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Distributional Expectations and the Induction of Category Structure

Michael J. Flannagan, Lisbeth S. Fried, and Keith J. Holyoak
University of Michigan

Previous research on how categories are learned from observation of exemplars has largely ignored
the possible role of prior expectations concerning how exemplars will be distributed. The experiments
reported here explored this issue by presenting subjects with category-learning tasks in which the
distributions of exemplars defining the categories were varied. In Experiments 1 and 2 the distributional
form of a category was found to affect speed of learning. Learning was raster when a category's
distribution was normal than when it was multi modal. Also, subjects in the early stages of learning a
multimodal category responded as if it were unimodal. These results suggested that subjects enter
category-learning tasks with expectations of unimodal, possibly normal, distributions of exemplars.
Experiments 3 and 4 attempted to manipulate subjects' prior expectations by varying the distribution
of exemplars in the first of two consecutive category-learning tasks. Learning a multimodal category
was influenced by the shape of a previously learned distribution and was facilitated when the earlier
distribution was either multimodal or skewed, rather than normal. These results are interpreted as
support for a dual-process model of category learning that incorporates the effects of prior expectations
concerning exemplar distributions.

It is generally agreed that human acquisition of knowledge
involves both processes based on analyses of stimulus information
and processes based on a learner's prior assumptions and ex-
pectations. It is therefore surprising that research on the induction
of categories—one of the most basic types of knowledge acqui-
sition—has largely ignored the potential impact of a learner's
expectations on what is learned. Numerous studies have docu-
mented that subjects presented with a series of exemplars of
perceptual categories can acquire information sufficient to ac-
curately classify further novel exemplars. Theorists have proposed
several alternative conceptions of how such knowledge is rep-
resented, including prototypes (Posner & Keele, 1968; Reed,
1972), feature frequencies (Hayes-Roth & Hayes-Roth, 1977;
Neumann, 1977; Reitman & Bower, 1973), and stored instances
(Brooks, 1978; Medin & Schaffer, 1978). However, all of these
proposals have assumed that what is learned is solely a function
of the presented examples—none postulate any role of prior
expectations.1 Yet in view of the pervasive influence of assump-
tions and expectations in many aspects of cognition, it would be
a surprising exception if the inductive processes involved in
learning categories were in fact limited to the passive encoding
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of the presented exemplars or some summary representation of
them.

One reason that little stress has been placed on the importance
of the learner's expectations may be that experimental work has
typically employed stimuli intended to be very unfamiliar to
subjects (e.g., random dot patterns). Such stimuli ensure that the
categories to be learned are novel to subjects, but they also make
it unlikely that subjects will enter the learning situation with any
but the vaguest expectations about the feature dimensions and
values that characterize the categories to be learned. Prior ex-
pectations might more likely have an impact if subjects were
asked to learn, for example, a novel subordinate category of a
familiar superordinate (e.g., learning to recognize a new breed
of dog from a series of exemplars).

It is possible, however, that people bring important expectations
to bear on the learning process even for highly unfamiliar types
of stimuli. These expectations will necessarily involve aspects of
the categories more abstract than particular feature dimensions
and values. The present study provides evidence that category
learning is influenced by expectations regarding the form of the
distribution of category exemplars over a feature space. Our focus
on distributions follows from the central role ascribed to distri-
butional knowledge by the category density model (Fried, 1979;
Fried & Holyoak, 1984). Unlike previous models of category
learning, the category density model explicitly assumes that var-
ious types of prior expectations (concerning the set of potentially

1 Although prior expectations have not been explicitly included in pre-
vious models of category representation, it is worth noting that they are
at least implicitly involved in all prototype models. An attempt to rep-
resent a category by a single prototypical example implies a unimodal
distributional expectation because it forces an essentially unimodal rep-
resentation. The role of prior expectations that we propose diners from
such a conception mainly in the variety and flexibility of prior expectations
assumed to be possible.
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relevant feature dimensions, the range of permissible values on
the dimensions, the number of categories to be learned, as well
as the form of the distribution of exemplars over the feature
dimensions) influence the induction process. Although our aim
in the present article is a very general one—to identify influences
of distributional expectations on induction—the density model
will be used as a specific instantiation of the kind of theory that
can account for our findings.

Like various other models of category learning, the density
model assumes that category exemplars can be represented as
configurations of feature values isomorphic to points in a mul-
tidimensional feature space. Unique to the density model is its
central assumption that the learner uses the presented instances
as a sample to induce a density function over the feature space
for the population of potential category members. If the density
function has a simple form (e.g., a multidimensional normal
distribution), it can potentially be represented by a small set of
parameters (e.g., means and variances). On the other hand, if
the function is complex, its representation may be no more con-
cise than a histogram of presented instances. But in any case,
the density model treats the learning process as the acquisition
of knowledge about the distribution of category exemplars over
a feature space.

A second assumption of the category density model concerns
the decision rule used to classify novel instances on the basis of
distributional knowledge. The model assumes that classification
decisions are based on a relative likelihood rule, which essentially
states that the probability of classifying an instance into a par-
ticular category is proportional to the relative likelihood that the
item was generated by that category's distribution relative to the
distributions of the alternative categories. In the present exper-
iments, in which subjects made "member" versus "nonmember"
judgments for single categories, the relative likelihood rule pre-
dicts that the probability of classifying an item as a category
member will increase monotonically with the subjective likeli-
hood that the item was drawn from the category's distribution.

A third assumption of the model is that the learner brings to
the acquisition process prior expectations about the form of the
category distributions to be learned. In particular, Fried and
Holyoak (1984) argue that normal distributions may provide
good approximations to the distributions of many natural per-
ceptual categories, which seem to consist of a dense region of
"typical" exemplars surrounded by sparser regions of atypical
exemplars (Rosen, Mervis, Gray, Johnson, & Boyes-Braem,
1976). People may therefore expect artificial categories also to
be of this form. Because multinormal distributions are sufficiently
described by the mean and variance of each feature dimension
(plus covariances if the dimensions are not assumed to be sta-
tistically independent), people may approach a category-learning
task by immediately using sampled exemplars to estimate these
population parameters. Fried and Holyoak present a formal
model, embodied in a computer simulation, of how the param-
eters describing multinormal categories can be induced by using
presented items to update current estimates, without necessarily
retaining traces of exemplars in permanent memory.

The category density model provides a framework within
which it is natural to hypothesize that the learner's expectations
about the type of category distribution to be presented can in-
fluence what is learned. The default for such expectations may

be the normal distribution, though one can imagine situations
in which specialized knowledge might lead people to expect other
alternatives. Whatever the form of a distributional expectation,
it should have observable effects on learning. For example, if
people expect perceptual categories to be normally distributed
(or at least uaimodal and symmetric), they may immediately
begin to use exemplars to estimate parameters appropriate for
describing normal distributions (i.e., means and variances). If
the presented category distribution is in fact of the assumed form
(i.e., multinormal), learning will proceed efficiently. However, if
the actual distribution is markedly non-normal, the subjective
representation of the category that the learner induces will be
seriously in error. For example, suppose the actual distribution
is bimodal on each continuous feature dimension, with extreme
values more likely than central ones. If people assume normality
and simply estimate means and variances (which is of course
possible for any distribution), a likelihood decision rule will lead
them to accept items with unlikely central values (i.e., those near
the estimated mean) as category members rather than the items
with more likely extreme values.

Indeed, without some additional source of information, a strict
parameter-revision process would be unable to detect even gross
violations of prior assumptions, and thus could never accom-
modate an unexpected distribution. Although we are proposing
that category learning is influenced by prior expectations, we do
not wish to suggest that erroneous expectations can never be
overcome. One mechanism for detecting such errors would be
to estimate an additional parameter representing the "surpris-
ingness" of the presented exemplars given the current distribu-
tional parameters. More generally, the frequent occurrence of
items with supposedly unlikely extreme values, and the infre-
quent occurrence of items with supposedly likely central values,
could be used as a cue that the entering assumption regarding
the form of the distribution was incorrect.

