).

A Capsule History

The history of the study of analogy in-
cludes three interwoven streams of research,
which respectively emphasize analogy in re-
lation to psychometric measurement of in-

telligence, metaphor, and the representation
of knowledge.

Psychometric Tradition

Work in the psychometric tradition focuses
on four-term or “proportional” analogies in
the form A:B::C:D, such as HAND: FIN-
GER :: FOOT: ?, where the problem is to
infer the missing D term (TOE) that is re-
lated to C in the same way B is related to
A (see Sternberg, Chap. 31 ). Thus A:B plays
the role of source analog and C:D plays the
role of target. Proportional analogies were
discussed by Aristotle (see Hesse, 1966) and
in the early decades of modern psychology
became a centerpiece of efforts to define
and measure intelligence. Charles Spearman
(1923 , 1927) argued that the best account
of observed individual differences in cogni-
tive performance was based on a general or
g factor, with the remaining variance being
unique to the particular task. He reviewed
several studies that revealed high correla-
tions between performance in solving anal-
ogy problems and the g factor. Spearman’s
student John C. Raven (1938) developed the
Raven’s Progressive Matrices Test (RPM),
which requires selection of a geometric fig-
ure to fill an empty cell in a two-dimensional
matrix (typically 3 × 3) of such figures. Sim-
ilar to a geometric proportional analogy, the
RPM requires participants to extract and ap-
ply information based on visuospatial rela-
tions. (See Hunt, 1974 , and Carpenter, Just,
& Shell, 1990, for analyses of strategies for
solving RPM problems.) The RPM proved to
be an especially pure measure of g.

Raymond Cattell (1971 ), another student
of Spearman, elaborated his mentor’s the-
ory by distinguishing between two compo-
nents of g: crystallized intelligence, which de-
pends on previously learned information or
skills, and fluid intelligence, which involves
reasoning with novel information. As a form
of inductive reasoning, analogy would be
expected to require fluid intelligence. Cat-
tell confirmed Spearman’s (1946) observa-
tion that analogy tests and the RPM pro-
vide sensitive measures of g, clarifying that
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Figure 6.2 . Multidimensional scaling solution based on intercorrelations among the Raven’s
Progressive Matrices test, analogy tests, and other common tests of cognitive function. (From Snow,
Kyllonen, & Marshalek, 1984 , p. 92 . Reprinted by permission.)

they primarily measure fluid intelligence
(although verbal analogies based on diffi-
cult vocabulary items also depend on crys-
tallized intelligence). Figure 6.2 graphically
depicts the centrality of RPM performance
in a space defined by individual differences
in performance on various cognitive tasks.
Note that numeric, verbal, and geometric
analogies cluster around the RPM at the cen-
ter of the figure.

Because four-term analogies and the RPM
are based on small numbers of relatively
well-specified elements and relations, it is
possible to manipulate the complexity of
such problems systematically and analyze
performance (based on response latencies
and error rates) in terms of component

processes (e.g., Mulholland, Pellegrino, &
Glaser, 1980; Sternberg, 1977). The earli-
est computational models of analogy were
developed for four-term analogy problems
(Evans, 1968; Reitman, 1965). The basic
components of these models were elabora-
tions of those proposed by Spearman (1923),
including encoding of the terms, accessing
a relation between the A and B terms, and
evoking a comparable relation between the
C and D terms.

More recently, four-term analogy prob-
lems and the RPM have figured promi-
nently in neuropsychological and neu-
roimaging studies of reasoning (e.g., Bunge,
Wendelken, Badre & Wagner, 2004 ; Kroger
et al., 2002 ; Luo et al., 2003 ; Prabhakaran
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et al., 1997; Waltz et al., 1999; Wharton
et al., 2000). Analogical reasoning depends
on working memory (see Morrison, Chap.
19). The neural basis of working memory in-
cludes the dorsolateral prefrontal cortex, an
area of the brain that becomes increasingly
activated as the complexity of the problem
(measured in terms of number of relations
relevant to the solution) increases. It has
been argued that this area underlies the fluid
component of Spearman’s g factor in intelli-
gence (Duncan et al., 2000), and it plays an
important role in many reasoning tasks (see
Goel, Chap. 20).

Metaphor

Analogy is closely related to metaphor and
related forms of symbolic expression that
arise in everyday language (e.g., “the evening
of life,” “the idea blossomed”), in literature
(Holyoak, 1982), the arts, and cultural prac-
tices such as ceremonies (see Holyoak &
Thagard, 1995 , Chap. 9). Similar to anal-
ogy in general, metaphors are characterized
by an asymmetry between target (conven-
tionally termed “tenor”) and source (“ve-
hicle”) domains (e.g., the target/tenor in
“the evening of life” is life, which is un-
derstood in terms of the source/vehicle of
time of day). In addition, a mapping (the
“grounds” for the metaphor) connects the
source and target, allowing the domains to
interact to generate a new conceptualiza-
tion (Black, 1962). Metaphors are a special
kind of analogy in that the source and tar-
get domains are always semantically distant
(Gentner, 1982 ; Gentner, Falkenhainer, &
Skorstad, 1988), and the two domains are
often blended rather than simply mapped
(e.g., in “the idea blossomed,” the target
is directly described in terms of an action
term derived from the source). In addition,
metaphors are often combined with other
symbolic “figures” – especially metonymy
(substitution of an associated concept).
For example, “sword” is a metonymic ex-
pression for weaponry, derived from its
ancient association as the prototypical
weapon – “Raising interests rates is the Fed-
eral Reserve Board’s sword in the battle

against inflation” extends the metonymy
into metaphor.

Fauconnier and Turner (1998; Fauconnier,
2001 ) analyzed complex conceptual blends
that are akin to metaphor. A typical exam-
ple is a description of the voyage of a mod-
ern catamaran sailing from San Francisco to
Boston that was attempting to beat the speed
record set by a clipper ship that had sailed
the same route over a century earlier. A
magazine account written during the cata-
maran’s voyage said the modern boat was
“barely maintaining a 4 .5 day lead over the
ghost of the clipper Northern Light. . . . ” Fau-
connier and Turner observed that the maga-
zine writer was describing a “boat race” that
never took place in any direct sense; rather,
the writer was blending the separate voy-
ages of the two ships into an imaginary race.
The fact that such conceptual blends are
so natural and easy to understand attests to
the fact that people can readily comprehend
novel metaphors.

Lakoff and Johnson (1980; also Lakoff &
Turner, 1989) argued that much of human
experience, especially its abstract aspects,
is grasped in terms of broad conceptual
metaphors (e.g., events occurring in time
are understood by analogy to objects mov-
ing in space). Time, for example, is under-
stood in terms of objects in motion through
space as in expressions such as “My birth-
day is fast approaching” and “The time for
action has arrived.” (See Boroditsky, 2000,
for evidence of how temporal metaphors in-
fluence cognitive judgments.) As Lakoff and
Turner (1989) pointed out, the course of a
life is understood in terms of time in the solar
year (youth is springtime; old age is winter).
Life is also conventionally conceptualized as
a journey. Such conventional metaphors can
still be used in creative ways, as illustrated
by Robert Frost’s famous poem, “The Road
Not Taken”:

Two roads diverged in a wood, and I –
I took the one less traveled by,
And that has made all the difference.

According to Lakoff and Turner, compre-
hension of this passage depends on our im-
plicit knowledge of the metaphor that life
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is a journey. This knowledge includes un-
derstanding several interrelated correspon-
dences (e.g., person is a traveler, purposes
are destinations, actions are routes, diffi-
culties in life are impediments to travel,
counselors are guides, and progress is the
distance traveled).

