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Covariation in Natural Causal Induction
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The covariation component of everyday causal inference has been depicted, in both cognitive and
social psychology as well as in philosophy, as heterogeneous and prone to biases. The models and
biases discussed in these domains are analyzed with respect to focal sets: contextually determined
sets of events over which covariation is computed. Moreover, these models are compared to our
probabilistic contrast model, which specifies causes as first and higher order contrasts computed
over events in a focal set. Contrary to the previous depiction of covariation computation, the
present assessment indicates that a single normative mechanism—the computation of probabilis-
tic contrasts—underlies this essential component of natural causal induction both in everyday and

in scientific situations.

We do not perceive the visual world as a two-dimensional
mosaic of bits of light patches. Instead, these data from the
retina are processed by our central visual system to yield a
coherent perception of the world, reflecting its visual and spa-
tial structures. Similarly, we do not perceive our lives or the
world beyond as a stream of unconnected elemental events.
Here, too, central processes act on the data to yield an orga-
nized view, structured in terms of commonsensical and scien-
tific theories. Causal induction is an example of such organiz-
ing processes. When a government resorts to violent suppres-
sion of its people or yields to peaceful reform, when a couple
decides to date or a marriage breaks up, or when an epidemic
strikes or a new vaccine controls it, we seek out causes.

How do ordinary people induce the causes of events? More-
over, given that the primary goals of causal induction are the
recovery of the causal structure of the world and the prediction
of future events, is the mechanism underlying natural causal
induction adequate for satisfying these goals? Covariation—the
change in the probability of an effect given the presence versus
the absence of a potential cause—has generally been regarded
as a necessary (although insufficient) criterion of normative
causal induction.! The computation of covariation has gener-
ated a considerable body of research in the cognitive and social
literatures, both of which have presented rather messy pictures
of the psychological mechanism. These literatures suggest that
the covariation component in natural causal induction is non-
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normative in many ways. Deviation from normative covaria-
tion has also received considerable attention in philosophy. In
this article, we evaluate the biases and models discussed in
these three domains with respect to focal sets: contextually se-
lected sets of events over which covariation is computed. More-
over, we compare these models to our probabilistic contrast
model (Cheng & Novick, 1990a, 1990b, 1991).

Deviations From Normative Covariation
Linear-Combination Heuristics

Cognitive psychologists have described a variety of nonnor-
mative heuristics based on linear combinations of the frequen-
cies of the four cells of a 2 X 2 contingency table formed by
crossing the presence and absence of a potential cause with the
presence and absence of a target effect (e.g., Arkes & Harkness,
1983; Downing, Sternberg, & Ross, 1985; Einhorn & Hogarth,
1986; Jenkins & Ward, 1965; Schustack & Sternberg, 1981;
Shaklee, 1983). Arkes and Harkness (1983) reported that their
subjects used a variety of heuristics depending on task charac-
teristics. They concluded that “a search for the heuristic that
people use will be a futile search” (p. 132). Similarly, Shaklee
and Tucker (1980, p. 466) concluded that “the variety of rules
evident in our results indicates that characterization of group
judgment by any single rule would be inappropriate” Other
researchers concluded that normal people untrained in statis-
tics typically do not have any concept corresponding to statisti-
cal contingency or contrast (Jenkins & Ward, 1965; Smedslund,
1963; Ward & Jenkins, 1965), the putatively normative basis of

! Even when adaptive learning apparently occurs on the basis of a
single trial, covariation of the cause and the effect exists. For example,
assuming that rats learn to avoid a new-tasting food after a single inges-
tion of that food is followed by gastrointestinal illness, the probability
of the effect (gastrointestinal iliness) in the presence of the potential
causal factor (the new-tasting food) is |, whereas the probability of the
effect in its absence (based on prior experience) is presumably substan-
tially less than 1. There is, therefore, a positive covariation between the
events.
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the concept of covariation (e.g., see Alloy & Abramson, 1979;
Jenkins & Ward, 1965; Rescorla, 1968; Salmon, 1984; Skyrms,
1986).

Kelleys Analysis of Variance Model

The causal attribution literature in social psychology has
largely measured performance against an apparently different
normative standard: namely, variations of Kelley’s (1967,1973)
influential proposal that people are “intuitive scientists” who
use a mechanism of causal induction analogous to the analysis
of variance (ANOVA) (Cheng & Novick, 1990a; Forsterling,
1989; Hewstone & Jaspars, 1987; Hilton, 1988, 1990; Jaspars,
1983; Orvis, Cunningham, & Kelley, 1975; Pruitt & Insko,
1980). This literature has, until recently, presented a chaotic
picture of causal induction not unlike that in cognitive psychol-
ogy: Causal induction sometimes conforms to the normative
standard but often deviates from it. Such deviations include a
bias against using consensus information (which has been re-
garded as a tendency to ignore base-rate information), a bias
toward attributing effects to a person, a tendency for actors and
observers to make different causal attributions for the same
event, and a tendency to make a variety of unpredicted attribu-
tions to conjunctions of factors (for reviews, see Cheng & No-
vick, 1990a; Jaspars, Hewstone, & Fincham, 1983; Kelley &
Michela, 1980; Nisbett & Ross, 1980).

Causes, Enabling Conditions, and Causally Irrelevant
Factors

A deviation from normative covariation that has received
considerable attention in philosophy and related fields con-
cerns the intuitive distinction people make between causes and
enabling conditions (e.g., Einhorn & Hogarth, 1986; Hart &
Honoré, 1959/1985; Hesslow, 1983, 1988; Hilton, 1990; Kahne-
man & Miller, 1986; Mackie, 1965,1974; Mill, 1843/1973; Tay-
for, 1983; White, 1965). In response to the question “What
caused the airplane to crash?” investigators are unlikely to reply,
“The gravitational pull of the earth.” Rather, they are likely to
reserve the title of “cause” for factors such as the malfunction-
ing of a critical component of the aircraft, pilot error, or wind
shear. Gravity, they might say, was merely a condition that en-
abled the crash to occur. In contrast to all of these factors, which
an investigator would (or could) perceive as causally relevant,
the color of the airplane seats or the number of infants on
board, for example, would be perceived as causally irrelevant.

It has long been recognized that the distinction between
causes and enabling conditions cannot be explained by ac-
counts of inference formulated purely in terms of necessary and
sufficient conditions. Mill (1843/1973, p. 329), for example,
thought that everyday explanation diverged from scientific ex-
planation in the “capricious manner in which we select from
among the conditions which we choose to denominate the
cause” Consider a particular airplane crash for which the mal-
functioning of the airplane’s guidance system and gravity were
necessary factors. These two factors hold the same logical rela-
tionship to the effect in terms of necessity and sufficiency: The
crash would not have occurred either if the component had not
malfunctioned or if there had been no gravity; moreover, the

malfunctioning of the component and gravity, along with other
necessary factors such as the failure of a backup system, were
jointly sufficient to have produced that crash.?

To compound the puzziement, the perception of what is a
cause or an enabling condition may vary depending on context.
For example, Hart and Honoré (1959/1985, p. 35) noted that
the presence of oxygen typically would be considered an en-
abling condition rather than the cause of a fire; the cause might
be an event such as the dropping of a lighted cigarette. How-
ever, “if a fire breaks out in a laboratory or in a factory, where
special precautions are taken to exclude oxygen during part of
an experiment or manufacturing process . . . there would be
no absurdity at all in such a case in saying that the presence of
oxygen was the cause of the fire”

To make sense of the distinction between causes and en-
abling conditions, a number of theorists argued that a causal
question invariably implies comparisons among a selected set
of events (Einhorn & Hogarth, 1986; Hart & Honoré, 1959/
1985; Hastie, 1983; Hesslow, 1983, 1988; Hilton, 1990; Kahne-
man & Miller, 1986; Mackie, 1965, 1974; McGill, 1989).
McGill (1989, p. 189), for example, hypothesized that “individ-
uals structure the to-be-explained event as the difference or
deviation between a target episode and a contrasting causal
background.” On this view, a question such as “What caused
the forest to be on fire?” can be understood as, “What made the
difference between this occasion in the forest on which there
was a fire and other occasions in the forest on which there was
no fire?” Note that the selected set of events is often only a
subset of the events related to an effect. The expanded question,
for example, does not include all events in one’s knowledge base
that are related to fires: It does not include events in which
oxygen is absent, for instance, even though such events (at least
in an abstract form) are in a typical educated adult’s knowledge
base. On this view, shifts in the perception of an event as a cause
or an enabling condition are due to the adoption of different
contrasting causal backgrounds (ie., focal sets in our termi-
nology).

Overview

Our probabilistic contrast model may be regarded as a modi-
fication of Kelley’s (1967) analogy between causal induction
and the ANOVA or as an extension of the contingency rule
discussed in the cognitive psychology, animal conditioning,
and philosophy literatures (e.g., Jenkins & Ward, 1965; Re-
scorla, 1968; Salmon, 1984). Extending these models by anal-

2 For types of effects rather than particular instances of an effect,
the logical relationship between a factor and the effect is more compli-
cated, because there are often alternative ways of producing a type of
effect (e.g., there are multiple ways of producing forest fires). Develop-
ing Mill’s ideas, the philosopher Mackie (1965, 1974) proposed that an
individual condition (e.g., lightning) is an insufficient but necessary
part of an ynnecessary but sufficient (INUS) conjunctive set of factors
{e.g., lightning, the presence of combustible material, and the presence
of oxygen) making up a cause of a type of effect (.., forest fire). Al-
though more complicated in the case of types rather than instances of
effects, the logical relation between an individual condition and the
effect remains equivaient for all conditions in the set.