As evidence against an initially assumed distribution accu-
mulated, it would be desirable to decrease the influence of that
assumption in favor of a more flexible, distribution-free learning
process. This could be done either by gradually decreasing the
weighting attached to the distribution initially assumed or by
switching entirely to a representation based on the exemplars
actually being presented. In either case, the influence of a more
purely data-driven process would emerge. Previous tests of the
category density model indicate that such a process may in fact
be available to supplement parameter revision, because some
learning takes place even when subjects do not know the number
of categories to be learned, in which case parameter revision is
impossible (Fried & Holyoak, 1984). Furthermore, Malmi and
Samson (1983) have found that subjects are capable of retaining
fuller representations of exemplar distributions than could be
provided by mean and variance information. One mechanism
that could account for such findings would involve simply the
storing in memory traces of some or all category instances. If
these were used to construct a frequency distribution over the
feature space, the resulting "histogram" would be expected to
eventually approximate the true population distribution. At some
point the learner might be able to identify a new (non-normal)
function that describes the distribution, and to switch once again
to a process of using exemplars to update a parameter set (one
more appropriate than that used initially). The range of functions
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that can be represented parametrically in category-learning tasks
is an open empirical issue. However, even in cases for which a
fully parametric representation is impossible, a learner may be
able to go beyond an instance storage strategy by approximating
a complex function with a combination of simpler ones. A bi-
modal distribution, for example, might be approximated as the
disjunctive combination of two normals.

Various versions of this general "dual process" model could
be formulated, leading to specific predictions about when vio-
lations of expectations will be detected and about what will be
learned about intially unexpected distributions. For our present
purposes, the central prediction is that if a person enters the
learning situation with an erroneous expectation regarding the
form of the distribution to be learned, what is induced from
exemplars will at least initially be systematically distorted in the
direction of the entering expectations. As a result, achievement
of a criterion of objective accuracy will be delayed relative to
learners who enter the task with more appropriate distributional
expectancies. The present experiments were designed to deter-
mine whether such distortions and differences in learning rates
actually occur.

Experiment 1

To test the above predictions, we placed subjects in a category-
learning task and varied the number of exemplars presented for
learning and whether or not the category definition was consistent
with what we hypothesized to be their prior expectation. Follow-
ing Fried and Holyoak (1984), we adopted the normal distribution
as a plausible candidate for people's "default" expectation, based
on its widespread applicability to real world distributions. For a
distribution that could be expected to violate people's expecta-
tions, we chose a distinctly non-normal, multimodal function
that we will refer to as the U distribution. It is described in more
detail below.

The methodology of Experiment 1 is closely related to that
of a series of experiments by Neumann (1977). Several similarities
and differences are worth noting. Neumann's experiments, like
those to be reported here, were concerned with how people learn
a category from a series of exemplars when those exemplars
form a multimodal distribution. The main finding in those ex-
periments was that it was possible for subjects to learn multimodal
distributions, though only under some of the conditions that were
tested. In interpreting his results, Neumann argued that learning
in such a situation is not influenced by assumptions about the
general shape of distributions of exemplars. This is contrary to
the position we will take, and this issue will be discussed further
below in light of the present results. Methodological similarities
between Neumann's experiments and our own include the sim-
ilarity between the U distribution used here and the U and V
distributions used by Neumann, as well as the general form of
the stimuli in this experiment, which were loosely based on the
abstract stimuli used in his Experiment 3 (Neumann, 1977).

Some significant methodological differences between Neu-
mann's experiments and those reported here involve factors that
in Neumann's experiments could be expected to strongly promote
an "instance storage" approach to the task. He showed subjects
a small number of exemplars (eight), and the attributes of his
stimuli varied rather coarsely across only five levels. Each ex-

emplar was presented for a fairly long time (10 s), and subjects
were told to try to remember exactly the exemplars that they
were shown. Later, subjects made old/new judgments for a set
of test stimuli. The combination of all of these factors makes it
plausible that subjects were both able and motivated to remember
each of the specific stimuli that they saw during learning. To the
extent that such a strategy is successful, it will necessarily lead
to the veridical learning of multimodal distributions that Neu-
mann sometimes observed. But this type of learning may be very
different from what takes place in stiuations involving many more
exemplars that vary on essentially continuous dimensions—
conditions that are probably important in at least some forms
of real-world concept learning.

In addition to assessing the effect of number of exemplars, the
present experiments investigated acquisition of multimodal cat-
egories in a situation less favorable to memory for specific stimuli
than was the case in Neumann's experiments. In the present
experiments many exemplars were presented, each for only a
brief interval, and stimuli were varied on more nearly continuous,
10-level dimensions. Also, the task was not presented as one
requiring memory for specific exemplars.

Method

Subjects. Subjects were 48 undergraduates at the University of Mich-
igan who were selected from the psychology department paid subject
pool. They were each paid $3 plus a variable bonus for their participation.

Stimuli. A set of 1,000 abstract visual patterns, consisting of all com-
binations of 10 levels on each of three feature dimensions, was used. The
patterns were presented on the screen of a standard color video monitor
by an Apple II microcomputer, using that machine's low-resolution
graphics facilities. The general form of the stimuli is illustrated in Figure
1. Each stimulus consisted of a white background measuring 22 cm hor-
izontally by 18 cm vertically. Three different-colored rectangles were su-
perimposed on this background. Each of these varied on one of its two
dimensions, taking on 1 of 10 equally spaced levels, to produce one of
the three stimulus feature dimensions.

One dimension (referred to as " F " for "Frame") was the height of a
red rectangle that was centered vertically and horizontally within the
white background. Its horizontal dimension was a constant 14.0 cm, and
its vertical dimension varied between 9.5 and 16.0 cm. A horizontal
black line 0.4 cm wide was centered vertically within the red rectangle,
bisecting it. Another dimension (referred to as " H " for "Horizontal")
was the width of a pink rectangle that appeared just above the black line,
centered horizontally. It measured a constant 2.75 cm vertically and varied
between 1.5 and 11.75 cm horizontally. The other dimension (referred
to as "V" for "vertical") was the height of a yellow rectangle that appeared
just below the black line, centered horizontally. It measured a constant
2.75 cm horizontally and varied between .75 and 4.0 cm vertically. The
pink and yellow rectangles were thus always contained within the borders
of the red rectangle, which was in turn contained within the unvarying
white background area.

Three category-defining functions were used for learning: "normal
high-mean" (NH), "normal low-mean" (NL), and "U-shaped" (U). Each
was obtained by independently combining three identical, appropriately
shaped functions defined over each of the three stimulus dimensions. In
order to apply these functions to the stimulus space, the levels of each
dimension were assigned values from 1 to 10, with 1 always designating
the shortest or narrowest level. Because the NH and NL categories were
defined by continuous functions, whereas the stimuli actually varied dis-
cretely, the integral of the denning function plus or minus 0.5 unit around
each level was used to determine the mass function value for that level.
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Figure 1. A "blackist" painting composed of Level 5 on each dimension.

The NL function had a mean of 4 and a standard deviation of 1. The
NH function had a mean of 7 and a standard deviation of 1. The functions
were truncated below 0.5 and above 10.5 and renormalized, because
values outside of those limits did not correspond to any levels of the
stimulus dimensions. The U mass function was
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where x is a stimulus dimension level according to the convention de-
scribed above, This function (the exact form of which was chosen pri-
marily for ease of calculation) yields a markedly bimodal distribution on
each dimension. Because the three dimensions were statistically inde-
pendent, the overall distribution of the category actually had eight modes.
All three of the density functions are illustrated in Figure 2.

A set of 125 stimuli was chosen for use in the test phase. To ensure
that the test set was approximately uniformly and independently
distributed over the three stimulus dimensions, the complete stimulus
space was partitioned into 125 cells by cutpoints that divided
each stimulus dimension into five equal intervals. The combination of
these cutpoints yielded 125 divisions of the complete stimulus space,
each representing 8 possible stimuli. Within each division, 1 stimulus
was chosen randomly to be in the test set.

Design, The two principal factors in the design were number of ex-
emplars experienced during learning (20 or 150), and shape of the dis-
tribution to be learned (NH, NL, or U). Each of the 48 subjects was
assigned to one of the 6 resulting cells: 6 in each of the two NH cells, 6
in each of the NL cells, and 12 in each of the U cells.

Procedure. Each subject participated individually in a 45-mm session.
Subjects were seated in a sound-attenuating booth in front of a color
video monitor and a set of response buttons. All instructions were pre-
sented to subjects under computer control, as text on the monitor. There

were several pages of instructions, which the subjects could read through
at their own pace.

The session consisted of three parts: an instruction phase, a learning
phase, and a test phase. During the instruction phase, the task was in-
troduced to the subject by means of a cover story that represented the
stimuli as paintings by a group of abstract artists who worked in a
"btockist" style. That the cover story was contrived was of course trans-
parent to subjects; they were simply encouraged to approach the task as
if the story were true. Subjects were told that during the learning phase
they would see a series of paintings all by one artist, identified to the
subjects as "Vango" (referred to here as the "target artist"), and that in
the test phase they would have to identify other works by this artist when
they were mixed with similar works by other artists.

The instructions emphasized that the distractor paintings would be
very similar to those of the target artist, because all of the other artists
worked in the same extremely spare, constrained style. Subjects were told
that during the instruction phase they should simply observe the examples
as carefully as possible in order to learn to recognize the target artist's
style.

