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comparison statements such as ‘‘There are 4 times as many stu-
dents as teachers in a classroom.” Performance on the algebraic
equation construction task was enhanced for participants who
had previously completed the relational fractions task compared
with those who completed the fraction algebra procedures task.
This finding suggests that relational reasoning with fractions can
establish a relational set that promotes students’ tendency to
model relations using algebraic expressions.
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Introduction

Recent research has established correlational links between early success with fractions and gen-
eral math achievement (Siegler et al., 2012; Torbeyns, Schneider, Xin, & Siegler, 2015) and in particular
with algebra performance (Booth & Newton, 2012; Booth, Newton, & Twiss-Garrity, 2014; DeWolf,
Bassok, & Holyoak, 2015b; Empson & Levi, 2011; Wu, 2001, 2009). The importance of early learning
and mastery of fractions for subsequent math performance has been widely recognized, but research-
ers have yet to establish a more direct causal connection between specific aspects of fraction under-
standing and algebra performance.

Although they cannot establish causality, correlational studies have provided clues to elements of
fraction understanding that are potentially important for subsequent algebra understanding. Using
multiple regression analyses, DeWolf and colleagues (2015b) found that middle school algebra perfor-
mance was uniquely predicted by two factors: understanding of fractions as relations and number line
estimation with decimals. In contrast, although number line estimation with fractions and procedural
knowledge about fractions in algebra equations were also significantly correlated with algebra perfor-
mance, neither proved to be a unique predictor of algebra performance over and above relational frac-
tion understanding and number line estimation with decimals. Thus, these findings suggest that the
relational aspect of fraction understanding, as opposed to procedural knowledge of fractions in algebra
equations or facility with fraction magnitudes, has a particularly direct connection to success in
algebra.

There are theoretical reasons to expect that relational understanding of fractions may support sub-
sequent acquisition of algebra. Understanding algebra largely depends on grasping abstract relations
between entities and numbers. After all, algebraic equations and expressions are meant to convey
abstract relations. For example, Sfard and Linchevski (1994) argued that success in algebra depends
on students moving beyond simple mastery of how to carry out procedures to find solutions. Beyond
procedural knowledge, students must understand that algebraic expressions convey relations
between quantities and that a general process may be used to find an unknown quantity. For example,
if you have decided to split a restaurant bill among four people but do not yet knowwhat the total cost
of the bill is (b), you can express this relation as b/4 or (1/4)b. This expression simultaneously repre-
sents the individual cost for each of the four people and also a procedure that can be used to derive
that specific cost depending on the actual amount of the bill.
Algebraic modeling

One example of an area of algebra that is particularly difficult for both children and adults involves
understanding and generating algebraic expressions representing multiplicative comparisons
(Clement, Lochhead, & Soloway, 1979; Fisher, Borchert, & Bassok, 2011; Martin & Bassok, 2005). For
example, both children and adults have difficulty in generating the correct algebraic equation for state-
ments such as ‘‘There are 4 times as many students as teachers in a classroom.” Participants often reverse
the correct order of the variables, producing 4S = T rather than the correct equation 4T = S. This common
error has generally been interpreted as reflecting direct translation of the components of the sentence
(Fisher et al., 2011; Graf, Bassok, Hunt, & Minstrell, 2004; Herscovics, 1989; Hinsley, Hayes, & Simon,
1977; Mayer & Hegarty, 1996). Specifically, participants translate ‘‘4 times students” as 4S, following
the surface order in which the components (4, times, and students) are mentioned in the sentence
instead of appreciating the underlying direction of the comparison between students and teachers.

This direct translation strategy appears to be a procedure used by students who do not understand
how to appropriately model the relations in the equation. In addition, this strategy may also be used as
a shortcut heuristic even by students who do understand algebraic modeling (Graf et al., 2004). Direct
translation is an effective method for constructing algebraic equations in many problems (e.g., ‘‘The
number of students is 6 times the number of professors”). Thus, this strategy is not always maladap-
tive, and in many cases it can reduce cognitive load in solving the problem.