NATURAL CAUSAL INDUCTION 367

ogy to statistical contrasts, our model proposes that everyday
causal inference is based on contrasts (i.e., differences or differ-
ences between differences) between the probability of the effect
conditional on the presence versus the absence of (single or
multiple) potential causal factors. These contrasts are com-
puted for selected factors in a focal set.

The question we address is this: Considering a focal set for
selected discrete variables describing the event to be explained,
what do ordinary people compute to induce the causes of an
event? In this article, we first review our model and its explana-
tion of the distinction among causes, enabling conditions, and
causally irrelevant factors (Cheng & Novick, 1991). In this sec-
tion, we also derive Kelley’s (1971) discounting principle as a
corollary of our model. Second, we review our explanation of
the myriad well-documented deviations from Kelley’s ANOVA
model. To support our explanations, we (@) review two experi-
ments that test our reinterpretations of many of the biases re-
ported in the social psychology literature (Cheng & Novick,
1990a; Novick, Fratianne, & Cheng, 1991) and (b) extend our
reinterpretation to reported biases based on different para-
digms in that literature. We end the first two parts with a dis-
cussion of the theoretical implications of the constraints im-
posed by a consideration of phenomena observed in philo-
sophy and social psychology for previous theories in these
domains. Third, we present a theoretical refutation, in view of
such constraints, of all alternative current models in cognitive
psychology and philosophy. We discuss (a) the linear combina-
tion heuristics proposed by cognitive psychologists, (b)
Suppes’s model (1970, 1984), and (c) a probabilistic extension of
Mill’s (1843/1973) method of difference. In addition, we review
our analysis (Cheng & Novick, 1991) of the normality criterion,
a dominant criterion according to which the distinction be-
tween causes and enabling conditions is based on the preva-
lence of potential causes (e.g., Einhorn & Hogarth, 1986; Hart &
Honoré, 1959/1985; Hilton & Slugoski, 1986; Kahneman &
Miller, 1986; Mackie, 1965, 1974; Turnbull & Slugoski, 1988).
We specify how this criterion and formulations of causality in
terms of necessity and sufficiency may be regarded as special
cases of our model. Finally, we review and extend the interpre-
tation of an earlier experiment (Cheng & Novick, 1991, Experi-
ment 2) in support of our model against competing models.

The covariation component of everyday causal inference has
been depicted as heterogeneous and prone to either systematic
or capricious biases. To account for these biases, numerous
models and heuristics have been proposed. In contrast with the
previous depiction, our assessments converge on a single nor-
mative mechanism that underlies this essential component of
causal induction.

Scope of the Article

Although covariation is a necessary criterion for causal in-
duction, it is not a sufficient one. There clearly are innate and
acquired constraints on the selection of potential causal factors
with respect to a given effect. On theoretical grounds, the prob-
lem of combinatorial explosion in covariation computation
surely requires that there be some innate biases in the inductive
process. Empirically, it is clear that animals have such innate
biases (Garcia, McGowan, Ervin, & Koelling, 1968; Garcia,

McGowan, & Green, 1972). Other biases may be acquired
through learning (e.g., Bullock, Gelman, & Baillargeon, 1982;
Mendelson & Shultz, 1976).

To reduce the number of variables for which covariation is
computed, one plausible criterion is that covariation is evalu-
ated only for factors that are psychologically prior to the target
effect. Psychological priority may be established by manipula-
tion, potential manipulation, or perceived temporal priority.
Adding this criterion, however, fails to eradicate the following
problem: Whereas one normatively defined covariational rela-
tion may be designated as causal (e.g., that between touching a
red-hot poker and burning one’s hand), another may not {.g.,
that between a drop in the barometric reading and a subsequent
storm). A possible extension of the covariation view to deal
with this problem of differentiating between genuine and spuri-
ous causes (covariational relations that are causal and noncau-
sal, respectively, following Suppes’s, 1970, 1984, terminology) is
to adopt a criterion of conditional independence (e.g., Reichen-
bach, 1956; Salmon, 1980, 1984; Suppes, 1970, 1984). In terms
of our model, the adoption of such a criterion involves comput-
ing contrasts separately for focal sets that are restricted to events
in which a psychologically prior covariational factor (€.g., a drop
in atmospheric pressure for the storm example—a factor that is
psychologically prior to a drop in the barometric reading) is (a)
present and (b) absent. If the contrast for a factor does not
noticeably differ from zero in both focal sets, the factor is a
spurious cause. Our model adopts the psychological priority
criterion and allows the use of the conditional-independence
criterion (Cheng & Novick, 1990a, 1991). An alternative poten-
tial solution is to assume that some understanding of an under-
lying causal mechanism is necessary (e.g., Bullock et al., 1982;
Salmon, 1984; Shultz, 1982).

A full discussion of the problem of differentiating between
genuine and spurious causes would go far beyond the scope of
this article. We therefore remove from our discussion norma-
tively defined covariations that are judged to be noncausal.
Inference regarding such factors is not accounted for by any of
the covariational rules discussed here.

Probabilistic Contrast Model

In our model, causal inferences to explain a target event are
determined by contrasts computed over events in a focal set for
selected discrete variables describing the target event.

Main-Effect Contrasts

A main-effect contrast, Ap;, which specifies a cause involving
a single factor J, is defined by the contrast (i.e., contingency) rule
described earlier:

Ap; = p; —p3, 1

where p, is the proportion of events for which the effect occurs
when factor / is present and p; is the proportion of events for
which the effect occurs when factor i is absent. (A bar above a
letter denotes the absence of the represented factor) If Ap; is
noticeably different from zero (by some empirically deter-



368 PATRICIA W, CHENG AND LAURA R. NOVICK

mined criterion), factor i is a cause.® Otherwise, / is causally
irrelevant. A positive contrast specifies a facilitatory cause; a
negative contrast specifies an inhibitory cause (also see Kelley,
1973, on this distinction).

Because a contrast cannot be computed for a factor that is
constantly present in a focal set (due to division by zero in the
computation of the probability of the effect in the absence of
the factor), the causal status of such a factor cannot be deter-
mined by events in the focal set; instead, its status is deter-
mined by events in other focal sets. Such a factor is (3) an en-
abling condition if its contrast value is noticeably different from
zero (i.e., it covaries with the effect) in another focal set, but (b)
causally irrelevant if its contrast value is not noticeably differ-
ent from zero in other focal sets (Cheng & Novick, 1991).

To illustrate our model with the forest fire example, assume
that lightning struck the forest where the fire started immedi-
ately before it started. Applying our model to the focal set, we
see that the proportion of cases for which fire occurs in the
presence of lightning is greater than the proportion of cases for
which fire occurs in the absence of lightning. Lightning is there-
fore a cause. (Notice that our model does not require that fire
always occur in the presence of lightning to covary with it) In
contrast, the corresponding difference in proportions cannot
be computed for oxygen, because oxygen is constantly present
in every event in the set. Oxygen is therefore merely an enabling
condition. It is not causally irrelevant because people (at least
those educated in chemistry) do have a focal set for which oxy-
gen does covary with fire. Finally, the presence of stones in the
forest, which does not covary with forest fire in any focal set, is
considered causally irrelevant.

Interaction Contrasts

A cause may involve not just a single factor but a conjunction
of factors (e.g., the simultaneous presence of positively charged
clouds and negatively charged clouds as the cause of thunder;
the combination of talent, hard work, and opportunity as the
cause of success). In our model, an interaction contrast speci-
fies a cause involving a conjunction of factors. Whereas a main-
effect contrast specifies a difference between the proportions
of events in which the effect occurs in the presence of a factor
and in the absence of it, a two-way interaction contrast specifies
a difference between such differences for levels of an orthogo-
nal factor (ie., a second-order difference; Cheng & Novick,
1990a). A two-way interaction contrast, Ap;, involving potential
causal factors / and J, is defined as follows:

Ap; = (py — py) — 05— Py ¥))

where p, as before, denotes the proportion of cases in which the
effect occurs when a potential contributing factor is either pres-
ent or absent, as denoted by its subscripts. More generally, inter-
action contrasts involving n factors are defined as nth-order
differences, where 7 is any positive integer.* Like main-effect
contrasts, interaction contrasts can be facilitatory or inhibitory,
depending on whether they are positive or negative. Our model
distinguishes multiple alternative causes(corresponding to mul-
tiple main-effect and/or interaction contrasts) from a conjunc-
tive cause (corresponding to a contrast involving multiple fac-
tors, ie., an interaction contrast).’

Illustration of Contrasts Computed Over Various Focal
Sets

Figure 1 illustrates contrasts specifying causes, enabling con-
ditions, and causally irrelevant factors. It also illustrates the
effect of varying focal sets. The figure is assumed to represent
the entire set of events that are relevant to a particular effectina
hypothetical person’s knowledge base (labeled universal set in
the figure).

As can be seen in the figure, with respect to the universal set
of events, factors g and r are individually necessary (i, p;= p,=
0) and jointly sufficient (ie., p, <1, p, <1, but p,, = 1) for the
occurrence of the effect. According to our model, g and r are
the factors in the two-way interaction contrast, Ap,,, which has
avalue of1 (p,, = 1, p; = py= Pp= 0). Previous formulations of
causality in terms of necessity and sufficiency may be regarded
as special extreme cases of our model in which (a) the focal set is
the universal set and (b) the proportions are expressed in rela-
tion to O (i.e., equal to or greater than 0) or | (i.e,, equal to or less
than 1; see preceding example) rather than as proportions.5

Now consider Focal Set A. In this set, p,=1 (ie,, rissufficient
for the occurrence of the effect in that context), and p;= 0 (ie., 7
is necessary for the effect in that context). Because p, is greater

3 The proportions are estimates of the corresponding conditional
probabilities. We assume that the magnitude of the criterion should
reflect the role of sample size in people’s interpretations of random
sampling fluctuations, but we leave the elucidation of the exact role of
sample size in causal induction to future research (see Nisbett, Krantz,
Jepson, & Kunda, 1983).