Psychological research has focused on
demonstrations that metaphors are in-
tegral to everyday language understand-
ing (Glucksberg, Gildea, & Bookin, 1982 ;
Keysar, 1989) and debate about whether
metaphor is better conceptualized as a kind
of analogy (Wolff & Gentner, 2000) or a
kind of categorization (Glucksberg & Keysar,
1990; Glucksberg, McClone, & Manfredi,
1997). A likely resolution is that novel
metaphors are interpreted by much the same
process as analogies, whereas more conven-
tional metaphors are interpreted as more
general schemas (Gentner, Bowdle, Wolff, &
Boronat, 2001 ).

Knowledge Representation

The most important influence on analogy
research in the cognitive science tradition
has been concerned with the representa-
tion of knowledge within computational sys-
tems. Many seminal ideas were developed
by the philosopher Mary Hesse (1966), who
was in turn influenced by Aristotle’s dis-
cussions of analogy in scientific classifica-
tion and Black’s (1962) interactionist view
of metaphor. Hesse placed great stress on
the purpose of analogy as a tool for scien-
tific discovery and conceptual change and on
the close connections between causal rela-
tions and analogical mapping. In the 1970s,
work in artificial intelligence and psychol-
ogy focused on the representation of com-
plex knowledge of the sort used in scientific
reasoning, problem solving, story compre-
hension, and other tasks that require struc-
tured knowledge. A key aspect of structured
knowledge is that elements can be flexibly
bound into the roles of relations. For exam-
ple, “dog bit man” and “man bit dog” have the
same elements and the same relation, but
the role bindings have been reversed, radi-
cally altering the meaning. How the mind

and brain accomplish role binding is thus a
central problem to be solved by any psycho-
logical theory of structured knowledge, in-
cluding any theory of analogy (see Doumas
& Hummel, Chap. 4).

In the 1980s, a number of cognitive sci-
entists recognized the centrality of analogy
as a tool for discovery and its close connec-
tion with theories of knowledge represen-
tation. Winston (1980), guided by Minsky’s
(1975) treatment of knowledge representa-
tion, built a computer model of analogy that
highlighted the importance of causal rela-
tions in guiding analogical inference. Other
researchers in artificial intelligence also be-
gan to consider the use of complex analogies
in reasoning and learning (Kolodner, 1983 ;
Schank, 1982), leading to an approach to ar-
tificial intelligence termed case-based reason-
ing (see Kolodner, 1993).

Around 1980, two research projects in
psychology began to consider analogy in
relation to knowledge representation and
eventually integrate computational model-
ing with detailed experimental studies of
human analogical reasoning. Gentner (1982 ,
1983 ; Gentner & Gentner, 1983) began
working on mental models and analogy in
science. She emphasized that in analogy,
the key similarities lie in the relations that
hold within the domains (e.g., the flow of
electrons in an electrical circuit is analog-
ically similar to the flow of people in a
crowded subway tunnel), rather than in fea-
tures of individual objects (e.g., electrons
do not resemble people). Moreover, analog-
ical similarities often depend on higher-order
relations – relations between relations. For ex-
ample, adding a resistor to a circuit causes a
decrease in flow of electricity, just as adding a
narrow gate in the subway tunnel would de-
crease the rate at which people pass through
(where causes is a higher-order relation). In
her structure-mapping theory, Gentner pro-
posed that analogy entails finding a struc-
tural alignment, or mapping, between do-
mains. In this theory, alignment between two
representational structures is characterized
by structural parallelism (consistent, one-
to-one correspondences between mapped
elements) and systematicity – an implicit
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preference for deep, interconnected systems
of relations governed by higher-order rela-
tions, such as causal, mathematical, or func-
tional relations.

Holyoak (1985 ; Gick & Holyoak, 1980,
1983 ; Holyoak & Koh, 1987) focused on the
role of analogy in problem solving with a
strong concern for the role of pragmatics in
analogy – that is, how causal relations that
impact current goals and context guide the
interpretation of an analogy. Holyoak and
Thagard (1989a, 1995) developed an ap-
proach to analogy in which several factors
were viewed as jointly constraining analogi-
cal reasoning. According to their multicon-
straint theory, people tend to find mappings
that maximize similarity of corresponding el-
ements and relations, structural parallelism
(i.e., isomorphism, defined by consistent,
one-to-one correspondences), and prag-
matic factors such as the importance of el-
ements and relations for achieving a goal.
Gick and Holyoak (1983) provided evidence
that analogy can furnish the seed for form-
ing new relational categories by abstracting
the relational correspondences between ex-
amples into a schema for a class of problems.
Analogy was viewed as a central part of hu-
man induction (Holland, Holyoak, Nisbett,
& Thagard, 1986; see Sloman & Lagnado,
Chap. 5) with close ties to other basic
thinking processes, including causal infer-
ence (see Buehner & Cheng, Chap. 7), cate-
gorization (see Medin & Rips, Chap. 3), de-
ductive reasoning (see Evans, Chap. 8),
and problem solving (see Novick & Bassok,
Chap. 1 4).

Analogical Reasoning: Overview
of Phenomena

This section provides an overview of the
major phenomena involving analogical rea-
soning that have been established by em-
pirical investigations. This review is orga-
nized around the major components of
analogy depicted in Figure 6.1 . These com-
ponents are inherently interrelated, so the
connections among them are also discussed.

The retrieval and mapping components are
first considered followed by inference and
relational generalization.

Retrieval and Mapping

a paradigm for investigating

analogical transfer

Gick and Holyoak (1980, 1983) introduced
a general laboratory paradigm for investigat-
ing analogical transfer in the context of prob-
lem solving. The general approach was first
to provide people with a source analog in
the guise of some incidental context, such
as an experiment on “story memory.” Later,
participants were asked to solve a problem
that was in fact analogous to the story they
had studied earlier. The questions of cen-
tral interest were (1 ) whether people would
spontaneously notice the relevance of the
source analog and use it to solve the target
problem, and (2) whether they could solve
the analogy once they were cued to consider
the source. Spontaneous transfer of the anal-
ogous solution implies successful retrieval
and mapping; cued transfer implies success-
ful mapping once the need to retrieve the
source has been removed.

The source analog used by Gick and
Holyoak (1980) was a story about a general
who is trying to capture a fortress controlled
by a dictator and needs to get his army to
the fortress at full strength. Because the en-
tire army could not pass safely along any sin-
gle road, the general sends his men in small
groups down several roads simultaneously.
Arriving at the same time, the groups join
together and capture the fortress.

A few minutes after reading this story
under instructions to read and remember it
(along with two other irrelevant stories), par-
ticipants were asked to solve a tumor prob-
lem (Duncker, 1945), in which a doctor has
to figure out how to use rays to destroy a
stomach tumor without injuring the patient
in the process. The crux of the problem is
that it seems that the rays will have the same
effect on the healthy tissue as on the tumor –
high intensity will destroy both, whereas low
intensity will destroy neither. The key issue
is to determine how the rays can be made to
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impact the tumor selectively while sparing
the surrounding tissue. The source analog,
if it can be retrieved and mapped, can be
used to generate a “convergence” solution to
the tumor problem, one that parallels the
general’s military strategy: Instead of using
a single high-intensity ray, the doctor could
administer several low-intensity rays at once
from different directions. In that way, each
ray would be at low intensity along its path,
and hence, harmless to the healthy tissue,
but the effects of the rays would sum to
achieve the effect of a high-intensity ray at
their focal point, the site of the tumor.

