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We present a framework for classification learning that assumes that learners use
presented instances (whether labeled or unlabeled) to infer the density functions
of category exemplars over a feature space and that subsequent classification decisions
employ a relative likelihood decision rule based on these inferred density functions.
A specific model based on this general framework, the category density model} was
proposed to account for the induction of normally distributed categories either
with or without error correction or provision of labeled instances'. The model was
implemented as a computer simulation. Results of five experiments indicated that
people could learn category distributions not only without error correction, but
without knowledge of the number of categories or even that there were categories
to be learned. These and other findings dictated a more general learning model
that integrated distributional representations based on both parametric descriptions
and stored instances.

In this article we present a new model of
category learning and classification based on
the acquisition and use of distributional
knowledge. This category density model, de-
rived from work by Fried (1979), makes the
central assumption that the goal of the category
learner is to develop a schematic description
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of the distributions of category exemplars over
a feature space. Highly salient features will
tend to be encoded initially, although the
learner may actively search for less salient fea-
tures that are more diagnostic of category
membership. We assume that the schematic
representation is a parametric encoding of the
category distribution over the feature dimen-
sions to which the learner is currently attend-
ing. Suppose, for example, that a learner is
shown a set of exemplars randomly sampled
from a category population that is normally
distributed over n independent feature di-
mensions. The density function for such a cat-
egory can be sufficiently described by a vector
of 2n parameters—the mean and variance of
the population along each feature dimension.
The density model assumes that in this ex-
ample the effective representation of the cat-
egory distribution will correspond to this pa-
rameter vector. This assumption implies that
the presented instances will be treated as a
sample that can be used to estimate the dis-
tributional properties of an indefinitely large
population of potential category exemplars.

A parametric representation also implies
that there exists a set of statistics for each fea-
ture dimension that is sufficient to describe
the learner's conception of the category dis-
tribution. The types of category distributions
that people can encode parametrically may be
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small, although this is an open empirical issue.
In the present study we will focus on a specific
version of the category density model that ac-
counts for learning of multidimensional nor-
mally distributed categories. Normal distri-
butions may have particular ecological im-
portance. Basic-level natural categories seem
to consist of a dense central region of typical
instances, surrounded by sparser regions of
atypical instances (Rosch, 1973, 1978; Rosch
& Mervis, 1975; Rosch, Mervis, Gray, John-
son, & Boyes-Braem, 1976). People may
therefore expect new categories to be unimodal
and to have roughly symmetrical density
functions, which may be well approximated
by multidimensional normal distributions.

A second major assumption of the category
density model is that classification decisions
are based on relative likelihood. This decision
rule is related to that of signal detectability
theory (Swets, Tanner, & Birdsall, 1961), ex-
cept that it is based on distributional infor-
mation acquired during category learning
rather than on information assumed known
a priori. The subjective probability >£,,, that
the decision maker considers item X to be a
member of category C, on trial t is assumed
to be given by Bayes' theorem; that is,

= P,(C,\X) =

P,(x\cm)Pt(cm)
(1)

where p,(X\C,) is the subjective conditional
probability on trial t of item X given category
ChPt(Ct) is the subjective prior probability of
C( as of trial t, and k is the number of alter-
native categories. The model further assumes
that the decision maker's probability of making
response C, on trial t given item X is

(2)
k

2
m - 1

where ft is a constant for each category re-
flecting factors such as an asymmetrical payoff
matrix for different classification responses.
Note that when the values of p,(Q and ft are
equal for all categories (as will be assumed in
all applications of Equations 1 and 2 in the
present article because prior probabilities and
payoffs were made equal and symmetric in all

experiments), it then follows from Equation 2
that the relative frequencies of the alternative
categories as responses to item X will be equal
to the subjective relative likelihoods of the item
X given the alternative categories. We will
therefore refer to Equations 1 and 2 jointly as
the relative likelihood decision rule. This rule
will be used as a heuristic device for measuring
distributional learning,

A third assumption of the model, related
to Bayesian learning theory (Edwards, Lind-
man, & Savage, 1963), is that category learning
is based on a cyclic process of parameter re-
vision. We assume that people expect feature
dimensions of perceptual categories to be nor-
mally distributed, and that they enter a cat-
egory learning task with (perhaps very vague)
initial opinions about the central tendency and
degree of variability of each category on its
salient feature dimensions. People then use
presented instances to revise these prior ex-
pectations. The revised opinions generate ex-
pectancies in terms of which the next obser-
vation is evaluated.
, The density model includes a mechanism
by which normal distributions can be learned
by revising parameter vectors in response to
each successive instance in a set of training
exemplars, with minimal reliance on memory
for prior instances (discussion follows). In a
typical experiment on classification learning,
subjects are told the category to which each
training instance belongs. Under such condi-
tions the parameter-revision process for learn-
ing normal distributions is straightforward. On
each trial the feature values of the current
instance are used to update the dimension
means and variances for the appropriate cat-
egory, while the occurrence of the category
label is used to update the index of the cate-
gory's frequency. The new parameter values
are then saved; the current instance may be
incidentally stored in memory, but it plays no
further necessary role in learning or classifi-
cation.

In naturalistic learning situations, unlike
standard experimental paradigms, external
error feedback may be delayed, unreliable, or
completely absent (Bruner, Goodnow, & Aus-
tin, 1956, p. 68). Furthermore, there: is ex-
perimental evidence that people can sometimes
learn to classify instances of probabilistic cat-
egories without any error correction or pro-
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vision of category labels for instances (Ed-
monds & Evans, 1966; Fried, 1979), although
learning is not always entirely successful under
such conditions (Evans &, Arnoult, 1967; see
also Bersted, Brown, & Evans, 1969; Tracy &
Evans, 1967). The-possibility of learning with-
out external feedback is also suggested by E.
Gibson's theory of perceptual learning (1953,
1969; Gibson & Gibson, 1955). Under certain
conditions, parameter revision can be used to
learn category distributions even in the absence
of error feedback, The task of learning dis-
tributions without feedback can be modeled
as a problem of decomposing the overall mix-
ture density of the presented instances into its
component densities. This decomposition can
be accomplished by parameter-revision pro-
cedures for mixtures of normal densities if the
learner knows the number of categories present
in the mixture (Duda & Hart, 1973; Fried,
1979).

Category Density Model and Its Simulation

A version of the category density model for
normal distributions was implemented as a
FORTRAN program.1 The program estimates
the distributional parameters for categories
denned by independent, multidimensional
normal distributions (i.e., a mean and variance
for each dimension of each category, and a
frequency parameter for each category). The
program can learn these parameters with or
without information about the category mem-
bership of training exemplars, and was used
to validate the qualitative predictions outlined
below.

The learning sequence for the FORTRAN
program consists of randomly intermixed
«-dimensional stimuli (« ^ 5) drawn from k
categories (k <, 5). Each category is denned
by normal distributions of values over each
of the dimensions. The dimensions are statis-
tically independent. The category distributions
are specified by providing the program with
a mean and variance for each dimension of
each category, and a relative frequency for each
category. Each stimulus is thus represented by
a vector of numbers, with each number rep-
resenting a value on a dimension. The number
of categories and dimensions is specified. Runs
used to validate the qualitative predictions

tested in the present paper (described later)
used two 2-dimensional categories.

The learning process operates either with
knowledge of the category membership of the
training instances (feedback condition) or
without such knowledge (no-feedback condi-
tion). In either case learning involves two
stages: formation of initial parameter esti-
mates, followed by iterative revision of them.
In the feedback condition, the dimension value
of the first instance of each category Q is used
as the initial mean A/,,, for the rth category's
Jih dimension. The initial value of the fre-
quency N] of this category is then 1. The di-
mension variances Vu for category C, are ini-
tialized when the second observation for that
category is obtained. The initial variance es-
timate is a weighted average of the sample
variance of the two observations and an ar-
bitrary large value that represents the vague-
ness of the learner's prior opinion about the
distribution of category / oirdimension j.

In the no-feedback condition, initial pa-
rameter estimates are formed after accumu-
lating the first s instances, where s (atfc) is the
size of a short-term memory buffer (set at 6
in the runs reported later). The s observations
are represented as points in an «-dimensional
space, and a clustering algorithm uses the Eu-
clidean distances between the points to divide
the observations into k groups. The algorithm
used is based on the centroid method (Everitt,
1974, pp'. 12-14). The distance between two
groups is defined as the distanceibetween their
centroids, where the centroid is the mean of
the coordinate values for the items in a group.
Initially each of the s instances is defined as
a group with one member. The two closest
groups are then merged and replaced by the
coordinates of their centroid. This procedure
is iterated until k groups remain. The initial
frequency JV/ of each category is then set equal
to the number of instances in a corresponding
cluster, and the initial dimensional mean Mu
for each category is set equal to the mean of
the clustered instances on each dimension. The
initial variance Vy of each category on each

' The simulation model was programmed by Kyunghee
Koh, who also helped formulate the implemented pro-
cedure for learning without feedback.
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dimension is obtained by pooling an arbitrary
large value (as in the feedback condition) with
the variance of the cluster. (This pooling pro-
cedure has the incidental effect of ensuring
that even a category with just one initial mem-
ber will have a nonzero initial variance.)