A bonus system was used to help maintain subjects' motivation. They
were told that they could increase their pay for the experiment by a
modest amount if they were accurate in recognizing the paintings. Because
the objective definition of the target artist's style was probabilistic, subjects*
answers could not be simply categorized as right or wrong, and the bonus
system was actually based on a somewhat complex rule. In order not to
affect subjects' performance except by generally increasing motivation,
no feedback was given about the bonus until subjects had completed the
experiment.

Before the learning phase began, subjects were introduced to the relevant
stimulus dimensions and the hill range of possible variation in the stimulus
set. They were told that the school of artists being considered worked in
an unusually simple and constrained style, so that when one of them
created a painting, there were only three aspects of it that could be varied.
The three stimulus dimensions and their ranges of variation were then
described.

In the learning phase, a series of patterns was generated online according
to the appropriate defining function (NH, NL, or U), with each pattern
presented for a 3-s duration. A brief tone signaled the onset of each
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Figure 2. Probability mass functions used to define the NL, NH,
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Figure 3. Categorization responses in each condition of Experiment 1,
shown as a function of "composite" stimulus dimension.

pattern. The interstimulus interval was 2 s. Depending on the experimental
condition, either 20 or 150 patterns were presented. At the end of the
learning phase, subjects were given a 5-min break.

In the test phase, the 125 standard test patterns were presented in a
randomized order. Each pattern remained on the screen until the subject
pressed one of two buttons, indicating whether the pattern was judged
to be more likely a work of the target artist or of some other artist.
Instructions encouraged the subjects to take as much time as necessary
and to be as accurate as possible.

Results and Discussion

Figure 3 provides a summary of the pattern of responses for
each combination of distribution (NH, NL, or U) and number
of exemplars viewed (20 or 150). The proportion of stimuli that
were judged to be by the target artist is shown as a function of
a variable referred to as composite stimulus dimension. The effect
of this variable was constructed by simply averaging the main

Table 1
Trend Analyses for Experiment 1

Condition

NL
20
150

NH
20
150

U
20
150

Linear

-3.61
-3.22

5.79
8.79

2.82
2.42

5.71*
5.08*

9.15*
13.88*

5.12*
4.39*

Trend

Quadratic

-3.13
-3.71

-1.56
-3.10

-1.52
0.25

f

7.83*
9.25*

3.89*
7.75*

4.36*
0.72

effects of the three individual stimulus dimensions (F, H, and
V). Figure 3 thus provides a simple summary of the effect of
stimulus level on subjects' responses that ignores any differences
in the main effects of the stimulus dimensions as well as any
interactions between them.2 To provide a quantitative description
of the patterns of responses shown in Figure 3, linear and qua-
dratic trends based on standard coefficients of orthogonal poly-
nomials were computed and are given in Table I.3

Normal functions. For all conditions involving normal defin-
ing functions, the quadratic trends were negative, suggesting that
subjects in all of those conditions acquired a qualitatively accurate
representation of the shape of the distribution that they were
shown, even after only 20 exemplars. These negative quadratic

Note. NL = normal low-mean, NH = normal high-mean, U = U-shaped
distribution. 20 and 150 refer to the number of exemplars experienced
during learning phase.
*df= 180. • j x . 0 0 1 .

2 To test for possible interactions between the three dimensions, analyses
of variance (ANOVAS) were performed for the response variable using the
three stimulus dimensions as factors. Because the standard set of test
stimuli consisted of only 125 of the 1000 possible combinations of the
10 levels of these three dimensions, a design based on the full number of
levels would have many empty cells. For this reason, the number of levels
on each dimension was reduced to 5 by combining adjacent pairs of
levels. This resulted in a completely crossed and balanced 5 X 5 X 5
design, with each subject contributing one observation to each cell. Sep-
arate analyses were performed for each of the six learning treatments
created by combining the three defining functions and the two levels of
learning. Although these analyses yielded evidence for significant inter-
actions among the stimulus dimensions for some learning conditions, the
mean squares for these terms were considerably smaller than those for
the main effects, often by more than an order of magnitude. Also, informal
examination of the data failed to reveal any interesting patterns of in-
teraction . For these reasons, and because only main effects are of primary
relevance to our predictions, we will not discuss these interactions further.

3 Because all of the results in the present experiments involved pro-
portions, and because those proportions were occasionally near zero, all
ANOVAS were performed on arcsine transformed data as well as on the
untransformed proportions. The results of these analyses were virtually
identical. For consistency with the figures, all trends and tests reported
are for the untransformed proportions.
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trends would of course also occur if subjects learned nothing
about the exemplars they viewed and were simply biased to re-
spond positively to the center of the stimulus range. However,
the high- and low-mean normal conditions were significantly
differentiated by their linear trends (which were appropriately
negative for the NL conditions and positive for the NH conditions)
after both 20 and 150 exemplars, indicating that subjects were
in fact learning parameters specific to the distributions they ob-
served.

There is a suggestion in the NH conditions that responses after
150 exemplars more accurately reflected the denning distribution
than responses after 20 exemplars, since the quadratic trend for
the former condition was significantly stronger than for the latter
condition, 1(180) = 2.23, p < .05, However, the corresponding
difference for the NL conditions was not significant, /(180) -
.82, p > .40. The main conclusion we wish to draw here is that
subjects' responses after viewing either 20 or 150 exemplars in
the normal distribution conditions are consistent with learning
the general shape of the distribution viewed, and those responses
are not attributable to a simple central response bias.

Although it is not of central interest here, it is worth com-
menting on an asymmetry between the NL and NH conditions
that is evident in Figure 3. Responses in the NL condition are
most positive in the vicinity of the mode of the defining distri-
bution and decrease in an orderly manner with distance from
the mode. Although the NH condition shows a pattern that is
roughly similar, there is only a suggestion of a decrease above
the mode, A possible explanation for this difference involves the
almost certain tack of linear correspondence between intervals
on the physical and perceptual dimensions of these stimuli. Steps
between adjacent physical levels always involved equal absolute
differences in size, meaning that steps between numerically higher
levels involved smaller relative increases than those between nu-
merically lower levels. Although we have no independent evidence
regarding how levels of these stimuli are perceived or discrimi-
nated by subjects, it is reasonable to suppose that equally dis-
criminable differences between them are more closely related to
relative than to absolute differences in size. If that is true, subjects
in the NH condition might have trouble discriminating the stim-
ulus levels above the mode from the mode itself. Confusions
among these levels during either observation of exemplars or
decisions about test items could lead to the observed elevation
of responses to the upper stimulus levels.

U-shaped function. In sharp contrast with the results for the
normal conditions, responses in the U-20 and U-l 50 conditions
were not consistent with veridical learning. To reflect the general
shape of the concept-defining distribution in these conditions,
responses should exhibit a positive quadratic trend. Instead, the
U-20 condition showed a significant negative trend and the U-
150 condition showed no significant quadratic trend. In addition,
there were positive linear trends in the data for both of the U
conditions, whereas the best correspondence to the defining dis-
tribution would involve no overall linear trend. These linear
trends may be due to differences in discrim inability at different
levels of the stimulus dimensions as suggested above in connection
with performance with normal distributions. For example, sup-
pose that during the encoding of a series of exemplars occurrences
of the two lowest levels of a dimension are tabulated separately,
whereas occurrences of the two highest levels are assigned to a

single combined high level. For the U distribution this would
lead to the combined high level having a higher count of occur-
rences than the most frequent low level. Assuming the same
pattern of discriminability in the encoding of test items, each of
the two highest levels should receive more positive responses
than either of the lower levels.

The quadratic trends are readily interpretable in terms of the
dual process category-learning model outlined above. Although
the pattern of responding in the U-20 condition cannot in any
simple way be attributed to the distribution of stimuli that were
actually seen, it is clearly not random, suggesting that it reflects
some systematic bias on the part of the observers. Interpreted in
terms of our model, the negative quadratic trend after 20 ex-
emplars (a relatively small amount of experience) is due to ob-
servers' initial bias to fit distributions of exemplars with normal
distributions. The essentially accurate performance after 20 ex-
emplars in the normal conditions is of course consistent with
such a bias; it is only when a significantly non-normal distribution
of items is encountered, as in the case of the present U distri-
bution, that the category representation is systematically dis-
torted.