When Gick and Holyoak (1980) asked
college students to solve the tumor problem,
without a source analog, only about 10% of
them produced the convergence solution.
When the general story had been studied,
but no hint to use it was given, only about
20% of participants produced the conver-
gence solution. In contrast, when the same
participants were then given a simple hint
that “you may find one of the stories you read
earlier to be helpful in solving the problem,”
about 75% succeeded in generating the anal-
ogous convergence solution. In other words,
people often fail to notice superficially
dissimilar source analogs that they could
readily use.

This gap between the difficulty of re-
trieving remote analogs and the relative
ease of mapping them has been replicated
many times, both with adults (Gentner,
Rattermann, & Forbus, 1993 ; Holyoak &
Koh, 1987; Spencer & Weisberg, 1986)
and with young children (Chen, 1996;
Holyoak, Junn, & Billman, 1984 ; Tunteler
& Resing, 2002). When analogs must
be cued from long-term memory, cases
from a domain similar to that of the
cue are retrieved much more readily than
cases from remote domains (Keane, 1987;
Seifert, McKoon, Abelson, & Ratcliff, 1986).
For example, Keane (1987) measured re-
trieval of a convergence analog to the tu-
mor problem when the source analog was
studied 1 to 3 days prior to presentation of
the target radiation problem. Keane found
that 88% of participants retrieved a source
analog from the same domain (a story about

a surgeon treating a brain tumor), whereas
only 1 2% retrieved a source from a remote
domain (the general story). This difference
in ease of access was dissociable from the
ease of postaccess mapping and transfer be-
cause the frequency of generating the con-
vergence solution to the radiation prob-
lem once the source analog was cued was
high and equal (about 86%), regardless of
whether the source analog was from the
same or a different domain.

differential impact of similarity and

structure on retrieval versus mapping

The main empirical generalization concern-
ing retrieval and mapping is that similar-
ity of individual concepts in the analogs
has a relatively greater impact on retrieval,
whereas mapping is relatively more sensi-
tive to relational correspondences (Gentner
et al., 1993 ; Holyoak & Koh, 1987; Ross,
1987, 1989). However, this dissociation is
not absolute. Watching the movie West Side
Story for the first time is likely to trigger a re-
minding of Shakespeare’s Romeo and Juliet
despite the displacement of the characters
in the two works over centuries and conti-
nents. The two stories both involve young
lovers who suffer because of the disapproval
of their respective social groups, causing a
false report of death, which in turn leads
to tragedy. It is these structural parallels be-
tween the two stories that make them anal-
ogous rather than simply that both stories
involve a young man and woman, a disap-
proval, a false report, and a tragedy.

Experimental work on story reminding
confirms the importance of structure, as well
as similarity of concepts, in retrieving analogs
from memory. Wharton and his colleagues
(Wharton et al., 1994 ; Wharton, Holyoak,
& Lange, 1996) performed a series of exper-
iments in which college students tried to find
connections between stories that overlapped
in various ways in terms of the actors and ac-
tions and the underlying themes. In a typical
experiment, the students first studied about
a dozen “target” stories presented in the guise
of a study of story understanding. For exam-
ple, one target story exemplified a theme of-
ten called “sour grapes” after one of Aesop’s
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fables. The theme in this story is that the pro-
tagonist tries to achieve a goal, fails, and then
retroactively decides the goal had not really
been desirable after all. More specifically, the
actions involved someone trying unsuccess-
fully to get accepted to an Ivy League col-
lege. After a delay, the students read a set
of different cue stories and were asked to
write down any story or stories from the
first session of which they were reminded.
Some stories (far analogs) exemplified the
same theme, but with very different char-
acters and actions (e.g., a “sour grapes” fairy
tale about a unicorn who tries to cross a river
but is forced to turn back). Other stories
were far “disanalogs” formed by reorganizing
the characters and actions to represent a dis-
tinctly different theme (e.g., “self-doubt” –
the failure to achieve a goal leads the pro-
tagonist to doubt his or her own ability or
merit). Thus, neither type of cue was simi-
lar to the target story in terms of individual
elements (characters and actions); however,
the far analog maintained structural corre-
spondences of higher-order causal relations
with the target story, whereas the far disana-
log did not.

Besides varying the relation between the
cue and target stories, Wharton et al. (1994)
also varied the number of target stories that
were in some way related to a single cue.
When only one target story in a set had been
studied (“singleton” condition), the proba-
bility of reminding was about equal, regard-
less of whether the cue was analogous to the
target. However, when two target stories had
been studied (e.g., both “sour grapes” and
“self-doubt,” forming a “competition” condi-
tion), the analogous target was more likely to
be retrieved than the disanalogous one. The
advantage of the far analog in the competi-
tion condition was maintained even when a
week intervened between initial study of the
target stories and presentation of the cue sto-
ries (Wharton et al., 1996).

These results demonstrate that structure
does influence analogical retrieval, but its
impact is much more evident when multi-
ple memory traces, each somewhat similar
to the cue, must compete to be retrieved.
Such retrieval competition is likely typical

of everyday analogical reminding. Other ev-
idence indicates that having people generate
case examples, as opposed to simply asking
them to remember cases presented earlier,
enhances structure-based access to source
analogs (Blanchette & Dunbar, 2000).

the “relational shift” in development

Retrieval is thus sensitive to structure and
direct similarity of concepts. Conversely,
mapping is sensitive to direct similarity and
structure (e.g., Reed, 1987; Ross, 1989).
Young children are particularly sensitive
to direct similarity of objects; when asked
to identify corresponding elements in two
analogs, their mappings are dominated by
object similarity when semantic and struc-
tural constraints conflict (Gentner & Toupin,
1986). Younger children are particularly
likely to map on the basis of object simi-
larity when the relational response requires
integration of multiple relations, and hence,
is more dependent on working memory re-
sources (Richland, Morrison, & Holyoak,
2004). The developmental transition to-
ward greater reliance on structure in map-
ping has been termed the “relational shift”
(Gentner & Rattermann, 1991 ). Greater sen-
sitivity to relations with age appears to arise
owing to a combination of incremental ac-
cretion of knowledge about relational con-
cepts and stage-like increments in working
memory capacity (Halford, 1993 ; Halford
& Wilson, 1980). (For reviews of develop-
mental research on analogy, see Goswami,
1992 , 2001 ; Halford, Chap. 22 ; Holyoak &
Thagard, 1995).

goal-directed mapping

Mapping is guided not only by relational
structure and element similarity but also by
the goals of the analogist (Holyoak, 1985).
People draw analogies not to find a pris-
tine isomorphism for its own sake but to
make plausible inferences that will achieve
their goals. Particularly when the mapping
is inherently ambiguous, the constraint of
pragmatic centrality – relevance to goals –
is critical (Holyoak, 1985). Spellman and
Holyoak (1996) investigated the impact of
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processing goals on the mappings gener-
ated for inherently ambiguous analogies. In
one experiment, college students read two
science fiction stories about countries on
two planets. These countries were interre-
lated by various economic and military al-
liances. Participants first made judgments
about individual countries based on either
economic or military relationships and were
then asked mapping questions about which
countries on one planet corresponded to
which on the other. Schematically, planet 1

included three countries, such that “Afflu”
was economically richer than “Barebrute,”
whereas the latter was militarily stronger
than “Compak.” Planet 2 included four
countries, with “Grainwell” being richer than
“Hungerall” and “Millpower” being stronger
than “Mightless.” The critical aspect of this
analogy problem is that Barebrute (planet 1 )
is both economically weak (like Hunger-
all on planet 2) and militarily strong (like
Millpower) and therefore, has two compet-
ing mappings that are equally supported by
structural and similarity constraints.