After initial parameter estimates are formed,
each successive observation is then used to
revise the estimates. On trial t, the first step
is to determine the probability */>t that cat-
egory Ci generated the observed instance X.
For the feedback condition these probabilities
are as follows:

1, if X is labeled as a member of C,

0, otherwise.
(3)

For the no-feedback condition ^(>, is calculated
by inserting the parameter estimates as of trial
t- 1 in a version of Equation 1 of the relative
likelihood rule. If an item X is represented by
a vector of values on n independent feature
dimensions, x\, x2, . . . xn, then Equation 1
can be restated as follows:

,(C.) [ A

, (4)

2 p,(cm) n
andp,(Xj\C,) can be determined by substituting
the current estimates of MIJ and Viti in the
equation for the normal distribution^ that is,

tjj-\ . (5)

In calculating pt(Ci), the program allows a
bias toward an assumption that the k categories
are of equal frequency. The bias is given as a
weight Wf(0 £. Wf <. 1), which can be inter-
preted as a measure of the learner's confidence
after one observation that the categories are

equally likely. The result is given by the fol-
lowing:

where T is the total number of observations,

(7)
fc

T= 2
i = i

In Equation 6 the observed relative frequency,
Ntj-i/Tt-i, is.weightedby 7^_,(1 - wf). Hence
if Wf + 0 or 1, the impact of the observed
relative frequency will increase with the num-
ber of observations.

After determining the values of *,j(, the next
step is to revise the parameters for all cate-
gories, with the degree of revision for each
category weighted in accord with tyitt. For the
no-feedback condition ty,, may be fractional.
For example, suppose X is twice as likely to
have been generated by Q than by C2, given
the current parameter estimates. Then the pa-
rameters will be revised as if two thirds of an
observation (with the dimension values of the
new item) had accrued to Ci and one third
of an observation had accrued to €2. The re-
vision procedures are based on standard equa-
tions for revising running frequencies, means,
and variances (Raiffa & Schlaifer, 1961), gen-
eralized to accommodate fractional observa-
tions.

The revised Nt is given by the following:

Nt>t = NU-! + #,,„

and the revised MitJ is as follows:

(8)

(9)

In updating Kw, the program allows a bias
toward an assumption that the variances for
any given dimension are equal across all cat-
egories. Vijtt is a weighted average of the es-
timated variance of the individual category C,
on dimension j, IV^, and of the variance
pooled over all categories, PVj>t, with relative
weights determined by a parameter wv, defined
analogously to vty. The revision of Vitj proceeds
by first calculating the individual variance:

j-i - Mut)
2 - 1), (10)
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and the pooled variance:

2 (Niit -
PVj.t =

T,-k (11)
The revised variance is then given by the
weighted average of 7F,,,,, and PVjtl,

7X1 - wv (12)

The program can use its current parameter
estimates to classify items in accord with the
relative likelihood rule. The learning phase
proceeds either until some criterion is reached
(e.g., 10 correct classifications in a row), or a
fixed number of observations have been pre-
sented. A transfer phase is then simulated, in
which the program-uses its final parameter
estimates to classify transfer items drawn from
very broad distributions around the multidi-
mensional means of the categories presented
during the learning phase. An other response
can optionally be allowed, in which case the
program assumes that all instances have a fixed
likelihood (a parameter that is specified) of
being generated by an other category. The pro-
gram thus treats other as a category with a
specified uniform distribution, so that the rel-
ative likelihood that an item is drawn from
the other category can be calculated using the
relative likelihood rule.

/
Predictions of the Density Model

The category density model as described in
the simulation generates a variety of qualitative
predictions. The major predictions tested in
the present experiments can be divided into
two groups: those that concern learning and
those that concern transfer performance.

Predictions concerning learning. The fol-
lowing predictions about learning normally
distributed categories can be derived from the
density model.

LI. When subjects know the number of cat-
egories to be learned, and correctly assume
that the distributions are normal, learning is
possible even without error feedback or in-
stances labeled with respect to category mem-
bership.

L2. Labeled instances will facilitate con-
vergence on accurate estimates of distribu-
tional parameters, relative to a no-feedback
condition. Feedback enables thelearner to use
each observation to revise only the correct cat-
egory distribution, rather than apportioning
its value across all categories.

L3. Low-variability categories can be
learned with fewer observations than required
to learn high-variability categories with the
same means.

L4. Learning will be facilitated if the learner
knows the number of categories to be learned.
Indeed, knowledge of number of categories is
an essential prerequisite for the parameter-re-
vision procedure described earlier.

Predictions concerning transfer. The fol-
lowing predictions involve transfer perfor-
mance after learning has taken place.

Tl. Classification performance will be in
accord with the relative likelihood rule (e.g.,
the probability of classifying a novel instance
as a member of a category will be directly
proportional to its subjective likelihood of
being generated by the category distribution).

T2. When a random or other alternative is
available at transfer, exemplars far from the
mean (prototype) of a learned category will
more likely be classified as members of that
category if the variability of the learned cat-
egories is high. In contrast, such exemplars
will more often be classified as other when the
variability of the learned categories is low. This
prediction follows from the fact that the like-
lihood that a category will generate atypical
exemplars is greater if the variarice of the cat-
egory is relatively high. In situations in which
other responses are classified as errors, the per-
centage correct will be higher for groups
trained on high-variability instances.

T3. The above advantage of learning high-
variability rather than low-variability cate-
gories in classifying exemplars far from the
prototype will not be obtained in the absence
of an other alternative at transfer.

T4. If subjects learn two equally probable
categories of unequal variability, they will tend
to classify more items into the high-variability
category at transfer, including some items that
are closer to the mean of the low-variability
category but more likely to have been gener-
ated by the high-variability one*
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Sample of Performance by the
Simulation Program

Because the stimuli used in the experiments
reported later were complex forms for which
the psychological features encoded by subjects
were not known, the simulation program can-
not generate precise quantitative predictions
for our experiments. However, the general
model can be applied even if the psychological
features are unknown and different subjects
encode stimuli in terms of different features,
as long as subjects' feature sets can be ap-
proximated by normal densities. The quali-
tative predictions outlined earlier hold re-
gardless of the specific nature or number of
features used by subjects. As an illustration of
some of our qualitative predictions, we will
report the results of some sample runs of the
program. These test runs used two 2-dimen-
sional categories, denned by bivariate normal
distributions with means (3, 6) and (6, 3), re-
spectively, in arbitrary units. In the simulated
low-variability condition the variances of both
categories on each dimension were set equal
to 1 (so that d' = 3 on each dimension), and
in the high-variability condition the variances
were set equal to 4 (d1 - 1.5). The arbitrary
value used in initiating the variance estimates
was 20. In the no-feedback condition param-
eters were initialized after clustering the first
six items. The values of viy and wa were set
equal to 0.9 and 0.1, respectively. Ten simu-
lated subjects were used in each run.

As a measure of rate of learning, the mean
number of trials required to reach a criterion
of 10 correct responses in a row was measured.
A maximum of 300 learning trials were al-
lowed. The mean number of trials to criterion
was 32 for the low-variability, feedback con-
dition; 62 for the low-variability, no-feedback
condition; 74 for the high-variability, feedback
condition; and 146 for the high-variability, no-
feedback condition. These results illustrate
Predictions L2 (advantage of labeled instances)
and L3 (advantage of low-variability training).

Other runs were used to simulate transfer
performance after a fixed number of learning
trials (100). The first set of runs, presented in
Table 1 (top half), included an other alternative
at transfer. The subjective likelihood that any
item was an other was specified to be .002. In

fact, all transfer items were drawn from broad
distributions around the prototypes of the two
categories presented during the learning phase.
Table 1 (top half) features both the obtained
mean percentage correct and mean percentage
other responses as a function of the Euclidean
distance of transfer items from their generating
prototype (as measured in the same arbitrary
units). For all learning conditions the per-
centage correct decreased and the percentage
other increased with distance from the pro-
totype, exemplifying Prediction Tl. The pre-
dicted greater percentage correct and lesser
percentage other responses at high distances
for groups trained on high- rather than low-
variability exemplars (Prediction T2) was also
apparent. Presented in the bottom half of Table
1 are runs in which no other alternative was
allowed. Here the advantage of high-variability

Table 1
Transfer Performance With and Without
Availability of an Other Category

Distance from prototype

Training condition 1 , 2 3 4 5

With other category

Low variability
Feedback

% correct
% other

No feedback
% correct
% other

High variability
Feedback

% correct
% other

No feedback
% correct
% other

.99 .93 .72 .31 .03

.01 .04 .15 .45 .72

.97 .84 .70 .46 .19

.01 .04 .12 .29 .54

.88 .82 .71 .61 ,49

.01 .06 .08 .13 .25

.82 .76 .68 .58 .49

.02 .06 .09 .14 .26

Without other category

Low variability
Feedback (% correct) .99 ,96 .85 .73 .67
No feedback (% correct) .98 .88 .82 .71 .67

High variability
Feedback (% correct) .89 .86 .77 .72 .69
No feedback (% correct) .85 .81 .74 .68 .71

Note. Distance from the prototype is measured in arbitrary
units.
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training in percentage correct for items far
from the prototype was eliminated (Prediction
T3). As in the runs that included the other
alternative, low-variability training yielded
higher percentage correct for items close to
the prototype, because the subjective likelihood
of such items is relatively high when the es-
timated category variance is relatively low. In
the runs in Table 1 the feedback conditions
tended to yield higher percentage correct than
the no-feedback conditions, indicating that the
latter had not achieved asymptotic learning
after 100 training trials.

