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INTRODUCTION

Any complex adaptive system—whether a human, some other type of
animal, or an intelligent machine—that operates in a realistic environment
must be able to induce causal connections among events. Causal knowl-
edge is required to predict future states of the environment and conse-
quences of the system’s own actions. In addition, causal knowledge can
potentially be used to generate and evaluate explanations of why signifi-
cant events occur (or fail or occur). Part of this knowledge is based on
statistical regularity among events,

At least for the past quarter century, many psychologists have seriously
considered the possibility that untutored humans as well as other animals
are capable of acquiring and using statistical knowledge about the struc-
ture of the environment. Peterson and Beach (1967) called people “intu-
itive statisticians,” and Kelley (1967) proposed that people are “intuitive
scientists.” In the context of experimental paradigms mvestigating classi-
cal conditioning, other theorists have suggested that lowe: animals oper-
ate as intuitive statisticians (e.g., Gallistel 1990; Miller and Schachtman
1985). Although there has in fact been broad agreement that various
forms of causal induction depend on the implicit computadion of statistical
information, the question of precisely what is computed has yet to be
resolved. In the field of animal conditioning, as well as in human categori-
zation and causal induction, various theorists have proposed that animals
perform some implicit computation of statistical contingency, the differ-
ence between the proportion of events for which an effect occurs when
a factor is present and that proportion when it is absent.

In all these fields, the contingency approach has been contrasted with
the associationist approach exemplified by the connectionist learning rule
incorporated in the Rescorla and Wagner (R-W) model of conditioning
(Rescorla and Wagner 1972). The R-W model is directly related to a
number of issues that lie at the very core of cognitive science. The R-W
model was originally proposed as a model of classical conditioning in
animals; however, a number of researchers have extended the model to
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account for apparently higher-order learning in humans, such as categori-
zation and causal induction. The R-W learning rule is equivalent to the
least mean squares (LMS) learning rule that is commonly used to adjust
the weights on links in connectionist networks (Widrow and Hoff 1960);
see also Sutton and Barto 1981). Gluck and Bower (1988), for example,
have applied an adaptive connectionist network using the LMS rule to
model data on human categorization (also Estes et al. 1989), Similarly,
Shanks (1991) applied a connectionist implementation of the R-W model
to attempt to account for the effects of cue competition in a task involving
classification of diseases on the basis of symptoms (see also Chapman
and Robbins 1990; Wasserman 1990). Because of its apparent simplicity
and evident generality, the R-W model remains highly influential as an
approach to inductive learning in adaptive systems.

Some theorists have argued that the R-W model can account for phe-
nomena involving cue competition and other cue interactions that cannot
be explained by contingency. We shall argue, however, that these advan-
tages claimed for the R-W model over contingency theory disappear when
the concept of contingency is suitably generalized alon g lines suggested
by a number of philosophers and psychologists. In fact, the R-W model
can itself be analyzed as a mechanism that computes contingency under
a certain restricted condition that we will discuss later. For such cases,
the R-W model is successful in predicting cue competition, although even
here its successes are qualified for domains in which the adaptive system
operates on representations coded in terms of the probabilities of events,
for which the additivity assumption underlying the model is inappropri-
ate. Qutside of cases that satisfy the restricted condition, the R-W model
does not compute contingency, and in such situations the model appears
to be empirically inadequate. In contrast, a generalized contingency theory
can explain a number of the phenomena that contradict predictions of
the R-W model.

In this chapter we present a contingency analysis of the successes and
failures of the R-W model. Our theoretical analysis may provide a frame-
work for understanding the weakness of an important associationist
model. We hope that it will guide future research concerning how statisti-
cal regularity is computed by adaptive systems to infer the causal structure
of their environments in the course of lea rning, on the basis of which pre-
dictions are made.

WHAT IS COMPUTED IN ASSESSING REGULARITY?
The Probabilistic Contrast Model
It has long been argued that contingency is a component of the normative

criterion for inferring a causal link between a factor and an effect (e.g.,
Kelley 1967; Rescorla 1968; Salmon 1980). Cheng and Novick (1990) pro-
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posed an extended version of contingency theory, which they termed the
probabilistic contrast model (PCM), as a descriptive account of the use of
statistical regularity in human causal induction. The model, which applies
to events describable by discrete variables, assumes that one of the initial
criteria for identifying potential causes is perceived temporal priority (i.c.,
causes must be perceived to precede their effects). The model assumes
that potential causes are then evaluated by contrasts computed over a
focal set. (We shall use the terms contrast and contmgency interchangably.)
The focal set for a contrast is a contextually determined set of events that
the reasoner selects to use as input to the computation of that contrast.
It is often not the universal set of events, contrary to what has been
assumed by previous contingency theories in psychology. Consider the
set of events selected for inferring what causes a forest fire. Reasoner will
normally restrict their focal set to terrestrial events, in which OXygen is
always present, and will not consider events that occur in oxygen-free
outer space.

Using the events in the focal set, a main effect contrast specifying a
potential cause 7 is defined as
Api=p — i (1)
where p, is the proportion of events for which the effect occurs when
factor i is present, and p; is the proportion of events for which the effect
occurs when factor i is absent. (The proportions are estimates of the
corresponding conditional probabilities.) If Ap, is noticeably different from
0, i is perceived as a cause. Note that, if a factor i is constantly present
within the focal set, the second term in the contrast, p;, cannot be calcu-
lated. Thus in our forest fire example it will be impossible to compute a
contrast for oxygen, since this factor is never absent within the focal set
of terrestrial events; as a result, oxygen will not be considered a cause of
the fire (even though people would agree, if probed, that the presence of
oxygen was in fact necessary for the fire to have occurred).

Contrasts can be either positive, in which case the cause is excitatory,
or they can be negative, in which case the cause is mihibitory. For example,
smoking presumably has a positive contrast with respect to lung cancer,
and hence can be viewed an an excitatory cause of the disease; whereas
exercise has a negative contrast with respect to heart disease, and hence
can be viewed as an inhibitory cause of the disease. Confidence in the
assessment of a contrast is presumed to increase monotonically with the
number of cases observed.

Cheng and Novick (1995) show that, for situations in which alternative
causes occur and act independently of i, a positive main effect contrast
for i gives an estimate of the causal power of i, as represented by the
probability with which 1 produces the effect. This estimate is unbiased
when alternative causes are absent within the focal set and /or the alterna-
tive factors present do not produce the effect. To the extent that these
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conditions are violated, the contrast for { tends to be an underestimate of
the power of i. In the extreme case in which some alternative cause is
always present within the focal set and it always produces the effect, the
contrast for 1, which is zero, is uninterpretable,

The above derivation also shows that, for situations in which alternative
causes do not occur independently of i, the main effect contrast for i is
confounded by the influence of these causes and is not interpretable as
an estimate of the power of i. To eliminate this confounding, it is therefore
important to compute what we will call conditional contrast, the contrast
for the candidate factor that is conditional on holding constant the status
of one (or more) other factors. A number of philosophers have proposed
conditional contrasts as a criterion for inferring causality (see Cartwright
1983, 1989; Reichenbach 1956; Salmon 1980; Suppes 1970).

Main effect contrasts assess the causal status of each factor considered
individually. However, it is also possible for combinations of factors to
influence the effect in ways that could not be predicted by the independent
influences of the individual factors. Such situations involve interactions
between factors, which can be assessed by means of a generalization of
main effect contrasts (Cheng and Novick 1995). For example, a two-way
interaction contrast specifying the conjunction of potential causal factors
rand | is defined as

Apy = Apy = pid = (i = P + (= p)) = (- po) (2)

where p, as before, denotes the observed proportion of cases in which
the effect occurs when a potential contributing factor is either present or
absent, as denoted by its subscripts. If Ap; is noticeably greater than zero,
then fand j combine to produce the effect.! A two-way interaction contrast
is thus based on a difference of differences—here, the contrast for i when
] is present minus the contrast for i when Jis absent—with the nonadditiv-
ity of probabilities taken into account by the product terms in equation
2. Suppose, for example, that there are two drugs, A and B, which are
safe when taken individually but usually fatal when taken together. The
contrast for drug A with respect to death will therefore he high when B
is also present, but zero when B is absent. Both product terms will also
be zero. Accordingly, the interaction contrast (the difference between the
above two contrasts corrected by the product terms) will be high,
Notice that each of the two constituent contrasts in an interaction con-
trast is a conditional contrast. Also notice that conditional contrasts can
be described in terms of variations of the focal set. We could say that, in
the focal set of events in which drug B is administered, the contrast for
drug A is high whereas, in the focal set of events in which drug B is not
administered, the contrast for drug A is zero. Furthermore, both of these
conditional contrasts will differ from the unconditional contrast for A
This unconditional contrast is equivalent to the main effect contrast for
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drug A over the focal set of all events involving the presence or absence
of drug B.