To distinguish genuine misconceptions about the relational structure of a problem from inappro-
priate use of a shortcut strategy, Fisher and colleagues (2011) gave participants an algebraic modeling
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task that required them to construct division equations as well as multiplication equations. A direct
translation strategy was inapplicable to the division equations. For example, in the problem ‘‘The
number of students is 6 times the number of professors,” there is no word that cues division (whereas
the word ‘‘times” cues multiplication). Accordingly, the correct division equation (S/6 = P) can be cre-
ated only by attending to the underlying mathematical relations; but unlike the case for multiplica-
tion, the surface form of the sentence does not cue a rival erroneous equation (e.g., P/6 = S). Fisher
and colleagues found that participants generated the correct equation much more frequently if they
were asked to represent the sentence with a division equation rather than with a multiplication equa-
tion, presumably because in the absence of a direct linguistic cue to the division operator participants
are likely to think more deeply in modeling the relation.

Arithmetic word problem solving

Interestingly, performance on this algebraic modeling task (Fisher et al., 2011) is often dissociated
from the processes that underlie people’s solutions to arithmetic word problems (Herscovics &
Linchevski, 1994; Kieran, 1992). Martin and Bassok (2005) presented participants with matched state-
ments or arithmetic word problems in which the same solution should be derived (e.g., ‘‘There are
3450 students. There are 6 times as many students as professors. How many professors are there?”).
The investigators found that participants were much more successful in solving the problems than
in constructing the analogous algebraic equations. Borchert and Bassok (1998; see also Borchert,
2000) explicitly tested the ability of adults to transfer their correct mathematical solutions of word
problems to the task of constructing algebraic equations for the relational statement in the problem
text. They found that even when a word problem solving task and the equation construction task were
presented sequentially on the same page, many adults failed to transfer their correct problem solution
to the equation construction task. Conversely, even when participants constructed an incorrect equa-
tion first, they nonetheless were likely to construct a correct problem solution. This disconnection
between an algebraic equation construction task and an arithmetic problem solving task was also evi-
dent in the written problem solutions, which never included algebraic equations.

One difference between students’ understanding of arithmetic problem solving and algebra per-
tains to the meaning of the equal sign. In arithmetic problem solving the equal sign is thought of as
a ‘‘to do” signal, whereas in algebra it is considered a balancing point for the two sides of the expres-
sion (Kieran, 1992). Thus, in arithmetic the emphasis is on what type of procedure needs to be exe-
cuted to generate a solution (Herscovics, 1989; Stacey & MacGregor, 1999). In algebra, by contrast,
the emphasis is on identifying and expressing certain relations between numbers and quantities; gen-
erating an actual numerical solution is secondary. The apparent lack of transfer from arithmetic word
problems to algebraic equations suggests that the reasoning involved in arithmetic problem solving is
largely independent from algebraic relational reasoning.

Relational reasoning with fractions may be a vehicle for improving algebraic relational reasoning. A
deep conceptual understanding of fractions involves grasping that the bipartite a/b structure of frac-
tions conveys a relation between the numerator and the denominator. This relation can take many
forms, including multiplicative comparison, ratio, part–whole, probabilities, operators, and quotient
(Kieren, 1975, 1980; Ohlsson, 1988). Recent research has shown that adults are able to capitalize
on the bipartite structure of fractions to reason about different relations between sets (DeWolf,
Bassok, & Holyoak, 2015a; Lee, DeWolf, Bassok, & Holyoak, 2016; Rapp, Bassok, DeWolf, & Holyoak,
2015). For example, DeWolf and colleagues (2015a) asked participants to identify part-to-part ratios
and part-to-whole ratios between two subsets in a display, denoted by either a decimal ratio or a frac-
tion ratio. When participants were shown decimals, which do not provide explicit relational informa-
tion, performance was far less accurate than when they were shown the corresponding fractions. This
finding suggests that successful relation discrimination is facilitated by fractions, which can be decom-
posed into two relational components, as compared with decimals, which lack a similar type of inter-
nal relational structure. That is, the fraction components serve to explicate the quantities that enter
into a relation. Importantly, understanding fractions as relations does not require calculating a quo-
tient (much like understanding algebra expressions such as b/4, for which the magnitude is not imme-
diately calculable).
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The current study

The goal of the current study was to test whether relational thinking about fractions can help mid-
dle school pre-algebra students and college-level adults to construct correct division or multiplication
algebraic equations that represent simple multiplicative comparison statements. We sought to go
beyond previous correlational studies by attempting to determine whether relational understanding
of fractions has a causal connection to algebra performance. More specifically, we assessed partici-
pants’ algebra performance (i.e., equation construction task) immediately after participants had per-
formed a task designed to activate relational knowledge of fractions or a control task that focused
on the procedures used to solve algebra problems containing fractions. To compare the effect of the
fraction relations task against a baseline for algebra performance, we selected a control task that
had previously been found to be unrelated to algebra performance (Booth et al., 2014; DeWolf
et al., 2015b). The basic aim was to determine whether relational reasoning with fractions would
establish a general relational set, which would in turn enhance relational reasoning with fractions
(especially in the case of division equations, for which a direct translation strategy is not possible).
Studies of non-mathematical reasoning have shown similar transfer effects based on establishing a
relational set (Chaxel, 2015; Vendetti, Wu, & Holyoak, 2014).