In general, no-feedback learning by the
simulation program is more variable than
learning with feedback, largely because the
former is more sensitive to the accuracy of
early parameter estimates. We have run the
program with s set at 2, thus simply using the
first two items as the initial estimates of the
means of the two categories. We have also run
the program setting w/ and wv to 0, thus re-
moving any biases toward the assumptions of
equal category frequencies and equal category
variances. In both cases learning still takes
place, although somewhat more slowly than
with the parameter values used in the runs
presented earlier. However, if both changes are
made (i.e., s — 2 and w/ = wv = 0), virtually
no learning takes place in the high-variability
condition, although some learning is still pos-
sible in the low-variability condition.

Comparison With Previous Models

With respect to its representational as-
sumptions, the category density model is most
similar to prototype models (Posner & Keele,
1968; Reed, 1972). Like prototype models,
the density model assumes that a true induc-
tion process takes place: The learner goes be-
yond the sampled instances to infer category-
level information. Furthermore, both types of
models assume that this category-level infor-
mation is represented parametrically. But
whereas a simple prototype represents the
central tendencies of the category instances on
their feature dimensions, parameters can also
be used to represent the variability of a dis-
tribution, as discussed earlier, and perhaps
other distributional properties as well (e.g.,
skewness). Like a prototype, however, repre-

sentations postulated by the density model can
be characterized as schemata (Attneave, 1957;
Oldfield, 1954). Indeed, for the special case of
multidimensional normal distributions (the
focus of the present article), the density model
is equivalent to a model that assumes the
learner abstracts the prototype plus variance
for each category.

However, in terms of its decision rule for
classification, the density model is more similar
to feature frequency (e.g., Hayes-Roth &
Hayes-Roth, 1977) and instance models
(Medin & Schaffer, 1978) than to simple pro-
totype models.2 Unlike the closest prototype
decision rule, the relative likelihood rule is
sensitive to category variability and other fac-
tors that influence the degree of overlap among
exemplars of alternative categories.

Unlike other classification models, the cat-
egory density model provides an explicit
mechanism by which categories can, under
some conditions, be learned without any ex-
ternal, instance-specific feedback. Regardless
of whether instances are being averaged to
form prototypes, used to tabulate feature fre-
quencies, or simply stored in memory, other
models have tacitly assumed that error feed-
back is critical in category learning, since the
learner must know the category to which an
instance belongs in order to use it to modify
the appropriate category representation. The

2 Medin and Schaffer (1978) pointed out that the distance
and cue validity decision rules proposed in the classification
literature (Hayes-Roth & Hayes-Roth, 1977; Reed, 1972)
are independent cue models, that is, rules that assume the
information entering into category judgments is based on
an additive combination of the information derived from
the component feature dimensions. It follows from the
nature of probability that the relative likelihood rule is
not an independent cue model; rather, as Equation 4 makes
clear, it implies a multiplicative combination of dimensional
information. In this respect the relative likelihood rule
resembles the context model proposed by Medin and
Schaffer. But whereas the latter model assumes that di-
mensional information is combined to calculate a measure
of instance-to-instance similarity, the relative likelihood
rule assumes that such information is combined to cal-
culate the conditional probability of an instance given a
particular category.

Wallsten (1976) presented evidence indicating that the
impact of a dimension value on subjects' decisions depends
on the dimension's salience as well as on its diagnosticity.
Salience could be represented by different weights asso-
ciated with each dimension.
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generalization procedures that have been pro-
posed to reduce the storage requirements of
feature frequency models (Anderson, Kline,
& Beasley, 1979; Patterson, 1979) depend upon
provision of error correction.

Experiments IA and IB

Experiment IA focused on tests of transfer
predictions T1-T3. Prediction T2 is in fact
supported by Posner and Keele's (1968) find-
ing that greater variability of training exem-
plars produced slower initial learning, but
more accurate transfer performance in a clas-
sification task. The bulk of the transfer errors
in the Posner and Keele study (Experiment 2)
were made by the low-variability group, and
involved the erroneous classification of the
highly distorted exemplars of meaningful pro-
totypes into a category based on a random
dot configuration. The random-prototype cat-
egory might have been viewed by subjects as
a flat, rectangular distribution with a very wide
range of acceptability on the feature dimen-
sions.

Recall that in terms of the category density
model, if category prototypes are kept con-
stant, an increase in category variability will
result in reduced discriminability between
categories (measured in d'), making learning
more difficult (Prediction L3). In a subsequent
transfer task, however, subjects trained on two
high-variability categories will view highly
distorted exemplars as relatively likely to have
been generated by the category, and so will
classify them correctly. In contrast, those
trained on two low-variability categories will
not view highly distorted exemplars as likely
to have been drawn from the category. Con-
sequently, if a random alternative category is
available, they will tend to classify those items
as random. Thus when this alternative category
is available, some highly distorted items are
predicted to be classified differently depending
only on the variability of the training items.
This prediction of the category density model
is not accounted for by a distance to prototype
decision rule, because the items are the same
distance from the prototypes in both groups.
The above prediction was supported in pre-
vious research when feedback was provided
during training (Fried, 1979), but has not been

previously tested when learning takes place
without trial-by-trial error correction. The
predicted difference between the two vari-
ability groups depends on the presence of an
alternative random category, because without
such an alternative category the relative like-
lihood rule predicts no advantage for a group
that learned relatively high-variability cate-
gories (Prediction T3). This latter prediction
was investigated in Experiment IB, in which
the random alternative or other category was
removed.

Method

Stimuli. The choice of stimuli was guided by several
criteria. We wanted stimuli: (a) that would allow an es-
sentially infinite population of category exemplars; (b) for
which objective measures of both distance between any
two items and of the likelihood of any item given any
category could be calculated; (c) for which category vari-
ability could be systematically manipulated; (d) with a
relatively realistic degree of perceptual complexity; and
(e) that could be generated and displayed under computer
control. These criteria were met by visual grid patterns
of the sort depicted in Figure 1. The categories to be
learned in Experiments IA and IB consisted of two sets
of such visual patterns, each composed of instances derived
from a standard pattern by means of a probabilistic dis-
tortion rule. All patterns consisted of light and dark cells
in a 10 X 10 grid displayed on a computer-controlled TV
screen. The two standard patterns, shown in Figure 1,
were created using a modification of the method for gen-
erating figures specified by Attneave.and Arnoult (1956;
see Fried, 1979). The standards were adjusted so that 50
cells in each were dark and 50 were light. In addition, 50
cells overlapped between the two standards. Distortions
were generated on-line by changing each cell of the standard
from light to dark or vice versa with some specified dis-
tortion probability, p. Increasing the distortion probability
in the range .00 to .50 increases the variability of the
distribution of instances, defined in terms of number of
cells changed from the standard. These distributions were
binomial approximations to the normal, with the mean
number of cells changed equal to lOOp and variance equal
to lOOp (1 - p), where pis the distortion probability and
100 is the number of cells in each pattern. A total of 2100

patterns were possible. The likelihood of any particular
pattern wasp"(l - p)>00~N, where ./Vis the number of cells
distinguishing the pattern from the generating standard.
The categories were thus distinguishable only in their like-
lihood of generating each of the 2100 possible patterns.
The standard itself was the most likely individual pattern
of each category, but since its probability was nonetheless
vanishingly small, (1 - p)100, it never actually was presented
during learning trials in our experiments. As in Fried

'(1979), distortion probabilities of .07 and .15 were used
for the low- and high-variability learning conditions, re-
spectively, in all experiments to be reported. Figure 1 il-
lustrates .07 and .15 distortions of each of the standard
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STANDARDS

EXAMPLES OF RANDOM DISTORTIONS

Figure 1. The two standards used in Experiment 1, and examples of ,07 and .15 distortions of each.

patterns. In these illustrative examples the number of
changed cells is set equal to exactly lOOp.3

Design and procedure (Experiment I A). Subjects were
randomly assigned to one of four conditions, denned by
the 2 X 2 (Variability X Feedback) factorial combination
of low versus high variability of training exemplars (.07
and. 15 distortion probabilities, respectively) and presence
versus absence of item-specific error feedback. All subjects
were told that they would see a mixture of geometric pat-
terns designed by two artists, named Smith and Wilson,
and that they would have to distinguish the work of Smith
from that of Wilson. The two standards shown in Figure
1 were used for all subjects, but eaph subject saw a different
random sample of distortions, and no subject saw the
standard.