Cheng and Novick (1990, 1991, 1992) have provided support for con-
trasts computed over an accurately identified focal set as a descriptive
model of human causal inference. The model successfully predicts simple
and conjunctive causal attributions and explains a number of empirical
phenomena involving human causal attributions that had previously been
considered biases. To illustrate the role of focal sets, consider the psycho-
logical distinction between causes and enabling conditions. In our example
about what causes a forest fire, people might consider a lightning strike
as the cause, but they will view the presence of oxygen as merely an
enabling condition. Although oxygen is necessary for the fire, it is constant
in the relevant focal set so that a contrast cannot be computed. Notice
that, in a different context, which evokes a focal set within which the
presence of oxygen may vary (for example, a special laboratory intended
to be oxygen-free), oxygen will be considered the cause of a fire that
breaks out when oxygen leaks into that environment. The assessment of
causation thus depends on pragmatic contextual influences. In terms of
PCM, a potential causal factor that covaries with the effect (i.e., has a
noticeable contrast with respect to the effect) within the contextually
determined focal set (e, lightning with respect to forest fires in the
context of a forest) will be viewed as a cause, whereas a factor that is
constant within that focal set (e.g., oxygen in a forest), but is known to
covary with the effect in some other focal set (e.g., oxygen covaries with
fire in special environments in which the occurrence of oxygen varies),
is viewed as an enabling condition. As will be elaborated later, an enabling
condition can be distinguished from an alternative cause that happens to
be constantly present in the current focal set. We will return to the chal-
lenge that the distinction between causes and enabling conditions poses
for R-W.

The most central claim of contingency theory, which is reflected in
PCM, is that causal attributions depend not only on the probability of
the effect given the presence of a cue, but also on the probability of the
effect given the absence of the cue. In other words, a cue is viewed as
causal only if its presence makes a difference to the probability of the
effect. However, theorists have often resisted the notion that humans and
other animals implicitly tally information about what happens in the
absence of a potential cause. In particular, associationist models of animal
conditioning have eschewed any direct representation of cause-absent
information. One apparent reason for the reluctance to posit representa-
tions of cause-absent information is that any event could potentially be
defined in terms of an indefinitely large number of absent factors. It would
indeed be bizarre to suppose, for example, that your understanding of
this passage might be caused by the (presumed) absence of ravens in the
room in which you now sit. The generalized contingency model addresses
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this problem by restricting the initial tabulation of cause-absent informa-
tion to those factors that are plausible causes according to prior knowledge
oraccording to observed pairing with the effect. The challenge for associa-
tionist models has been to account for apparent influences of contingency
on learning without introducing representations of the absence of poten-
tial causal factors. As we will see, the empirical successes and failures of
the R-W model can be differentiated by when it succeeds or fails to
implicitly tally cause-absent information.

The Rescorla-Wagner Model

The most influential associationist theory of conditioning over the past
two decades has been the R-W model. Interestingly, Rescorla (1968) was
a harbinger of the importance of contingency in classical conditioning,
which he demonstrated with elegant experiments showing that condition-
ing depends on events that occur in the absence as well as the presence
of a cue. Nonetheless, he then went on to develop an associationist model
that avoided postulation of representations of the absences of cues. The
R-W model represents the learning of an association between cue i (e.g.,
a tone that is present in the current event) and outcome | (e.g., shock)
by a change in the strength of a link between two elemental units, one
representing cue i, and the other representing outcome j. (Cue i and
outcome j are traditionally termed the conditioned stimulus and the uncondi-
tioned stimulus, respectively.) For any cue i that is present during the
event, strength is revised according to the rule

AV, = a,{:‘,(}t, -> V.,), (3)
k=1

where AV, is the change in associative strength between cue unit i and
outcome unit j as a result of the current event, « and f, are rate parameters
that depend on the salience of i and j, respectively, and A, is the desired
output corresponding to the actual outcome. Typically, if the outcome is
present, A, is defined as 1; if the outcome is absent, this value is defined
as (.

defined as the sum of the current strengths of links to unit j from all units
representing the n cues present in that event, is the actual output of the
network predicting the outcome. If cue i is not present during the event,
the associative strength of its cue unit remains unchanged. (The absence
of a cue is not represented by any unit.) Learning continues until there
is no discrepancy between the desired and actual outputs (averaged over
a number of trials). In addition to the particular stimuli present (e.g,, a
tone), the cues are assumed to include one that represents a context present

Cheng and Holyoak

277

in every event (e.g,, the conditioning cage). In causal terms, each cue 1 is
a potential cause, and j is the effect. The strengths that are updated
according to equation 3 are equivalent to weights on the links in a two-
layered connectionist network, with the predicting cues represented on
the input layer and the predicted outcome on the output layer.

A major attraction of R-W is its ability to explain the effects of interaction
between cues. For example, it predicts the phenomenon of blocking (e.g.,
Kamin 1969; Rescorla 1981). Let I' be a previously trained predictive cue
(i.e., the presence of I” has been paired with the outcome, and the absence
of ' has been paired with the absence of the outcome). Consider the
situation in which a novel cue, R, in combination with I, is paired with
the outcome. It has been shown that, despite the positive unconditional
contrast for R, the learning of this cue is blocked if it is presented only
in combination with P. According to R-W, learning occurs only when
there is some discrepancy between the predicted and actual outcomes.
Because a predictive cue fully predicts the outcome as a consequence of
prior pairings, no conditioning would accrue to R.

Rescorla (1968) demonstrated that no conditioning accrues at asymptote
to a cue if the effect occurs equally often in its absence as in its presence.
The R-W madel explains this effect of contingency by the reduction of
learning to the varying cue as a result of the strength that accrues to the
constant context cue. More generally, the greater the strength of the context
cue, the more it reduces the strength of the varying cue.

A second effect of cue interaction explained by R-W concerns the phe-
nomenon of conditioned inlubition. It has been shown that a novel cue, 1,
acquires inhibitory associative strength when it—in combination with a
predictive cue, P—is paired with the absence of the outcome. In compari-
son, a novel cue that by itself is paired with the absence of the outcome
acquires zero strength. According to R-W, the combination of I’ and 1 is
initially expected to produce the outcome (due to the summing of the
positive strength of I’ and the zero strength of 1). A discrepancy between
the predicted and actual outcomes therefore arises when the combination
is paired with the absence of the outcome. This discrepancy leads to a
reduction in the strength of I, which therefore becomes negative. (Al-
though the strength of I" will also be reduced on such trials, " will regain
its strength on other trials in which the outcome continues to be predicted
by the occurrence of P in the absence of 1.) At asymptote the negative
strength of [ offsets the positive strength of P, leading to a net expectation
of 0 on trials on which the combination of P and | is presented.

Limitations of the R-W Model
Despite its notable successes, the R-W model has several well-known

limitations (see Gallistel 1990; Holland et al. 1986; Miller and Matzel
1988). First, whereas the model predicts that the strength of a conditioned
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inhibitor should be revised upward toward zero when it is presented
alone without reinforcement, in fact such a procedure fails to extinguish
the conditioned inhibitor (Zimmer-Hart and Rescorla 1974). Second, the
R-W model is unable to account for apparent changes in the associative
strength of a cue that occur over a period in which that cue has not been
presented (because the model updates only the strengths of cues that are
present on a trial). For example, even though presentation of an inhibitor
without reinforcement does not reduce its inhibitory power, extinction
of the excitatory cue with which the inhibitor had been paired during
acquisition can effectively weaken the inhibitor (Kaplan and Hearst 1985;
Kasprow, Schachtman, and Miller 1987; Miller and Schachtman 1985). It
is as if, when the animal learns that the excitor no longer signals danger,
it also loses confidence that the previously paired inhibitor signals safety,
even though the inhibitor has not been presented during the extinction
phase. Similarly, a cue that was initially “overshadowed” by a more
potent excitor will later gain excitatory potential during its absence if the
overshadowing cue is extinguished (Kaufman and Bolles 1981; Matzel,
Schachtman, and Miller 1985; see also Miller and Matzel 1987). These
“indirect” effects on conditioning cannot be explained by R-W, according
to which the associative strength of a cue that is absent should not be
updated (see equation 3).

