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A
ll intelligent systems, whether
children, scientists, or futuristic
robots, require the capacity for
induction, broadly defined to

encompass all inferential processes that
expand knowledge in the face of uncer-
tainty (1). Any finite set of data is con-
sistent with an infinite number of induc-
tive hypotheses. The apparent accuracy
of many everyday inferences therefore
suggests that humans have, as the phi-
losopher Charles Peirce put it, ‘‘special
aptitudes for guessing right’’ (2). How
can people, often restricted to sparse
and noisy data, achieve some significant
degree of success in discerning the un-
derlying regularities in the world? The
answer seems to require specifying in-
ductive constraints. The report by Kemp
and Tenenbaum in this issue of PNAS
(3) represents an important advance in
understanding the constraints that guide
successful induction across a broad set
of domains.

The work reported in ref. 3 is consis-
tent with the longstanding although con-
troversial claim that laypeople resemble
‘‘intuitive scientists’’ (4) in the ways in
which they discover orderly patterns in
the world. Sometimes lay and scientific
understanding of the world exhibit strik-
ing convergence, as exemplified by the
basic biological concept of a species.
Evolutionary biologist Ernst Mayr, be-
ginning in the late 1920s, spent several
years in New Guinea collecting and clas-
sifying specimens of birds (5). Looking
back on his findings decades later, Mayr
observed that he had identified 137 spe-
cies of birds, for which the natives had
136 names, conflating just two species.
‘‘The coincidence of what Western sci-
entists called species and what the na-
tives called species was so total that I
realized the species was a very real thing
in nature’’ (6). Mayr’s observations an-
ticipated recent experimental evidence
that Western experts and indigenous
people exhibit broad agreement in their
classifications of bird species (7).

Kemp and Tenenbaum (3) provide a
detailed computational account of how
a variety of basic structural forms (e.g.,
partitions, chains, trees, and grids) can
be inferred from various types of data
(e.g., feature sets, similarity matrices,
and counts of relational frequencies).
The key idea is to distinguish represen-
tations explicitly at different levels of
abstraction. The overall approach is to
use Bayesian inference to identify a hi-
erarchical generating model that best

accounts for the observed data (Fig. 1).
The optimal model will have a certain
abstract form (e.g., a tree), a certain
specific structure (e.g., a set of nodes
and edges that constitute a particular
tree), specific attributes (e.g., features
associated with the objects represented
by the terminal leaves of the tree), and
perhaps specific parameter values (e.g.,

feature weights). The focus is on the
two most abstract levels of the model.
The algorithm systematically generates
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Fig. 1. Overview of hierarchical Bayesian approach to learning structural form proposed by Kemp and
Tenenbaum (3), using examples of similarities among a set of animals. (A) The data at the bottom, in the form
of a feature vector for each animal, can potentially be produced by alternative forms (ring, partition, tree,
order,hierarchy) thatcantakeonmanydifferentstructures (definedbynodesandedges ingraph).Likelihoods
constrain the possible structural forms to those consistent with the data of feature vectors (blue background),
but the set of possibilities may remain large. (B) The set of possible structural forms is further constrained by
the prior probability of each form and by the prior conditional probability of each structure given a form. The
priors for structures conditionalonformsfavor simpler structures (thosewithfewernodes).Bayesian inference
identifies the specific structure (hierarchy in green) that has maximal probability as determined by the product
of the likelihood and prior knowledge: P(S, F�D) � P(D�S)P(S�F)P(F).
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candidate models from graph grammars,
computes the probability of the data
given each candidate model, and identi-
fies the model with maximum posterior
probability given the data. The approach
captures the intuitive structural forms
for a broad range of datasets, including
a similarity matrix of animal species
(yielding a tree), votes of Supreme
Court justices (a chain), friendship rela-
tions among prisoners (a partition, re-
f lecting a set of social cliques), and
power interactions within a troop of
monkeys (an order).