The patterns were displayed on a TV screen controlled
by an IBM 1800 computer. During the learning phase all
subjects classified a series of patterns into two categories
by pressing one of two response keys. A maximum of 7
s was allowed to make each response. Subjects receiving
instance-specific error feedback were told whether or not
they were correct immediately after each response, thus
effectively labeling the instances with respect to category
membership. Subjects not receiving instance-specific error
feedback did not receive such information. However, all
the subjects were told the number of correct and incorrect
responses they had made for each block of 10 trials. All
subjects in Experiment IA thus received general infor-
mation about whether their classification accuracy was
improving. However, the nonspecific feedback subjects were
never told the category to which any particular instance
belonged.

Subjects received a bonus of 1 cent for each correct
answer and were fined 1 cent for each error. In addition,
their pay decreased 1 cent for every 10 trials they required
to learn the categories. This learning phase continued until
subjects responded correctly. 10 times in a row, or reached
a maximum of 200 trials. The response key assigned to
a particular category by subjects in the nonspecific feedback

condition was necessarily arbitrary. Their responses were
scored as correct in the manner that, maximized their
score over all learning trials.

After completion of the learning phase, all subjects re-
ceived an additional 100 transfer trials, without error cor-
rection. Subjects were told that the patterns would include
new Wilsons and new Smiths, but also an unspecified
number of patterns designed by other people. In fact, there
were no true others; all the patterns presented during the
transfer phase were actually derived with equal frequencies
from the two original standards. Equal proportions of the
transfer items were created at each of four distortion prob-
abilities: . 10, .20, .30, and .40. The transfer patterns there-
fore included instances at higher levels of distortion than
those that were presented during learning, even in the
high-variability learning conditions. On each trial subjects
pressed one of three response keys to classify the pattern
as a Wilson, a Smith, or an other. Subjects in the nonspecific
feedback condition had to maintain the same response-
key assignments as they had established during the learning
phase. A maximum of 5 s was allowed to make a response.
Subjects received a 1 cent bonus for each correct classi-
fication, lost 1 cent for classifying a Wilson as a Smith or
vice versa, and neither won nor lost money for other re-
sponses.

Forty-five University of Michigan undergraduates served
as paid subjects.

Design and procedure (Experiment IB). The design
and procedure used in Experiment IB were identical to

3 We assume that on average there is a monotonic re-
lationship between number of cells changed (an objective
city-block measure of distance from the standard) and
psychological distance, for the range from 0 to 50 changed
cells. A distortion probability of .50 (expected number of
changed cells equal to 50) yields patterns statistically un-
related to the generating standard.
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those used in Experiment IA, except for two changes.
First, the summary information provided to subjects in
Experiment 1 A after every 10 learning trials was eliminated.
Subjects in the resulting no-feedback condition, unlike
those in the nonspecific feedback condition of Experiment
I A, therefore received no information about the degree to
which their classification accuracy was improving. The
feedback condition in Experiment IB received the same
item-specific feedback as did the comparable condition of
Experiment 1 A. Second, subjects were told that all transfer
patterns were either Smiths or Wilsons, and were required
to classify each pattern into one of those two categories;
that is, no third other alternative was available at transfer.

Forty-five University of Michigan undergraduates served
as paid subjects.

Results and Discussion (Experiment IA)

Learning phase. Of the 45 subjects tested,
8 had not reached criterion within the max-
imum 200 trials. As expected (Prediction L3),
all of these subjects were in the high-variability
condition: 2 subjects who received specific er-
ror feedback and 6 who received nonspecific
feedback. The mean number of learning trials
for all subjects was 39 for the low-variability,
specific feedback condition; 51 for the low-
variability, nonspecific feedback condition; 108
for the high-variability, specific feedback con-
dition; and 141 for the high-variability, non-
specific feedback condition. The learning-trials
measure proved to be highly variable (MSE =
2,692), reducing statistical power. Nevertheless,
as in previous research (Fried, 1979; Posner
& Keele, 1968), subjects in the high-variability
conditions required significantly more learning
trials to reach criterion, F(l, 41) = 25.9, p <
.001, in accord with Prediction L3. The non-
specific feedback conditions tended to require
more learning trials than the specific feedback
conditions; however, this trend was not sig-
nificant, F(\, 41) = 2.09, p < .20. The fact
that learning was possible without specific
feedback provides support for Prediction LI.

Transfer phase. Of the 8 subjects who had
not reached criterion within 200 trials, 3 (all
in the nonspecific feedback condition) re-
sponded with accuracy levels significantly
above chance during the transfer task. Since
we were interested in transfer performance af-
ter at least some learning had taken place, data
from the other 5 subjects were excluded from
transfer analyses. The remaining 40 subjects
included 10 in each of the four conditions.

The relative likelihood rule predicts that if
subjects had learned the mean (or generating

standard) of each category, the percentage of
patterns called other would increase as a func-
tion of distance from the standards. The rule
also-predicts that if subjects had learned cat-
egory variability, those in the high-variability
conditions would classify fewer patterns far
from the standard as other (Prediction T2).
Furthermore, this pattern should obtain re-
gardless of whether specific error feedback is
given (Prediction Tl). Presented in Figure 2
is the percentage of patterns called other as a
function of the number of cells by which the
distorted pattern differed from the standard
used to generate it (averaging over blocks of
10 cells).4 Percentage of patterns called other
increased with increasing distance from the
standard for all groups, F(4, 144) = 23.0, p <
.001,s Subjects in the low-variability conditions
tended to make more other responses overall
than did those in the high-variability condi-
tions, F(l, 36) = 3.76, p < .10. More impor-
tantly, this difference became greater as the
distance from the transfer pattern to the stan-
dard increased, f(144) = 2.60, p < .02, by a
bilinear trend test. Furthermore, lack of item-
specific error feedback did not affect the overall
pattern of results, F(l, 36) = 1.78, p > .25,
and produced no significant interactions.

The relative likelihood rule predicts that the
percentage called other should be a decreasing
function of relative likelihood; that is, the
greater the relative likelihood the greater the
probability that the item will be classified into
the appropriate category, and the lower the
probability that the pattern will be put into
an erroneous category, such as other. Presented
in Figure 3 is the percentage of patterns called
other as a function of the natural logarithm
of the likelihood ratio in favor of the correct
category, p(X\Sc)/p(X\SA), where Sc and S*
are the correct,and alternative standards, re-
spectively. The data points plotted in Figure
3 were obtained by averaging over blocks of
approximately 20 log units of likelihood ratio.
Likelihood ratio reaches higher levels for the

4 About 3% of the transfer patterns were actually closer
to the alternative standard than to the standard used to
generate them. However, the pattern of results was un-
changed when the closer standard was scored as correct.

5 Throughout this article, all analyses of variance on
proportions were performed after applying an arc sine*
transformation.
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Non-Specific Feedback, Low Variability
Non-Specific Feedback, High Variability
Specific Feedback, Low Variability
Specific Feedback, High Variability

10 20 30 40 50
Distance from Correct Standard

Figure 2. Percentage of transfer patterns called other as a function of distance from the correct standard
(Experiment IA).

low-variability conditions, since low-variability also make it less likely that such instances
distributions make it more likely that patterns could have been derived from the alternative
close to the standard will be generated, and standard. This analysis shows-that the per-
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Figure 3. Percentage of transfer patterns called other as function of log likelihood ratio (Experiment IA).
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centage called other decreased monotonically
across the four levels of relative likelihood at
which all conditions can be compared, F(3,
144) = 13.5, p < .001. The relative likelihood
rule predicts that among patterns equated on
likelihood ratio with respect to the two learned
categories, low-variability training will pro-
duce a greater proportion of other responses
(since in this case the other category will often
seem more likely to have generated the item
than either of the two low-variability catego-
ries). This prediction was supported, F(l,
36) = 16.1, p< .001. The effect of specificity
of error feedback did not approach signifi-
cance. (Since for equal-variance categories log
likelihood is highly correlated with distance
from the prototype, in subsequent cases we
will report only one measure.)

Because the high-variability conditions
produced fewer other responses, did they then
produce more correct responses? Presented in
Figure 4 is the percentage correct for all four
groups as a function of likelihood ratio. Ac-
curacy increased with increasing likelihood

ratio, F(3, 108) = 25.8, p < .001. Provision
of specific error feedback during training did
not produce an advantage in percentage cor-
rect (F < I). However, variability of the train-
ing instances significantly affected transfer ac-
curacy. The high-variability group was signif-
icantly more accurate for patterns equated on
likelihood ratio, F(l, 36) = 16.5, p < .001. It
is apparent from inspection of Figure 4 that
for any given level of likelihood ratio the low-
variability group was more likely to call a pat-
tern other (and thus have it counted as an
error), whereas the high-variability group was
more likely to classify it correctly. This pattern
supports Prediction T2.