In addition to participants drawn from middle school pre-algebra classes, we also included college
students in the study. If a relatively high level of overall math expertise is required to allow transfer at
the level of a relational set, then such transfer might be observed only for adults. But if a grasp of the
relational nature of fractions is sufficient, then even middle school students might show relation-
based transfer from fractions to algebra.

We also assessed whether relational reasoning with fractions would enhance performance on
arithmetic word problems. Given the apparent disconnect between algebraic problem solving (which
relies more on abstract reasoning) and solving of arithmetic word problems (which depends on exe-
cution of a set of procedures), it seems possible that relational reasoning with fractions may fail to
enhance solution of word problems even if it promotes successful construction of algebraic equations.
Method

Participants

Participants were drawn from two separate sets of child and adult populations. The children were
students enrolled in introductory pre-algebra courses from a local Los Angeles school. A total of 101
7th-grade middle school students (mean age = 12.5 years, SD = 0.54; 48 male and 53 female) partici-
pated in the study near the end of the school year. Students were not compensated for participating.
Adults were recruited from undergraduate psychology courses at the University of California, Los
Angeles. A total of 114 students (mean age = 20.1 years, SD = 1.59; 21 male and 93 female) partici-
pated. The college students received one course credit to fulfill a study requirement for their under-
graduate course.
Materials and design

The study included two dependent measures (word problem solving task and algebra equation
construction task) that were analyzed separately. For the equation construction task, the design
was a 2 (Age Group: 7th graders vs. college students) � 2 (Initial Task: fraction relations vs. fraction
algebra procedures) � 2 (Algebra Equation Format: division vs. multiplication). The design for the
word problem solving task was the same except that the variable of equation format was omitted.
All tasks are described in more detail below.1
1 The tasks chosen for this experiment were selected and adapted from previous research (DeWolf et al., 2015a, 2015b; Fisher
et al., 2011; Martin & Bassok, 2005). In previous research, these tasks showed high internal reliability within participants. In this
study, both the FAP task (Cronbach’s alpha = .81) and the FR task (Cronbach’s alpha = .72) had high reliability.
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Fraction relations task
The fraction relations task consisted of six problems (see Appendix for a reproduction of the task).

This task was adapted from a similar task that showed high levels of performance when used previ-
ously with adults (DeWolf et al., 2015a). The problems contained displays of two discrete sets. Partic-
ipants were instructed to create a fraction that highlighted either the ratio of one set to the other
(part–part ratio, PPR) or the ratio of one part to the whole set (part–whole ratio, PWR) (see Fig. 1
for an example). The first two problems consisted of one PPR problem and one PWR problem. Each
of these problems included feedback. Participants were given a chance to provide an answer on the
first page of the problem. The second page provided a detailed explanation of the answer and a visual
diagram depicting the differences between the subsets. The six problems appeared in one of three ran-
dom orders (where the first two were always a PPR problem and a PWR problem with feedback).

Fraction algebra procedures control task
The fraction algebra procedures task consisted of six problems adapted from a previous algebra

problem set designed to test understanding of basic algebraic procedures (Booth et al., 2014;
DeWolf et al., 2015b). The questions focused on understanding of how to manipulate an algebra equa-
tion that contained a fraction. The Appendix provides examples of the problems. These problems
tested basic knowledge about steps to complete algebra problems. Previous research (Booth et al.,
2014; DeWolf et al., 2015b) found that performance on this task is unrelated to algebra performance.
Therefore, we did not expect that performing this task would benefit the subsequent algebraic mod-
eling task. Rather, this task was selected to provide a control task that equated the amount of time
participants spent in performing an initial task. We chose a math task and not a completely unrelated
task (e.g., a crossword puzzle) in order to avoid potential task switching costs because participants
completed this task directly before the algebra tasks. The problems appeared in one of three random
orders. To ensure that this condition served as a true control for time on task (rather than as a learning
opportunity), no feedback was provided for any of the problems.