Third, the R-W model does not explain the learned irrelevance of a cue
that has been randomly paired with an unconditioned stimulus (i.e., the
effect) before the effect is made contingent on the cue, Contradicting
R-W, the conditioning of such a cue relative to a novel cue is severely
retarded. These types of cues are predicted by the model to be equivalent,
because they both should begin the conditioning phase with zero associa-
tive strength. Fourth, the R-W model predicts that the learning of the
novel cue in the blocking paradigm described above will be completely
blocked at asymptote. Available empirical results regarding causal in-
duction by humans show, however, that blocking is only partial (e.g.,
Chapman and Robbins 1990; Shanks 1991; Shanks and Dickinson 1987:
Waldmann and Holyoak 1992),

INTERPRETING CONDITIONING PHENOMENA IN TERMS OF
CONTINGENCIES

Associative learning models are often contrasted with models based on
statistical contingency. Shanks and others (e.g., Chapman and Robbins
1990; but see Chapman 1991) have examined the special case in which
the contingency of each of the multiple potentially causal factors that are
present is calculated unconditionally over what might be termed the
“universal focal set” of all events in the experiment. However, when
multiple candidate causal factors are present, contingency for a factor
should be computed over subsets of the universal set of events that are
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conditional on the constant presence or absence of other factors. We shall
now argue that contingency theory, as elaborated with the notion of focal
sets in PCM, can account not only for phenomena that have been viewed
as major successes for the R-W model, but also for phenomena that contra-
dict the R-W model. Moreover, it provides a framework for understanding
when and why the R-W model fails.

Learned Irrelevance

According to PCM, conditioning cue i requires creating a difference be-
tween p, and pi. The rate at which this difference is created by any single
event will be slower for a cue that has been randomly paired with an
outcome than for a novel cue, because the cue that had been randomly
paired, unlike the novel cue, Legins conditioning with large denominators
in the two proportions. The impact of any single event in the conditioning
phase, therefore, is smaller for the old cue than for the novel cue. Suppose
that a cue was present on 100 trials and absent on another 100 trials, and
the outcome occurred on 40 trials of each type. The resulting contrast
would be zero. Now suppose that, in a subsequent conditioning phase,
the outcome always occurs on 5 trials in which this preexposed cue is
present, and it never occurs on 5 trials on which this cue is absent. These
10 trials, together with the 200 initial trials, will lead to a contrast of
5/105 (i.e., 45/105 —40/105). In comparison, for a novel cue, the same
10 trials in the conditioning phase will lead to a contrast of 1 (i.e, 5/5 —
0/5). The result, then, will be a marked attenuation of the rate of condition-
ing for the preexposed cue relative to a novel cue.

Conditional Contingencies and the Interpretation of Cue Interaction

When multiple potential causal factors are present, philosophers and
computer scientists have proposed that assessment of causal relations
should not be based on contingencies computed over the universal set of
events (Cartwright 1983, 1989; Pearl 1988; Reichenbach 1956; Salmon 198(),
1984; Simpson 1951; Suppes 1970, 1984), because in these situations uncon-
ditional contingencies do not reflect what people intuitively judge to be
normative causal inferences. In particular, people distinguish between a
genuine cause and a spurious cause—a factor that is contingently related
to the effect, but is not a cause of it. Unconditional contingencies do not
reflect this difference.

These theorists have proposed that, normatively, if a factor is known
to be a cause of an effect, then determining the causal status of another
factor requires that the contingency of the latter be calculated separatel v
conditional on the presence and on the absence of that cause (a test of
“conditional independence”)." Testing for conditional independence is
analogous to comparing experimental conditions to control conditions
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in standard experimental design, where extraneous variables are kept
constant across conditions. Although this criterion has not been uncon-
tested among philosophers (e.g., Cartwright 1989; Salmon 1984), the prev-
alent adoption of the analogous principle of experimental design gives
an indication of its normative appeal. One important difference between
conditional contrasts and comparisons involving experimental design is
that conditional contrasts includes observational situations, which gener-
ally provide less firm support for causal inferences. In terms of PCM, the
adoption of the criterion of conditional contrasts involves computing
contrasts for a potential causal factor separately for focal sets that are
restricted to events of which the known cause is (a) present, and (b) absent
rather than computing them over the universal set of events.

We shall next consider the interpretation of tests of conditional indepen-
dence, describe a process model for assessing conditional independence,
and illustrate the explanation of cue interaction effects according to condi-
tional contingencies in terms of this process model. Let us first consider
the interpretation of some possible outcomes of the test of conditional
independence for a target factor that has a positive unconditional contin-
gency with the effect (i.e., a possible excitatory cause). For example, sup-
pose we are assessing possible causes of cancer and that smoking cigarettes
is an established cause. Now we observe that coffee drinking is also
statistically relevant to cancer in that the probability of cancer is higher
for people who drink over five cups per day than for those who drink
less coffee. However, let us further suppose that people who drink large
quantities of coffee also tend to smoke. To tease the influence of coffee
drinking apart from that of smoking, it is desirable to calculate the condi-
tional contingency between coffee drinking and cancer separately for
cases involving the presence vs. the absence of smoking. The following
are four possible outcomes that will be relevant in interpreting blocking
and similar cue interaction effects:

Case 1: 1f both conditional contingencies for the target factor are positive,
then the target factor will be interpreted as a genuine cause. For example,
if coffee drinking increases the risk of cancer both for smokers and for
nonsmokers, then coffee drinking will be interpreted as a genuine cause
(unless it turned out to be confounded with some other cause of cancer,
such as eating fatty foods).

Case 2: If contingencies for the target factor conditional on both the pres-
ence and the absence of the established cause are zero, then that factor
will be interpreted as a spurious cause. It is said to be “screened off”*
(i.e., normatively blocked) from the effect by the conditionalizing cause.
For our example, the statistical link between coffee drinking and cancer
would be attributed entirely to the confounding between coffee drinking
and smoking.

Case 3: 1f the effect always occurs in the presence of the established cause,
regardless of whether the target factor occurs (therefore, the contingency
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conditional on the presence of the established cause is zero), but the
contingency conditional on the absence of the causal factor is positive,
then the target factor will be interpreted as a genuine cause, This situation
waould arise if smoking always caused cancer, so that coffee drinking did
not increase the risk of cancer for smokers, but did increase the risk for
nonsmokers. In this situation coffee drinking would be interpreted as a
genuine cause of cancer. As noted earlier, the zero contingency for a
candidate factor (coffee drinking) in the presence of an alternative factor
that always produces the effect (smoking) does not give an interpretable
estimate of the causal power of the candidate factor. In other words, it
would likely be attributed to a ceiling effect (i.e., smoking by itself gener-
ates the maximal cancer risk, so that the detrimental impact of coffee
drinking is masked for smokers).

Case 4: 1f the contingency of the target factor conditional on the presence
of the established cause is positive, but the effect never occurs in the
absence of the established cause (therefore, the contingency conditional
on the absence of the established cause is zero), then the two factors will
be interpreted as interacting to produce the effect (see equation 2). Such
an interaction would exist if coffee drinking in combination with smoking
increased the risk of cancer for smokers, but had no effect on the probabil-
ity of cancer for nonsmokers.