4 People will no doubt have greater difficulty with interaction con-
trasts involving greater complexity, and at some maximum level of
complexity computation presumably will become impossible. How-
ever, because our model is a computational model (in Marr’s, 1982,
sense of the term) that specifies what is computed, rather than a pro-
cess model that specifies how the computation is carried out, it leaves
the issue of such limitations to a general model of processing limita-
tions. It seems reasonable to expect that a model of processing limita-
tions should apply across many different types of tasks rather than
being specific to inference tasks. Although our model does not specify
the algorithm whereby contrasts are computed, abundant evidence
shows that people and other animals are indeed sensitive to probabili-
ties and changes in probabilities (Estes, 1964; Gallistel, 1990).

% Our model applies to dichotomous events but potentially can be
generalized to continuous effects (a model in terms of contrasts be-
tween means) or continuous causes as well as effects (a model in terms
of regressions of the effect on potential causes).

6 According to our model, a cause consisting of INUS conditions
(Mackie, 1965, 1974; see footnote 2) corresponds to an interaction con-
trast (among other sufficient contrasts, including other INUS condi-
tions), for which the effect occurs (a) with probability of1 in the univer-
sal set when all of its contributing factors are present and (b) with
probability of 0 in a focal set in which no other sufficient cause is
present when one (or more) of the contributing factors of the INUS
conditions is absent. Suppose that a two-way interaction contrast, A7,
is such a contrast. It follows that (a) p,, = in the universal set (i.e., the
conjunction of g and r is sufficient for the effect), (b) p,> 0, p,, > 0, or
D> 0 in the universal set (i.e., the conjunction is unnecessary for the
effect), and () p, < 1 and p,, <1 in the focal set in which no other
sufficient cause is present (ie., ¢ and r are jnsufficient under those
circumstances), but (d) p,= 0 and p,= 0 in that focal set (i.e.,gand rare
necessary under those circumstances).
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UNIVERSAL SET
Ap,=p,- p; =8/32-0/12 = .25 Ap,=p,—p; =4[22 —4/22=0

Ap, = p, — p; =8/12-0/32=.67 Ap,=p,~ p;=2/11-6/33=0

Ap, =(p, — b5, )~ (D — Ps;) = 8/8—0/4) —(0/24-0/8)=1-0 =1

FOCAL SET A FOCAL SETB FOCALSETC

Ap,=?(p; =7) Ap,=2/3-0/3=.67 Ap,=8/8-0/4=1
Ap, =8/8-0/24=1 Ap, =2/3-0/3=.67 Ap,=?(p-=")

Ap, =4/16-4/16=0 Ap,=1/3-1/3=0 Ap, =4/6-4/6=0
Ap, =2/8-6/24=0 Ap,=?(p=7) Ap, =2/3-6/9=0

Figure 1. Computation of covariation within focal sets according to the probabilistic contrast model as
an explanation of the distinction among causes, enabling conditions, and causally irrelevant factors. (Each
letter [e.g., g] represents a potential causal factor. A bar above a letter [e.g., §] denotes the absence of that
factor. An event is represented by a sequence of letters (e.g., grst) denoting the conjunct of those factors in
the event. The presence of the effect for an event is represented by larger bold type. The absence of the
effect for an event is represented by regular, nonbold letters. Finally, loops and the rectangle enclose events
in focal sets)
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than p; (ie., Ap, > 0), r should be perceived as a cause of the
effect for this subset. Factor ¢, however, is constantly present. A
difference in probabilities conditional on the presence versus
the absence of g, therefore, cannot be computed for this subset.
Thus, ¢ should not be selected as a cause. However, it is an
enabling condition, because it does covary with the effect in
another focal set: Set C (and to a lesser extent in Set B as well).
Notice that g and r, which have the same status in terms of
necessity and sufficiency with respect to the universal set,
differ in their status with respect to Focal Set A. Factor g, unlike
r, is insufficient (p, < 1), and its necessity is undetermined (p, is
undefined) in that context. Designating r as a cause and g as an
enabling condition, therefore, does not conflict with the logical
status of these factors within this focal set.

Our model explains the effects of shifting contexts on the
distinction between causes and enabling conditions by the se-
lection of different focal sets over which covariation is com-
puted. Consider gand rin Set C. Unlike in Set A, g covaries with
the effect, but  is constantly present. Only ¢, therefore, should
be perceived as the cause of the effect for that set. In sum, both ¢
and r covary with the effect in some focal set. These factors
should be perceived as (a) causes when the focal set of events
selected for a particular context is one in which the factors
covary with the effect and (b) enabling conditions when the
selected focal set is not one in which the factors covary with the
effect. Varying the relevant focal set thus alters which factor
should be considered a cause and which should be considered
an enabling condition.

Focal Sets A and C illustrate the extreme case of our model in
which a cause is necessary and sufficient for the effect. Focal
Set B illustrates probabilistic covariations. In this set, both g
and r would be considered causes because both yield substan-
tial positive contrasts. The contrast values for these factors are
different from those in Sets A and C as a result of the different
frequencies with which other necessary factors are present in
the two focal sets. In contrast, ¢ is causally irrelevant: It is con-
stantly present in Set B, and it does not covary with the effect in
either of the other sets.

Finally, notice that although s issometimes present and some-
times absent in each of the three focal sets, its presence or ab-
sence does not covary with the effect in any focal set. Therefore,
this factor, like ¢, is causally irrelevant to the effect. In sum,
computing covariation over different focal sets accounts for the
distinctions among causes, enabling conditions, and causally
irrelevant factors.

Multiple Independent Causes

We have only considered the situation in which there is a
single cause of effect E within a focal set. Now consider the
situation in which there are multiple independent causes of E.
Let C be a potential cause in the presence of which E occurs
with probability P(E|C). When the other causes often produce
E, then P(E|C) will be relatively large. Accordingly, Apc will be
relatively small. Conversely, when the other causes rarely pro-
duce E, Ap. will be relatively large. That is, Ap. is an inverse
function of how often the other causes produce E.

This prediction may be considered an extension of Keliey’s
(1971) discounting principle, which is a corollary of Equation 1

if the independence of causes is assumed. According to this
principle, “the role of a given cause in producing a given effect
is discounted if other plausible causes are also present” (Kelley,
1971, p. 8).” Evidence supporting this principle has been re-
ported in numerous experiments (e.g., Jones, Davis, & Gergen,
1961; Lepper, Greene, & Nisbett, 1973; Thibaut & Riecken,
1955). (See the Appendix for a proof of this prediction from
Equation 1))

Deviations From Kelley’s Model

Our model may be regarded as a modification of Kelley’s
(1967, 1973) ANOVA model. Because myriad deviations from
his model have been reported in the social psychology litera-
ture, the question of how these deviations are to be reconciled
with our model no doubt arises. We argue that these deviations,
rather than representing irrational biases in the inductive pro-
cess per se, could be due to discrepancies between the set of
events specified by the researcher and the subject’s focal set.

Interpretation of Biases Based on Experiments
Specifying Configurational Information

Many experiments testing Kelley’s (1967, 1973) model speci-
fied the stimulus input in terms of the variables of consensus
(the amount of agreement between the target person and other
people in their responses to the target stimulus on the target
occasion), distinctiveness (the amount of disagreement be-
tween the target person’s response to the target stimulus and his
or her responses to other stimuli on the target occasion), and
consistency (the amount of agreement between the target per-
son’s response to the target stimulus on the target occasion and
his or her responses to that stimulus on other occasions). The
subject’s task is to explain what caused a target person to have a
certain reaction to a target stimulus on a target occasion. These
three information variables measure covariation along the
three dimensions of persons, stimuli, and time, which Kelley
(1967, 1973) proposed as independent variables in his ANOVA
analogy and which he illustrated in his cube.® Following Cheng

" The discounting principle concerns the situation in which multiple
alternative causal factors are present in the event to be explained. In
such situations, the criterion of conditional independence requires
computing contrasts for a focal set that is restricted to events in which
prior known covariational factors are held constant. If the criterion is
applied in these situations, the following refinement of our earlier
definition of an enabling condition becomes necessary. Let / be a factor
that is constantly present in the current focal set. Factor i is merely an
enabling condition for a cause j in that focal set if i covaries with the
effect in another focal set, and j no longer covaries with the effect in a
focal set in which / is constantly absent. In contrast, / is an alternative to
cause j if i covaries with the effect in another focal set, and there exists
afocal set in which i is constantly absent, but j continues to covary with
the effect in this set. Note that whereas an enabling condition is, by our
definition, constant within the current focal set, an alternative cause
can be either constant or not.

 Materials in these experiments have sometimes been described as
providing “prepackaged” covariational information (€g., Alloy & Ta-
bachnik, 1984; Crocker, 1981). We note that, with respect to our
model, these materials-—although in summary form—ado not give pre-
packaged covariational information, even for the relatively simple case
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and Novick (1990a, 1990b), we use the term configuration to
denote the pattern of information specified by consensus, dis-
tinctiveness, and consistency. For example, one configuration
specifies high consensus, low distinctiveness, and low consis-
tency (HLL).