The fiat, relatively neutral pattern obtained in the U condition
after 150 exemplars represents an intermediate state of learning
in which, for these subjects as a group, neither the original as-
sumption of normality nor a veridical representation built by
the flexible learning process is predominant. The flat response
pattern might have resulted either from an equal mixture of both
influences or from a homogeneous neutral state in which the
original assumption of normality had been abandoned but no
new representation had been created. Examining individual sub-
jects provides little evidence for a mixture at the level of the
group. Although quadratic trend values for individual subjects
did differ (six were positive, and six were negative), the dispersion
of those values was about the same as that of the values for
subjects in the 20-exemplar condition. If the 150-exemplar group
had been a mixture of some subjects who had learned the dis-
tribution veridically and others who were still strongly influenced
by the assumption of normality, the dispersion of scores should
have been higher than in the presumably homogeneous 20-ex-
emplar group.

The interpretation of the 150-exemplar results as representing
a transitional stage of learning suggests that after even more ex-
perience people's responses will eventually reflect the distribution
actually seen. Experiment 2 tested this prediction by presenting
600 exemplars from the U distribution, distributed over several
sessions.

Experiment 2

Method

Subjects. Eight students from the psychology department paid subject
pool who had not served in the first experiment were paid $8 plus a
variable bonus for their participation.

Procedure. Subjects participated in four sessions, each on a separate
day. A total of 600 training exemplars were presented. Because of sched-
uling conflicts the days were not always consecutive, but in all cases the
four sessions were completed within 1 week. Each session was a slightly
modified version of the procedure for the U-l 50 condition from Exper-
iment i.
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Two minor changes were made in the procedure from the first exper-
iment. First, because repetition of the full set of instructions was considered
unnecessary, subjects were given only greatly condensed versions in the
second, third, and fourth sessions. Instructions in the first session were
the same as in the first experiment. Second, both the learning trials and
test trials for each session were split roughly in half and presented in
interleaved blocks. Thus in this experiment, each session consisted of
four blocks: 75 learning trials, 63 test trials, 75 more learning trials, and
finally 62 more test trials. In the earlier procedure, the same stimuli
would have been presented as a single learning block of 150 trials, followed
by a single test block of 125 test trials. This change was made in an
attempt to alleviate the monotony of the procedure.

Results

The pattern of responses for the final session is shown in Figure
4, using the same conventions as in Figure 3. As can be seen in
the figure, the pattern of responses after several hundred ex-
emplars matches the general shape of the U distribution. The
course of learning over the four sessions is summarized by the
quadratic trends shown in Table 2. These trends are significantly
positive (indicating veridical learning) for each session, and show
a significant increase over the four sessions, ((189) = 2.25,
p < .05.4

Discussion

The results of Experiments 1 and 2 support the hypothesis
that people bring to a category-learning situation an expectation
about the shape of the distribution that exemplars of a category
will form. Furthermore, it appears that that expectation is for a
unimodal distribution, possibly the normal. Two aspects of the
results are of particular interest. First, it appears that the shape
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Table 2
Trend Analyses for Experiment 2

Session

1
2
3
4

Quadratic trend

1.34
2.08
2.50
2.26

t*

4.06*
6.30*
7.57*
6.85*

•tf/= 189.
•p< .001 .

of the distribution of exemplars affects ease of learning, because
a normally distributed category (even with a noncentral mean)
is learned in far fewer trials than one based on the U distribution.
Second, subjects who see a small number of exemplars of the U
distribution exhibit a unimodal response pattern that system-
atically violates the distribution of exemplars actually seen. Both
of these results are easily explained as consequences of a normal
or other unimodal expectation, suggesting that distributional ex-
pectations of the learner play a role in category learning.

An alternative interpretation of these results, which does not
involve the influence of a distributional expectation, is suggested
by a hypothesis offered by Neumann in accounting for a similar
finding (Neumann, 1977). Neumann presented subjects with ex-
emplars of categories that followed multimodal distributions
similar to the U distribution used here. He observed that subjects'
responses under some conditions did reflect the true shape of
those distributions, but under other conditions displayed a peak
in the center of the stimulus range, in violation of the distribution
of exemplars. One explanation that Neumann considered was
similar to the one presented here in that it involved the influence
of a factor independent of the stimuli and of the way individual
stimuli are encoded (his "local-versus-global schema hypothesis";
Neumann, 1977, p. 190). However, Neumann pointed out that
the central peak in responses could also be explained by a model
that does not involve such a mechanism. He proposed one such
model, the "interval-storage" hypothesis, and ultimately con-
cluded that it gave a better account of when the central peak in
responses did or did not occur in his experiments than did the
local-versus-global schema hypothesis.

The interval-storage hypothesis can account for a nonveridical
central peak in a person's representation of a category while
assuming that a representation is built up from a simple tabu-
lation of observed frequencies. The hypothesis assumes that
whenever a stimulus is observed, the frequencies of the attributes
that it exhibits are simply incremented appropriately in some

1 2 3 4 5 6 7 8 9 10
Composite Stimulus Dimension

Figure 4. Categorization responses in the final session of Experiment 2
(U distribution with 600 training exemplars), shown as a function of
"composite" stimulus dimension.

4 The match of responses to the U distribution in the first session of
Experiment 2 is surprisingly good in comparison to the results of the U-
150 condition of Experiment 1. The only difference in procedure between
those sessions was the presentation of trials in two blocks in Experiment
2, suggesting that the improved performance might be due to the alter-
nation of learning and test trials. However, the quadratic trend for the
first half of the first session of Experiment 2 was already 1.40, not sub-
stantially different from the value for the entire session. An alternative
possibility is that the context of a 4-day experiment affected the subjects'
approach in the initial session of Experiment 2, possibly increasing their
willingness to concentrate on a demanding task.
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memory representation. A record is thus built up that should
faithfully reflect the distributions of attributes in the observed
stimuli: Unimodal distributions should give rise to unimodal
representations, bimodal distributions should give rise to bimodal
representations, and so forth. The model explains why learning
is sometimes not veridical by suggesting that the levels on a stim-
ulus dimension that a subject experiences are encoded not as
points but as intervals of variable width. When the interval is
narrow, the resulting internal representation closely matches the
observed distribution. When the interval is wide enough, however,
representations of two different modes may overlap. Because in-
stances at both true modes of a bimodal distribution could con-
tribute to the region of overlap, that region might develop the
highest internal frequency count and become a spurious mode.
A unimodal representation would thus emerge from experience
with a bimodal distribution.

The present results, demonstrating an effect of amount of ex-
perience on whether or not a multimodal distribution is learned,
present a problem for the interval-storage hypothesis, which has
no mechanism by which different amounts of experience might
affect the shape of the representation of a distribution. Whether
or not a pattern of overlap produces a spurious mode should be
independent of the number of observations involved, unless some
provision is made for amount of experience to change the width
of the encoding interval. If the interval-storage model is modified
to include the assumption that the encoding interval shrinks
with greater amounts of experience with a set of stimuli, then it
would predict less overlap and consequently more accurate rep-
resentation after greater numbers of exemplars. We have no direct
evidence as to whether or not observers' discrimination of stim-
ulus levels improved with experience in our tasks, although the
fact that the low and high means of the normally distributed
categories were well differentiated after only 20 observations ar-
gues against this hypothesis. However, because the suggestion
that even perceptual discrimination along single stimulus di-
mensions improves with experience is not unreasonable (e.g.,
Gibson, 1953), the modified interval-storage hypothesis must be
considered viable.

The present results, as well as those of Neumann (1977), in-
dicate that observers can learn categories defined by multimodal
distributions under at least some conditions. Our results and his
also indicate that when observers fail to learn a multimodal dis-
tribution, their concept of the distribution will not necessarily
be simply random but may exhibit a systematic, unimodal pat-
tern. The existence of that pattern suggests, but does not require,
the influence of a prior expectation such as that proposed by the
category density model. Perhaps the most direct test of whether
or not such a hypothesis is necessary would involve assessing the
effect of prior exposure to a non-normal distribution on subse-
quent learning. If people do have default expectations for normal
distributions, prior exposure to a non-normal category may re-
duce those expectations and facilitate subsequent learning of other
non-normal categories, even if different stimuli are used. This
approach is taken in the next experiment.

Experiment 3

Experiment 3 used a transfer paradigm to discover what effect
learning one of the two distribution types used in Experiment 1

has on subsequent category-learning performance. Subjects were
given two successive category-learning tasks based on very dif-
ferent stimuli, which sometimes did and sometimes did not in-
volve the same distributional structure. In an attempt to mini-
mize superficial similarities between stimulus sets, the previous
stimuli, which varied on three dimensions of spatial extent, were
supplemented with a new set of stimuli that varied on three
dimensions of a different quality—numerosity. These stimuli were
intended to be sufficiently different to prevent any transfer of
stimulus-specific responding from the first to the second task,
whereas the dimensional structure of the two sets allowed each
to be used with the same category-defining distributions. In terms
of the distributions used, there were four transfer conditions:
Subjects learned either a normal or a U distribution and then
transferred to either the same or the alternative distribution. In
all cases the stimulus set was changed between the first and second
categories.