Spellman and Holyoak (1996) found that
participants whose processing goal led them
to focus on economic relationships tended
to map Barebrute to Hungerall rather than
Millpower, whereas those whose process-
ing goal led them to focus on military
relationships had the opposite preferred
mapping. The variation in pragmatic cen-
trality of the information thus served to
decide between the competing mappings.
One interpretation of such findings is that
pragmatically central propositions tend to
be considered earlier and more often than
those that are less goal relevant and hence,
dominate the mapping process (Hummel &
Holyoak, 1997).

coherence in analogical mapping

The key idea of Holyoak and Thagard’s
(1989a) multiconstraint theory of analogy is
that several different kinds of constraints –
similarity, structure, and purpose – all in-
teract to determine the optimal set of cor-
respondences between source and target. A
good analogy is one that appears coherent in

the sense that multiple constraints converge
on a solution that satisfies as many differ-
ent constraints as possible (Thagard, 2000).
Everyday use of analogies depends on the
human ability to find coherent mappings –
even when source and target are complex
and the mappings are ambiguous. For ex-
ample, political debate often makes use of
analogies between prior situations and some
current controversy (Blanchette & Dunbar,
2001 , 2002). Ever since World War II, politi-
cians in the United States and elsewhere
have periodically argued that some military
intervention was justified because the cur-
rent situation was analogous to that lead-
ing to World War II. A commonsensical
mental representation of World War II, the
source analog, amounts to a story figuring
an evil villain, Hitler; misguided appeasers,
such as Neville Chamberlain; and clear-
sighted heroes, such as Winston Churchill
and Franklin Delano Roosevelt. The coun-
tries involved in World War II included the
villains, Germany and Japan; the victims,
such as Austria, Czechoslovakia, and Poland;
and the heroic defenders, notably Britain and
the United States.

A series of American presidents have used
the World War II analog as part of their
argument for American military interven-
tion abroad (see Khong, 1992). These in-
clude Harry Truman (Korea, 1950), Lyndon
Johnson (Vietnam, 1965), George Bush se-
nior (Kuwait and Iraq, 1991 ), and his son
George W. Bush (Iraq, 2003). Analogies to
World War II have also been used to sup-
port less aggressive responses. Most notably,
during the Cuban missile crisis of 1962 ,
President John F. Kennedy decided against
a surprise attack on Cuba in part because he
did not want the United States to behave in
a way that could be equated to Japan’s sur-
prise attack on Pearl Harbor.

The World War II situation was, of course,
very complex and is never likely to map per-
fectly onto any new foreign policy problem.
Nonetheless, by selectively focusing on goal-
relevant aspects of the source and target and
using multiple constraints in combination,
people can often find coherent mappings in
situations of this sort. After the Iraqi invasion
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of Kuwait in 1990, President George
H. W. Bush argued that Saddam Hussein, the
Iraqi leader, was analogous to Adolf Hitler
and that the Persian Gulf crisis in general was
analogous to events that had led to World
War II a half-century earlier. By drawing the
analogy between Hussein and Hitler, Pres-
ident Bush encouraged a reasoning process
that led to the construction of a coherent
system of roles for the players in the Gulf sit-
uation. The popular understanding of World
War II provided the source, and analogical
mapping imposed a set of roles on the tar-
get Gulf situation by selectively emphasizing
the most salient relational parallels between
the two situations. Once the analogical cor-
respondences were established (with Iraq
identified as an expansionist dictatorship like
Germany, Kuwait as its first victim, Saudi
Arabia as the next potential victim, and the
United States as the main defender of the
Gulf states), the clear analogical inference
was that both self-interest and moral con-
siderations required immediate military in-
tervention by the United States. Aspects of
the Persian Gulf situation that did not map
well to World War II (e.g., lack of democracy
in Kuwait) were pushed to the background.

Of course, the analogy between the two
situations was by no means perfect. Simi-
larity at the object level favored mapping
the United States of 1991 to the United
States of World War II simply because it
was the same country, which would in turn
support mapping Bush to President Roo-
sevelt. However, the United States did not
enter World War II until it was bombed
by Japan, well after Hitler had marched
through much of Europe. One might there-
fore argue that the United States of 1991

mapped to Great Britain of World War II and
that Bush mapped to Winston Churchill, the
British Prime Minister (because Bush, sim-
ilar to Churchill, led his nation and West-
ern allies in early opposition to aggression).
These conflicting pressures made the map-
pings ambiguous. However, the pressure to
maintain structural consistency implies that
people who mapped the United States to
Britain should also tend to map Bush to
Churchill, whereas those who mapped the

United States to the United States should
instead map Bush to Roosevelt.

During the first 2 days of the U.S.-led
counterattack against the Iraqi invasion of
Kuwait, Spellman and Holyoak (1992) asked
a group of American undergraduates a few
questions to find out how they interpreted
the analogy between the then-current situ-
ation in the Persian Gulf and World War II.
The undergraduates were asked to sup-
pose that Saddam Hussein was analogous
to Hitler. Regardless of whether they be-
lieved the analogy was appropriate, they
were then asked to write down the most
natural match in the World War II situation
for Iraq, the United States, Kuwait, Saudi
Arabia, and George Bush. For those stu-
dents who gave evidence that they knew the
basic facts about World War II, the major-
ity produced mappings that fell into one of
two patterns. Those students who mapped
the United States to itself also mapped
Bush to Roosevelt; these same students also
tended to map Saudi Arabia to Great Britain.
Other students, in contrast, mapped the
United States to Great Britain and Bush to
Churchill, which in turn (so as to maintain
one-to-one correspondences) forced Saudi
Arabia to map to some country other than
Britain. The mapping for Kuwait (which did
not depend on the choice of mappings for
Bush, the United States, or Saudi Arabia)
was usually to one or two of the early vic-
tims of Germany in World War II (usually
Austria or Poland).

The analogy between the Persian Gulf sit-
uation and World War II thus generated a
“bistable” mapping: People tended to pro-
vide mappings based on either of two coher-
ent but mutually incompatible sets of corre-
spondences. Spellman and Holyoak (1992)
went on to perform a second study, using a
different group of undergraduates, to show
that people’s preferred mappings could be
pushed around by manipulating their knowl-
edge of the source analog, World War II.
Because many undergraduates were lacking
in knowledge about the major participants
and events in World War II, it proved pos-
sible to “guide” them to one or the other
mapping pattern by having them first read a
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slightly biased summary of events in World
War II. The various summaries were all his-
torically “correct,” in the sense of providing
only information taken directly from history
books, but each contained slightly differ-
ent information and emphasized different
points. Each summary began with an iden-
tical passage about Hitler’s acquisition of
Austria, Czechoslovakia, and Poland and the
efforts by Britain and France to stop him.
The versions then diverged. Some versions
went on to emphasize the personal role of
Churchill and the national role of Britain;
other versions placed greater emphasis on
what Roosevelt and the United States did
to further the war effort. After reading one
of these summaries of World War II, the un-
dergraduates were asked the same mapping
questions as had been used in the previous
study. The same bistable mapping patterns
emerged as before, but this time the sum-
maries influenced which of the two coher-
ent patterns of responses students tended
to give. People who read a “Churchill” ver-
sion tended to map Bush to Churchill and
the United States to Great Britain, whereas
those who read a “Roosevelt” version tended
to map Bush to Roosevelt and the United
States to the United States. It thus ap-
pears that even when an analogy is messy
and ambiguous, the constraints on analog-
ical coherence produce predictable inter-
pretations of how the source and target
fit together.