Results and Discussion (Experiment IB)

Learning phase. Five of the 45 subjects
failed to reach the criterion of 10 correct trials
in a row within the maximum allotment of
200 trials. All of these were in the high-vari-
ability conditions, with 3 in the no-feedback
condition, and 2 in the feedback condition.

•••« Non-Specific Feedback, Low Variability
•—• Non-Specific Feedback, High Variability
O-O Specific Feedback, Low Variability

i Specific Feedback, High Variability

10 20 30 40 50 60 70 80 90 100 110

Log Likelihood Ratio in Favor of the Correct Category

Figure 4, Percentage of transfer patterns classified correctly as a function of log likelihood ratio (Experiment
U).
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As in Experiment IA, the learning trials mea-
sure was highly variable (MSE = 3,532). Once
again subjects in the high-variability conditions
required more learning trials than did those
in the low-variability conditions (M = 91 trials
and M = 43 trials, respectively), P(l, 41) =
7.17, p < .025. Although the trend favored
the subjects who received error feedback over
those who did not (65 trials vs. 75 trials), this
difference did not approach significance (F <
1). Weak statistical power suggests caution in
accepting the null hypothesis; however, it is
clear that error feedback was not a necessary
condition for category learning in the present
task. It can also be concluded that the non-
specific feedback in Experiment IA was not
instrumental in producing learning in that
condition.

Transfer phase. The 5 subjects who failed
to reach the learning criterion were excluded
from analyses of transfer performance. Pre-
sented in Figure 5 is the percentage correct
classification at transfer as a function of log
likelihood ratio in favor of the correct category.

As in Experiment IA, percentage correct in-
creased as a function of likelihood ratio, F(3,
108) = ll,l,p < .001. Also as in Experiment
1 A, overall percentage correct was not influ-
enced by error feedback (F < 1). However,
level of feedback did interact significantly with
variability of the training set, F(\, 36) = 8.20,
p < .01. As is apparent in Figure 5, this in-
teraction was mainly due to the especially ac-
curate performance of the high-variability
feedback condition at its two highest levels of
likelihood ratio. Error feedback did not have
a significant effect for the low-variability con-
dition, F(\, 18)= \A\,p> .25.

As predicted by the relative likelihood rule
(Prediction T3), and in sharp contrast to Ex-
periment IA, high-variability training in-
stances did not improve transfer accuracy
when an other category was :not available.
When only patterns equated on likelihood ratio
were considered (thus excluding patterns at
the two highest levels of likelihood ratio, ex-
perienced only by the low-variability groups),
variability had no significant effect, F( 1,36) =

High Variance, Feedback
High Variance, No Feedback
Low Variance, Feedback
Low Variance, No Feedback

0 10 20 30 40 50 60 70 80 90 100 110

Log Likelihood Ratio in Favor of the Correct Category
Figure 5. Percentage of transfer patterns classified correctly as a function of log likelihood ratio (Experiment
IB).
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1.68, p > .20, as the relative likelihood rule
predicts. The results of Experiment IB indicate
that high-variability training does not always
produce more accurate transfer performance
for exemplars far from the standard, nor does
exposure to a larger set of training items (be-
cause in both Experiments 1 A and IB, subjects
in the high-variability condition received more
instances before reaching the learning crite-
rion). Rather, the existence of a random or
0/Aeralternative at transfer (as in Experiment
IA) is critical to producing an advantage of
high-variability training.

Experiment 2

In Experiments IA and IB variability was
manipulated across different groups of sub-
jects. The relative likelihood rule can also be
tested by training a single group of subjects
with two equally probable categories of un-
equal variability. If subjects learn the category
distributions, the rule predicts that they will
tend to classify more patterns into the high-
variability category, even though exemplars of
the two categories are equally likely a priori
(Prediction T4). In particular, some patterns
that are physically more similar to the standard
of the low-variability category will be more
likely to be generated by the high-variability
category. If subjects learn the distributions and
follow the relative likelihood decision rule, they
should tend to classify such patterns into the
high-variability category. In contrast, if sub-
jects employ a closest prototype rule, based
on some monotonic function of physical dis-
tance, they will tend to classify such patterns
into the low-variability category.

Method

Two new standard patterns were used in Experiment 2.
These were constructed in the same manner as the stan-
dards used in Experiments 1 A and IB except that the new
standards were the same in only 40 (rather than SO) of
the 100 cells. During the learning phase the instances of
one standard were derived by a .07 distortion probability
(the low-variability category), and the instances of the other
standard were derived by a . 15 distortion probability (the
high-variability category). Assignment of the two standards
to distortion level was counterbalanced across subjects.

One other major change was introduced in the learning
phase of Experiment 2. The results of Experiment 1 and
earlier studies indicate that high-variability categories are
harder to learn than low-variability categories. If subjects
simply had to discriminate instances of a low- versus a

high-variability category, they could do so by learning only
the low-variability category, and then assigning all re-
maining instances to the high-variability category. Subjects
would thus never need to acquire a clear conception of
the high-variability category. Under these conditions the
high-variability category would presumably be treated as
an other alternative during transfer. As a result, high-level
distortions of the low-variability category would tend to
be classified as members of the high-variability category,
but not for the theoretically relevant reason.

It was therefore important to ensure that subjects would
actually learn the distribution of the high-variability cat-
egory during the learning phase, rather than treat it as a
vague other category. Accordingly, the training set consisted
of equal numbers of .07 distortions of the standard for
the low-variability category, .15 distortions of the standard
for the high-variability category, and .50 distortions of
both standards. Instances created by a .50 distortion prob-
ability are truly random (i.e., they are statistically inde-
pendent of the generating standard), and thus constituted
a true other category. To reach the learning criterion of
10 successive correct trials, subjects therefore had to learn
not only to discriminate instances of the low- versus high-
variability categories but also to discriminate instances of
the high-variability category from others.

Subjects were required to make a decision for each pat-
tern within 7 s. Half the subjects received error correction
on each trial and half never received error correction. For
those trained without error feedback the assignment of
category label (Smith or Wilson) to the two standard cat-
egories was arbitrary; however, the category to be labeled
other •was nonarbitrary.

At the beginning of the transfer phase, subjects were
told that they would see new works by Wilson and Smith,
not necessarily in equal numbers, and that no works by
other people would be included. They had to classify each
pattern as either a Wilson or a Smith, and thus were forced
to discriminate solely between the high-variability and the
low-variability categories. Chance accuracy was therefore
50%. The transfer set consisted of a total of 100 patterns,
half derived from each standard, with equal numbers gen-
erated at distortion probabilities of .15, .25, .30, and .35.
As in Experiments 1 A and IB, the assignments of category
labels to instances in the transfer phase had to be the same
as those established during learning (i.e., for subjects in
the no-feedback condition, assignments were not arbitrary
at transfer).

Twenty-five University of Michigan students served as
paid subjects.

Results and Discussion

Learning phase. The mean number of
learning trials was virtually identical for sub-
jects who received feedback and those who did
not (although medians favored the feedback
subjects, 119 vs. 149). However, consistent with
Prediction L2, 5 subjects in the no-feedback
condition (vs. none in the feedback condition)
failed to reach the learning criterion within
200 trials. In all cases the nonlearners had
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difficulty discriminating the high-variability
and other categories.

Transfer phase. Only data for the 20 sub-
jects who reached the learning criterion were
analyzed. An overall picture of transfer per-
formance is provided by Figure 6, in which
appears the percentage of items classified into
the highwariability category as a function of
the log likelihood ratio favoring that category.
Percentage classified into the high-variability
category was an increasing function of like-
lihood ratio in favor of that category, F(5,
90) = 23.0, p < .001. Error feedback did not
significantly influence the pattern of results;
however, the large percentage of nonfeedback
subjects who failed to learn cautions against
accepting the null hypothesis. The results also
did not differ as a function of which standard
was assigned to the high-variability category.

The main concern in Experiment 2 was to
determine whether subjects base their classi-
fication decisions on likelihood or distance.
The relative likelihood rule predicts that more
patterns will be classified into the high-vari-
ability than the low-variability category, since
subjects will have learned a broader density
function for the former category. In contrast,
a strict distance-to-prototype rule predicts that
an equal proportion of instances will be clas-
sified into each category, because the distri-
butions of instances around their standards
were actually identical for the two categories

during the transfer phase. The prediction of
the relative likelihood rule was supported, as
61% of the transfer items were placed in the
high-variability category. This figure was sig-
nificantly higher than the 50% predicted by
the distance rule, f(19) = 3.28, p < .01.

A separate analysis was performed for just
those items that were closer to the standard
of the low-variability- category (in terms of
changed cells), but more likely to be generated
by the high-variability category. These items
provide a particularly strong test of whether
subjects used a decision rule based on distance
or likelihood. If classifications were based on
any monotonic function of physical distance
that is constant over category variability, these
patterns would tend to be placed in the low-
variability category; but if classifications were
based on any mohptonic function of likeli-
hood, these items would tend to be placed in
the high-variability category. The prediction
of the relative likelihood rule was confirmed;
64% of these critical items, which were phys-
ically closer to the low-variance standard, were
actually classified into the high-variability cat-
egory. This percentage was significantly higher
than 50%, t(\9) = 2.67, p < .02.