If prior expectations do have an effect on category learning,
and if those expectations are influenced by the form of a distri-
bution in a preceding task, learning at transfer will be different
depending on which distribution was learned in the earlier task.
Specifically, subjects attempting to learn the U distribution after
learning a previous U distribution may learn more rapidly or
veridically than subjects presented with the identical task follow-
ing a normally distributed category. Similarly, the normal dis-
tribution may be learned more readily when it follows another
normal distribution than when it follows the U distribution. As-
suming that the stimulus sets used here are different enough to
prevent any stimulus-specific transfer, the occurrence of such
effects would indicate that prior expectations about the shape of
category distributions do influence category learning.

Method

Subjects. Sixteen undergraduate students from the University of
Michigan psychology department subject pool, none of whom had par-
ticipated in the previous experiments, served as subjects. Each was paid
$6 plus a variable bonus.

Stimuli, Two sets of stimuli were used. One set consisted of the stimuli
used in the previous experiments (hereafter referred to as the "size" stim-
uli). A new set of stimuli (the "numerosity" stimuli) was constructed to
be very different in appearance while still sharing the abstract stimulus
space structure of three dimensions with 10 levels on each. This new set,
like the first, consisted of patterns displayed on a color video monitor by
an Apple II microcomputer using the machine's low-resolution graphics.
Each stimulus consisted of a certain number of small rectangles presented
against a black background. Each rectangle was 4 mm in height and 6
mm in width (the size of a single pixel in the Apple's low-resolution
graphics as displayed on the monitor used).

The rectangles formed three groups, distinguished by color and location.
The numbers of rectangles within the groups constituted the three di-
mensions of stimulus variation, corresponding to the sizes of the three
large rectangles in the other set. As with the size stimuli, there were 10
possible levels on each dimension: The number in each group could vary
between 2 and 20 by steps of 2. For convenience in identifying the various
levels of each dimension and for constructing distributions by quantitative
methods, the levels were assigned values from 1 to 10, with 1 designating
the level with the least number of rectangles and 10 designating the level
with the largest number. The three colors used were red, white, and blue.
The red rectangles always appeared within a rectangular area 11.2 cm
high and 5.4 cm wide on the side of the monitor to the subject's left. The
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white and blue rectangles were restricted to areas of the same dimensions
in the middle and on the right of the screen, respectively. The vertical
borders of the middle area were contiguous with the borders of the flanking
areas. None of the borders actually appeared on the screen, so that the
existence and shape of the areas could be detected only by the restrictions
on where rectangles of the various colors appeared. The general appearance
of these stimuli is illustrated in Figure 5.

The locations of rectangles within their appropriate areas were deter-
mined randomly with the restriction that no two could overlap. Locations
of individual picture elements as well as various aspects of the entire
display could thus be thought of as additional "noisy" dimensions su-
perimposed on the relevant stimulus dimensions of numerosity. This
system for locating picture elements was adopted as a practical measure
because it was impossible to vary numerosity without also varying location
or arrangement. The category-defining functions used here were the same
as in the previous experiments (NH, NL, and U).

Design. Four subjects were assigned to each of the following four
transfer conditions: normal distribution followed by normal (N-N), nor-
mal followed by U (N-U), U followed by normal (U-N), and U followed
by U (U-U). All subjects saw a different set of stimuli in each task, and
the order of stimulus sets was balanced across subjects, with 2 subjects
serving in each order within each transfer condition. Subjects in transfer
conditions involving a normal distribution were assigned to either low-
or high-mean conditions in such a way as to balance that factor within
each combination of transfer condition and order of stimuli. Because
distributional mean was varied only between subjects, the N-N transfer
condition always involved transfer between numerically equal means.

Procedure. The procedure was similar in most respects to that of the
previous experiments. Differences in the procedure for this experiment
were as follows. Each subject participated in a 2-hr session during which
two complete category-learning tasks were presented, each similar to an
entire session in the previous experiments. The distribution used to define
the category that a particular subject was to learn in each task was de-
termined by the transfer condition to which the subject was assigned.

Instructions to the subjects introduced the task by means of a cover
story similar to the one used in the previous experiments. Subjects were
again told that they would be seeing examples of paintings by a particular
artist, and that they should observe these carefully so that they could
later identify other works by that artist when these were presented mixed
with similar works by other artists. To establish some connection between
the two category learning tasks and possibly to enhance transfer effects
from the first to the second, observers were told that they would be learning
to recognize paintings from two different periods in the career of a single
artist. They were told that although paintings from these two periods
were very different in immediate appearance, they nevertheless all reflected
certain aspects of the artist's style that remained constant throughout his
career. Subjects were told that because of that continuity of style what
they learned about the first set of paintings could be of some help in
learning to recognize works from the second set. Because these instructions
were more complex than the ones for the previous experiments, they
were read to subjects by an experimenter rather than presented on the
monitors. Subjects were allowed to interrupt and ask for clarifications.

To test for transfer effects in the second task it was of course necessary
for subjects to have learned the distribution presented in the first half.
Because subjects in Experiment 1 had been unable to learn the Lt distri-
bution in a single session, two changes were made that seemed likely to
lead to faster learning in the first task. Just as before, subjects saw one
set of stimuli presented as exemplars for simple observation and another
set presented as test trials requiring classification responses. In this ex-
periment, these sets were presented in relatively small blocks of 25 stimuli
each instead of the larger blocks used previously. This was done in the
hope that relatively rapid alternation between observing and responding
would keep subjects more alert, thereby leading to faster learning. Each
block of 25 exemplars was followed by a block of 25 test trials. There
were 10 blocks of each type.
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Figure 5. An example of the "numerosity" stimuli
used in Experiments 3 and 4.

A second change made to promote faster learning of the first category
was the introduction of feedback. Immediately after each response, either
the word "correct" or "incorrect" appeared on the subject's monitor
screen. Because membership for the categories used in this task was
probabilistic rather than all-or-none, the basis for giving feedback had to
be somewhat arbitrary. For the purposes of feedback, the "correct" re-
sponse to each stimulus was determined by how it was generated. Half
of the 250 test stimuli used in each half of a session were generated
randomly by the same algorithm used to produce the exemplar set and
were designated as positive instances of the category. The remaining 125
stimuli were the same standard test stimuli used in the previous experi-
ments. These stimuli were evenly distributed throughout the potential
stimulus space and were designated as noninstances. To a subject who
knew the defining distribution perfectly but who did not know which
specific stimuli were drawn from it, it would therefore appear that the
probability of a "member" response to a particular stimulus being con-
sidered "correct" was never zero or one, but increased with the likelihood
of that stimulus having been generated by the category-defining distri-
bution.

In addition to immediate feedback after each response, subjects were
given summaries of their performance at the end of each block of 25
responses. The summary included the numbers of correct and incorrect
responses in that block, the overall percentage correct for the session up
to that point, and the amount of bonus awarded. As in the previous
experiments, subjects received a variable bonus in addition to base pay.
Instead of using the relatively complex rule for determining bonuses as
in previous experiments, in which individual responses were never des-
ignated as correct or incorrect, the bonus here was determined by simply
adding or subtracting money for nominally correct or incorrect answers.

Because special measures to ensure veridical learning were only nec-
essary in the first task, feedback was not given during learning of the
second category. However, the same blocking of observation and response
stimuli was maintained.

Results

Test stimuli generated by the algorithm that produced the ex-
emplar set were of course distributed very unevenly over the
potential stimulus space, occurring only in regions of the space
in which the nominally correct response was likely to be positive.
Responses to those stimuli therefore provide relatively limited
information about a subject's response tendencies throughout
the stimulus space as a whole. Because of this, and because com-
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Figure 6. Categorization responses for each distribution in each half of the learning phase of Experiment 3.

bining responses to member and nonmember stimuli would
complicate our presentation of results in terms of a composite
stimulus dimension, only responses to the 125 standard test
stimuli are considered in the summaries reported below.

Learning phase. The results from the first category-learning
task are displayed in Figure 6, and linear and quadratic trends
for these data are gives in Table 3 with corresponding t statistics.
The results have been summarized separately for the first and
second halves of that phase of the experiment to give a rough
indication of the course of learning. The most important aspect
of these results is that all three distributions had been learned
by the time subjects were transferred to the second category-
learning task. This is indicated by the linear and quadratic trends
for the second halves, which were all in the directions predicted
for veridical learning of the various distributions. For the two
normal distributions, both quadratic trends were negative,
whereas the linear trend was positive for the NH distribution

Table 3
Trend Analyses for Learning Phase of Experiment 3

Tread

QuadraticDistribution

NL
1
2

NH
I
2

U
1
2

Linear

-5.33
-5,76

5.28
7.67

-0.93
-0.34

ra

6.22
6.71

6.15
8.94

1.37
0.50

2.67
4.24

2.40
2.42

0.80
1.55

4.92*
7.80*

4.42*
4.46*

1.85
3.59*

Note. NL = normal low-mean, NH = normal high-mean, U = U-shaped
distributions. I and 2 refer to the first and second halves of the learning
phase, respectively,
' df= 36 for NL and NH distributions; df= 54 for U distribution.
*p<.001.

and negative for the NL distribution. The quadratic trend for
the U distribution was positive, and the linear trend was not
reliably different from zero.