Kemp and Tenenbaum’s proposal (3)
makes explicit certain general inductive
constraints that favor selection of the
intuitive structural form. Perhaps the
most basic is the constraint imposed by
availability of models; as Jaynes put it,
‘‘If we hope to detect any phenomenon,
we must use a model that at least allows
for the possibility that it exists’’ (ref. 8;
italics in original). The proposal assumes
that prior knowledge provides a ‘‘li-
brary’’ of forms that are available to fit
any dataset. Although these forms might
be viewed as innate platonic ideals, the
authors show that they could be gener-
ated systematically from a more abstract
grammar of graphical structures. An
important additional constraint is sim-
plicity, inherent in Bayesian inference
(where it is sometimes called the ‘‘Oc-
cam factor’’ after Occam’s famous ra-
zor). For example, because any chain is
a special case of a grid, there are neces-
sarily more possible grids than chains
for any fixed number of objects; it fol-
lows mathematically that, ceteris paribus,
the simpler chain form will be preferred
to a grid. Another aspect of simplicity is
captured by penalizing larger structures
(i.e., assigning lower prior probabilities
to structural forms that contain more
nodes). Various quantifiable measures
of simplicity figure prominently in re-
cent work on different types of human
inductive inferences (9–11).

The project reported in ref. 3 extends
a substantial body of research applying
Bayesian methods to provide rational
analyses of cognitive processes (e.g., 12–
14). The most significant advance that
Kemp and Tenenbaum’s proposal makes
over previous methods for inducing

structural form stems from its hierarchi-
cal conception of models. This frame-
work allows alternative forms to com-
pete with one another to explain any
given set of data rather than requiring
an a priori assumption about the form
appropriate for a specific dataset. Per-
haps the most striking demonstration of
the flexibility provided by the hierarchi-
cal approach is the finding that the
model chosen for the dataset of animal
similarities undergoes a qualitative shift
as the number of available features in-
creases, moving from a set of discon-
nected clusters to an integrated tree
structure. This shift is consistent with
evidence concerning the trajectory of
children’s acquisition of word meanings.

As a proposal focusing on the abstract
level of computation (15), the work in
ref. 3 opens up new questions at more
detailed levels of analysis. Perhaps the
most basic question is: In whose mind
(if any) does the generating model ex-
plicitly exist? The case of the New
Guinea natives who apparently antici-
pated the Western conception of species
may not be typical. The elliptical form
of planetary orbits and the double-heli-
cal form of DNA were inductive prod-
ucts of scientific reasoning, not of lay
observation. The analogous question

arises even for very simple forms. For
example, the dominance order that de-
scribes the interactions of a troop of
monkeys is clearly available to prima-
tologists as an explicit representation,
but whether it is explicit in the minds of
the monkeys themselves is controversial
and indeed dubious (16).

Future work will need to address the
induction of structural forms based on
heterogeneous types of relations, includ-
ing functional and causal relations. Ex-
amples include the bauplans (‘‘body
plans’’) of actual or possible biological
organisms, such as the form of a tetra-
pod or of a horse (17). In science, forms
are sometimes proposed by analogy, as
in the case of the wave theory of sound,
developed by analogy to the behavior of
waves emanating from a stone dropped
into a pond (18). Even in cases where a
form appears to be selected from a
small set of alternatives, the induction
process can be far more complex than
calculating the ‘‘best fit’’ from among a
set of forms provided by a grammar or
library. Kepler’s discovery of the form
of planetary motion is a case in point.
Having faith that ‘‘Geometry . . . sup-
plied God with patterns for the creation
of the world’’ (19), Kepler labored for
years poring over copious and precise
astronomical data provided by Tycho
Brahe, progressively reconceptualizing
the orbit of Mars as a circle, an oval,
and finally an ellipse. As his investiga-
tion progressed, Kepler developed a
crude physical model of the planetary
system, according to which the sun
somehow causes the motion of the plan-
ets, exerting a force that decreases with
distance so that Mars moves slowest
when furthest from the sun (ultimately
quantified as Kepler’s second law).
Achieving a full understanding of the
induction of structural form remains a
great challenge for cognitive science.
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Any finite set of data is
consistent with an
infinite number of

inductive hypotheses.
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