Experiment 3

The purpose of Experiment 3 was to provide
a more extensive investigation -of the role of
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Figure 6. Percentage of transfer patterns classified into the high-variability category (Experiment 2).
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labeled instances and other types of supple-
mentary information (Tracy & Evans, 1967)
in facilitating category learning, and in par-
ticular to determine whether knowledge of the
number of categories facilitates learning (Pre-
diction L4). Different groups of subjects re-
ceived one of four levels of supplementary in-
formation. Subjects in the labeled instances
condition received a category label (Wilson or
Smith) with each exemplar. Subjects in the
number known condition received neither
category labels nor error correction, but were
told (correctly) that there were two categories
to be learned. The first of these two conditions
represented complete information, whereas the
second was similar to the no-feedback con-
ditions of Experiments IB and 2 in the amount
of information available. Subjects in two ad-
ditional conditions received still less infor-
mation about the learning task. Those in the
number unknown condition were told they
were to try to learn the categories represented
in the training set, but were not told how many
categories would be present. Finally, those in
the observation only condition were not told
that their task was to learn categories, nor that
categories were present; they were simply told
to "pay the utmost attention" to each pattern
in the set (cf. Reber & Allen, 1978). Prior to
a subsequent transfer task, all subjects were
informed that they had seen exemplars drawn
from exactly two categories. The category
density model predicts that the labeled in-
stances condition will yield superior learning
to the number known condition (Prediction
L2), and that the latter condition will yield
superior learning to the remaining two con-
ditions (Prediction L4). In fact, because the
parameter-revision procedure can only operate
if the number of categories is known, themodel
predicts that no learning will take place in the
number unknown and observation only con-
ditions (unless subjects in these conditions
happen to guess the correct number of cate-
gories).

Method

Apparatus and patterns. The patterns were presented
on a Hazeltine text terminal controlled by a PDF 11/34
computer. Each pattern was composed of a 10 X 10 grid,
in which each cell consisted of two horizontally aligned
character spaces. If the cell was defined as black, both
character spaces were blank; if it was defined as white,

each space was occupied by the rectangular ASCII character
127 rubout. Two standard patterns were generated for each
subject. The first standard was created by randomly making
each cell black or white with an equal probability. The
second standard was derived from the first by switching
50 randomly selected cells from black to white or vice
versa. Different standards were randomly generated for
each subject within a given condition, whereas across
learning conditions subjects were yoked with respect to
the standards, training exemplars, and transfer set. As in
previous experiments, exemplars were generated by prob-
abilistic distortions of the standards.

Design and procedure.' Subjects were randomly assigned
to one of eight experimental conditions, defined by the
2 X 4 (Variability X Condition) factorial combination of
low- versus high-variability of training exemplars (.07 vs.
.15 distortion probabilities), and the four instructional
conditions outlined earlier. Following initial instructions,
all the experimental subjects participated in a training
phase in which they viewed 200 exemplars. These consisted
of a random mixture of 100 instances derived from each
standard. A major methodological change introduced in
Experiment 3 was thus to present subjects with a fixed
number of training exemplars, rather than to allow subjects
to reach a learning criterion. Using a fixed number of
learning trials avoids several methodological problems in-
herent in a criterion procedure. A criterion measure creates
a confounding between learning difficulty and number of
training trials. In addition, the exclusion of those subjects
who failed to reach the criterion can bias analyses of transfer
performance in favor of conditions that are more difficult
to learn. Although using a fixed number of learning trials.
avoids the above problems, it does have a disadvantage of
its own. Differences in learning rate among instructional
conditions may not be observed if all conditions achieve
asymptote within the allotted number of learning trials.
This is most likely to occur for groups who receive low-
variability training exemplars.

Each pattern was presented for just 2 s. The subject
then pressed a key to initiate presentation of the next
pattern. Subjects did not make overt classification responses
during learning, but simply observed the exemplars. Except
for the labeled instances condition, for which a category
label, Wilson or Smith, was written beneath each pattern,
all subjects had the same type of observation experience.

After completing the training phase, subjects in the
number unknown and observation only conditions were
debriefed to find out whether they had noticed that the
patterns were drawn from two categories. Subjects in the
observation only condition were asked a series of increas-
ingly directive questions: (a) Did you notice anything in-
teresting about the patterns? (b) Did you notice any sim-
ilarities among them? (c) Did you notice that the patterns
fell into different groups of categories? and finally, (d)
How many categories do you think the patterns were di-
vided into? The latter two questions were also asked
of subjects in the number unknown condition. All sub-
jects were then informed that the number of categories
was two.

The subjects then received 100 transfer trials. In the
manner of Experiment IA, subjects were told that the
patterns would include new works by Wilson and Smith,
as well as an unspecified number of works by other people.
The transfer patterns actually consisted of 50 exemplars
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from each category, 10 at each of five exact distances from
the standard (in terms of number of changed cells): 5, 15,
25,35, and 45. Each pattern was presented for a maximum
of 7 s, and subjects pressed one of three keys to classify
the pattern as a Wilson, a Smith, or an other. No error
correction was given. As in previous experiments, subjects
in all except the labeled instances condition were free to
interchange the keys for Wilson and Smith; their key as-
signments were determined afterward by the usual con-
sistency test.

In addition to the eight experimental conditions de-
scribed so far, an additional transfer control condition was
included.6 Subjects in this condition did not receive any
learning trials. The transfer control condition was included
to provide a base-rate estimate of the amount of learning
that could occur without feedback solely during the transfer
phase of the experiment.

One hundred undergraduates served as paid subjects.
Ten were assigned to each of the eight experimental con-
ditions, and 20 to the transfer control condition.

Results

Knowledge of category number. A prelim-
inary assessment of the difficulty of the learn-
ing task in Experiment 3 is provided by the
responses to the questions asked subjects in
the number unknown and observation only
conditions. The first two questions directed to
the observation only subjects (Did you notice
anything interesting about the patterns? Any
similarities among them?) failed to elicit any
clear statements regarding the presence of cat-
egories. When asked whether they had noticed
that the patterns were divided into categories,
8 subjects in the observation only condition
said yes, 11 said no, and 1 did not respond
(without notable differences between those
who had viewed low- vs. high-variability dis-
tributions). Finally, subjects in both the ob-
servation only and number unknown condi-
tions were directly asked to estimate the num-
ber of categories. (Subjects in the observation
only condition were first told that the patterns
were indeed drawn from different categories.)
The distributions of estimates did not differ
across either instructional conditions or levels
of training variability, so we will report the
aggregate results for all 40 subjects: The me-
dian estimate was 4, with a range of 2 to IS.
Previous studies have also reported overesti-
mation of the number of categories (Bersted
et al., 1969; Hartley & Homa, 1981). Only 4
subjects said there had been two categories;
all of these 4 had received observation only
instructions, and 3 had seen high-variability
distributions—the learning situation one

might well suppose had the least a priori like-
lihood of enabling the number of categories
to be learned. Given the diversity of the es-
timates, it seems quite likely that the few sub-
jects who gave the correct answer did so by
fortuitous guessing. It is clear that virtually
(and perhaps literally) none of the subjects
learned the number of categories used to'gen-
erate the patterns, even with exposure to 200
examples.

Transfer performance. Presented in Figure
7 is the percentage of patterns classified cor-
rectly as a function of distance from the stan-
dard, plotted separately for each instructional
condition. The results for the conditions that
received low-variability distributions during
the learning phase appear in panel A, whereas
the results for the conditions thatreceived high-
variability distributions appear in panel B. For
purposes of comparison, the results for the
transfer control condition are plotted in both
panels. An analysis of variance was performed
on these data, with the transfer control subjects
divided into two arbitrary groups to create a
balanced design. Percentage correct declined
significantly with increasing distance from the
standard for each of the eight experimental
groups (p < .01) but not for the transfer control
condition. Since subjects in the latter condition
did not receive a training phase, any category
learning would have had to take place over
the course of the transfer trials. In fact, even
this control condition produced a significant
effect of distance from the standard when only
data for the second half of the transfer trials
were considered, F(l, 76) = 11.4, p < .001,
indicating that learning did take place during
the transfer phase. Percentage correct declined
from .47 for the items closest to the standard
to .36 for those farthest from it.

When the response other is available, per-
centage correct should show a greater decline
with increasing distance for the low- than for
the high-variability groups (as in Experiment
IA). As can be seen by comparing panels A
and B in Figure 7, this prediction was con-
firmed, F(4, 360) = 8.28, p < .001. Collapsing
over the four experimental conditions within
each variability level, this interaction took the

6 This control condition was suggested by Michael Flan-
nagan.
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form of a crossover: For those patterns closest
to the standard, the percentage correct was
higher for the low-variability condition (77%
vs. 63%), whereas for those patterns furthest
from the standard this difference reversed (20%
vs. 32%). This pattern confirms the compa-
rable result (Prediction T2) obtained in Ex-
periment IA.