Word problem solving task
Following the initial task, all participants were given the same two word problems to complete: (a)

‘‘There are 72 athletes in a league. There are 4 times as many athletes as coaches. How many coaches
are there?”; (b) ‘‘One day at a bakery, 64 people ordered cupcakes. 4 times as many people ordered
cupcakes as muffins. How many people ordered muffins?” The word problems mirrored the multi-
plicative comparison statements given later on in the algebra equation construction task. Participants
were asked to show their work and were given space to write their answers. The order of the problems
was counterbalanced across participants.

Algebra equation construction task
These materials were adapted from those used by Fisher and colleagues (2011). Participants were

given detailed instructions on how to create algebraic equations for the four basic arithmetic opera-
tions (see Appendix). They received an example using an addition problem and then as practice were
asked to create a subtraction equation based on a new scenario. Participants were then given four dif-
ferent multiplicative comparison statements. Each statement appeared on a separate page. For two of
them, participants needed to generate a division equation to represent the statement; for the other
two, they needed to generate a multiplication equation to represent the statement. For example,
one statement read as follows: ‘‘In a certain classroom, there are 4 times as many students as teach-
ers.” An example of a division equation would be ‘‘s/4 = t.” The corresponding multiplication equation
would be ‘‘4 * t = s.” The assignment of division or multiplication as the operation was counterbal-
anced across the four problem scenarios. The statements themselves appeared in one of three different
random orders across participants.

Procedure

All participants completed the set of tasks using paper and pencil administered in packets. They
were instructed to proceed through the packet in order and to not return to any pages. Participants



PPR = 2/5
2 apples for 5 
bananas

PWR = 2/7
2 apples out of the 
total number of 
fruit

Fig. 1. Example of stimuli used in the fraction relations task. A part-to-part ratio (PPR) would be 2/5, denoting the ratio of one
subset to another subset, and a part-to-whole ratio (PWR) would be 2/7, denoting the ratio of one subset to the set.
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were encouraged to show their thinking or their work throughout the packet. Participants first com-
pleted either the fraction relations task or the algebra procedures control task. Directly after, they
completed the word problem solving task and finally the algebra equation construction task. For con-
sistency, each of the two age groups (7th graders and college students) completed the exact same
packets and materials. The 7th graders had a maximum of 50 min to complete the packet, although
most took approximately 25 min. College students completed the packets in approximately 10 min
on average. There was no time limit for the college students, but they were encouraged to try to com-
plete the tasks as quickly as possible while not sacrificing accuracy.
Results

Initial task performance

Questions for each initial task were scored for accuracy on a binary (0 or 1) basis. Fig. 2A displays
the mean performance for each task. A 2 (Age Group) � 2 (Initial Task) between-participants analysis
of variance (ANOVA) revealed a significant main effect of age group (adults: 91%; children: 66%), F(1,
211) = 137.59, MSE = .025, p < .001, gp2 = .39, moderated by a significant interaction between the two
factors, F(1, 211) = 65.23,MSE = .025, p < .001, gp2 = .24. Planned comparisons revealed that the 7th gra-
ders performed significantly more accurately on the fraction relations (FR) task compared with the
fraction algebra procedures (FAP) task (FR: 85%; FAP: 47%), t(99) = 9.76, p < .001, d = 1.94, whereas
there was no difference in performance between the two tasks for college students (FR: 93%; FAP:
90%), t(111) = 1.26, p = .21, d = 0.26.
Word problem solving task

Each of the two word problems was scored for accuracy on a binary (0 or 1) basis. Participants
needed to give the correct numerical answer to receive credit on each question. Fig. 2B displays mean
performance on this task. A 2 (Age Group) � 2 (Initial Task) between-participants ANOVA2 revealed no
significant difference between accuracy after performing the FR task (70%) compared with the FAP task
(67%), F(1, 211) = 0.78, p = .39, gp2 = .004, nor was there a significant interaction between initial task and
2 In parallel with this ANOVA and all subsequent ANOVAs, we also used a non-parametric sign test to verify whether the results
held (given the bounded nature of our outcome measures for the word problem solving and algebra equation tasks). These non-
parametric tests showed the same pattern of results as the ANOVA analyses reported here.