A secondary aspect of these data concerns the time course of
learning for the various distributions. If multimodal distributions
are in fact harder to learn, as the results of Experiment I indi-
cated, responses to the two normal distributions should conform
to the shape of the denning distribution relatively early, whereas
learning of the U distribution should be relatively slow. Although
the present data are not rich enough to provide a continuous
record of the learning curves for the different distributions, split-
ting the learning phase into halves, as in Table 3, allows a coarse
assessment of rates of learning. Because of the range of possible
learning rates, this split allows only a weak test of the prediction
that U distributions will take longer to learn than normal ones.
Although the results are not conclusive, they are in the predicted
direction in that the U is the only distribution for which there is
not strong evidence of veridical performance in the first half of
training. The increase in the quadratic trend between halves in
the U condition, however, is not significant, t{54) = 1.23,
p > .20.

Transfer phase. To assess possible transfer effects more sen-
sitively, data from just the first half (Trials 1-125) of the second
category-learning task were examined.5 These data are from trials
relatively close in time to the first category-learning task and
may therefore show transfer effects that are later attenuated over
the entire course of learning the new category. The data are shown
in Figure 7, and trend tests are summarized in Table 4.

The patterns of responding in the N-U and U-U conditions
were clearly affected by the type of distribution that was learned
earlier. For the U-U condition the quadratic trend was significantly
positive, consistent with veridical learning of a U distribution.
However, for the N-U condition a significantly negative quadratic

5 The results were not substantially different when all 250 trials were
included, although the difference between the N-U and U-U conditions
was attenuated.
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Figure 7. Categorization responses in each transfer condition in the first half
(Trials 1-125) of the transfer phase of Experiment 3.

trend was obtained, opposite to that which should result from
veridical learning. This quadratic trend indicates a systematically
unimodal deviation from veridical performance, similar to that
found in the U-20 condition of Experiment 1.

In contrast to the effect of prior distribution on subsequent
learning of U-shaped categories, there was no evidence that the
prior distribution had any effect on transfer to normal distri-
butions. As Figure 7 indicates, both the NL and NH conditions
produced response functions with single modes regardless of
whether the initial category distribution had been normal or U-
shaped.

Several secondary aspects of performance with the normal
distributions were unexpected and are worth noting. First, al-
though the NH conditions showed a strong positive linear trend,
there was no indication of a corresponding negative trend in the
NL conditions. The differences between the NL and NH con-
ditions involved here appear to be exaggerated versions of the
differences that were noted in Experiment 1, and that are evident

Table 4
Trend Analyses for Transfer Phase of Experiment
3 (First 125 Trials Only)

Condition

U-NL
N-NL
U-NH
N-NH
U-U
N-U

Linear

-0.41
-0.24

9.68
10.42

-0.36
1.58

r"

0.27
0.16
6.47"
6.96**
0.33
1.47

Trend

Quadratic

-2.81
-1.91
-i.58
-1.81

1.96
Z.JO

2.97*
2.02
1.67
1.91
2.88*
3.50*

Note. N = normal, L - low-mean, H = high mean, U = U-shaped dis-
tributions.
* df= 36 for the U-NL, N-NL, U-NH, and N-NH conditions; df= 54
for the U-U and N-U conditions.
*/?<.01. **/><.00!.

to a lesser degree in the learning phase of this experiment. In
each case the differences can be characterized as inappropriately
positive responding at the higher levels of the stimulus dimensions
and may be due to discriminability differences, as suggested in
the discussion of Experiment 1. Second, as can be seen in the
left panel of Figure 7, there was an unexpected effect of prior
distribution on overall proportion of positive responses to the
NL distribution. This effect was largely due to a single subject
in the N-N condition who made an extremely low proportion of
positive responses. Although this subject was an outlier in terms
of overall proportion of positive responses, the distribution of
those responses agreed with that of all other subjects given the
NL distribution in that they were clustered around the NL mean.

Discussion

The effect of the abstract distributional structure of the first
category learned on the learning of a subsequent U distribution
provides further evidence that prior expectations regarding cat-
egory structure influence the learning of categories from ex-
emplars. Unlike the pattern of results in Experiments I and 2,
in which the number of exemplars viewed accounted for whether
or not the U distribution was learned, these results cannot be
explained by changes in discrimination with experience, as the
modified form of Neumann's interval-storage hypothesis (Neu-
mann, 1977) would suggest. Because stimulus sets were changed
between halves of this experiment, all subjects went into the
transfer phase having had no experience with the stimuli to be
presented. Furthermore, experience with the earlier set, in terms
of number of exemplars seen, was equal for all subjects.

Amount of experience with a specific set of stimuli, however,
is not the only factor that might be expected to affect the width
of the intervals involved in Neumann's model. For example,
discrimination training on one stimulus dimension may affect
the width of encoding intervals or generalization gradients on
other dimensions by producing a "set to discriminate" (Thomas,



252 M. FLANNAGAN, L. FRIED, AND K. HOLYOAK

Freeman, Svinicki, Burr, & Lyons, L970). It is conceivable that
some aspect of learning the U distribution, perhaps its general
difficulty, caused subjects trained on the U to adopt such a set
more strongly than those trained on the normal distributions,
thus allowing their performance on the subsequent U distribution
to reflect its multimodal character. However, if initial training
on the U distribution affects later learning by narrowing encoding
intervals, then prior learning of the U should lead to improved
performance on any subsequent distribution. For example, in
this experiment people who learned a normal distribution pre-
ceded by a normal spread their positive responses to parts of the
stimulus space well beyond the range in which exemplars had
any substantial chance of occurring. Presumably this was due
to a failure to discriminate similar stimulus levels in the encoding
of either exemplars or test stimuli. If so, prior exposure to the
U should have improved that discrimination, resulting in less
spread of positive responses for people learning a normal distri-
bution preceded by the U. As can be seen in Figure 7, there was
no indication of such an effect.

However, the failure to observe an effect of prior distribution
on normal learning is not conclusive evidence that the encoding
interval hypothesis is wrong. It could be argued that some aspect
of encoding or decision making causes the transfer effect to be
easier to observe for the U distribution than for the normal, and
that an effect on normal learning did occur but was not detectable
given the power of the experiment. Consequently, although the
present results cast doubt on the hypothesis that changes in dis-
crimination mediate the transfer effect, they do not definitively
reject it.

Two hypotheses that do account for the apparent asymmetry
of transfer between the U and normal distributions are suggested
by the category density model. Both of these involve distributional
schemata and account for asymmetry of transfer by assigning a
special status to the schema for the normal distribution. The
first hypothesis suggests that people approach a category-learning
task with a repertoire of distributions that can be represented
schematically. The normal distribution is always included in this
set, whereas the complex U distribution typically is not. If the
learner encounters a set of exemplars that correspond to a sche-
matic distribution, such as the normal, learning is relatively rapid
and veridical. If the exemplars do not fit any immediately avail-
able schematic distribution, the learner will eventually shift to a
strategy of storing representations of individual instances in order
to construct a nonparametric representation of the category
density function.

To account for the asymmetric transfer effects obtained in
Experiment 3, this hypothesis assumes that after learning a non-
standard distribution such as the U-shaped function, people have
a parametric form of that newly learned distribution type avail-
able to them, at least for a time. People who learn a U distribution
in one category-learning task will develop a schema appropriate
for learning another U distribution at transfer. Accordingly, a U
distribution will be learned much more readily following a U
distribution than following a normal distribution. However, as-
suming the normal distribution corresponds to a "default"
schema that is always available along with any additional sche-
mata, a normally distributed category will be learned relatively
easily regardless of the form of the prior category distribution.
According to this hypothesis, prior exposure to a non-normal

distribution will not eliminate a normal expectation, as was pre-
viously suggested, but will merely augment a schematic repertoire
in which the normal will still be available.