As noted by several investigators (Cheng & Novick, 1990b;
Forsterling, 1989; Hilton, 1988, 1990; Jaspars et al., 1983; Pruitt
& Insko, 1980), information on these variables, often assumed
to represent all the data relevant to making causal attributions,
actually covers only a subset of the potentially relevant informa-
tion: specifically, one row, column, and beam of the cube. Pre-
vious researchers apparently often made the plausible but erro-
neous assumption that nonconfigurational information, which
includes information on how other people react to other stimuli
on other occasions, is irrelevant for explaining why a particular
person has a certain reaction to a particular stimulus on a par-
ticular occasion. (An analogous assumption was made by learn-
ing theorists before Rescorla, 1968, demonstrated that the fre-
quency of association between the unconditioned stimulus and
the absence of the conditioned stimulus is critically important
in conditioning) However, recent evidence in the causal attri-
bution literature indicates that subjects do make use of their
assumptions regarding the occurrence of the effect in the non-
configurational part of the cube. For example, Hilton and Slu-
goski (1986) insightfully demonstrated that causal attributions
were influenced by people’s implicit knowledge of norms (ie.,
“presuppositions about what a class of persons generally does to
a class of stimuli”; Hilton, Smith, & Alicke, 1988, p. 531). Such
knowledge homogeneously fills the nonconfigurational (ie., un-
specified) part of Kelley’s cube.

We (Cheng & Novick, 1990a, 1990b) hypothesized that be-
cause causal attribution is a joint function of the data on which
the inference rules operate and the rules themselves, the appar-
ent biases found in previous experiments—rather than being
due to the inferential process—may reflect the subjects’ as-
sumptions regarding the pattern of information for the unspeci-
fied part of the cube. In experiments specifying only configura-
tional information, it is typically not known what assumptions
subjects might have spontaneously made regarding the occur-
rence of the effect in the remainder of the cube. If some subjects
do use information in the entire cube as the basis for causal
induction, then when this focal set is identified, causal attribu-
tions may reveal an unbiased assessment of covariation.

QOur hypothesis is supported by several studies in which non-
configurational information was manipulated or assessed inde-
pendently of configurational information (Cheng & Novick,
1990a; Hilton & Slugoski, 1986; Novick et al., 1991; Pruitt &
Insko, 1980). Here we briefly describe the results of two of our

in which the focal set consists solely of events in the configuration.
Consider computing a main-effect contrast for a target person for this
focal set. Computing this contrast involves taking the difference be-
tween the proportion of times the effect occurs in the presence and in
the absence of that person. In turn, computing the former proportion
involves integrating information across the target event, distinctive-
ness information, and consistency information and computing the lat-
ter proportion involves consensus information. This partitioning of
the given information is not prepackaged and neither is the integration
nor the subtraction.

experiments. In one experiment, we explicitly varied the pat-
tern of information in the nonconfigurational part of the cube
while keeping configurational information constant (Cheng &
Novick, 1990a). Thus, we provided subjects with information
that completely filled Kelley’s (1967) cube. In a second experi-
ment (Novick et al, 1991), we gave subjects only configura-
tional information and assessed both assumptions concerning
the unspecified cells of the cube and causal attributions.

Specifying complete information. With the complete infor-
mation problems used in the first experiment, we tested our
hypothesis in two ways. First, across problems, we counterbal-
anced presence or absence of the effect over the three dimen-
sions of the cube so that any bias toward a dimension (or an
information variable) could not be attributed to asymmetries in
the input. Second, for each of four configurations, we con-
structed a set of problems that shared that configuration but
differed in the pattern of information over the nonconfigura-
tional part of the cube. The patterns of nonconfigurational in-
formation were chosen such that for some of the problems our
model predicts main-effect and interaction attributions that are
not predicted by any previous models, including attributions
that previously have been reported as biases (e.g., attributions to
person, stimulus, or the conjunction of person and stimulus for
the high-consensus, low-distinctiveness, high-consistency
(HLH) configuration; attributions to the conjunction of person
and occasion and to the conjunction of stimulus and occasion
for the HLL configuration). Obtaining such attributions would
demonstrate that these apparent biases can, in fact, be ex-
plained by a normative covariational model. Furthermore, the
patterns of nonconfigurational information were constructed
such that, over our entire set of problems, our model predicts all
possible types of main-effect and interaction attributions that
are unpredicted by previous models.

Our results, reported in detail in Cheng and Novick (1990a),
showed that the predicted attributions were obtained. For each
of the four configurations tested, the various problems sharing
a configuration differed reliably in the causal attributions they
elicited, as predicted by our model. In particular, for every con-
figuration, the problem for which a particular pattern of re-
sponses was predicted by our model showed a reliably higher
percentage of such responses than did problems with the same
configuration for which those responses were not predicted.
Moreover, our counterbalanced set of problems showed no evi-
dence for either a bias toward making a person attribution (or
any other attribution) or a tendency to ignore consensus infor-
mation (or any other type of information) when such informa-
tion was redefined in terms of probabilistic contrasts to cap-
ture covariation over the entire cube rather than over the config-
uration only.

Besides addressing the issue of bias, our experiment also al-
lowed a comparison between our model and previous models
in the social literature. All previous models (Jaspars et al., 1983;
Kelley, 1967, 1973; Orvis et al.,, 1975), with the exception of
those of Forsterling (1989) and Hilton and Slugoski (1986),
made predictions that were based on configurations. One inter-
pretation of all configuration-based models is that they predict
the same attributions for all of our problems that shared a con-
figuration. In contrast, our model predicts different attribu-
tions for each of these problems. It is possible to separate princi-
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ples underlying configuration-based models from the literal
predictions previously made. An alternative set of predictions
for those models may be derived by applying the underlying
principles to information over the entire cube. Even under this
approach, none of the previous models (configuration based or
otherwise) can account for our data. For at least three of the four
configurations we tested, all of these models predict either no
causal attribution possible or the same attribution for some if
not all of the problems sharing a configuration. QOur results
show that for every configuration tested, every problem sharing
the configuration elicited a reliably different pattern of re-
sponse, as predicted by our model but not by any previous
model.

Assessing assumptions about the unspecified part of the cube.
Just as we were able to vary the information given for the non-
configurational part of the cube, subjects in previous experi-
ments also might have varied their assumptions regarding that
region from problem to problem or from one person to another
for a given problem, thus producing what appeared to be ca-
pricious biases. We tested this hypothesis more directly in our
second experiment by giving subjects configurational informa-
tion only and assessing both their assumptions and causal attri-
butions (Novick et al., 1991). For each of two configurations, we
constructed scenarios in two content domains (e.g., expertise at
dancing vs. music appreciation) that we expected would lead to
quite different assumptions concerning the occurrence of the
effect in the unspecified cells of the cube because of people’s
world knowledge about these domains. The resulting patterns
of information in the cube (configuration plus subjects’ as-
sumptions) were predicted to lead to different causal attribu-
tions as determined by probabilistic contrasts computed for the
two patterns for each configuration. Both our expectations con-
cerning the dominant assumptions for each scenario and our
predictions for the resulting causal attributions were con-
firmed. Furthermore, our assessment of individual subjects’
assumptions allowed us to predict individual differences in
subjects’ causal attributions. The various causal attributions of
a large majority of the subjects were consistent with the probabi-
listic contrasts computed over the focal sets consisting of the
configuration plus subjects’ individual patterns of assumptions
in the nonconfigurational part of the cube. Thus, what may
appear as capricious biases that differ from subject to subject in
fact follow from a normative model.

In sum, our results with both complete-information and con-
figurational-information problems indicate that people com-
pute covariation over events in a focal set, which often consists
of events in the entire cube. The computed covariation then
determines causal inferences.

An Interpretation of Other Results Indicating Bias

Biases have been reported not only in experiments using ma-
terials framed in the rather artificial format summarizing con-
figurational information but also in studies that used appar-
ently less artificial formats. In many of these studies (e.g., Chap-
man & Chapman, 1967, 1969; Jones & Harris, 1967), subjects’
implicit assumptions in their focal sets were not manipulated or
measured; an interpretation of these findings according to our
model (e.g., in terms of subjects’ prior assumptions) would there-

fore be speculative. However, some of these studies did manipu-
late and, at least partially, measure subjects’ assumptions. We
present our interpretation of two findings reported in such
studies.’

Bias against using consensus information. A controversial
piece of evidence against the use of consensus information was
reported by Nisbett and Borgida (1975). In one of their studies,
they asked subjects to read a description of an experiment by
Darley and Latané (1968), in which one of the participants was
heard, over an intercom, having what sounded like a seizure;
the other participants faced the decision of whether to help
him. Some subjects (the consensus group) were told the rather
surprising results of the study (that most participants helped
only after considerable delay or never), whereas other subjects
(control) were not. All subjects were then asked to explain the
behavior of a (male) participant who never helped. One of the
questions asked was “Was the behavior of the participant due to
his personality or the situation?” Because most control subjects
were found to assume that most people would have helped,
Nisbett and Borgida interpreted the covariation principle to
predict that the surprising consensus information should gener-
ate more situational responses: Whereas the control group
should perceive the target participant as an exception among
others who would have helped (and thus should attribute the
failure to help to the target participant), the consensus group
should perceive no variation across the participants with re-
spect to helping (and thus should attribute the behavior to the
situation rather than to any particular person). Nisbett and Bor-
gida’s results showed that consensus information had no effect
on attribution, leading them to conclude that, contrary to com-
mon sense and prescriptive norms, people almost totally ignore
consensus information.