Fig. 2. Proportions correct for the initial task (fraction relations vs. fraction algebraic procedures) (A), the word problem solving
task (B), and the algebra equation construction task (C) by age of participants.
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age, F(1, 211) = 0.71, MSE = .15, p = .40, gp2 = .005. The college students performed significantly higher
than the 7th graders (adults: 90%; children: 47%), F(1, 211) = 66.43, MSE = .15, p < .001, gp2 = .26.

To assess whether participants used algebra in solving the word problems, we coded spontaneous
generation of algebra equations. If a participant wrote down an algebra equation when solving the
problem (either correct or incorrect), then that problem was coded as a 1. If the participant used only
the numbers in the problem and no variables to represent the abstract relation, then that problemwas
coded as a 0. A 2 (Age Group) � 2 (Initial Task) between-participants ANOVA revealed an interaction, F
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(1, 211) = 3.79, MSE = .16, p = .05, gp2 = .02. Initial task did not affect the use of equations for the 7th
graders (FR: 8%; FAP: 8%), t(99) = 0.03, p = .98, d = 0.007. However, the rate of spontaneously generat-
ing algebra equations when solving the word problems was higher for adults who completed the FR
task compared with those who completed the FAP task (FR: 51%; FAP: 30%), t(112) = 2.33, p = .02,
d = 0.44. This finding suggests that, at least for adults, completing the fraction relations task first
increased the likelihood of thinking about word problem in terms of algebraic relationships. However,
generating algebra equations did not lead to greater success in solving the word problems even for
adults, perhaps because their performance was near ceiling on this task.
Algebra equation construction performance

Each algebra equation was scored on a binary (0 or 1) basis for accuracy. Fig. 2C displays the mean
accuracies for each equation condition by age group. A 2 (Equation Type: division vs. multiplica-
tion) � 2 (Initial Task) � 2 (Age Group) mixed ANOVA revealed a significant two-way interaction
between equation type and initial task, F(1, 211) = 4.60, MSE = .097, p = .03, gp2 = .02, such that partic-
ipants performed better on division equations compared with multiplication equations after complet-
ing the FR task (division: 78%; multiplication: 63%), t(107) = 3.30, p = .001, d = 0.33, whereas there was
no difference in performance between division and multiplication after completing the FAP task (divi-
sion: 61%; multiplication: 60%), t(106) = 0.32, p = .75, d = 0.03. Similarly, completing the FR task
resulted in higher performance on the division equations relative to completing the FAP control task
(FR: 78%; FAP: 62%), t(213) = 2.99, p = .003, d = 0.40, whereas there was no difference in performance
on the multiplication equations between the two initial tasks (FR: 64%; FAP: 61%), t(213) = 0.58,
p = .56, d = 0.07.

There was also a significant two-way interaction between equation type and age group, F(1, 211)
= 5.73, MSE = .097, p = .02, gp2 = .03, such that the 7th graders performed better on division equations
(division: 55%; multiplication: 40%), t(100) = 2.75, p = .007, d = 0.35, whereas there was no difference
in performance for college students (division: 84%; multiplication: 83%), t(113) = 0.31, p = .76, d = 0.03.
However, there was no significant two-way interaction between initial task and age group, F(1, 211)
= 0.02, MSE = .20, p = .90, gp2 < .001, consistent with college students achieving superior performance
compared with 7th graders after completing either the FR or FAP task. The three-way interaction
was not reliable, F(1, 211) = 1.61, MSE = .10, p = .21, gp2 = .008. Together, these findings show that com-
pleting the fraction relations task improved subsequent performance on the algebra equation con-
struction task compared with the control task, with this facilitation being especially strong for 7th
graders’ construction of division equations.
Discussion

The goal of the current study was to investigate the extent to which relational reasoning with frac-
tions plays a causal role in enhancing subsequent creation of algebraic equations. Participants were
asked to complete either a task focused on fraction relations or a control task using fraction algebra
procedures. The results showed that both 7th graders and college students were more accurate on
an algebra equation construction task after completing the fraction relations task as compared with
completing the control task. The positive impact of the fraction relations task was especially strong
for 7th graders when creating division equations in the target algebraic modeling task.