An alternative hypothesis is that the positive transfer from
learning one U distribution to a second is not specific to the U
distribution, but rather is due to a general strategy shift. Subjects
may tend to approach all category-learning situations with a
normal expectation, which they can weaken or abandon in favor
of a distribution-free strategy such as instance storage if they
discover that their expectation is being violated. The transfer
effect on a new task may thus be due to carrying over a tendency
to use the general distribution-free learning strategy rather than
to applying a newly devised schematic representation. People
who first learned a U distribution would go into a second task
with little or no tendency to make assumptions about shapes of
distributions, and thus should have relatively little difficulty
learning another U-shaped distribution. Because they would also
quickly learn a normal distribution if it were present, initial U
learning would not impair learning of a normal distribution to
any significant degree. In contrast, people who learned the normal
first would go into the second task still assuming normality, and
thus would have difficulty learning a U distribution.

Experiment 4

This experiment was designed to help evaluate the above hy-
potheses by assessing whether the transfer effect observed in Ex-
periment 3 was specific to the shape of the distribution learned
fust, as suggested by the first hypothesis, or rather would have
generalized to any subsequent non-normal distribution, as sug-
gested by the second. We assessed how well a U-shaped distri-
bution was learned after learning either (a) a normal distribution,
(b) the U-shaped distribution itself, or (c) a different non-normal
distribution. If the effect of learning one distribution on learning
of another is due to the acquisition of a new distributional
schema, only a similarly shaped distribution will be facilitated
when learned second. If, on the other hand, the effect is due to
a shift to a more flexible general strategy, learning of a non-
normal distribution should have a beneficial effect on subsequent
learning of any other non-normal distribution.

To investigate transfer between two different non-normal dis-
tributions, the normal and U distributions used in the previous
experiment were supplemented with a new distribution that was
unlike either of them. Ideally, this new distribution would have
been as different from both the normal and the U distributions
as those two are from each other. The distribution actually used
was chosen to approximate that ideal. Because the U distribution
most notably violates the unimodality of the normal distribution,
the other non-normal distribution was selected to conform to
that aspect of normality while violating a different one, sym-
metry.6

6 As was pointed out in the discussion of Experiment 1, equal intervals
on the physical dimensions of these stimuli are probably not preserved
on the perceived dimensions. We are assuming that the correspondence
between these dimensions is nevertheless close enough that our nominally
symmetric and asymmetric distributions are perceived as such, an as-
sumption that is supported by the fact that these distributions showed
systematically different learning and transfer effects.
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Method

Subjects. Twelve students from the University of Michigan psychology
department subject pool, none of whom had participated in the previous
experiments, served as subjects. Each was paid $4 plus a variable bonus.

Stimuli The sets of potential stimuli were the same as those used in
Experiment 3, except that a minor modification was made to one di-
mension of the "size" stimuli. The H feature was made to vary between
3.5 and 13 cm in width, so that it was always wider than the V feature,
which appeared directly below it. The constant width of the F feature
was increased to 16 cm to accommodate the wider range of the H feature.
These changes were made to eliminate what several subjects had described
as a discontinuity in the variation of the H feature. Previously, at the two
narrowest levels of that feature it was either narrower or the same width
as the V feature below it. Subjects reported informally that the resulting
patterns appeared to be special cases, because the H and V features did
not then have the configural quality of forming a T, as they did at all
other levels of H.

The three distributions used to define categories included the U dis-
tribution used previously. A single normal distribution with a mean in
the center of the possible stimulus range (5.5 in terms of the convention
described previously) was used instead of the two distributions with dif-
ferent means used previously. The standard deviation for this distribution
corresponded to a step between two adjacent stimulus levels, just as before.
The new form of distribution introduced in Experiment 4 was selected
to be markedly asymmetric. This distribution was that of a modified
geometric random variable. As with the U distribution, the exact form
of this "G" distribution was chosen primarily for ease of calculation in
generating exemplars. The probabilities of occurrence of the levels of a
stimulus dimension are given by

(ab{\ -bt JC 1 , -Z, .

otherwise,

where x is a stimulus level according to the convention described earlier,
b is a constant equal to two-thirds, and a is a constant for normalization.
In this distribution, stimulus levels corresponding to values from 7 to 10
cannot occur; probability of occurrence is highest for Level 6 and declines
for levels below 6. The shape of the distribution is illustrated in Figure
8. As with the other distributions, this unidimenstonal function was used
to construct a function over three dimensions by applying it to each
dimension independently.

Design. Four subjects were assigned to each of three conditions: nor-
mal distribution learning (N-U), U learning (U-UX and geometric learning
(G-U), each followed by transfer to the U distribution. All subjects saw
a different set of stimuli in each task, and the order of stimulus sets was
balanced across subjects, with two subjects in each order assigned to each
transfer condition.

Procedure. The procedure was the same as in the previous experiment,
except that the second task was shortened. Instead of viewing 250 ex-
emplars and making 250 responses in interleaved blocks of 25, subjects
viewed only 25 exemplars, all in a single block. The stimuli subsequently
presented for classification responses were the standard 125 test stimuli
used in previous experiments. This change was made to maximize in-
formation about the early stages of learning the second category, where
differences between the transfer conditions might be expected to be great-
est, as was in fact observed in Experiment 3. Because of this change,
sessions were shorter overall than in the previous experiment, lasting
approximately 1 hr, 15 min.

Results and Discussion

Learning phase. Results obtained in the first category-learn-
ing task are presented in Figure 9 and Table 5, summarized

Stimulus Dimension

Figure 8. The "geometric" (G) mass function used in Experiment 4.

separately for the two halves of that phase of the experiment.
Table 5 displays the results of quadratic trend analyses for re-
sponses to the normal and U distributions. If the categories were
learned veridically, then the quadratic trend should be negative
for resonses to the normal distribution and positive for responses
to the U distribution. Unlike the previous experiments, for the
new central-mean normal there is no prediction of an overall
linear trend. For the geometric distribution condition, Table 5
displays the results of a contrast designed to quantify the sym-
metry of responses around the mean of the geometric distribution
(5.5). The coefficients of this contrast are simply the cubed de-
viations of the individual stimulus levels from 5.5, and the index
produced is thus similar to the skew of the distribution, of subjects*
positive responses, except that it measures symmetry around a
point fixed a priori (the mean of the presented exemplars) rather
than around a fitted mean. If the G distribution is learned ve-
ridically, the symmetry index should be negative, reflecting the
negative skew in the exemplar set.

Results for the normal and U distributions were similar to
those seen in Experiment 3. As indicated by the quadratic trends
reported in Table 5, the general shape of the normal distribution
was learned even by the end of the first half. Responses to the U
distribution show a quadratic trend that is significant in the sec-
ond half, but does not quite reach significance in the first half.
As in Experiment 3, the increase in the quadratic trend between
halves was not significant, /(108) = 0.70, p > .40. As was pointed
out in the discussion of Experiment 3, comparing halves of the
learning phase provides only a coarse record of the learning curves
in these conditions. However, the weak evidence that this analysis
can provide is consistent with the prediction that a normal dis-
tribution will be learned more quickly than a non-normal one
such as the U.

Making inferences from the symmetry measure about having
learned in the G condition is somewhat more complicated. A
significantly negative value on the symmetry measure might be
proposed as a simple criterion for learning the G distribution.
However, such a proposal involves the assumption that the zero
point of the symmetry measure is a meaningful baseline. That
point does in fact correspond to symmetry around the middle
of the stimulus range on the objective stimulus dimensions, but
as we have pointed out previously, the perceptual dimensions of
these stimuli are probably not linearly related to the objective
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Figure 9. Categorization responses in each transfer condition for each half of the learning phase of Experiment 4.

dimensions. Because of this, it is necessary to consider an inter-
pretation of the symmetry measure that does not involve as-
sumptions about the zero point. Two aspects of these results
seem to allow such an interpretation. First, the symmetry index
for the G condition did change significantly between the first and
second halves, £(108) = 2.95, p < .01, and in fact changed in a
negative direction. Second, if it can be assumed that the objec-
tively symmetric normal distribution was subjectively represented
as symmetric, subjects' responses to it can be used as a baseline
against which to measure skew. When the symmetry measure
was applied to the pattern of responses obtained for the normal
distribution, the resulting values were satisfyingly stable over the
course of learning, being 30.4 and 30.8 for the first and second
halves, respectively. The symmetry value for the first half of the
G condition did not differ reliably from the first-half normal
value, £(108) - 1.05, p > .20, but the second-half G value was
significantly different in the negative direction from the corre-
sponding normal value, /(108) - 4.03, p < .001. This result
suggests that subjects acquired some knowledge of skew during

Table 5
Trend Analyses for Learning Phase of Experiment 4

Dist.