Achieving analogical coherence in map-
ping does not, of course, guarantee that the
source will provide a clear and compelling
basis for planning a course of action to deal
with the target situation. In 1991 , President
Bush considered Hussein enough of a Hitler
to justify intervention in Kuwait but not
enough of one to warrant his removal from
power in Iraq. A decade later his son, Presi-
dent George W. Bush, reinvoked the World
War II analogy to justify a preemptive inva-
sion of Iraq itself. Bush claimed (falsely, as
was later revealed) that Hussein was acquir-
ing biological and perhaps nuclear weapons
that posed an imminent threat to the United
States and its allies. Historical analogies can
be used to obfuscate as well as to illuminate.

Relational
MatchFeatural

Match

Target
Object

Figure 6.3 . An example of a pair of pictures
used in studies of analogical mapping with
arrows added to indicate featural and relational
responses. (From Tohill & Holyoak, 2000, p. 31 .
Reprinted by permission.)

working memory in analogical mapping

Analogical reasoning, because it depends on
manipulating structured representations of
knowledge, would be expected to make crit-
ical use of working memory. The role of
working memory in analogy has been ex-
plored using a picture-mapping paradigm in-
troduced by Markman and Gentner (1993).
An example of stimuli similar to those they
used is shown in Figure 6.3 . In their exper-
iments, college students were asked to ex-
amine the two pictures and then decide (for
this hypothetical example) what object in
the bottom picture best goes with the man
in the top picture. When this single map-
ping is considered in isolation, people often
indicate that the boy in the bottom picture
goes with the man in the top picture based
on perceptual and semantic similarity of
these elements. However, when people are
asked to match not just one object but three
(e.g., the man, dog, and the tree in the top
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picture to objects in the bottom picture),
they are led to build an integrated represen-
tation of the relations among the objects and
of higher-order relations between relations.
In the top picture, a man is unsuccessfully
trying to restrain a dog, which then chases
the cat. In the bottom picture, the tree is un-
successful in restraining the dog, which then
chases the boy. Based on these multiple in-
teracting relations, the preferred match to
the man in the top picture is not the boy in
the lower scene but the tree. Consequently,
people who map three objects at once are
more likely to map the man to the tree on
the basis of their similar relational roles than
are people who map the man alone.

Whereas Markman and Gentner (1993)
showed that the number of objects to be
mapped influences the balance between
the impact of element similarity versus re-
lational structure, other studies using the
picture-mapping paradigm have demon-
strated that manipulations that constrict
working memory resources have a similar
impact. Waltz, Lau, Grewal, and Holyoak
(2000) asked college students to map pic-
tures while performing a secondary task
designed to tax working memory (e.g., gen-
erating random digits). Adding a dual task di-
minished relational responses and increased
similarity-based responses (see Morrison,
Chap. 19). A manipulation that increases
people’s anxiety level (performing mathe-
matical calculations under speed pressure
prior to the mapping task) yielded a sim-
ilar shift in mapping responses (Tohill &
Holyoak, 2000). Most dramatically, degen-
eration of the frontal lobes radically impairs
relation-based mapping (Morrison et al.,
2004). In related work using complex story
analogs, Krawczyk, Holyoak, and Hummel
(2004) demonstrated that mappings (and in-
ferences) based on element similarity ver-
sus relational structure were made about
equally often when the element similarities
were salient and the relational structure was
highly complex. All these findings support
the hypothesis that mapping on the basis of
relations requires adequate working mem-
ory to represent and manipulate role bind-
ings (Hummel & Holyoak, 1997).

Inference and Relational Generalization

copy with substitution and generation

Analogical inference – using a source analog
to form a new conjecture, whether it be a
step toward solving a math problem (Reed,
Dempster, & Ettinger, 1985 ; see Novick
& Bassok, Chap. 1 4), a scientific hypoth-
esis (see Dunbar & Fugelsang, Chap. 29),
a diagnosis for puzzling medical symptoms
(see Patel, Arocha, & Zhang, Chap. 30),
or a basis for deciding a legal case (see
Ellsworth, Chap. 28) – is the fundamental
purpose of analogical reasoning. Mapping
serves to highlight correspondences between
the source and target, including “alignable
differences” (Markman & Gentner, 1993) –
the distinct but corresponding elements of
the two analogs. These correspondences pro-
vide the input to an inference engine that
generates new target propositions. The ba-
sic form of analogical inference has been
called “copy with substitution and genera-
tion” (CWSG; Holyoak et al., 1994). CWSG
involves constructing target analogs of un-
mapped source propositions by substituting
the corresponding target element, if known,
for each source element, and if no corre-
sponding target element exists, postulating
one as needed. This procedure gives rise to
two important corollaries concerning infer-
ence errors. First, if critical elements are dif-
ficult to map (e.g., because of strong repre-
sentational asymmetries such as those that
hinder mapping a discrete set of elements
to a continuous variable; Bassok & Holyoak,
1989; Bassok & Olseth, 1995), then no in-
ferences can be constructed. Second, if ele-
ments are mismapped, predictable inference
errors will result (Holyoak et al., 1994 ; Reed,
1987).

All major computational models of ana-
logical inference use some variant of CWSG
(e.g., Falkenhainer et al., 1989; Halford et al.,
1994 ; Hofstadter & Mitchell, 1994 ; Holyoak
et al., 1994 ; Hummel & Holyoak, 2003 ;
Keane & Brayshaw, 1988; Kokinov & Petrov,
2001 ). CWSG is critically dependent on
variable binding and mapping; hence, mod-
els that lack these key computational prop-
erties (e.g., traditional connectionist models)
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fail to capture even the most basic as-
pects of analogical inference (see Doumas &
Hummel, Chap. 4).

Athough all analogy models use some
form of CWSG, additional constraints
on this inference mechanism are critical
(Clement & Gentner, 1991 ; Holyoak et al.,
1994 ; Markman, 1997). If CWSG were
unconstrained, then any unmapped source
proposition would generate an inference
about the target. Such a loose criterion for
inference generation would lead to ram-
pant errors whenever the source was not
isomorphic to a subset of the target, and
such isomorphism will virtually never hold
for problems of realistic complexity. Sev-
eral constraints on CWSG were demon-
strated in a study by Lassaline (1996; also
see Clement & Gentner, 1991 ; Spellman
& Holyoak, 1996). Lassaline had college
students read analogs describing proper-
ties of hypothetical animals and then rate
various possible target inferences for the
probability that the conclusion would be
true given the information in the premise.
Participants rated potential inferences as
more probable when the source and tar-
get analogs shared more attributes, and
hence, mapped more strongly. In addition,
their ratings were sensitive to structural
and pragmatic constraints. The presence
of a higher-order linking relation in the
source made an inference more credible. For
example, if the source and target animals
were both described as having an acute
sense of smell, and the source animal was
said to have a weak immune system that
“develops before” its acute sense of smell,
then the inference that the target animal also
has a weak immune system would be bol-
stered relative to stating only that the source
animal had an acute sense of smell “and”
a weak immune system. The benefit con-
veyed by the higher-order relation was in-
creased if the relation was explicitly causal
(e.g., in the source animal, a weak immune
system “causes” its acute sense of smell),
rather than less clearly causal (“develops
before”). (See Hummel & Holyoak, 2003 ,
for a simulation of this and other inference
results using a CWSG algorithm.)