One problem that complicates the test of conditional independence is
that the information required for computing the two conditional contin-
gencies is not always available. Recall that in the blocking paradigm a
novel cue R is paired with the outcome only when a predictive cue P is
also present. Table 12.1 gives a schematic representation of the typical
probability of the outcomes for the two cues. The P and R cell receives
no information, and the outcome always occurs when Iis present. Because
I"is known to have a positive contingency with respect to the outcome,
the status of R should be based on conditional contrasts. When the focal
set is restricted to events in which I" is present (the top row), R has a zero
contrast. When the focal set is restricted to events in which I is absent (the
bottom row), however, the contrast for R cannot be computed. Because this
cue is never presented in the absence of I in this paradigm, py, is unde-
fined due to division by zero. As Waldmann and Holyoak (1992) noted,
because the level of the effect produced by I is already at ceiling, it is

Table 121 Probability of the outcomes for cues I and R in the blocking paradigm

R R
P [ 4
E ]

b= a positive probability of the outcome
1= zero probability of the outcome
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impossible to determine whether the redundant cue R s a spurious cause
(case 2 above) or a genuine cause (case 3). Given that relevant information
is missing from the blocking design, subjects who adopt the criterion of
conditional independence will be uncertain about the predictive status of
the redundant cue, as opposed to being certain that this cue is not pre-
dictive, as implied by the R-W learning rule.’

It is important to note that there is an asymmetry between the informa-
tiveness of tests conditional on the absence vs. the presence of other causes:
the tests most likely to clearly rule out a target factor as an independent
excitatory cause are those based on the absence of conditionalizing cues.
In particular, finding a zero contingency conditional on the absence of
other causes clearly rules out a factor as an independent excitatory cause
(i.e, it is either spurious, as in case 2, or a component of an interaction
contrast, as in case 4), whereas finding a zero contingency conditional on
the presence of a known cause is inconclusive (the ta rget might be spuri-
ous, as in case 2, but it might instead be genuine, as in case 3). (This
interpretation excludes consideration of inhibitory causes, to which we
shall return.) Similarly, finding a positive contingency conditional on the
absence of other causes constitutes evidence that the cue is an independent
excitatory cause (for which case 1 or case 3 might obtain), but a positive
contingency conditional on the presence of a known cause could indicate
eithera genuine independent excitatory cause (as in case 1) or a component
of an interactive excitatory cause (as in case 4). Moreover, as noted earlier,
the main effect contrast for a candidate factor conditional on the absence
of alternative factors gives a better estimate of the causal power of that
factor than its contrast conditional on the presence of alternative factors.
The fact that tests conditional on the absence rather than the presence of
other causes are more informative is reflected in experimental design: if
only one type of conditionalizing test can be performed, scientists gener-
ally favor designs in which a target factor is manipulated while ensuring
that other known causes are absent rather than present. We therefore
assume that people will prefer to conditionalize each target factor on the
simultancous absence of all established or likely causes, because this is
the test that will be maximally informative,

The above analyses of the informativeness of conditional conlingency
tests apply in the case of possible excitatory causes, but not in that of
possible inhibitory causes. A test of a target factor in the absence of
all established causes cannot demonstrate that the factor is an inhibitor
because, unless some excitatory cause is operating, the impact of an inhibi-
tor will be obscured by a cellar effect. That is, if the outcome is not being
produced by some excitatory cause, an inhibitor cannot achieve a nonzero
contingency. We assume that, as a general principle based on a preference
for cognitive simplicity, a factor will not be deemed causal unless positive
evidence of a causal interpretation is obtained. Accordingly, the default
interpretation of a zero contingency is that the factor is noncausal (rather
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than inhibitory). This assumption is supported by the fact that simply
presenting a cue alone without reinforcement, while another cue pre-
sented alone is reinforced, generally does not vield strong conditioned
inhibition (Baker 1977). The former cue has a negative unconditional
contingency, but its contingency conditional on the presence of the latter
cue cannot be computed due to the lack of information on the frequency
of the effect when both cues are present. Thus for a candidate inhibitory
factor the most informative tests will involve computation of its contin-
gency conditional on the presence of a single excitor, coupled with the
absence of all other known causal factors. If there is more than one known
excitor, it will be desirable to perform separate tests for the candidate
factor conditional on the presence of each excitor in turn. If the candidate
vields a negative contingency conditional on the presence of an excitor,
it will be interpreted either as a main effect inhibitory cause or as a
component of an inhibitory interaction.

Conditioned Inhibition and “Indirect” Extinction of Associative
Strength

PCM can account both for the acquisition of conditioned inhibition and
for the failure to extinguish a conditioned inhibitor by presenting it alone
without the outcome. Table 12.2 schematically represents the typical prob-
ability of the outcomes for the two cues in the learning phase of the
conditioned inhibition paradigm. When P is presented alone, the outcome
occurs, but when Pand [ are presented in combination, the outcome does
not occur. No information is received about the P and | cell (the empty
one in the table) during the learning phases. Notice that the set of events
so far shows a negative conditional contrast for | conditional on the
presence of I ti.e., pjp < pip). Therefore, PCM predicts that | will become
inhibitory. Now consider an extinction phase in which [ is presented alone
without the outcome. The P and I cell will be filled in with the information
that the probability of the outcome in the presence of | alone is zero. This
information will have no im pact on the crucial conditional contingency—
that of Iin the presence of P—and hence will not vield extinction (Zimmer-
Hart and Rescorla 1972).

Table 12.2  I'robability of the outcomes in the learning phase of the conditioned inhiki-
hoen paradigm

+ = a positive probability of the outcome
1= zero probability of the outcome
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Inaddition to correctly predicting that inhibition cannot be extinguished
directly by presenting the inhibitory cue without reinforcement, PCM
can account for results demonstrating that conditioned inhibition can be
extinguished indirectly, by extinguishing the excitatory strength of the
cue with which the inhibitor had been paired (Kaplan and Hearst 1985;
Kasprow, Schachtman, and Miller 1987; Miller and Schachtman 1985). As
we explained, this counterintuitive finding contradicts the R-W model.
In this indirect extinction procedure, P rather than | is presented alone
without the outcome. Reducing the frequency of the outcome in the P
and I cell reduces the magnitude of the negative contrast for | conditional
onthe presence of P!, and hence diminishes the perceived inhibitory impact
of I (e.g., Miller and Schachtman 1985),

A Process Model for Assessing Conditional Dependence and
Independence

We have so far been describing contingency theory at the computational
level of analysis. Here we will describe an algorithmic instantiation of
the theory. This process model is based on PCM, with extensions to specify
which conditional contingencies are computed. Contingency analysis can
of course be evaluated independently of this particular instantiation, but
this model will serve to provide a detailed illustration of how contingency
theory might account for cue interactions.

A plausible psychological model of causal inference based on contin-
gency analysis must specify mechanisms that would allow people to
decide (a) what cues should be used to conditionalize others, (b) what
conditional tests to perform once a set of conditionalizing cues has been
selected, and (c) how to integrate the resulting contingency information
to make causal assessments of the cues. In situations in which there is no
guidance from prior knowledge, every cue is potentially causal. Given n
binary cues, exhaustively conditionalizing the contingencies for each tar-
get cue on every combination of the presence and absence of the other cues
requires computing 2" '+ n contingencies. Given processing limitations, it
is crucial to specify how people select which contingencies to compute.
It is also likely that many of the cue combinations that would be relevant
to a contingency analysis will never actually occur. Accordingly, it is
necessary to specify which contingencies will be computed in the face of
missing information.

Let us first consider the selection of conditionalizing cues. The ideal
set of conditionalizing cues will include all those and only those that are
actually causal. Given the limitations of knowledge, the best people can
da is to select as conditionalizing cues those they currently believe to be
plausible causes. In cases in which prior knowledge is relevant, such
knowledge will be used to establish certain cues as likely causes, and the
contingencies for other cues will then be conditionalized on the (perhaps
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tentatively) established causes. If such prior knowledge is lacking, people
may nonetheless use some heuristic criterion to select an initial set of
conditionalizing cues. A simple heuristic that might be employed is to
include any cue that is noticeably associated with the effect. That is, people
may follow the tacit rule: If the effect is likely to occur when the cue
occurs, tentatively assume that the cue may be causal. Contingencies are
not computed in this initial phase of selecting conditionalizing cues;
rather, people simply identify a pool of cues that have been paired with
the effect, which will be treated as an initial set of plausible causes. There
is some evidence of such an initial phase of cue selection based on posi-
tive associations. For example, Rescorla (1972) found that a cue that was
randomly paired with the outcome (i.e., one that was associated with
the outcome but noncontingent with it) appeared to initially acquire as-
sociative strength, which eventually disappeared after several sessions of
training. The association heuristic suggested here implies that this phase
implicitly ignores the possibility of cues’ being interactive or inhibitory
causes. The sole presence of an inhibitory cause, for example, will be
perceived as a lack of association.