Notice that none of Nisbett and Borgidas (1975) subjects
were told whether the participants behaved similarly in situa-
tions other than the seizure situation. Without this informa-
tion, subjects were presumably free to assume that they did. If
subjects made this assumption, in addition to assuming that
most people typically would help (as was reported), a main-ef-
fect contrast for the target participant would be predicted for
the focal set (consisting of subjects’ assumptions in addition to
the respective experimenter-specified information) for both the
consensus group and the control group. In fact, a main-effect
contrast would be predicted for the entire group of participants
in the consensus condition. That is, the effect (not helping) is
more likely for the target person in the control condition and
for the entire group of participants (including the target person)
in the consensus condition than for the population in general.

Wells and Harvey (1977) found that, when it was emphasized
to subjects in a similar experiment that the participants were
randomly selected from the general population, subjects in the
consensus group did produce more situational attributions, in-
dicating that they did not ignore the consensus information.
The effect of emphasizing the representativeness of the sample
is to supply additional information concerning how the partici-

 Many before us have argued that the selection of information is a
source of bias. None, however, have argued and demonstrated that the
process of causal induction per se is unbiased.
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pants probably behaved in other situations (namely, that they
typically would help). With this additional information, a
main-effect contrast for the seizure situation would be pre-
dicted for the consensus group (one is less likely to help in that
situation than in other situations) but not for the control group
(one is likely to help both in the seizure situation and in other
situations). Thus, the differing results reported by Nisbett and
Borgida (1975) and Wells and Harvey (1977) are both consistent
with the unbiased use of covariation.

Actor-observer differences. Jones and Nisbett (1972) sug-
gested that, whereas actors tend to attribute their own behavior
to characteristics of the situation, observers tend to attribute an
actor’s behavior to personal characteristics of the actor. The
proposed divergent perceptions of the actor and the observer
have been documented in a number of studies (see Watson,
1982, for a review). One explanation offered for this divergence
was in terms of the ambiguity of causal questions, which allows
the adoption of different contrasting backgrounds (Einhorn &
Hogarth, 1986; Hilton, 1990; Kahneman & Miller, 1986;
McGill, 1989). For example, a question Nisbett, Caputo, Le-
gant, and Maracek (1973) asked their subjects, “Why did you
[your best friend ] choose this major?”, may be interpreted as (a)
“Why did you [your best friend ] choose this major in particu-
lar?” or (b) “Why did you [your best friend ] in particular choose
this major?” Hilton (1990) and McGill (1989) proposed that
actors are likely to presuppose their own presence as a constant
background factor and ask themselves what is special about the
situation that caused the behavior, thus adopting the first inter-
pretation in this example. In contrast, observers are likely to
treat the situation as background and ask what is special about
the actors that differentiates them from other people in the
same situation, thus adopting the second interpretation in this
example. Such a view predicts that if the causal question is
disambiguated, the actor-observer differences should disap-
pear.

The results of an experiment by McGill (1989) support this
hypothesis, which she tested by comparing ambiguous causal
questions to disambiguated versions as just illustrated. Actor—
observer differences have been explained in terms of the adop-
tion of differing contrasting backgrounds (Einhorn & Hogarth,
1986; Hilton, 1990; Jones & Nisbett, 1972; Kahneman & Miller,
1986; McGill, 1989). This explanation previously has been in-
terpreted in terms of normality (Einhorn & Hogarth, 1986;
Kahneman & Miller, 1986), conversational pragmatics (Hilton,
1990), or Mill’s (1843/1973) method of difference (Hilton,
1990; McGill, 1989). We note that computing probabilistic
contrasts over events in these differing backgrounds also pre-
dicts actor-observer differences. We discuss the alternative ex-
planations later.

Implications of Phenomena Observed in Social
Psychology and Philosophy

We have shown that the computation of contrasts over events
in a focal set can explain deviations from normative predictions
discussed in philosophy and social psychology. We believe that
simultaneously considering phenomena in both domains im-
poses constraints on model construction that are not entirely
satisfied by any previous model of causal induction proposed in

either literature. On the one hand, the social causal-attribution
literature underscores the fact that attributions are often based
on probabilistic stimuli (e.g., “Ralph has almost always tripped
over Joan’s feet while dancing with her™). On the basis of such
probabilistic stimuli, subjects are able to make conjunctive at-
tributions as well as simple (i.e., single-factor) attributions. On
the other hand, the philosophical literature convincingly shows
that the concept of a focal set is central in explaining the dis-
tinction between causes and enabling conditions as well as the
effects of shifting context on that distinction.

What is missing in previous accounts of causal induction in
both social psychology and in philosophy—and what our
model provides—is an account of probabilistic causal induc-
tion that specifies conjunctive as well as simple causes. Many
models proposed in the literature on causes versus enabling
conditions are deterministic (Hesslow, 1983, 1988; Hilton,
1990; Mackie, 1965, 1974). It is not obvious how these models
can be generalized to account for conjunctive probabilistic
causes, even if the probabilistic generalization for simple
causes is straightforward. In social psychology, in which the
phenomena to be explained are clearly probabilistic, some of
the models are nonetheless deterministic (e.g., Forsterling,
1989; Hewstone & Jaspars, 1987; Jaspars, 1983; the covariation
principle in Kelley, 1967, 1973). Of those that are not, none
provides a formal definition of conjunctive causes (e.g., Hilton
& Slugoski, 1986; the ANOVA analogy in Kelley, 1967, 1973;
McGill, 1989; see Cheng & Novick, 1990a, for a discussion of
these models).

Moreover, models in social psychology lack an explicit and
generalized concept of the focal set. The focal sets discussed in
the literature on causes versus enabling conditions explain the
distinction by being subsets of the universal set. Social theorists
do implicitly assume that their subjects’ focal sets are subsets of
the universal set; for example, the condition of the target person
being alive is never included as one of the potential causal fac-
tors despite the necessity of it for the person’s reaction to a
stimulus (the event to be explained). These theorists therefore
circumvent the puzzle posed by the distinction. However, they
have failed to generalize the concept of the focal set. In social
causal attribution experiments, the actual focal set (i.e., the one
used by subjects) often happens to be a superset of the subset
assumed by the theorist. The implicitly assumed subsets, there-
fore, create rather than explain the reported biases in the social
literature.

Our model builds on the previous work. It aims at satisfying
the constraints imposed by phenomena in both literatures. Us-
ing the formal concept of probabilistic contrast, our model is
able to account for simple and conjunctive attributions for prob-
abilistic causal relations. Adopting the concept of a focal set,
our model is able to explain the deviations in the social litera-
ture as well as the distinction among causes, enabling condi-
tions, and causally irrelevant factors.

Other competing models of causal induction have been pro-
posed in cognitive psychology and philosophy. In the following
sections, we apply these constraints to our evaluation of these
models. None of these models specify a formal account of the
induction of conjunctive causes. We argue that these models do
not provide an adequate account of the induction of even sim-
ple causes.
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Linear Heuristics in Everyday Causal Reasoning

Alllinear-combination heuristics that have been proposed in
the cognitive literature may be regarded as special cases of
Schustack and Sternberg’s (1981) model. Schustack and Stern-
berg (1981) described causal inference as a linear function of
five variables. The variables have weights that are determined
empirically by multiple regression. The first four variables in-
volve information about covariation: a, the frequency of the
joint presence of a potential cause and the effect; b, the fre-
quency of the presence of the potential cause coupled with the
absence of the effect; ¢, the frequency of the absence of the
potential cause coupled with the presence of the effect; and o,
the frequency of the joint absence of a potential cause and the
effect (see Table 1). The fifth variable in their model is a mea-
sure of the strength of competing causes. Schustack and Stern-
berg’s regression modeling showed that the weights for ¢ and d
were posttive, whereas those for b and ¢ were negative.

Their model is not normative in two respects. First, the four
types of frequency information received different weights. Sub-
jects showed a bias toward giving more weight to @ and & (po-
tential cause present) than to ¢ and d (potential cause absent).
Second, regardless of whether the weights are equal, their
model makes anomalous predictions, as we explain.

A variety of specific linear heuristics apparently used by col-
lege students to assess covariation have been identified (e.g.,
Arkes and Harkness, 1983; Jenkins & Ward, 1965; Nisbett &
Ross, 1980; Shaklee, 1983; Shaklee & Elek, 1988; Shaklee &
Goldston, 1989; Shaklee & Hall, 1983; Shaklee & Mims, 1981,
1982; Shaklee & Tucker, 1980; Smedslund, 1963; Ward & Jen-
kins, 1965). We state next the four that have been reported to be
used by a substantial proportion of subjects. The a — ¢ rule
assesses the strength and direction of covariation by comparing
a and ¢. That is, for cases in which the effect is present, if a
potential cause is present more often than it is absent, the co-
variation is judged to be positive; conversely, if the potential
cause is absent more often than it is present, the covariation is
judged to be negative. This rule, which was used by 18% of
Shaklee and Tucker’s (1980) subjects and 36% of Shaklee and
Hall’s (1983) subjects, has weights of 1 and —1, respectively, for
variables a and ¢ and a weight of O for each of the other three
variables in Schustack and Sternberg’s model described previ-
ously. The a rule assesses covariation between two factors ac-
cording to the magnitude of a (.., the joint presence of the two
target factors). Jenkins and Ward (1965) reported that a was the
best predictor of their subjects’ responses. This rule has a
weight of 1 for variable a and a weight of O for each of the
remaining variables. The a + d rule assesses covariation on the

Table 1
FEvent Frequencies in a Contingency Table Formed by the
Presence and Absence of a Causal Factor and of the Effect

Effect
Causal factor Present Absent
Present a b
Absent C d

basis of the frequency of confirming cases (weights of 1 for a and
d and a weight of 0 for each of the remaining variables). Ward
and Jenkins (1965) reported the dominant usage of this rule for
subjects receiving trial-by-trial information and those receiving
trial-by-trial information in addition to summary information.
The difference in sums of diagonal cells rule assesses the direc-
tion and strength of covariation by computing the difference
between the sum of g and 4 and the sum of b and c. This rule,
which was used by 35% of Shaklee and Tucker’s subjects and
16% of Shaklee and Hall’s subjects, has weights of 1 for both
variables g and d, —1 for both variables b and ¢, and 0 for the
competing-causes variable.