The results of primary interest concern the
effects of the different types of supplementary
information on learning. Because subjects in
the various instructional conditions within
each variability level received exactly the same
exemplars during learning, differences among
the groups within each level of variability must
reflect differential learning of the distributions.
Superior learning should be evidenced by
higher percentage correct for those patterns
most likely to belong to the training distri-

bution (i.e., those relatively close to the stan-
dard). (From the learner's point of view, pat-
terns relatively far from the standard ought to
be classified into the other category.) For the
low-variability groups, an analysis was per-
formed on the percentage correct data for pat-
terns 5 cells from the prototype. The labeled
instances and number known conditions did
not differ (t < 1) but were superior to the
number unknown and observation only con-
ditions (p < .01). The latter two groups did
not differ from each other (t < 1) but were
superior to the transfer control condition (p <
.01). A comparable analysis was performed
for the high-variability groups, examining per-
centage correct for patterns 5 and 15 cells from
the standard (the patterns most consistent with
the high-variability training distributions). In
this analysis the labeled instances group ex-

Labelled Instances
Number Known
Number Unknown
Observation Only
Transfer Control

A. Low Variability Training B. High Variability Training

15 25 35 45 15 25 35 45

Distance from Correct Standard
Figure 7. Percentage of transfer patterns classified correctly as a function of distance from the correct
standard for the various instructional conditions (Experiment 3). (Data for low-variability conditions appear
in panel A, and data for high-variability conditions appear in panel B; data for the transfer control condition
are plotted in both panels.)
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ceeded the other three experimental conditions
(pk..0l). The latter did not differ among
themselves, but were collectively superior to
the transfer control condition (p < .05).

A possibility to be considered is that the
above differences in percentage correct only
reflect differences among the propensities pf
different groups to use the other category, since
other responses were always scored as incor-
rect. However, if only such response biases were
operating, groups ranking relatively high in
overall percentage correct would tend to rank
relatively low in percentage correct of those
patterns classified into a nonother category.
No such trade-off was apparent; rather, groups
ranked relatively high in overall percentage
correct tended to also be ranked relatively high
in percentage correct of those patterns not
classified other. For the low-variability groups
conditional percentage correct was .79, .79,
.73, .71, and .60 for the labeled instances,
number known, number unknown, observa-
tion only, and control conditions, respectively.
Comparable figures for the high-variability
groups were .75, .63, .66, .61, and .60.

Discussion

The results just presented provide a mixture
of support and difficulty for the category den-
sity model. First, consider the conditions that
received low-variability training exemplars.
Subjects in the labeled instances and number
known conditions were most accurate in clas-
sifying the patterns closest to the standard.
These are the only two learning conditions
that had the prerequisite information for use
of a strategy of parameter revision. The lack
of difference between the labeled instances and
number known conditions at the lower level
of variability suggests that learning had ap-
proached asymptote in these two conditions
after the 200 training trials. This result is thus
consistent with the category density model.
The advantage displayed by the number known
condition relative to the number unknown and
observation only conditions also supports the
model (Prediction L4), because knowledge of
category number is critical to the postulated
parameter-revision process. However, the sub-
stantial, albeit lesser, degree of learning by
subjects in the latter two conditions cannot be
explained by a parameter-revision process.

These subjects were not told the number of
categories in advance, nor did they determine
the number of categories during the learning
trials; accordingly, they lacked the prerequisite
information for parameter revision. The results
thus implicate a second type of learning
mechanism that requires even less supple-
mentary information than does parameter re-
vision.

The data for the high-variability condition
also present a mixed picture for the category
density model. The predicted advantage of re-
ceiving labeled instances (Prediction L2) was
confirmed for categories with a high degree of
overlap. However, as in the low-variability
condition, substantial learning also took place
in the number unknown and observation only
conditions. Unlike the result obtained for the
comparable low-variability groups, the number
known condition was not superior to the two
conditions that lacked knowledge of the num-
ber of categories (a failure of Prediction L4).
The results thus suggest that subjects had
available some other learning mechanism that
operates as effectively for high-variability cat-
egories as does parameter revision without
feedback.

Experiment 4

The relative efficacy of the various instruc-
tional conditions should be independent of
whether or not an other alternative is provided
at transfer. In the absence of an other category,
superior learning should again be evidenced
by higher percentage correct for patterns at
the distortion levels most likely to have been
observed during training. Without an other
category, accuracy will necessarily approach
an asymptote at chance level as distortion level
is increased. Differences in percentage correct
across instructional conditions should there-
fore be progressively attenuated as transfer
patterns become more remote from the stan-
dards. As a result, the function relating per-
centage correct to distance from the correct
standard should have a steeper slope for an
instruction condition that produces superior
learning (when variability of the training ex-
emplars is held constant). Experiment 4 was
performed to examine the effects of alternative
levels of supplementary information on trans-
fer performance in the absence of an other
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alternative. Rather than repeating the full de-
sign of Experiment 3, only two comparisons
of particular theoretical import were made.
First, the number known and number un-
known conditions with low-variability training
were compared. We wished to replicate the
advantage of the number known group (Pre-
diction L4), observed for the comparable con-
ditions in Experiment 3. Second, the labeled
instances and number known conditions with
high-variability training (for which subjects are
not likely to reach asymptote after 200 learning
trials) were also compared. Obtaining the pre-
dicted advantage of providing labeled instances
(Prediction L2) would extend the comparable
result observed in Experiment 3.

Method

The method of Experiment 4 was identical to that of
Experiment 3, except that only the four groups mentioned
above were included in the design, and no other alternative

was provided during the transfer phase (as in Experiment
IB). Thirteen subjects served in each of the two low-vari-
ability conditions, and 8 served in each of the high-vari-
ability conditions.

Results and Discussion

Presented in Figure 8 is the mean percentage
correct for the four conditions as a function
of distance from the standard. All conditions
yielded response functions with significant
negative slopes (p < .01) approaching asymp-
tote at the chance expectation of 50% for pat-
terns maximally dissimilar to the standard.
Both of the critical comparisons between con-
ditions were in accord with the predictions of
the density model. For the two low-variability
groups (panel A in Figure 8), the slope of the
distance function was significantly steeper for
the number known than for the number un-
known condition, t(96) = 2.72, p < .01 (Pre-
diction L4). Tests of the simple main effects
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Figure 8. Percentage of transfer patterns classified correctly as a function of distance from the correct
standard for the various instructional conditions {Experiment 4). (Data for low-variability, conditions appear
in panel A, and data for high-variability conditions appear in panel B.)
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of instructional condition revealed that the
number known condition produced signifi-
cantly higher percentage correct for patterns
five cells from the standard (p < .01) whereas
the two groups did not differ significantly for
patterns at higher distortion levels. As in Ex-
periment 3, subjects in the number unknown
group could not report the true number of
categories (2) at the end of the learning phase.
The median estimate was 4, with a range of
1 to 15. The superior performance exhibited
by the number known condition for the pat-
terns most likely to be generated by the training
distribution can be attributed to the use of a
parameter-revision strategy, which knowledge
of category number makes possible. These re-
sults replicate and extend the parallel findings
of Experiment 3.

Presented in panel B of Figure 8 are the
results for the two high-variability conditions
that were tested. The slope of the distance
function was higher for the labeled instances
than for the number known condition, /(56) =
4.96, p < .001, and percentage correct was
significantly higher for the former condition
at the two lowest distortion levels (p < .01,
Prediction L2). These results extend the com-
parable findings obtained in Experiment 3.

General Discussion

Summary and Implications

The present results provide a broad initial
basis of support for the category density model
and its assumptions about distribution learn-
ing, as well as suggesting ways in which the
model requires revision. The first two exper-
iments yielded a number of results predicted
by the proposed relative likelihood decision
rule. These include the following: (a) the su-
perior transfer performance that resulted from
training on high-variability instances when an
other category was available (Experiment 1 A);
(b) the absence of any clear advantage for the
high-variability condition when the other cat-
egory was removed (Experiment B); and (c)
the tendency to classify items into the more
likely high-variance category, even for patterns
physically closer to the low-variance standard
(Experiment 2). These results indicate that
learners use exemplars to induce the distri-
bution functions of categories, and then clas-
sify novel instances according to a relative

likelihood rule based on these induced density
functions.

Other results obtained in Experiments 1 and
2, plus the more detailed exploration of the
learning process in Experiments 3 and 4, have
implications for possible mechanisms of dis-
tribution learning. Major findings included the
following: (a) Category distributions can gen-
erally be learned regardless of whether or not
the learner receives labeled instances or error
correction (Experiments lA-3); (b) labeled in-
stances, which obviate the need for a decom-
position process, facilitate category learning
under conditions of high distributional overlap
(Experiments 3-4);, (c) without labeled in-
stances, prior knowledge of the number of cat-
egories (a prerequisite for paramenter revision)
facilitates, acquisition of category knowledge
when the distributions do not overlap exces-
sively (Experiments 3-4); and (d) category
structure can still be learned when the learner
does not receive error correction, information
about category number, or even instructions
to learn categories (Experiment 3).