Contingency assessment will occur in the subsequent phase, in which
people will compute the conditional contingencies of all cues based on
the set of conditionalizing cues identified in the initial phase. In Cheng
and Novick’s (1990) terminology, the set of conditionalizing cues defines
the focal sets for contingency computations. The initial set of conditionaliz-
ing cues can be dynamically updated if contingency assessments indicate
that cues that at first appeared to be plausible causes are in fact spurious
or that cues initially viewed as causally irrelevant are in fact causal. That
is, after conditional contrasts are calculated based on the initial set of
conditionalizing cues, these contrasts will be used to update that set of
cues. Cues in the set that have zero or low contrasts may be dropped,
and other cues outside the set that have noticeable positive or negative
contrasts may be added. Changes in the set of conditionalizing cues will
in turn change the relevant conditional contingencies for all cues, which
may alter subsequent causal assessments. The entire assessment process
will thus be iterative. If the values of the cues stabilize as the process
iterates, the process will return these values and stop. Otherwise, the
process will stop after an externally determined number of iterations.

In assessing conditional contingencies, heuristics will be required to
determine which tests (of those possible given the cue combinations that
are actually presented) should in fact be performed. We assume, based
on the arguments presented earlier, that people will prefer to condition-
alize the contingency for each target factor on the simultaneous absence
of all conditionalizing cues. If this is not possible, then they will try to
select a focal set in which as many conditionalizing cues are absent as
possible, while the rest of the conditionalizing cues are constantly present.
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In general, application of the contingency analysis will necessarily be
constrained by the information actually provided by observation.

In addition to specifying what cues are selected to form the condition-
alizing set and which conditional contingencies are computed, a process
model must specify a response mechanism that translates the calculated
contingencies into causal judgments. If all conditionalizing cues can be
kept either absent or present and there are no ceiling effects for excitatory
cues, the confidence associated with the contrast values based on these
focal sets will be relatively high. But if the experimental design omits
cases that would be relevant in assessing the conditional dependence or
independence of a target factor such that there are ceiling effects or some
of the conditionalizing cues cannot be kept constant, the confidence associ-
ated with the contrast values based on these focal sets will be relatively
low. In such experiments, if subjects are not given the choice of withhold-
ing judgment, they may base their causal assessments on a mixture of
the best available focal sets—for example, the unconditional as well as
the conditional contingencies for cues. Mean ratings over subjects may
therefore reflect some mixture of the evidence provided by conditional
and unconditional contingencies.

When subjects do not all use one and the same focal set to compute
contingencies, the mean causal judgment about a cue (averaged across
subjects in an experimental condition) should reflect some mixture of
assessments based on the multiple focal sets used. These may include the
universal focal set of all events in the experiment (i.e., unconditional
contingencies) and various more restricted focal sets (i.e., conditional
contingencies). The response mechanism must then account for how mul-
tiple contingencies are integrated. The clearest situation is that in which
the relevant unconditional and conditional contingencies for a factor are
all computable and equal to zero, in which case subjects should be certain
that the factor is noncausal. Beyond this limiting case, we make no claim
about the exact quantitative mapping between contingency values and
subjects’ responses. Our assumption is that subjects’” causal estimates will
increase monotonically with a nonnegatively weighted function of the
contingency values of their focal sets. Individual subjects may compute
and integrate multiple contingencies for a cue (e.g., by simple averaging).
Alternatively, each subject may use only one focal set, but different sub-
jects may use different focal sets, in which case the mean ratings may
mask distributions that are in fact multimodal. We will refer to the as-
sumption that causal ratings may be based on multiple contingencies
(calculated either by individual subjects or by different subjects) as the
“mixture-of-focal-sets” hypothesis. As we will see, this hypothesis helps
to explain circumstances in which partial rather than complete blocking
is observed.

Computing contingency conditional on the presence of an alternative
cause raises the problem of how an alternative cause that happens to be

Cheng and Holyoak

287

constantly present in the current focal set can be distinguished from an
enabling condition, To distinguish between them, Cheng and Novick
(1992) retined their definition of an enabling condition as follows. Let i
be a factor that is constantly present in the current focal set. Factor i is
an enabling condition for a cause j in that focal set if i covaries with the
cffect in another focal set and / no longer covaries with the effect in a
focal set in which 7 is constantly absent. In contrast, 1 is an alternative to
cause | if 1 covaries with the effect in another focal set and there exists a
focal set in which 1 is constantly absent, bul j continues to covary with
the effect in that set.

To summarize, our proposed process model assumes that subjects will
(a) identify as initial conditionalizing cues those that are noticeably associ-
ated with the effect; (h) compute contingencies for each target factor
conditional on the absence of as many conditionalizing cues as possible,
dynamically revising the set of conditionalizing cues in the process; and
then (c) use the computed conditional contingencies and /or unconditional
contingencies to produce causal assessments for the cues.

Interpreting Blocking, Partial Blocking, and Other Cue Interaction
Effects

We will now consider how generalized contingency theory, in particular
as implemented in the process model we have described, can account
for blocking, partial blocking, overshadowing, retroactive extinction of
overshadowing, and other cue-interaction effects.

Blocking and Partial Blocking

In the standard blocking design illustrated in table 12.1, the unconditional
contingency is higher for the predictive cue I than for the redundant cue
R (because the outcome sometimes occurs in the absence of R, but never
in the absence of P), although the contingency is positive for both, Thus
even subjects who compute contingency over the universal focal set would
be expected to show at least partial blocking (i.e., the higher response
strength for " than R, both strengths being positive). It is possible, how-
ever, to design an experiment in which unconditional contingency is held
constant for two cues, and yet their causal statuses differ. Such designs
have been used in classical conditioning experiments, as well as in experi-
ments on causality judgments by humans (Chapman and Robhins 1990,
experiment 1; Shanks 1991, experiment 2). The design used by Shanks is
schematized in table 12.3. After being presented with a series of “case
histories"
tious diseases), subjects were asked to rate how strongly they associated
each symptom with each disease using a 0-100 rating scale. In what
Shanks termed the “contingent’” set, the compound cue AB signaled the
presence of disease 1 (15 trials), but symptom C by itself did so as well

(patterns of patients’ symptoms associated with various ficti-
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Table 12.3 Conditions, trial types, number of trials, and percentage of correct diagnoses
for experiment 2 of Shanks (1991), (Adapted from Shanks 1991.)

Condition Trial type Trials % correct
"Contingent” C—m 15 100
AB — D1 15 LI
B0 15 94
“Noncontingent” DE — D2 15 100
E— D2 15 100
F—0 15 94

(15 trials). However, cue B by itself signaled the absence of the disease
(15 trials), as did the absence of A, B, and C (45 trials). In the “noncontin-
gent’ set, compound cue DE signaled the presence of disease 2 (15 trials),
as did the presence of cue E alone (15 trials). In contrast, cue F alone
signaled the absence of the disease (15 trials), as did the joint absence of
D, E, and F (45 trials).

The critical comparison is between the association rating given to symp-
tom A for disease 1 and the association rating given to symptom D for
disease 2. Although the contingency computed over the entire set of events
presented for both relations is .8 (see figure 12.1), the R-W model predicts
that, because D is paired with a better predictor, E, subjects should rate
D as less associated than the corresponding symptom A, which is paired
only with a nonpredictor, B. This difference was observed. In other words,
the rating given to a cue was reduced if a competing cue was a better
predictor of the relevant disease, even through unconditional contingency
was equated. But although subjects gave higher mean ratings to A than
to D (59 vs. 34, respectively), even cue D received modestly positive
ratings, whereas the R-W model predicts that at asymptote the strength
of the association between D and disease 2 should be 0 (see Melz et al.
1993). Shanks’s experiment is representative of several other cases in
which human subjects show only partial blocking rather than complete
blocking as the R-W model would predict (e.g,, Chapman and Robbins
1990; Shanks and Dickinson 1987; Waldmann and Holyoak 1992).