What Do the Linear-Combination Heuristics Predict?

Is causal induction, fundamental as it intuitively seems,
based on nothing more than a frail set of heuristics? We chal-
lenge this position in view of the intuitive distinction among
causes, enabling conditions, and causally irrelevant factors.

Schustack and Sternberg’s (1981; also see Downing et al.,
1985) model was proposed to describe how people make causal
inferences when given incomplete information about complex
problems involving multiple factors. Although situations in-
volving causes, enabling conditions, and causally irrelevant fac-
tors fall within the purview of their theory, predictions of linear
models for such situations have not been considered previously.
We derive such predictions here.

Let us examine the predictions of linear heuristics for a focal
set in which one of the potential causal variables is constantly
present. It is clear that, without the assumption of a focal set,
these heuristics cannot account for the effects of changing con-
texts on causal inference. Even with such an assumption, these
heuristics make anomalous predictions. Consider, for example,
an answer to the question “What causes it to rain today?” for
the focal set in which gravity is constantly present. For this
factor in this focal set, because cand d both equal 0, the result of
a linear combination of cell frequencies would be solely deter-
mined by a and b. The relative magnitudes of ¢ and b will
depend on the prevalence of other necessary conditions for rain
in the events in one’s knowledge base. For a resident of Edin-
burgh, for whom the other necessary conditions for rain are
frequently present, a is much larger than b. In contrast, for a
resident of Los Angeles, where it hardly ever rains, the opposite
is true.

The output of a linear combination of cell frequencies is a
number that may be positive, zero, or negative, corresponding,
respectively, to a facilitatory cause, a causally irrelevant factor,
and an inhibitory cause. Therefore, Schustack and Sternberg’s
(1981) linear-combination rule (for which the weights for a and
b were roughly equal) and the difference in the sums of diago-
nal cells rule predict that a resident of Edinburgh would reply,
“Gravity is a cause of rain,” whereas a resident of Los Angeles
would reply, “Gravity inhibits rain” For the a rule, the a — ¢
rule, and the a + d rule, because ¢ and d for gravity both equal 0
in this focal set, the causal strength of gravity is equal to a.
Because a is always positive and is higher for a resident of Edin-
burgh than of Los Angeles, each of these rules predicts that
residents of both cities would think gravity is a cause of rain and
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that a resident of Edinburgh would believe that it is a stronger
cause than would a resident of Los Angeles.

These predictions clearly contradict an ordinary person’s in-
tuition that gravity is not a cause of rain but merely a condition
that enables rainfall regardless of the frequency of rain in one’s
experience. In sum, our analysis reveals that there is no theoreti-
cal construct in the output of a linear-combination rule that
could correspond to an enabling condition. According to linear
heuristics, an enabling condition has the same status as a cause
{either facilitatory or inhibitory depending on the prevalence of
the effect).!”

More detrimental yet to these heuristics than the previously
mentioned anomalous predictions, none of these heuristics can
distinguish the causal status of a factor such as gravity from
causally irrelevant factors that are nearly always present in one’s
experience, such as houses and automobile exhaust for the in-
habitants of Edinburgh and Los Angeles. The virtually con-
stant presence of such factors implies that ¢ and d would be
much smaller than a and b and, therefore, that the result of a
linear combination of cell frequencies would be largely deter-
mined by @ and b. Thus, the same predictions would be made
for the presence of houses or automobile exhaust as for gravity
according to any of these rules! Clearty, no one would consider
the presence of either of these factors to be a cause or an inhibi-
tor of rain or the extent to which either factor causes or inhibits
rain to be dependent on the frequency of rainfall in one’s experi-
ence.

In sum, even with the assumption that linear combinations
are computed over a focal set of events, the linear heuristics
proposed in the cognitive literature erroneously predict that
enabling conditions and causally irrelevant factors that are al-
ways present (or nearly always present) in one’s experience have
the same status as either facilitatory or inhibitory causes de-
pending on the prevalence of the effect.

Arguments in Defense of Linear Heuristics

A number of arguments may be made in defense of these
heuristics. First, it may be argued that such heuristics should
apply only to factors that are attended to. Because factors that
are virtually constantly present in one’s experience are not sa-
lient (although one might argue that the constant presence of
automobile exhaust in Los Angeles is quite salient), causal
heuristics are not likely ever to be applied to them. In the spe-
cial case of Schustack and Sternberg’s (1981) model, it may in
addition be argued that, because of the fifth variable in their
model (the strength of competing causes), a normatively covary-
ing competing factor (which is predicted to have greater causal
strength than constant factors) would reduce the causal
strengths of the constant factors, rendering the predictions for
the constant factors less important.

However, these arguments do not explain why, among factors
that are virtually constantly present, people differentiate be-
tween enabling conditions (e.g., gravity with respect to rain) and
causally irrelevant factors (e.g., the presence of automobile ex-
haust or houses with respect to rain), a differentiation that
clearly is made. Moreover, counter to the argument based on
salience, even when attention is deliberately brought to the cell

frequencies for these factors, people are quite unlikely to be
persuaded that these factors are indeed causes and inhibitors.

A second argument is that normatively irrelevant (i.e., nonco-
variational) factors that are constantly present, such as houses
and automobile exhaust in the rain example, are considered to
be spurious causes despite the perceived covariation according
to linear heuristics. One weakness of this argument is that peo-
ple probably would not acknowledge any covariational relation
at all between rain and causally irrelevant factors such as
houses. (In contrast, it seems that people would readily ac-
knowledge a covariational, but noncausal, relation between a
drop in the barometric reading and the approach of a storm)
Moreover, this argument cannot be applied to the predictions
of linear models regarding constant factors that are normatively
causally relevant (gravity is not a spurious cause of rain).
Whereas normatively covariational but noncausal relations
pose a problem for all purely covariational accounts of causal
induction, normatively noncovariational relations that are con-
stantly present pose a unique problem for linear models.

A third argument might be that the distinction between a
cause and an enabling condition reflects the conversational
principle of being informative to the inquirer given assumptions
about his or her state of knowledge. Thus, whereas a cause is
always a condition assumed to be unknown to the hypothetical
inquirer (otherwise there would be no reason for asking), an
enabling condition is typically a condition assumed to be al-
ready known to the inquirer (Hilton, 1990; Mill, 1843/1973;
Turnbull, 1986; Turnbull & Slugoski, 1988; cf. Grice, 1975). For
example, a competent adult inquiring about an airplane crash
presumably does not know about the malfunctioning of the
critical component in the airplane but does know that the grav-
ity of the earth exerts a downward force. On this hypothesis,
causes and enabling conditions do not reflect differences in
underlying beliefs about the true causes of events but rather
differences in the informativeness of a covarying factor with
respect to an inquirer.

This hypothesis cannot absolve linear heuristics of their
transgression in predicting normatively causally irrelevant fac-
tors that are constantly present to be either facilitatory or inhibi-
tory causes depending on the prevalence of the effect (e.g.,
houses inhibit rain in Los Angeles)—the facilitatory or inhibi-
tory status of these factors can hardly be assumed to be already
known to the inquirer. For the same reason, neither can this
hypothesis prevent such heuristics from predicting a constantly
present necessary condition to be an inhibitory cause when the
target effect is rare (e.g., gravity inhibits rain in Los Angeles).

This hypothesis can potentially amend linear heuristics only
for those cases in which the target effect is prevalent, when a
constantly present necessary condition is predicted by these
heuristics to be a facilitatory cause (e.g., gravity with respect to
rain in Edinburgh). In these cases, it might be argued that the
causal status of such a condition is already known to the in-
quirer. Even for such cases, however, we (Cheng & Novick,
1991) reported evidence showing that the distinction between

10 For the special case in which the weighted sum happens to be zero,
the enabling condition has the same status as a causally irrelevant
factor.
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causes and enabling conditions cannot be explained by conver-
sational pragmatics.

A fourth argument might be that knowledge such as gravity
as an enabling condition for rain or oxygen as an enabling con-
dition for fire is based on academic instruction rather than
natural computation. Although it is dubious that the concept of
an enabling condition is part of formal instruction, one poten-
tial explanation is that academic knowledge is perceived to be
less intuitively compelling, albeit more reliable, than naturally
computed covariations. Being from a more authoritative
source, such knowledge overrides naturally computed covaria-
tions; but being less intuitively compelling, it yields the status of
merely enabling conditions. Note, however, that because aca-
demic instruction remains constant for an individual across
contexts at any particular time, this argument cannot account
for the effects of context on causal judgments. We review later
one of our experiments (Cheng & Novick, 1991, Experiment 2)
in which subjects’ perceptions of an enabling condition shifted
across two contexts because of a manipulation of the focal set,
indicating that the status of an enabling condition was not due
to academic training.