An important question is when analogi-
cal inferences are made and how inferences
generated by CWSG relate to facts about the
target analog that are stated directly. One
extreme possibility is that people only make
analogical inferences when instructed to do
so and that inferences are carefully “marked”
as such so they will never be confused with
known facts about the target. At the other
extreme, it is possible that some analogi-
cal inferences are triggered when the tar-
get is first processed (given that the source
has been activated) and that such inferences
are then integrated with prior knowledge
of the target. One paradigm for address-
ing this issue is based on testing for false
“recognition” of potential inferences in a
subsequent memory test. The logic of the
recognition paradigm (Bransford, Barclay, &
Franks, 1972) is that if an inference has been
made and integrated with the rest of the
target analog, then later the reasoner will
falsely believe that the inference had been
directly presented.

Early work by Schustack and Anderson
(1979) provided evidence that people some-
times falsely report that analogical infer-
ences were actually presented as facts.
Blanchette and Dunbar (2002) performed
a series of experiments designed to assess
when analogical inferences are made. They
had college students (in Canada) read a text
describing a current political issue, possible
legalization of marijuana use, which served
as the target analog. Immediately afterward,
half the students read, “The situation with
marijuana can be compared to . . . ”, followed
by an additional text describing the period
early in the twentieth century when alco-
hol use was prohibited. Importantly, the stu-
dents in the analogy condition were not told
how prohibition mapped onto the marijuana
debate, nor were they asked to draw any in-
ferences. After a delay (1 week in one ex-
periment, 1 5 minutes in another), the stu-
dents were given a list of sentences and were
asked to decide whether each sentence had
actually been presented in the text about
marijuana use. The critical items were sen-
tences such as “The government could set up
agencies to control the quality and take over
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the distribution of marijuana.” These sen-
tences had never been presented; however,
they could be generated as analogical infer-
ences by CWSG based on a parallel state-
ment contained in the source analog (“The
government set up agencies to control the
quality and take over the distribution of al-
cohol”). Blanchette and Dunbar found that
students in the analogy condition said “yes”
to analogical inferences about 50% of the
time, whereas control subjects who had not
read the source analog about prohibition said
“yes” only about 25% of the time. This ten-
dency to falsely “recognize” analogical infer-
ences that had never been read was obtained
both after long and short delays and with
both familiar and less familiar materials.

It thus appears that when people notice
the connection between a source and target,
and they are sufficiently engaged in an effort
to understand the target situation, analogi-
cal inferences will be generated by CWSG
and then integrated with prior knowledge of
the target. At least sometimes, an analogical
inference becomes accepted as a stated fact.
This result obviously has important impli-
cations for understanding analogical reason-
ing, such as its potential for use as a tool
for persuasion.

relational generalization

In addition to generating local inferences
about the target by CWSG, analogical rea-
soning can give rise to relational general-
izations – abstract schemas that establish
an explicit representation of the common-
alities between the source and the target.
Comparison of multiple analogs can result
in the induction of a schema, which in
turn will facilitate subsequent transfer to
additional analogs. The induction of such
schemas has been demonstrated in both
adults (Catrambone & Holyoak, 1989; Gick
& Holyoak, 1983 ; Loewenstein, Thompson,
& Gentner, 1999; Ross & Kennedy, 1990)
and young children (Brown, Kane, & Echols,
1986; Chen & Daehler, 1989; Holyoak et al.,
1984 ; Kotovsky & Gentner, 1996). People
are able to induce schemas by comparing
just two analogs to one another (Gick &

Holyoak, 1983). Indeed, people will form
schemas simply as a side effect of applying
one solved source problem to an unsolved
target problem (Novick & Holyoak, 1991 ;
Ross & Kennedy, 1990).

In the case of problem schemas, more
effective schemas are formed when the
goal-relevant relations are the focus rather
than incidental details (Brown et al., 1986;
Brown, Kane, & Long, 1989; Gick &
Holyoak, 1983). In general, any kind of pro-
cessing that helps people focus on the under-
lying causal structure of the analogs, thereby
encouraging learning of more effective prob-
lem schemas, will improve subsequent trans-
fer to new problems. For example, Gick
and Holyoak (1983) found that induction
of a “convergence” schema from two dis-
parate analogs was facilitated when each
story stated the underlying solution prin-
ciple abstractly: “If you need a large force
to accomplish some purpose, but are pre-
vented from applying such a force directly,
many smaller forces applied simultaneously
from different directions may work just as
well.” In some circumstances, transfer can
also be improved by having the reasoner
generate a problem analogous to an initial
example (Bernardo, 2001 ). Other work has
shown that abstract diagrams that highlight
the basic idea of using multiple converging
forces can aid in schema induction and sub-
sequent transfer (Beveridge & Parkins, 1987;
Gick & Holyoak, 1983) – especially when
the diagram uses motion cues to convey per-
ception of forces acting on a central target
(Pedone, Hummel, & Holyoak, 2001 ; see
Figure 6.4 , top).

Although two examples can suffice to es-
tablish a useful schema, people are able to
incrementally develop increasingly abstract
schemas as additional examples are provided
(Brown et al., 1986, 1989; Catrambone &
Holyoak, 1989). However, even with mul-
tiple examples that allow novices to start
forming schemas, people may still fail to
transfer the analogous solution to a prob-
lem drawn from a different domain if a
substantial delay intervenes or if the con-
text is changed (Spencer & Weisberg, 1986).
Nonetheless, as novices continue to develop
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Figure 6.4. Sequence of diagrams used to convey the convergence schema by
perceived motion. Top: sequence illustrating convergence (arrows appear to
move inward in II–IV). Bottom: control sequence in which arrows diverge
instead of converge (arrows appear to move outward in II–IV). (From Pedone,
Holyoak, & Hummel, 2001 , p. 217. Reprinted by permission.)

more powerful schemas, long-term transfer
in an altered context can be dramatically
improved (Barnett & Koslowski, 2002). For
example, Catrambone and Holyoak (1989)
gave college students a total of three con-
vergence analogs to study, compare, and
solve. The students were first asked a series
of detailed questions designed to encourage
them to focus on the abstract structure com-
mon to two of the analogs. After this ab-
straction training, the students were asked
to solve another analog from a third do-
main (not the tumor problem), after which
they were told the convergence solution to
it (which most students were able to gen-
erate themselves). Finally, 1 week later, the
students returned to participate in a dif-
ferent experiment. After the other experi-
ment was completed, they were given the
tumor problem to solve. More than 80%
of participants came up with the converg-
ing rays solution without any hint. As the
novice becomes an expert, the emerging
schema becomes increasingly accessible and
is triggered by novel problems that share its
structure. Deeper similarities have been con-

structed between analogous situations that
fit the schema. As schemas are acquired
from examples, they in turn guide future
mappings and inferences (Bassok, Wu, &
Olseth, 1995).

Computational Models of Analogy

From its inception, work on analogy
in relation to knowledge representation
has involved the development of detailed
computational models of the various com-
ponents of analogical reasoning typically fo-
cusing on the central process of structure
mapping. The most influential early models
included SME (Structure Mapping Engine;
Falkenhainer, Forbus, & Gentner, 1989),
ACME (Analogical Mapping by Constraint
Satisfaction; Holyoak & Thagard, 1989a),
IAM (Incremental Analogy Model; Keane &
Brayshaw, 1988), and Copycat (Hofstadter
& Mitchell, 1994). More recently, models
of analogy have been developed based on
knowledge representations constrained by
neural mechanisms (Hummel & Holyoak,
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1992). These efforts included an approach
based on the use of tensor products for vari-
able binding, the STAR model (Structured
Tensor Analogical Reasoning; Halford et al.,
1994 ; see Halford, Chap. 22), and another
based on neural synchrony, the LISA model
(Learning and Inference with Schemas and
Analogies; Hummel & Holyoak, 1997, 2003 ;
see Doumas & Hummel, Chap. 4). (For a
brief overview of computational models of
analogy, see French, 2002 .) Three models are
sketched to illustrate the general nature of
computational approaches to analogy.