N
1
2

U
i
2

G
1
2

Linear

3.78
4.03

-0.74
-2.02

t*

3.93***
4.17***

0.7?
2.10*

Trend

Quadratic

-3.46
-5.02

1.19
1.79

5.67***
8.24***

1.96
2.94»*

Symmetry

19.14
-12.69

2
1

t"

.50*

.66

Note. Dist. = distribution; N = normal, U = U-shaped, and G = geometric
distributions; 1 and 2 refer to the first and second halves of the learning
phase.
*df= 108.
*p< .05. **p< .01. *** p < ,001.

the course of learning the G category and is consistent with the
suggestion that they began the task with an assumption of sym-
metry that was later abandoned.

Transfer phase. Results for the second category-learning task
are presented in Figure 10 and Table 6. Data from conditions
N-U and U-U replicate the findings for the corresponding con-
ditions in Experiment 3; Learning of the U distribution following
another U was relatively veridical, whereas responses to the U
after learning a normal distribution again showed a single central
peak. The new condition, G-U, resulted in relatively veridical
learning of the U distribution, and thus appears very similar to
the U-U condition. The positive transfer effect between two dis-
tributions that bear no obvious resemblance to each other in-
dicates that positive transfer does not depend on the specific
shape of the distribution initially learned. The results of Exper-
iment 4 thus favor the hypothesis that transfer is due to a general
change in the strategy used to encode a set of exemplars rather
than to generation of a schematic representation of the distri-
bution type initially learned.

It should be pointed out, however, that these results do not
rule out the possibility that the transfer effects are due to a schema
that is general enough to include both the U and G distributions
but that is still more constraining than our hypothesized as-
sumption-free strategy. For example, although the U and G dis-
tributions were selected to be as different as possible, they still
share the characteristic of "high density at the end(s)." If subjects
do develop and use schemata of that level of generality, even
transfer between the G and U distributions could be due to a
common schema rather than a qualitative strategy shift. Study
of transfer effects between a greater variety of distributions could
in principle illuminate this issue further by delineating families
of distributions within which positive transfer effects occur. The
inclusiveness of those families could be used to infer limits on
the power of any schemata responsible for transfer effects. One
extreme possibility would be for all non-normal distributions to
form one family. Any schema that could account for transfer
within such a set would of course be too weak to be distinguished
from a distribution-free strategy.
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Figure 10. Categorization responses in each transfer condition for the transfer phase
of Experiment 4, in which all subjects were exposed to a U distribution.

General Discussion

The experiments reported here support the view that the in-
duction of category structure is guided by expectations about
the form of the distribution of category exemplars. Such expec-
tations constitute a highly abstract influence on learning, one
that has an impact even on the acquisition of categories based
on unfamiliar patterns unlikely to elicit more concrete expec-
tations. The overall pattern of results supports a dual-process
model of category induction, involving a mechanism based on
distributional schemata corresponding to predictable general
forms of environmental organization and a mechanism that is
relatively independent of distributional assumptions, which can
be invoked to provide greater flexibility when the environment
is not well described by an expected distributional schema.

More specifically, the results suggest that the normal distri-
bution (or at any rate some unimodal and symmetric distribu-
tion) constitutes a general "default" expectation about distri-
butional type, as proposed by Fried and Holyoak (1984). The
privileged status of the normal distribution is supported by two
major results. First, a category defined by a normal distribution
was learned far more readily than one based on a severely non-
normal U-shaped distribution. Second, subjects exposed to a
category defined by a U distribution initially tended to classify

Table 6
Trend Analyses for Transfer Phase of Experiment 4

Condition

N-U
u-u
G-U

Linear

3.34
2.56
2.55

3.83***
2.93**
2.93**

Trend

Quadratic

-1.87
1,39
2.01

t*

3.40***
2.53*
3.64***

Note. N = normal, U = U-shaped, G = geometric distribution.
" # = 108.
* p < .05. ••/><.01. • • • / K . 0 0 1 .

novel patterns as */the distribution were normal. After viewing
20 exemplars, subjects tended to classify patterns with inter-
mediate values on the variable dimensions as category members
more often than they classified patterns with extreme values as
members, even though the latter type of pattern was objectively
more likely to be generated by the defining distribution.

Other results provide support for the existence of an alternative,
more flexible learning mechanism. The qualitative form of the
non-normal U distribution can be learned if a large number of
exemplars are provided, even without explicit error correction.
Furthermore, the U distribution can be learned even after rela-
tively few learning trials if a prior category-learning task has
placed the observer in a state of readiness for a non-normal
distribution. This transfer effect did not appear to be specific to
a particular distribution type, because in Experiment 4 we found
that initial learning of a category defined by either a U distribution
or a skewed geometric distribution facilitated subsequent acqui-
sition of another category defined by a U distribution. The non-
specific nature of the transfer effect suggests that its basis is a
shift in learning strategy, from a procedure for estimating pa-
rameters of a normal distribution to a procedure less closely tied
to any particular distribution type. The overall dual process
model of category acquisition would seem well suited to dealing
with a world in which categories often, but now always, exhibit
a distribution of exemplars that is approximately normal in form.
At a theoretical level, the model integrates a schema-based
mechanism of category acquisition (Fried & Holyoak, 1984) with
an instance-based mechanism (Brooks, 1978; Jacoby & Brooks,
1984; Medin & Schaffer, 1978).

The present study leaves several significant questions about
category induction unanswered. First, although the transfer re-
sults indicate that a subject's readiness to learn a normal or non-
normal distribution varies with past experience in a way that is
consistent with the hypothesis of schematic distributional ex-
pectations, that hypothesis is not the only one that might account
for those results. A theoretical alternative that merits further
consideration is represented by the variations of Neumann's in-
terval-storage hypothesis discussed above. That approach differs
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from ours by explaining biases toward unimodality and symmetry
as effects of wide encoding intervals for individual stimuli rather
than by invoking schemata for entire distributions of stimuli.
Although we have argued that the hypothesis of a schematic,
normal expectation is preferable to an encoding interval hy-
pothesis for the present results, the hypotheses are similar enough
that these experiments do not definitively discriminate between
them. Because both hypotheses are able to account for biases
toward unimodality and symmetry, and because in their most
general forms both are somewhat flexible as to when such biases
should occur, more precise quantitative results will be necessary
to differentiate them, A related issue that may be easier to resolve,
and that is perhaps ultimately more interesting in its implications
for the usefulness of the hypothesis of schematic distributional
expectations, is whether or not people can be biased to learn
specific non-normal distributions. Would they, for example, un-
der some circumstances impose a characteristic such as skew on
an objectively symmetric distribution? The hypothesis that people
use normal distributional schemata, unlike the interval hypoth-
esis, could be extended naturally to account for such results by
allowing non-normal schemata. The only distributional expec-
tations suggested by the results reported here were for normal
or nearly normal distributions, but that is not surprising given
that the normal is a reasonable default and that the artificial
stimuli used here were highly unfamiliar. In more familiar or
meaningful contexts, in which people may have or think they
have some knowledge of the processes generating a set of ex-
emplars, they may make use of more specialized assumptions.

A second issue concerns how the shift in learning strategies
hypothesized by the dual process model might occur. If the nor-
mal distribution constitutes a default expectation, just how is it
overridden? A number of mechanisms are worth considering.
As we suggested in the introduction to this article, people may
tacitly estimate the "surprisingness" of each exemplar as it is
presented, given their current estimates of distributional param-
eters. Alternatively, people may store a small number of instances
in memory, perhaps always saving the most recent few stimuli
in a "first in-first out" short-term store. These remembered in-
stances could provide the equivalent of a crude "sample" his-
togram, which could be compared to the subjective "population"
distribution implied by current parameter estimates. As the cur-
rent or accumulated deviation between the sample and the pop-
ulation estimates increased, the learner might weaken or abandon
the assumption of normality in favor of a more open strategy.
An important issue for future research will be to determine the
degree to which people are susceptible to distortions in their
categorization judgments due to failures to detect deviations from
the expected distribution type.

A third issue concerns how non-normal distributions are rep-
resented. The present study indicates that the severely non-nor-
mal U distribution can eventually be learned but leaves open the
ultimate form of its representation. Our finding that transfer
across successive category-learning tasks is not distribution-spe-
cific (Experiment 4) implies that subjects did not learn a general
schema for U distributions in the course of learning a single
category distributed in that manner. However, this result does

not preclude the possibility that schemata for novel distribution
types can in fact be learned with sufficient experience, especially
for less complex non-normal distributions than the octomodal
U distribution used in the present study. In addition to the ex-
treme possibilities that people may represent a non-normal cat-
egory as either an unsummarized set of stored instances or as
parameters of a unitary distributional schema, there is the in-
termediate possibility that the representation may involve the
disjunction of multiple schemata (e.g., a bimodal distribution
might be approximated by two truncated normal distributions).
Which of these theoretical alternatives are in fact used to rep-
resent non-normal category distributions, and under what con-
ditions, constitute prime questions for future research.
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