Toward a General Model of
Distribution Learning

This article has focused on a specific version
of the category density model that can account
for the induction of normally distributed cat-
egories when subjects know (or assume) the
form of the distributions and the number of
categories. It is clear that this specific model
is loo restrictive to account for all aspects of
human capacity to learn category distribu-
tions. As we argued at the outset, normal dis-
tributions may well be an ecologically impor-
tant special case; nonetheless, there is exper-
imental evidence that people can sometimes
learn markedly nonnormal distributions
(Neumann, 1977). Furthermore, the results of
Experiment 3 demonstrated that people can
learn distributions to some degree not only
without knowledge of the number of catego-
ries, but without knowledge that they are in
a category-learning task at all. Perhaps a
learning model entirely different from the cat-
egory density model is required^ However, we
will instead suggest how the model can be re-
vised and extended. The present findings, as
well as other considerations discussed later,
lead us to sketch a more general learning model
which, while speculative, yields testable pre-
dictions.
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The parameter-revision process described
earlier allows a schematic representation of
distributional knowledge to be updated with-
out exemplars necessarily being stored in
memory. The model is thus quite contrary in
spirit to instance-storage models such as that
proposed by Medin and Schaffer (1978). How-
ever, a more general model can be devised by
integrating these two approaches. In this dual-
representation, dual-process model, category
distributions can be represented either by sta-
tistical parameters or by memory traces of in-
stances. The latter type of representation per-
mits a mechanism for learning category dis-
tributions without knowledge of the number
of categories or the form of their density func-
tions. This strategy, which corresponds closely
to a proposal made by Evans (1967), involves
storing traces of presented instances until sep-
arable clusters emerge. These memory traces
need not be highly veridical, as long as they
collectively approximate the mixture density
of the sample., Each observed instance could
be encoded as a point in a feature space, with
an associated gradient of generalization. As
further instances are encoded, a multidimen-
sional frequency histogram will gradually be
built up, providing a nonparametric repre-
sentation of the mixture density.

An instance-clustering process might enable
a person to learn categories without error cor-
rection, even if the learner does not initially
know either the number of categories or the
form of their distributions. If the underlying
category distributions are sufficiently discrim-
inable, separable clusters will eventually
emerge, corresponding to peaks and valleys in
the histogram for the mixture. Various clus-
tering algorithms could be used to model the
decomposition process (Duda & Hart, 1973;
Everitt, 1974), As is the case for parameter
revision, feedback would presumably facilitate
decomposition.

The two learning mechanisms we have out-
lined—parameter revision and instance clus-
tering—could be integrated by elaborating.the
learning procedure embodied in the computer
simulation described in the beginning of this
article. In the simulation, a clustering algo-
rithm is used on the first few instances to derive
initial parameter estimates, which are then
updated using parameter revision. More gen-
erally, people may initially store and cluster
instances in order to get a general idea of what

the categories being presented are like. They
may then summarize the information ex-
tracted from the stored instances as a para-
metric description, which subsequently can be
fine-tuned using parameter revision. Initial
instance clustering can be used to form initial
conceptions of the category distribution, or to
check a priori assumptions; parameter esti-
mation and revision can be implemented at
any point during the learning process once the
learner is sufficiently confident about the
number and form of the distributions.

Even after a parameter-revision strategy is
invoked, continued incidental instance storage
may play a role in detecting violations of basic
assumptions about the form of the category
distributions. For example, suppose the learner
assumes the categories to be learned are nor-
mally distributed over a feature space, when
in fact the distributions are markedly non-
normal (e.g., V shaped). A strict parameter-
revision process would never be able to correct
this misconception. Presumably, however,
current parameter estimates would yield ex-
pectations about the frequencies of possible,
instances of the categories. If the learner found
that supposedly rare instances were appearing
too frequently, this would cast doubt on the
assumed form of the density functions. A ra-
tional learner would then temporarily abandon
parameter revision and shift to instance clus-
tering.

In addition, there are very likely circum-
stances in which stored instances provide the
only possible memory representation for a
category distribution. Possible examples in-
clude the following situations:

1. The distributions of the underlying cat-
egories may be so irregular that no simple^
parametric description of them exists. For ex-
ample, the category of things stored in my
attic may have no simpler description than a
list of all the items,

2. The learning set presented to subjects
may be so small and/or variable that the cat-
egories appear to be collections of unrelated
objects, as in Situation 1 just described. Nu-
merous studies in the classification literature
may exemplify this type of situation (e.g., Pe-
terson, Meagher, Chait, & Gillie, 1973).

3. The learning task may emphasize rote
memorization of instances and disguise the
underlying category structure present in the
learning set (Brooks, 1978).
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, These three situations are cases in which
no simple schematic description of the cate-
gory is available. This raises a question that
is basic to the distributional framework: What
is the range of category distributions that peo-
ple can encode as parameter vectors? The
present paper has emphasized normal distri-
butions, which we suggested may be psycho-
logically natural for continuous dimensions;
however, other types of parametric represen-
tations may also prove important. For ex-
ample, a binary feature dimension can be de-
scribed by a Bernoulli process with its single
parameter, p. Presumably there are limits on
the types of distributions that people can ve-
ridically represent parametrically, and on those
that may be learned by instance storage. Some
research on the acquisition of nonnormal dis-
tributions has been done in studies of decision
making (Pitz, Leung, Hamilos, & Terpening,
1976) and of category learning (Flannagan,
Fried, & Holyoak, 1981; Neumann, 1977), but
more work on this issue is clearly called for.

A second question that needs to be explored
concerns the learning and representation of
correlations between features within a category
(e.g., members of small-bird species are more
likely to sing than members of large-bird spe-
cies). Medin and Schaffer(1978) have shown
that people are sensitive to within-category
feature correlations for artificial categories.
Such correlational information could be rep-
resented parametrically by the equivalent of
a variance-covariance matrix. Alternatively, a
superordinate category composed of several
distinct subcategories (i.e., separate or over-
lapping instance clusters) could be represented
as the disjunction of the distributions of the
subcategories; the features within each sub-
category might be independent. Individual
stored instances can be viewed as the limiting
case of a category representation based on the
disjunction of multiple distributions.7

Further Directions

We have already touched on a number of
directions in which the category density model
may guide research. There is some evidence
that prior expectations can influence the in-
duction of category distributions (Neumann,
1977), but the issue has just begun to be in-
vestigated systematically by manipulating the
form of the distributions of category exemplars

over known feature dimensions (Flannagan et
al., 1981). In addition, the possibility that the
learning process may undergo qualitative
changes (e.g., a shift from instance clustering
to parameter revision) calls for further studies
that vary degree of category acquisition
(Homa, Sterling, & Trepel, 1981). The types
of categories studied also need to be extended.
The category density model is not inherently
restricted to categories denned solely by per-
ceptual features as in the present study and
most similar research. In principle people
could learn category distributions over se-
mantic or functional dimensions as well as
perceptual ones.

Finally, it should be emphasized that the
relationship between instance and category
knowledge has broad import for cognitive the-
ory. For example, Gick and Holyoak (1983)
have investigated the induction of a "problem
schema" from experience with multiple anal-
ogous problems. The category density model
assumes that the ideal outcome of category
learning is a representation of the dimensions
of variation among category exemplars, to-
gether with a parametric description of cate-
gory distributions over these dimensions. Since
in its broader sense category learning is clearly

7 The relative likelihood rule can be applied even if
categories are represented solely by stored instances. Each
stored instance will establish a microdistribution, equivalent
to a generalization gradient around the point in a feature
space denned by the instance. The relative likelihood rule
then predicts that the subjective probability of a particular
novel item given a particular category will be proportional
to the sum of the subjective probabilities1 of the item given
the microdistributions associated with each, of the stored
instances of that category (assuming the stored instances
to be equally likely).

It should be noted that in this special case, in which
distributions are represented solely by stored instances,
the relative likelihood-rule is isomorphic to the decision
rule specified by Medin and Schaffer (1978, p. 211, As-
sumptions 2,4, and 5). Their rule operates on a similarity
parameter for each feature, which is denned to range in
value between 0 and 1. The corresponding parameter of
the relative likelihood rule, expressed in terms of features
(Equation 4), is interpreted as the subjective likelihood of
observing the feature value of the item to be classified
given the feature value of the stored instance to which it
is being compared. Because this likelihood ranges between
0 and 1 and is assumed to decrease monotonically with
increasing distance between the two feature values, it has
the same properties as the corresponding similarity pa-
rameter specified by Medin and Schaffef's rule. The two
rules operate on these basic corresponding parameters in
an entirely parallel fashion.
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involved in various complex domains, such as
problem solving and story understanding, a
general theory of the learning process could
serve to highlight commonalities among a wide
range of cognitive activities.
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