Structure Mapping Engine (SME)

SME (Falkenhainer et al., 1989) illustrates
how analogical mapping can be performed
by algorithms based on partial graph match-
ing. The basic knowledge representation for
the inputs is based on a notation in the style
of predicate calculus. If one takes a simple
example based on the World War II analogy
as it was used by President George Bush in
1991 , a fragment might look like

SOURCE:
Führer-of (Hitler, Germany)
occupy (Germany, Austria)
evil (Hitler)
cause [evil (Hitler), occupy (Germany,

Austria)]
prime-minister-of (Churchill, Great

Britain)
cause [occupy (Germany, Austria), coun-

terattack (Churchill, Hitler)]
TARGET:
president-of (Hussein, Iraq)
invade (Iraq, Kuwait)
evil (Hussein)
cause [evil (Hussein), invade (Iraq,

Kuwait)]
president-of (Bush, United States)

SME distinguishes objects (role fillers,
such as “Hitler”), attributes (one-place pred-
icates, such as “evil” with its single role filler),
first-order relations (multiplace predicates,
such as “occupy” with its two role fillers), and
higher-order relations (those such as “cause”
that take at least one first-order relation as a
role filler). As illustrated in Figure 6.5 , the

predicate-calculus notation is equivalent to a
graph structure. An analogical mapping can
then be viewed as a set of correspondences
between partially matching graph structures.

The heart of the SME algorithm is a pro-
cedure for finding graph matches that sat-
isfy certain criteria. The algorithm operates
in three stages, progressing in a “local-to-
global” direction. First, SME proposes lo-
cal matches between all identical predicates
and their associated role fillers. It is as-
sumed similar predicates (e.g., “Führer-of”
and “president-of”; “occupy” and “invade”)
are first transformed into more general pred-
icates (e.g.,“leader-of”; “attack”) that reveal
a hidden identity. (In practice, the program-
mer must make the required substitutions
so similar but nonidentical predicates can be
matched.) The resulting matches are typi-
cally inconsistent in that one element in the
source may match multiple elements in the
target (e.g., Hitler might match either Hus-
sein or Bush because all are “leaders”). Sec-
ond, the resulting local matches are inte-
grated into structurally consistent clusters or
“kernels” (e.g., the possible match between
Hitler and Bush is consistent with that be-
tween Germany and the United States, and
so these matches would form part of a sin-
gle kernel). Third, the kernels are merged
into a small number of sets that are max-
imal in size (i.e., that include matches be-
tween the greatest number of nodes in the
two graphs), while maintaining correspon-
dences that are structurally consistent and
one to one. SME then ranks the result-
ing sets of mappings by a structural eval-
uation metric that favors “deep” mappings
(ones that include correspondences between
higher-order relations). For our example,
the optimal set will respectively map Hitler,
Germany, Churchill, and Great Britain to
Hussein, Iraq, Bush, and the United States
because of the support provided by the map-
ping between the higher-order “cause” rela-
tions involving “occupy/invade.” Using this
optimal mapping, SME applies a CWSG al-
gorithm to generate inferences about the
target based on unmapped propositions in
the source. Here, the final “cause” relation
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Figure 6.5 . SME’s graphical representation of a source and target analog.

in the source will yield the analogical infer-
ence, cause [attack (Iraq, Kuwait), counter-
attack (Bush, Hussein)].

SME thus models the mapping and in-
ference components of analogical reason-
ing. A companion model, MACFAC (“Many
Are Called but Few Are Chosen”; Forbus,
Gentner, & Law, 1995) deals with the ini-
tial retrieval of a source analog from long-
term memory. MACFAC has an initial stage
(“many are called”) in which analogs are rep-
resented by content vectors, which code the
relative number of occurrences of a partic-

ular predicate in the corresponding struc-
tured representation. (Content vectors are
computed automatically from the underly-
ing structural representations.) The content
vector for the target is then matched to vec-
tors for all analogs stored in memory, and
the dot product for each analog pair is cal-
culated as an index of similarity. The source
analog with the highest dot product, plus
other stored analogs with relatively high dot
products, are marked as retrieved. In its sec-
ond stage, MACFAC uses SME to assess
the degree of the structural overlap between
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the target and each possible source, allowing
the program to identify a smaller number of
potential sources that have the highest de-
grees of structural parallelism with the target
(“few are chosen”). As the content vectors
used in the first stage of MACFAC do not
code role bindings, the model provides a
qualitative account of why the retrieval stage
of analogy is less sensitive to structure than
is the mapping stage.

Analogical Mapping by Constraint
Satisfaction (ACME)

The ACME model (Holyoak, Novick, &
Melz, 1994 ; Holyoak & Thagard, 1989a) was
directly influenced by connectionist mod-
els based on parallel constraint satisfac-
tion (Rumelhart, Smolensky, McClelland,
& Hinton, 1986; see Doumas & Hummel,
Chap. 4). ACME takes as input symbolic
representations of the source and target
analogs in essentially the same form as those
used in SME. However, whereas SME fo-
cuses on structural constraints, ACME in-
stantiates a multiconstraint theory in which
structural, semantic, and pragmatic con-
straints interact to determine the optimal
mapping. ACME accepts a numeric code
for degree of similarity between predicates,
which it uses as a constraint on mapping.
Thus, ACME, unlike SME, can match simi-
lar predicates (e.g., “occupy” and “invade”)
without explicitly recoding them as iden-
tical. In addition, ACME accepts a nu-
meric code for the pragmatic importance
of a possible mapping, which is also used
as a constraint.

ACME is based on a constraint satis-
faction algorithm, which proceeds in three
steps. First, a connectionist “mapping net-
work” is constructed in which the units rep-
resent hypotheses about possible element
mappings and the links represent specific in-
stantiations of the general constraints (Fig-
ure 6.6). Second, an interactive-activation
algorithm operates to “settle” the map-
ping network in order to identify the set
of correspondences that collectively repre-
sent the “optimal” mapping between the
analogs. Any constraint may be locally vio-

lated to establish optimal global coherence.
Third, if the model is being used to gener-
ate inferences and correspondences, CWSG
is applied to generate inferences based
on the correspondences identified in the
second step.

ACME has a companion model, ARCS
(Analog Retrieval by Constraint Satis-
faction; Thagard, Holyoak, Nelson, &
Gochfeld, 1990) that models analog re-
trieval. Analogs in long-term memory are
connected within a semantic network (see
Medin & Rips, Chap. 3); this network of
concepts provides the initial basis by which
a target analog activates potential source
analogs. Those analogs in memory that are
identified as having semantic links to the tar-
get (i.e., those that share similar concepts)
then participate in an ACME-like con-
straint satisfaction process to select the opti-
mal source. The constraint network formed
by ARCS is restricted to those concepts
in each analog that have semantic links;
hence, ARCS shows less sensitivity to struc-
ture in retrieval than does ACME in map-
ping. Because constraint satisfaction algo-
rithms are inherently competitive, ARCS
can model the finding that analogical ac-
cess is more sensitive to structure when sim-
ilar source analogs in long-term memory
compete to be retrieved (Wharton et al.,
1994 , 1996).