Explanation of Evidence Supporting Linear Heuristics

If linear heuristics do not describe natural causal induction,
why were a variety of them reported to be used by college stu-
dents to assess covariation? Crocker (1981) and Beyth-Marom
(1982) observed that the phrasing of a covariation question
seems to influence the particular heuristic used. More specifi-
cally, Beyth-Marom noted that the instructions given to sub-
jects regarding the task often emphasized certain aspects of
covariation, with the emphasis differing from experiment to
experiment. For example, in a task involving the relationship
between cloud seeding and rainfall, Ward and Jenkins (1965)
told their subjects, “At the end of the experiment. . . youare to
judge how much control seeding the clouds had over the occur-
rence of rainfall. . . . Complete control means that whenever
you seed, it rains, and whenever you don’t seed, it does not rain”
(p. 235). These instructions emphasized the confirming cases
(Cells a and d), exactly those on which their subjects based their
judgments. Similarly, emphases on various cell frequencies re-
flected in the instructions given in the experiments reported by
Alloy and Abramson (1979), Jenkins and Ward (1965), Shaklee
and Tucker (1980), and Smedslund (1963) were found to closely
mirror the biases, or lack of biases, observed in the respective
studies. Consistent with Beyth-Marom’s analysis, Schustack
and Sternberg’s (1981) finding regarding higher weights for a
and b (causal factor present) compared with ¢ and d (causal
factor absent) may reflect their instructions to “determine the
likelihood that a particular one of the possibie causes, in isola-
tion, leads to the outcome” (p. 106). To explain their subjects’
emphasis on sufficiency rather than necessity (¢ and b rather
than ¢ and d), Schustack and Sternberg (1981) noted, “In our
experiments. . . the task was more specific than that of evaluat-
ing ‘causality”, our subjects were evaluating the probability of
the occurrence of the outcome in the presencelitalics added ] of
the target” (p. 116). (In terms of our model, the latter assess-
ment concerns p;, only one of the two proportions in our defini-
tion of a main-effect contrast) As Beyth-Marom suggested,

subjects in these experiments “appear to do what they are told
to do” (p. 513). Because the issue of how causality is related to
the dependent variables in these experiments is left unad-
dressed, the biases reported in this literature are difficult to
interpret.

Suppes’s Model

According to Suppes (1984), an event C is a cause (a “prima
facie cause” in his terminology) of an event FE (the effect) if and
only if @) C occurs earlier than E, (b) P(C) > 0, and (¢) P(E|C) >
P(E), where P(E) is the unconditional probability of E occur-
ring. Let AR- represent the difference between P(E|C) and
P(E). Because P(E|C) is compared with the baseline defined by
P(E), it follows that for a potential cause C with any given
P(E|C), AR- will be larger when P(E) is small than when it is
large. That is, C will be a stronger or more likely cause when E
is rare than when it is prevalent. An exception to this, which we
discuss later, is the case in which C is constantly present.

Consider the following two ways in which P(E) may vary for
C. Either there is a single cause of E or there are multiple causes.
When E has the single cause C, P(E) is a function of P(C).
When there are multiple causes of E, P(E) is again a function of
P(C).In addition, P(E) may vary depending on how often other
causes produce E.

We argue that the predicted variation in AE- as a result of
variations in P(C) is anomalous in the case in which C is the
only cause (ie., P(E N C) = 0). We see that in this case

APc = KE|C) - HE) = HE|C)
~HENC)=PHAEIC)-[I - AO)L

Therefore, AE-is larger when C is rare than when it is prevalent.
To take a concrete example, consider the strength of the cause
of Down’s syndrome for children born of older women and
those born of younger women. It is known that the genetic
defect that deterministically leads to the syndrome occurs
vastly more often among infants of older women than among
those of younger women. Thus, Suppes’s model predicts that
the relevant genetic defect should be perceived as a stronger
cause of the syndrome for infants of younger women (for whom
the cause is rare) than for those of older women (for whom the
cause is more prevalent).

In contrast, the probabilistic contrast for the genetic defect is
equal for the two groups of children. For either group, Ap, =
p.— p-= 1.0. Our model, therefore, correctly predicts that the
genetic defect has identical causal strength for the two groups of
children.

Let us now consider the case in which there are mulitiple
independent causes of E. In this case, the prevalence of E varies
not only as a function of P(C) but also as a function of how often
causes other than C produce E. When these other causes often
produce E, P(E) will be relatively large. Therefore, for any given
C, AE- will be relatively small. Conversely, when other causes
rarely produce E, AE- will be relatively large. Like Equation 1,
then, Suppes’s rule also predicts a reduced contrast as a result
of the prevalence of the effect due to other causes (see the
Appendix).

In sum, both Suppes’s rule and Equation 1 in our model
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correctly predict that the prevalence of other causes influences
the strength of a potential cause. However, Suppes’s rule errone-
ously predicts that a particular cause should be perceived as
stronger when it is rare than when it is prevalent.

Probabilistic Extension of Mill’s Method of Difference

Several theorists hypothesized that causal explanation in-
volves the application of Mill’s (1843/1973) method of differ-
ence to a target episode and a contrasting causal background;
that is, a cause is the difference between a target episode in
which the to-be-explained effect is present and a contrasting
causal background in which that effect is absent (Hilton, 1990;
Mackie, 1965, 1974; McGill, 1989). Notice that events are parti-
tioned according to the presence versus the absence of the ef-
fect. If one were to recast this hypothesis probabilistically, it
would therefore seem most natural and accurate to formulate it
in terms of the probability of a potential causal factor condi-
tional on the presence versus the absence of the effect; that is,
the contrast rule for potential cause C and effect E is

APc = P(C|E) - A(C|E). 3

In a focal set in which C is constantly present, P(C|E) =
P(C|E) = 1. Therefore, this extension of Mill’s method of differ-
ence predicts that the factor will have a contrast of 0. Note that
for this focal set, regardless of the prevalence of E, P(E|C) =
P(F). Therefore, Suppes’s model also predicts that C will have a
contrast of 0.

One potential interpretation of this result is that C is causally
irrelevant in such cases. This interpretation does not permit the
prediction of an enabling condition, which seems appropriate
when C is causally relevant in some other focal set. These mod-
els, however, can be amended by defining an enabling condi-
tion as a factor that has a contrast of 0 within the current focal
set but a positive contrast in another focal set. This amendment,
however, implies that an enabling condition involves conflict-
ing information from two focal sets, one indicating it to be a
cause and the other indicating it to be causally irrelevant.

Let C, be a factor that is constantly present in the current
focal set (e.g., a suspect’s being alive at the time a crime was
committed in the context of the question “Who caused the
disappearance of a wallet from its owner’s pocket?”) but is
causally relevant (i.e, is a cause in another focal set). Now, let C,
be a cause in some focal set but, within the current focal set,
occur with equal nonzero probability when the effect is present
as when it is absent. Simple algebra shows that within the
current focal set, according to both Suppes’s model and Equa-
tion 3, C, should have a contrast of 0 (likewise according to our
model). Note that according to Suppes’s model and Equation 3,
because C, and C, each have a contrast of 0 within the current
focal set and is a cause in another focal set, the causal statuses of
C, and of C, are indistinguishable. This is true with or without
the amendment.

C, and C, do not seem indistinguishable to us. Consider the
previous question about the disappearance of the wallet and
the potential causal factor of the suspects “being alive.” Let this
factor be constantly present in the set of potential suspects (Fo-
cal Set 1) but known to be necessary for the effect (guilt in a
crime) judging from another focal set (Focal Set 2). Imagine

arriving at a world (Focal Set 3) in which being alive at the time
a crime was committed is irrelevant for guilt in that crime (.g.,
suppose there are ghosts who can steal). The causal status of
“being alive” in our world and in this novel world do not seem
indistinguishable. Indeed, one might find the change quite dis-
concerting: “Being alive,” something that is a constant condi-
tion for theft in our world (Focal Set 1), becomes causally irrele-
vant in this novel world (Focal Set 3). Whereas juxtaposing
information from Focal Sets 1 and 2 to arrive at the integrative
status of an enabling condition is undisturbing, juxtaposing
information from Focal Sets 3 and 2 produces a clear conflict.

In sum, we judge C, (eg., the factor of “being alive” with
respect to theft in Focal Set 1) to be neither causally irrelevant
nor indistinguishable from C, (e.g., “being alive” in Focal Set 3).
These intuitions contradict the predictions made by Suppes’s
model and by our probabilistic extension of Mill’s method of
difference.

Normality Criterion

The normality criterion is a prominent explanation of the
distinction between causes and enabling conditions that has
held sway ever since it was first proposed by the philosophers
Hart and Honoré (1959/1985) and Mackie (1965,1974). A num-
ber of psychologists who have considered the distinction con-
curred with this explanation (Einhorn & Hogarth, 1986; Hilton
& Slugoski, 1986; Kahneman & Miller, 1986; Turnbull & Slu-
goski, 1988; see Cheng & Novick, 1991, for a review). Hart and
Honoré maintained that central to the commonsensical con-
cept of cause, and at least as essential as the notions of invari-
able or constant sequence stressed by Mill and Hume, is the
notion of human intervention in a course of events that would
normally take place. Postulating the generalization of this no-
tion to cases in which there is no literal human intervention,
they suggested that a cause is “a difference from the normal
course which accounts for the difference in the outcome” (p.
29). On this view, among the set of factors that are individually
necessary and jointly sufficient to produce an effect (eg., an
airplane crash, a couch on fire), an abnormal factor (e.g., the
malfunctioning of a component in the airplane, a dropped ciga-
rette) will be designated as the cause, whereas normal factors
(e.g., the gravitational pull of the earth, the combustibility of the
couch) are merely enabling conditions. Here we limit our dis-
cussion of this criterion to its interpretation in terms of the
statistical sense of prevalence. (See Cheng & Novick, 1991, for
tests of two other interpretations of this criterion: namely, Kah-
neman & Miller’s, 1986, default value interpretation and
Mackie’s, 1974, interpretation of normality in its ethical sense
of a correct standard.) Under the statistical interpretation, nor-
mality is defined by the prevalence of the causal factor in the
context (ie., focal set) under consideration.