A contingency analysis of this and another cue competition experiment
by Shanks is provided by Melz and co-workers (1993). Figure 12.1 illus-
trates the computation of contingencies for the cues crucial for compari-
son, A in the “contingent” set and D in the “noncontingent’” set. As
shown in the figure, the unconditional contingency (i.e., the contingency
computed over the universal set of all events) is .8 for critical cue A with
respect to disease 1, as is that for cue D with respect to disease 2, To test
conditional independence of these cues with respect to the particular
disease, we apply the process model described above. With respect to
disease 1 (see the left half of figure 12.1), only cues A, B, and C will be
identified as initial conditionalizing cues, because these are the only cues
that are ever accompanied by disease 1. Cue B has a contingency of 0 in
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Focal Sets for Cue D with
Respect (o Disease 2

Focal Sets for Cue A with
Aespect lo Disease 1

Proportion of Proportion of
Cases with Cases with
Cue Disease 1 Cue Disease 2
ABCDEF {out of 15) ABCDEF {out of 15)
0o0+000 15/15 00D+ 000 0/15
0000 15151 t+ 0000 0/15
Trial 0+ 0D0DD0DO 015, 0+ 0000 o1s
Type | 000+ 40 015! 0000 1515
000040 018, 00 00+0 15/151
00000+ 015 00000 ons
Contingency for Cue A! Contingency for Cug D
Universal sel Universal set
15/15 - 15/75= 8 15/15 — 15/75=.8
Focal set in which cue C is absent Focal set in which cue E is present
1515  0B0=10 16/156 - 15116=0

Note. Letters A to F denote cues. Salid-line rectangles indicate universal local sels; dashed-line
rectangles indicate conditional focal sets. Large bold letters denote the crucial cues for
comparison

Figure 12.1 Potential focal sets in Shanks's (1991) experiment 2 (From Melz et al. 1993 )
Note: Letters A to F denote cues. Solid-line rectangles indicate universal focal sets; dashed-
line rectangles indicate conditional focal sets. Large bold letters denote the crucial cues
for comparison,

the focal set, from which both A and C are absent (rows 3-6). Cue C has
a conditional contingency of 1.0 in the focal set, from which cues A and
B are both absent (rows 1 and 4-6). Fach of the remaining cues (D, E,
and F) has a conditional contingency of (1 in the focal set, from which all
conditionalizing cues (A, B and C) are absent (rows 4-6).

The contingency for cue A conditional on the absence of both B and C
cannot be computed, because A does not occur in the absence of B.
However, A has a contingency of 1.0 in the focal set, in which B is
present and C is absent (rows 2-3). From the first iteration of conditional
contingency assessment, it follows that B will be assessed as noncausal
and be dropped from the set of conditionalizing cues, so that only A and
C will remain as conditionalizing cues. The relevant contingency for A
then becomes that which is conditional on the absence of C (rows 2-6,
enclosed by a dashed rectangle in the illustration) and has a value of 1.0,
This is equal to the value of the relevant conditional contingency obtained
for A in the previous iteration. As is the case for A, none of the values
of the relevant conditional contingencies for any of the other cues change
as a result of dropping B from the conditionalizing set,

For disease 2 (see the right half of figure 12.1), cues D and E will be
selected as conditionalizing cues. Because D never occurs in the absence
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of E, its contingency can be calculated conditional only on the presence
of E. For this focal set (enclosed by the dashed rectangle in the illustration),
the conditional contingency for D with respect to disease 2 is 0. The
difference between the computed contingency for cue A with respect to
disease 1 (1.0) and that for cue D with respect to disease 2 (0) provides
an explanation for cue competition—the lower ratings given to D than
to A. In addition, cue E has a contingency of 1.0 conditional on the absence
of D (rows 1-3 and 5-6 in the right half of figure 12.1). All other cues
have a contingency of 0 with respect to disease 2 in the absence of cues
> and E.

Now consider how partial blocking might arise. As we mentioned, the
R-W model predicts that associative learning of a novel cue in the blocking
paradigm will be completely blocked at asymptote; yetall available empir-
ical results regarding humans show that blocking is not complete. The
above contingency of 0 for cue D was conditional on the presence of cue
E. However, in the presence of E the effect always occurs. Since it was
not possible to conditionalize the contingency for D on the absence of E,
subjects should be uncertain of the interpretation of the contingency value
of 0. Accordingly, at least some subjects may assess the unconditional
contingency for D (i.e., over the universal set of events), which is 0.8.
Assuming that subjects’ causal ratings reflect a mixture (either within
individual subjects or across subjects) of these two contingencies, D will
receive a relatively low but positive mean rating. That is, it will be partially
blocked. Moreover, the prediction of cue competition remains, since the
contingency for A (1.0} is still higher than the mixture of the contingencies
for D (0.8 and 0). In sum, for situations in which there is no focal set that
allows an unambiguous interpretation, if there is a mixture of focal sets
either within subjects or across subjects, contingency theory predicts par-
tial blocking in addition to cue competition.

Overshadowing and Retroactive Reduction of Overshadowing
A similar contingency interpretation can be provided for experiments that
have demonstrated that a salient predictive cue acquires greater strength
than a less salient cue that is perfectly correlated with it (i.e., the salient
cue overshadows the less salient cue) and that extinguishing the salient
competing predictor can increase the excitatory power of the previously
overshadowed cue (Kaufman and Bolles 1981; Matzel, Schachtman, and
Miller 1985).°

When two cues are perfectly correlated with each other, the association
of the salient cue with the outcome is likely to be noticed earlier than the
association of the less salient cue. Accordingly, the former cue will be
selected earlier than the latter as a conditionalizing cue. It follows that
the subject will initially attempt to conditionalize the contingency of the
nonsalient or “pallid” cue on the state of the salient cue, but not vice
versa. But due to the absence of information in this design regarding the
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occurrence of the outcome in the presence of one cue and the absence of
the other cue, neither of the relevant contingencies for the pallid cue (ie,,
those conditional on the presence and on the absence of the salient cue)
can be computed. Accordingly, the subject will be uncertain about the
causal status of the pallid cue during this phase. Meanwhile, given the
positive unconditional contingency of the salient cue with respect to
the outcome, this cue will be judged causal. Hence, it will be confirmed
as a conditionalizing cue for computing the contingency of the pallid cue,
whereas the pallid cue may never acquire that status with respect to the
salient cue. In the phase that ensues in a retroactive paradigm, however,
the salient cue is presented alone (and it is not followed by the outcome).
Information then becomes available for computing the contingency of the
pallid cue conditional on the presence of the salient cue. The resulting
positive value of this conditional contingency predicts the increased causal
strength of the pallid cue.”

Direction of Causality

The above analyses of Shanks’s results assume that subjects based their
inferences on calculations that were in turn based on probabilities of
diseases conditional on the various symptoms. This seems likely for at
least some subjects in view of the instructions and the learning procedure.,
The instructions did not make it clear, for example, whether a disease
name referred to the cause of the associated symptoms or was simply a
label for them. However, if the causal direction is made salient to subjects,
then the predictions of the R-W versus contingency approaches are very
different indeed. The R-W model, although often interpreted as an account
of causal induction, does not in fact draw any distinction between a
context in which cues are interpreted as possible causes of an effect (the
typical situation involving predictive learning) and a context in which cues
are interpreted as possible effects of a common cause (diagnostic learning).
Diagnostic tasks require reasoning in a backward causal direction (e.g.,
from symptoms, which are effects, to underlying diseases, which are
interpreted as causes of the symptoms).

Waldmann and Holyoak (1992) have shown that the degree of cue
competition is radically different depending on whether people interpret
the cues as the causes of an effect to be predicted or as the effects of a
cause to be diagnosed. In their experiment 3, Waldmann and Holyoak
exposed subjects to a series of trials in which states of previously unfamil-
1ar cues (buttons connected to an alarm system) were paired with states
of the alarm system. Each button had two settings, on and off, as did the
alarm system. Subjects in a predictive condition were told that pressing
one or more buttons would cause the alarm to go on. In this condition
the states of the buttons were thus characterized as possible causes, and
the states of the alarm svstem were characterized as possible effects. In
contrast, subjects in a diagnostic condition were told that one or more of
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the buttons signaled whether the alarm system was on. Notice that the
direction of causality was reversed in this cover story relative to that in
the cover story for the predictive condition. As in the predictive condition,
however, subjects saw only the state of the buttons. They had to respond
by predicting the state of the alarm, and then they received feedback as
to the actual state of the alarm. The cues presented and the responses
required were thus equated across the conditions,

The experimental design in both conditions included two phases cor-
responding to a standard blocking paradigm. Phase 1 established a certain
button (P) as a perfect predictor of the state of the alarm. A second button
(C) was constantly set to the value off, and a third button (U) varied in
a fashion that was uncorrelated with the state of the alarm. Phase 2
maintained these same contingencies, but also added a fourth button (R)
that was always on when P was on and off when P was off. Thus, if
subjects learned to predict the state of the alarm from the states of the
buttons according to the R-W rule, in both conditions learning should
have have been blocked in phase 2 for button R by the associative strength
that would already have accrued to button I in phase 1.