Previous research on the algebraic equation construction task suggests that requiring creation of a
division (rather than a multiplication) equation blocks reliance on the direct translation heuristic (e.g.,
multiplication cued by the word ‘‘times”) and encourages modeling of the relational structure (Fisher
et al., 2011). Here, we found that performing the fraction relations task helped participants to engage
in the abstract thinking required for constructing correct algebraic division equations to represent
multiplicative comparison statements. This finding supports our hypothesis that solving fraction rela-
tion problems encourages a general relational set, which facilitates representing object relations with
algebraic equations because the latter task involves the same type of relational reasoning.
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For the 7th graders, performance on the fraction relations task was much better than performance
on the algebra procedures control task. The latter task focused on small procedural details of solving
algebraic equations and was most likely beyond the capability of many of the 7th-grade students. By
comparison, the fraction relations task was very simple and straightforward. Interestingly, even
though adults performed both the fraction relations and algebra procedures tasks very well, only
the fraction relations task yielded a significant improvement in constructing algebraic equations. Thus,
sheer difficulty of the initial task did not seem to be the critical factor in enhancing performance on the
equation construction task.

Consistent with prior findings revealing a disconnection between arithmetic and algebra
(Herscovics & Linchevski, 1994; Kieran, 1992), the fraction relations task did not affect accuracy in
solving word problems involving multiplicative comparison statements. The 7th graders seemed to
find the task of solving word problems generally difficult, yielding low accuracy rates. College stu-
dents, in contrast, were near ceiling on this task. For college students, completing the fraction relations
task (vs. the control task) increased the spontaneous rate of using algebraic equations in the word
problem task. For the 7th graders, using algebra equations to solve word problems was extremely rare,
with only 8% of responses including algebra equations.

The task of identifying relations represented by fractions highlights the flexibility of the notational
structure of a fraction. In this task, participants learn to focus on the relations between the numbers
rather than on calculating any specific value. The focus is on the different types of ratios or proportions
that can be represented using the fraction notation. Proportionality, although usually taught later in
school and separately from basic fraction lessons, is often taught as one of the first examples of alge-
braic problem solving (Ohlsson, 1988). For example, students are given problems such as the follow-
ing: ‘‘There are 6 apples for every 8 oranges. If we have 10 apples, how many oranges do we have?”
The basic setup for such a problem is something like 6 apples

8 oranges ¼ 10 apples
x oranges. Students learn to express an

unknown with a variable (‘‘x”) and how to solve the proportion. Thus, students are taught that the
actual integrated value of the proportion is secondary and learn to focus instead on the relations
between corresponding values. The relation identification task used in the current study taps into a
similar type of thinking about fractions, shifting attention and focus to the relational structure and
away from calculations.

In the current study, we used only six problems in the initial task and only four algebra equation
construction questions. Future research is needed to determine whether there are other types of alge-
braic tasks that could benefit from relational fraction training and whether the benefits of such train-
ing persist over time. Perhaps relational fractions training could be developed into a more formal
intervention to foster students’ understanding of both fractions and algebra. Future research should
also examine how relational fraction understanding develops as students progress from introductory
to mastery levels of algebra and at what point this type of training would be the most useful. In addi-
tion, 7th graders’ performance on the FAP task was substantially lower than their performance on the
FR task. Future research is needed to determine whether there are other types of fraction tasks that
might benefit from different aspects of algebra.

In summary, the current study provides evidence that relational reasoning required to successfully
generate algebraic equations can be facilitated by a task that requires relational reasoning with frac-
tions. This finding supports the hypothesis that fractions provide an important conceptual foundation
for understanding mathematical expressions and that relational reasoning with fractions plays a cau-
sal role in promoting relational reasoning about algebraic problems. This basic idea has also been
emphasized by Empson (1999), Empson and Levi (2011) and Empson, Levi, and Carpenter (2011),
who argued that core intuitions about relations between numbers, first established in whole number
arithmetic and later emphasized with basic fraction concepts, provide the building blocks for abstract
relational expressions in algebra. In general, it seems that a sequence of instruction (typical in Amer-
ican curricula) that introduces algebraic word problems in relation to simpler non-algebraic word
problems does not highlight the relational nature of algebraic expressions. Our findings suggest that
using fractions to emphasize relational expressions may encourage a better transition from a focus on
calculations to a focus on abstract models. The usefulness of fractions for learning algebra seems to be
based on appreciating the value of a relational expression.
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Appendix. Materials

Fraction relations task

In the box below, there are some flowers: roses and daisies.
What part of the flowers are the roses?
(Hint: Roses are white in the picture.)