Learning and Inference with Schemas
and Analogies (LISA)

Similar to ACME, the LISA model
(Hummel & Holyoak, 1997, 2003) is
based on the principles of the multicon-
straint theory of analogy; unlike ACME,
LISA operates within psychologically and
neurally realistic constraints on working
memory (see Doumas & Hummel, Chap. 4 ;
Morrison, Chap. 19). The models discussed
previously include at most localist rep-
resentations of the meaning of concepts
(e.g., a semantic network in the case of
ARCS), and most of their processing is
performed on propositional representations
unaccompanied by any more detailed level
of conceptual representation (e.g., neither
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Figure 6.6. A constraint-satisfaction network in ACME.

ACME nor SME includes any represen-
tation of the meaning of concepts). LISA
also goes beyond previous models in that
it provides a unified account of all the
major components of analogical reasoning
(retrieval, mapping, inference, and re-
lational generalization).

LISA represents propositions using a hi-
erarchy of distributed and localist units (see
Figure 4 .1 in Doumas & Hummel, Chap. 4).
LISA includes both a long-term memory
for propositions and concept meanings and
a limited-capacity working memory. LISA’s
working memory representation, which uses
neural synchrony to encode role-filler bind-
ings, provides a natural account of the ca-
pacity limits of working memory because it
is only possible to have a finite number of
bindings simultaneously active and mutually
out of synchrony.

Analog retrieval is accomplished as a form
of guided pattern matching. Propositions in a
target analog generate synchronized patterns

of activation on the semantic units, which in
turn activate propositions in potential source
analogs residing in long-term memory. The
resulting coactivity of source and target el-
ements, augmented with a capacity to learn
which structures in the target were coactive
with which in the source, serves as the basis
for analogical mapping. LISA includes a set
of mapping connections between units of the
same type (e.g., object, predicate) in sepa-
rate analogs. These connections grow when-
ever the corresponding units are active si-
multaneously and thereby permit LISA to
learn the correspondences between struc-
tures in separate analogs. They also permit
correspondences learned early in mapping to
influence the correspondences learned later.
Augmented with a simple algorithm for self-
supervised learning, the mapping algorithm
serves as the basis for analogical inference
by CWSG. Finally, augmented with a sim-
ple algorithm for intersection discovery, self-
supervised relational learning serves as the
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basis for schema induction. LISA has been
used to simulate a wide range of data on
analogical reasoning (Hummel & Holyoak,
1997, 2003), including both behavioral
and neuropsychological studies (Morrison
et al., 2004).

Conclusions and Future Directions

When we think analogically, we do much
more than just compare two analogs based
on obvious similarities between their el-
ements. Rather, analogical reasoning is a
complex process of retrieving structured
knowledge from long-term memory, repre-
senting and manipulating role-filler bind-
ings in working memory, performing self-
supervised learning to form new inferences,
and finding structured intersections between
analogs to form new abstract schemas. The
entire process is governed by the core con-
straints provided by isomorphism, similarity
of elements, and the goals of the reasoner
(Holyoak & Thagard, 1989a). These con-
straints apply in all components of analog-
ical reasoning: retrieval, mapping, inference,
and relational generalization. When analogs
are retrieved from memory, the constraint of
element similarity plays a large role, but rela-
tional structure is also important – especially
when multiple source analogs similar to the
target are competing to be selected. For
mapping, structure is the most important
constraint but requires adequate working
memory resources; similarity and purpose
also contribute. The success of analogical in-
ference ultimately depends on whether the
purpose of the analogy is achieved, but satis-
fying this constraint is intimately connected
with the structural relations between the
analogs. Finally, relational generalization oc-
curs when schemas are formed from the
source and target to capture those structural
patterns in the analogs that are most rele-
vant to the reasoner’s purpose in exploiting
the analogy.

Several current research directions are
likely to continue to develop. Computa-
tional models of analogy, such as LISA
(Hummel & Holyoak, 1997, 2003), have

begun to connect behavioral work on anal-
ogy with research in cognitive neuroscience
(Morrison et al., 2004). We already have
some knowledge of the general neural cir-
cuits that underlie analogy and other forms
of reasoning (see Goel, Chap. 20). As
more sophisticated noninvasive neuroimag-
ing methodologies are developed, it should
become possible to test detailed hypothe-
ses about the neural mechanisms underly-
ing analogy, such as those based on temporal
properties of neural systems.

Most research and modeling in the field
of analogy has emphasized quasilinguistic
knowledge representations, but there is good
reason to believe that reasoning in general
has close connections to perception (e.g.,
Pedone et al., 2001 ). Perception provides
an important starting point for grounding at
least some “higher” cognitive representations
(Barsalou, 1999). Some progress has been
made in integrating analogy with perception.
For example, the LISA model has been aug-
mented with a Metric Array Module (MAM;
Hummel & Holyoak, 2001 ), which provides
specialized processing of metric information
at a level of abstraction applicable to both
perception and quasispatial concepts. How-
ever, models of analogy have generally failed
to address evidence that the difficulty of
solving problems and transferring solution
methods to isomorphic problems is depen-
dent on the difficulty of perceptually encod-
ing key relations. The ease of solving appar-
ently isomorphic problems (e.g., isomorphs
of the well-known Tower of Hanoi) can vary
enormously, depending on perceptual cues
(Kotovsky & Simon, 1990; see Novick & Bas-
sok, Chap. 1 4).

More generally, models of analogy have
not been well integrated with models of
problem solving (see Novick & Bassok,
Chap. 1 4), even though analogy clearly af-
fords an important mechanism for solving
problems. In its general form, problem solv-
ing requires sequencing multiple operators,
establishing subgoals, and using combina-
tions of rules to solve related but noni-
somorphic problems. These basic require-
ments are beyond the capabilities of vir-
tually all computational models of analogy
(but see Holyoak & Thagard, 1989b, for
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an early although limited effort to inte-
grate analogy within a rule-based problem-
solving system). The most successful models
of human problem solving have been formu-
lated as production systems (see Lovett &
Anderson, Chap. 1 7), and Salvucci and An-
derson (2001 ) developed a model of anal-
ogy based on the ACT-R production system.
However, this model is unable to solve re-
liably any analogy that requires integration
of multiple relations – a class that includes
analogies within the grasp of young children
(Halford, 1993 ; Richland et al., 2004 ; see
Halford, Chap. 22). The integration of anal-
ogy models with models of general problem
solving remains an important research goal.

Perhaps the most serious limitation of
current computational models of analogy is
that their knowledge representations must
be hand-coded by the modeler, whereas hu-
man knowledge representations are formed
autonomously. Closely related to the chal-
lenge of avoiding hand-coding of represen-
tations is the need to flexibly rerepresent
knowledge to render potential analogies per-
spicuous. Concepts often have a close con-
ceptual relationship with more complex re-
lational forms (e.g., Jackendoff, 1983). For
example, causative verbs such as lift (e.g.,
“John lifted the hammer”) have very simi-
lar meanings to structures based on an ex-
plicit higher-order relation, cause (e.g., “John
caused the hammer to rise”). In such cases,
the causative verb serves as a “chunked” rep-
resentation of a more elaborate predicate-
argument structure. People are able to “see”
analogies even when the analogs have very
different linguistic forms (e.g., “John lifted
the hammer in order to strike the nail” might
be mapped onto “The Federal Reserve used
an increase in interest rates as a tool in its
efforts to drive down inflation”). A deeper
understanding of human knowledge repre-
sentation is a prerequisite for a complete the-
ory of analogical reasoning.
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