After each phase of the design, subjects in both conditions rated the
degree to which the state of each button was predictive of the state of
the alarm using a scale from 0 to 10, where 10 indicated that the cue was
a perfect predictor and 0 indicated that the cue was not a predictor. As
would be expected on the basis of both contingency theory and the R-W
model, the ratings obtained after phase 1 (panel A of figure 12.2) indicated
that in both the predictive and diagnostic conditions button P was estab-
lished as a strong predictor of the state of the alarm, whereas both cues
C and R were rated as very weak predictors.

The most important findings involve the predictiveness ratings obtained
after phase 2 of the experiment (panel B of figure 12.2). According to the
R-W model, the associative strength acquired for the redundant button
R should have approached 0 in both the predictive and diagnostic condi-
tions (as should also have happened for the noncontingent buttons C and
U). That is, associative learning for cue R should have been entirely
blocked by the prior strength of cue P. However, a very different predic-
tion follows from causal contingencies. If people tend to compute contin-
gencies from causes to effects rather than from effects to causes—even
when the causal direction is opposite to the order of cue-outcome presenta-
tion—then contingency theory predicts that no blocking will be observed
in the diagnostic condition. In the diagnostic context the redundant cue,
button R, is not an alternative possible cause, the contingency of which
should be conditionalized on the status of the established predictor, button
P; rather, the state of R is simply a second possible effect of the same
cause. If alternative effects, unlike alternative causes, are given separate
contingency analyses, then no cue competition should be observed. And
indeed, Waldmann and Holyoak found that, while button P was rated
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Figure 122 Mean predictiveness ratings for predictive and diagnostic conditions obtained
in phase 1 (panel A) and phase 2 (panel BY of Waldmann and Holyoak's experiment 3 for
the initial predictive cue (P), the redundant predictive cue (R), the constant uncorrelated
cue (C), and the varying uncorrelated cue (U). (From Waldmann and Holvoak 1992
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higher than button R in the predictive condition (9.7 and 4.3, respectively),
in the diagnostic condition buttons I’ and R were given high and statisti-
cally equal ratings (9.6 and 8.7, respectively). This interaction between
causal direction and the difference in the mean ratings for buttons I and
R was highly significant. In addition, the results indicated that, even in
the predictive condition, blocking for button R was only partial: the rating
for cue R was significantly higher than the ratings for the noncontingent
cues C and U. The latter finding is consistent with other evidence that
blocking is only partial in human causal induction, as we discussed earlier.

In sum, evidence from studies of human causal induction using para-
digms formally similar to blocking studies in animal conditioning has
revealed phenomena that are inconsistent with the predictions of the
R-W model, but interpretable in terms of a contingency theury such as
PCM.

UNDERSTANDING FAILURES OF THE R-W MODEL FROM A
CONTINGENCY PERSPECTIVE

Qur analysis indicates that contingency theory, as generalized by PCM
to apply to various focal sets, including ones for computing conditional
contrasts, can account for a wide range of phenomena that are obtained
in studies of animal conditioning and human causal induction—not only
those that are explained by the R-W model, but also those that are problem-
atic for that model. In addition, our process model makes a number of
predictions that have yet to be tested. For example, this model predicts
when the causal status of a cue can be uncertain and when the distribution
of judgments regarding a cue can be multimodal.

One of the primary attractions of the R-W model is the apparent simplic-
ity and generality of its learning algorithm. However, the simplicity of
the model can be questioned (Gallistel 1990); and whether or not it is
simple, its wide range of empirical shortcomings indicates that it is sim-
plistic. [t may be instructive to consider when and why the R-W model fails
to account for phenomena concerning conditioning and causal induction.

First, the R-W model does not represent cause-absent information—in
particular, the proportion of trials on which the outcome occurs in the
absence of a cue. To understand why the lack of representation of the
cause-absent proportion is a weakness, let us first consider the reason for
the model’s successes. On the basis of interaction among cues that are
defined solely in terms of their presence, the model is able to account for
a number of apparent effects of cause-absent information: it accounts
for the role of contingency (Rescorla 1968), the acquisition of conditioned
inhibition (e.g., Chapman and Robbins 1990), blocking (e.g., Rescorla 1981),
and other cue interaction effects (e.g., Wagner et al. 1968), In each of these
cases, two or more cues that had an identical cause-present proportion, but
a different conditional or unconditional cause-absent proportion, have been
observed to elicil different behavior, as predicted by the model.
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Two properties of the model allow it to arrive at these predictions,
First, the model indirectly tallies the cause-absent proportion with respect
to a target cue in terms of the cause-present proportion of one or more
other cues that are present when the larget cue is absent; these surrogate
cues therefore acquire weights that reflect the cause-absent proportion of
the target cue. In some applications of the model, the surrogate cue is
one that represents the context, which is constantly present (and hence
is present on occasions when the target cue is absent), Second, on trials
when the two cues are both present, the strength of the target cue is
adjusted toward the difference between the cause-present proportion of
the target cue and the cause-present proportion of the surrogate cues
(i.e., the cause-absent proportion of the target cue), potentially yielding
contingency as the asymptotic output. In sum, R-W relies on the pairing
of cues to transmit the indirectly tallied cause-absent proportion,

Cheng and Novick (1995) present a derivation of when the R-W model
does and does not compute conditional contingencies at asymptote. Their
analysis shows that it does so for a type of design with multiple cues in
which every combination of cues except the one with a single cue can be
characterized as a proper superset of all sets with fewer cues (i.e., the cue
combinations are nested). In such designs, the strengths of the cues in
each combination sum to the relative frequency of the outcome for that
combination, implying that, for any combination with multiple cues, the
strength of the cue in it that does not belong to the next smaller combina-
tion is equal to the contingency of that cue conditional on the presence
of the cues in the smaller combination (i.e., the rest of the cues in the
larger combination),

Cheng and Novick (1995) also present a derivation of the conditions
under which conditional contingencies estimate the causal power of a
cue. Their analysis of the R-W model and of conditional conlingencies
shows that in some nested designs the conditional contingencies com-
puted by the R-W model give an estimate of causal power, whereas in
others the conditional contingencies computed by this model do not give
such an estimate. Those situations in which the R-W model estimates
causal power include those represented by Kamin's (1969) blocking de-
sign, unconditional contingency (Rescorla 1968), and the acquisition of
conditioned inhibition. In these situations, the R-W model is successful
in predicting the observed results (see Cheng and Novick 1995, however,
for an explanation of the partial success of the R-W model in predicting
the amount of blocking), Those designs in which the R-W model does
not estimate causal power include the extinction of conditioned inhibition,
retroactive unblocking, and the retroactive reduction of overshadowing
(see Miller and Matzel 1988). In these situations, the R-W model fails to
predict the observed results.

A second problem with the R-W model is that the causal or conditioning,
strength of a cue with respect to an effect is represented by a single
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parameter—the associative strength of the link between the cue and the
outcome. The model therefore loses information about sample size, lead-
ing to its failure to account for learned irrelevance and, more generally,
people’s sensitivity to reliability as a function of sample size (Koslowski
et al. 1989; Nisbett et al. 1983). Moreover, the R-W model does not offer
any way to represent the difference between lack of certainty about a
causal association and high certainty that such an association has some
medium strength. In contrast, the outcome of a contingency analysis can
include not only a definite evaluation of the causal status of a cue, but
also uncertainty about its status. Uncertainty naturally falls out of PCM
when a relevant contingency is not computable, as in the case of the
redundant cue in the blocking paradigm.

For the same reason, the R-W model cannot account for causal assess-
ments that result from comparing the distinct causal status that a cue has
in different focal sets. In particular, the R-W model cannot represent the
distinction between a cause and an enabling condition or that between
an enabling condition and a causally irrelevant cue. This deficit arises
because the status of an enabling condition results from the cue’s being
causalin one focal setand having a noncomputable contingency in another
focal set.