Answer: _________________________________

Here is how to find the answer:
There are 3 roses.

There are 8 total flowers.
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So, the roses are 3/8 of the flowers.
In the box below, there are some children: girls and boys.
What is the ratio of girls to boys?

Answer: _________________________________

Here’s how to find the answer:
There are 4 girls.
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There are 6 boys.
So the ratio of girls to boys is 4/6.

In the box below, there are some pieces of fruit: bananas and apples.
What part of the total pieces of fruit are the bananas?

Answer: _________________________________
In the box below, there are some pieces of fruit: strawberries and pears.
What part out of the total pieces of fruit are the strawberries?



M. DeWolf et al. / Journal of Experimental Child Psychology 152 (2016) 351–366 363
Answer: _________________________________
In the box below, there are some desserts: brownies and cookies.
What is the ratio of cookies to brownies?

Answer: _________________________________

In the box below, there are writing instruments: crayons and pencils.
What is the ratio of crayons to pencils?
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Answer: _________________________________

Algebra procedures task

Please answer the following questions:
1. Are either of these an effective first step toward solving for z in the equation 3 ¼ 1

z?
Circle yes or no.
a.
 Multiply both sides by z
 Yes
 No

b.
 Divide both sides by 3
 Yes
 No
2. Would any of the following steps be an effective first step toward solving the equation 6
d ¼ 2?

Circle yes or no.
a.
 Subtract 2 from both sides
 Yes
 No

b.
 Multiply both sides by d
 Yes
 No
3. If y = 3x + 2, which of these expresses x in terms of y? Circle the correct answer.
a. x ¼ y�2

3 b. x ¼ yþ2
3 c. x ¼ y

3 � 2 d. x ¼ y
3 þ 2

4. Are either of these an effective first step toward solving for y in the equation 1
4 þ y ¼ 10?

Circle yes or no.
a.
 Multiply both sides by y
 Yes
 No

b.
 Subtract both sides by 1

4

Yes
 No
5. Would any of the following steps be an effective first step toward solving the equation 5þ x ¼ 2
3?

Circle yes or no.
a.
 Subtract 5 from both sides
 Yes
 No

b.
 Divide both sides by x
 Yes
 No
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6. Are either of these an effective first step toward solving for y in the equation 2a ¼ 1
8?

Circle yes or no.
a.
 Subtract a from both sides
 Yes
 No

b.
 Divide both sides by 1

8

Yes
 No
Algebra equation creation task

Now we want you to create algebraic equations. In algebra, variables are used to represent
unknown quantities. These variables are represented by letters like x, y, z. Algebraic equations can
involve both variables and specific numbers. Different arithmetic operations like addition, subtraction,
multiplication, and division can be used in the equations.

For example:

addition: x + 8 = y
subtraction: x � 8 = y
multiplication: x * 8 = y
division: x/8 = y

You can construct algebraic equations to represent different relations. Consider the following addi-
tion algebra problem:

There are 5 more books than magazines. Construct an addition equation to represent this statement.
To construct the equation:
You do not know the number of books or magazines, so these can be represented by variables. Let’s

use B for books and M for magazines.
We know that there are more books than magazines, and the relation between them can be

expressed with addition as indicated in the question.
To find the number of books, b, we need to add 5 to the number of magazines, m, because there are

5 more books than magazines.
We can set up the equation like this:
M þ 5 ¼ B
Now try the following problems on your own. Please show your work on the page.
(1) Construct a subtraction equation to represent the following statement:
There are 2 more boys than girls.
Use B to represent the number of boys and G to represent the number of girls.
Answer: ______ � ______ = ______
(2) Construct a division equation to represent the following statement:
In a certain classroom, there are 4 times as many students as teachers.
Use S to represent the number of students and T to represent the number of teachers.
Answer: ______/______ = ______
(3) Construct a division equation to represent the following statement:
A grocery store has 5 times as many apples as baskets.
Use A to represent the number of apples and B to represent the number of baskets.
Answer: ______/______ = ______
(4) Construct a multiplication equation to represent the following statement:
The florist has 9 times as many flowers as vases.
Use F to represent the number of flowers and V to represent the number of vases.
Answer: ______ ⁄ ______ = ______
(5) Construct a multiplication equation to represent the following statement:
There are 7 times as many cookies as jars.
Use C to represent the number of cookies and J to represent the number of jars.
Answer: ______ ⁄ ______ = ______
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