This last point brings up the related problem of the need to specify
(potentially multiple) focal sets. Our explanations of enabling conditions
and of partial blocking provide examples of the use of such an assumption.
One might ask, Will the R-W model be able to explain these phenomena
if it is amended with the assumption of computation over multiple focal
sets? With respect to blocking (see table 12.1), R-W predicts that a redun-
dant cue, R, should have zero associative strength regardless of which
focal set is adopted. For none of the focal sets that arise in a contingency
analysis is there ever a discrepancy between the expected outcomes based
on R-W and the target outcomes for any trial on which R is present.
(See the appendix for derivations of the asymptotic weights of the cues
assuming various focal sets.) Considering either the focal set in which
the predictive cue is always present (i.e., the top row in Table 12.1) or
the universal focal set (i.e., the entire table), the outcome is completely
predicted by P. Considering the focal set in which the predictive cue is
always absent (i.e., the bottom row), R is never present. Therefore, the
strength of R is never revised from zero. In sum, even when amended
with the concept of a focal set, the R-W model, unlike our process model,
cannot predict the partial blocking of R. Nor can it predict a possible
multimodal distribution of judgments regarding R. With respect to the
status of an enabling condition, because the R-W model does yield a
definite value of strength for a constant cue, it cannot yield the uncertainty
that leads to the reliance on the status of the cue in another focal set.
Even if the model is applied to a focal set in which the cue is constant
and another in which it varies, the result will be two strengths for that
cue. Itis not clear how this result (i.e., an enabling condition represented
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by two strengths) can be distinguished from that involving a cause that
has different strengths in different focal sets.

Finally, the R-W model does not provide any way to distinguish the
case in which cues are possible causes (predictive learning) from that in
which cues are possible effects (diagnostic learning). That is, cues and
outcomes are defined with respect to their roles as stimuli presented vs.
responses made rather than with respect to their conceptual roles as causes
or effects. However, a cause can be either a stimulus or a response (as
can an effect). As a result, the R-W model is unable to explain interactions
between perceived causal direction and cue competition (Waldmann and
Holyoak 1992),

It is not obvious to us that any of the above shortcomings of the R-W
model can be readily amended. Contingency theory provides a basis for
formulating alternative models of how natural adaptive systems operate
as intuitive statisticians.

APPENDIX: ASYMPTOTIC WEIGHTS OF A NETWORK WITH A
BLOCKING DESIGN OBTAINED BY APPLYING THE R-W MODEL TO

VARIOUS FOCAL SETS

We show that amending the R-W model with the same assumptions
regarding focal sets as those made by contingency theory does not change
its prediction of complete blocking.

Deriving Asymptotic Weights

Because our derivation is based on asymptotic weights, we first describe
a method for deriving such weights. To obtain the asymptotic weights of
a network according to the R-W model, we note the equivalence between
the R-W learning rule and the least-mean-squares (LMS) rule of Widrow
and Hoff (1960) (cf. Sutton and Barto 1981). The Rescorla-Wagner/Wi-
drow-Hoff rule implements an iterative algorithm for computing the solu-
tion to a set of linear equations defined by the set of stimulus-response
patterns presented to the network. A pattern is a configuration of stimuli
and responses deterministically describing a set of trials. If the input
stimulus patterns are linearly independent, then the updating rule will
discover a unique solution. Even if the stimulus patterns are not linearly
independent, the network will still converge provided that the learning
rate is sufficiently small and that the various stimulus patterns occur with
sufficient frequency in the input sequence. The network will converge so
as to minimize the sum of the squared errors over the stimulus patterns.
That is, the equation

E=2 mu| A~ ZVy “)
G T
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will be minimized, where p is the index for a particular stimulus-response
pattern, m, is the frequency of pattern p, ¢, is the learning rate associated
with pattern p (B, and v, respectively, for the presence and the absence of
outcome j), A, is the desired output for the outcome of the pattern (usually
either 0 or 1), and

Sy

is the actual output for the pattern, which is equal to the sum of the
weights V, associated with every present cue i for the pattern. If the
reinforcement learning rate 8, is equal to the nonreinforcement learning
rate , the ¢ term may be omitted from the equation. We assume that
the learning rates 8 and y are equal in the rest of this chapter. Thus the
asymptotic weights of a network according to the R-W model can be
calculated analytically by minimizing the sum of the squared errors given
by equation 4. This minimum value may be obtained by setting the partial
derivatives with respect to each weight to 0 and sol ving the resulting set
of equations.

A Predictive Cue and a Redundant Cue

First, consider the network corresponding to the design summarized by
table 12.1. There are three patterns of trials: When P and R are both
present, the outcome always occurs; when P is present and R is absent,
the outcome also always occurs; but when P and R are both absent, the
outcome never occurs. Because the m, and v, terms do not affect our result,
for simplicity of exposition we assume that the three patterns occur with
equal frequency and that the learning rates for the various patterns are
equal, so that we omit m, and v, from equation 4. Applying the equation
to all events in the table (the universal focal set),

E=[1—(Vp + VRIF + (1 — V).

We see that E will have its lowest value when Ve+ Ve=1land V, = 1.
Therefore, the asymptotic solution for this network is V, = 1 and Vi =
0. That s, the redundant cue R is completely blocked. Note that the pattern
involving the joint absence of P and R does not lead to any error terms,
because no cue is present. Therefore, applying the R-W model to the focal
set consisting of trials in which P is always present yields the same
asymptotic solution for V, and V.

Adding a Constant Context Cue

Applications of the R-W model often assume that there is a constantly
present context cue, K. The error for the universal set is then

E=11—(Vpt Vi + VP +[1 = (Vo + VIF + (0 - V2
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We see that E will have its lowest value when Vi = 0, Vo = 1, and Vy =
0. That is, R is completely blocked. If we adopt the focal set consisting
of trials on which P is constantly present, we drop the third error term
above, obtaining

E=[1-(Vp+ Vy— VPR + 1 (Vi + VI

By inspection, E will be at a minimum when

Vit Ve+ V=1 (5)
VioVy =1 (6)

There is no unique solution of V, and Vi in this case. But subtracring
equation 6 from equation 5 vields the solution Vy = 0, Thus R is completely
blocked in this as well as in all of the above networks,
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1. This definition of a twa-way interaction contrast differs from the one proposed by Cheng
and Novick (1990), which does not contain the product terms and is therefore less normative.

2. What is referred 1o here as the “universal set” is actually the pragmatically restricted
set of events that vccur in the conditioning experiment (i.0, a small subset of the “truly”
universal set of all events known to the subject). This contextual delimitation of the largest
relevant focal set implies that even the cases in the “cause-and-effect-both-absent™ coll are
restricted Lo a small finite number,

3 When there are multiple known causes, assessing the status of a potential causal factor
normatively requires computing its contingencies while exhaustively conditionalizing on
every combination of the presence and absence of the other cues. We do niot mean to imply
that a test of conditional independence is the only process for differentiating between

genuine and spurious causes (Lien and Cheng 1992),

4. The prediction of uncertainty does not generalize Lo situations in which the representation
of the target phenomenon does not have a maximum value, as dogs the probability of
a phenomaenon

5. Because the critical cues in Shanks's “nonconti

Weonditions” were contingent Iy related
to the respective diseases by the conventional d nition, the labels for his stimulus sets in
experiments | and 2—"contingent condition” and Inoncontingent condition”— do pot

conform to conventional usage

6. It should be noted, however, that analogous conditioning experiments with animals that
attempted to find indirect effects of increasing (rather than decreasing) the excitation of a
previously paired cue have failed o obtain such effects (see Miller and Matzel 1988),
However, “retroactive blocking” —reduction in the causal value of one cue as a result of
increasing the apparent predictiveness of another cue with which it had been previously
paired—has been observed in studies W cavsal induction by humans (Chapman 1991; Shanks
1985). These effects, however, hayve been relatively small in magnitude
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7. Consideration of the unconditional contingency for the pallid cue yields the same predic-
tion. As the salient cue becomes extinguished, it no longer maintains its conditionalizing
status. The positive unconditional contingency of the pallid cue then becomes interpretable
as evidence that the latter is in fact causal,
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