Cheng and Novick (1991) noted that one of the limitations of
the normality view is that it does not account for the perception
of the causes of prevalent events (e.g., objects staying in place
instead of floating weightlessly), which have prevalent factors
(e.g., the mass of the object, the gravitational pull of the earth,
and so on) that are individually necessary and jointly sufficient
to produce the effect. Although people in everyday life typi-
cally ask about the causes of only rare events (e.g., Kahneman &
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Miller, 1986; Lehnert, 1978; Weiner, 1985), leaving it to scien-
tists to ask questions about prevalent events and discover (or
invent) concepts such as gravity, ordinary people do perceive
and understand such concepts when they are used in everyday
contexts. For example, even though gravity is ubiquitous on the
surface of the earth, the statement “The earth’s gravity causes
objects near its surface to fall” does not sound anomalous (even
though a physicist might not put it that way). It clearly carries
the usual causal implication that without the cause (eg., in a
special gravity-free chamber) the effect would not occur (e,
objects would not fall). The statement might be made, for exam-
ple, in answer to a child’s question. It seems to us, then, that a
major weakness of the normality position is that it cannot ac-
count for ordinary people’s perception of causality regarding
prevalent events, thereby implying that two distinct mecha-
nisms underlie people’s concepts of causality in everyday versus
scientific situations.

We propose here that the normality criterion should be re-
garded as a special case of our model, which can account for
causal induction involving either prevalent or rare events with a
single mechanism. As illustrated in Figure 1, factors that have a
noticeable probabilistic contrast with respect to an effect can
be either prevalent or rare. In Focal Set A, the factor that has a
large contrast () is rare. However, in Set C, the factor that has a
large contrast (g) is prevalent. The normality criterion corre-
sponds to the case in which the probabilistic contrast is com-
puted for an effect that is rare in the context in question (as in
Set A of Figure 1), with the exception of cases in which the cause
of a rare effect (e.g., skin cancer) is prevalent (sunlight). These
exceptions involve factors whose contrast values are small but
nonetheless noticeable.

Our model overcomes the inability of the normality criterion
to account for the perception of causality regarding prevalent
events by differentiating between two concepts that are con-
flated in the normality view—the constant presence of a poten-
tial factor and the prevalence of such factors. We predict that
people do differentiate between the two.

Manipulating the Prevalence of the Cause and the Effect

Linear heuristics, Suppes’s (1984) model, and the normality
criterion all predict an impact of the prevalence of a potential
causal factor or the prevalence of the effect, or both. In con-
trast, our model predicts that although the constancy of a po-
tential causal factor will influence causal judgments, the preva-
lence of neither the factor nor the effect will have any impact in
situations in which the effect is not simultaneously produced by
multiple alternative causes.

We (Cheng and Novick, 1991, Experiment 2) manipulated (a)
the constancy of causal factors and (b) the prevalence of the
causal factors and of the effect. More specifically, we manipu-
lated which factor covaried with an effect (plant growth) and
which remained constant in two scenarios. One scenario was
about the blooming of dandelions, and the other was about the
maturation of corn plants. For each scenario, the effect was
prevalent in one version and rare in another. In each scenario,
one factor covaried with the effect. This factor differed across
the scenarios (sunlight in the dandelion scenario versus nu-
trients in the soil in the corn scenario). The remaining three

factors were held constant in each scenario: two were necessary
for the effect according to subjects’ prior knowledge (water in
both scenarios plus nutrients or sunlight) and one was not (the
presence of a house next to the plants). Within each scenario,
the covarying factor was either prevalent or rare in accord with
the prevalence of the effect.

Prevalence was defined for the effect and the positive value of
the covarying factor by describing them as occurring in either
most of or a few of the cases in the given context. For example,
in the prevalent-corn scenario, many corn plants matured (ie.,
the effect occurred) in four of the five cornfields tended by a
farmer. These four fields had virgin soil (the positive value of
the covarying factor), whereas the fifth field had its soil de-
pleted of nutrients by previous farming.

At the end of each scenario was a question on what caused
the growth of the relevant plants (e.g., what caused the corn
plants to mature in the four recently cleared fields?). Subjects
were asked to indicate the causal status (cause, enabling condi-
tion, causally irrelevant factor, or inhibitor) of each of the four
factors in each scenario. To test the linear heuristics against our
model, a second question asked whether each of four items
inhibited the growth of the plants. Two of these items were
constantly present in the specified focal set—one a necessary
factor (e.g., sunlight in the corn scenario), the other unnecessary
(the house in both scenarios). The other two items were negative
values of two necessary factors—one the covarying factor (e.g.,
lack of nutrients for the corn scenario), the other a constant
factor (e.g., lack of water in the corn scenario).

Before subjects read the scenarios, we introduced our termi-
nology by giving a brief explanation of the distinction between
causes and enabling conditions in terms of an example, chosen
so as to be neutral with respect to all alternative models that
allow the construct of an enabling condition. To measure the
focal sets perceived by the subjects, after they made judgments
on the causal status of the various factors, they were asked to
rate how accurately each of three expanded questions that speci-
fied different focal sets reflected their interpretation of the
causal question in the scenario. This question served to ensure
that our manipulation of focal sets was effective (and it was).

Our model predicts that a potential causal factor that covar-
ies with the effect in the focal set will be considered a cause and
will be distinguished from necessary factors that are constantly
present in that set. In particular, it predicts that the two sce-
narios will produce shifts in judgments concerning causes and
enabling conditions: Factors that yield a large positive probabi-
listic contrast in the focal set (sunlight in the dandelion sce-
nario vs. nutrients in the corn scenario) will be perceived as
causes; conversely, those that yield a large negative contrast
(lack of sunlight vs. lack of nutrients in the respective scenarios)
will be perceived as inhibitors. It also predicts that necessary
factors that are constant in that set (nutrients and water in the
dandelion scenario vs. sunlight and water in the corn scenario)
will be perceived as enabling conditions, whereas unnecessary
factors that are constant in that set (the house in both scenarios)
will be perceived as causally irrelevant. These predictions are
independent of the prevalence of the covarying factor (eg.,
whether most or few areas have rich soil) and of the effect (e.g.,
whether most or few corn plants matured) in the focal set.

In contrast, the normality view predicts that, within each
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scenario (dandelion or corn), the prevalence of the factors
should influence causal judgments. In particular, only in the
rare versions should necessary factors be considered causes; in
the prevalent versions, necessary factors should be considered
enabling conditions despite high probabilistic contrasts for
those factors within the focal set. Like the normality view (but
for a different reason), Suppes’s (1970, 1984) contrast rule pre-
dicts that a rare necessary factor will be more likely to be con-
sidered a cause than a prevalent one, if one assumes that a factor
with a large contrast is more likely to be considered a cause
than a factor with a much smaller contrast.

The linear-combination heuristics predict that the preva-
lence of the effect should influence causal judgments on all
factors that remain constant in the focal set regardless of
whether they are necessary for the effect. According to heuris-
tics that have a positive weight for ¢ and a negative weight for b,
when the effect is prevalent, these constant factors should be
considered causes; when the effect is rare, these factors should
be considered inhibitors. For example, in the prevalent-corn
scenario, the house, sunlight, and water should be identified as
causing the corn plants to mature, whereas in the rare version of
the scenario, these factors should be seen as inhibiting matura-
tion.

In support of our model, the results indicated that manipulat-
ing which factor has a large probabilistic contrast across sce-
narios had a huge effect on causal judgments. The effect of
shifting scenarios also indicates that subjects based their judg-
ments on the focal sets they perceived in the scenarios we con-
structed rather than merely on their prior knowledge, including
book-learned knowledge. Within each scenario, causal judg-
ments were just as predicted by our model but contrary to what
were predicted by the normality criterion, the linear-combina-
tion heuristics, and Suppes’s contrast rule. In particular, vary-
ing the prevalence of either the potential causes or the effect
had absolutely no impact on judgments of causal status.

Summary and Conclusion

Our probabilistic contrast model integrates normative mod-
els of covariation proposed in the cognitive and social psychol-
ogy literatures and the animal behavior literature, extending
them by developing formal definitions of simple and conjunc-
tive causes and by adding an explicit assumption of computa-
tion of covariation over focal sets (an idea adapted from the
philosophical literature). The present review of our explana-
tions of deviations from normative covariation in the disparate
domains of philosophy and social psychology shows that the
same concept of computation of probabilistic contrasts over
events in a focal set underlies causal induction in both do-
mains. Adding to our previous theoretical analyses (Cheng &
Novick, 1990a, 1991), we evaluate alternative theories of causal
induction in view of the constraints imposed by a simultaneous
consideration of phenomena in the two domains. Our analysis
reveals that no alternative model of causal induction in cogni-
tive and social psychology and in philosophy satisfies those
constraints. Moreover, we note that (@) Suppes’s (1984) model
erroneously predicts that the assessment of a potential cause is
a function of its prevalence, (b) the class of heuristics based on
linear combinations of cell frequencies erroneously predicts

that the assessment of a potential cause is a function of the
prevalence of the target effect, and (¢) the clear difference be-
tween a causally irrelevant factor and a constant but relevant
condition favors our contrast rule over both an amended ver-
sion of Suppes’s rule and a probabilistic extension of Mill’s
(1973) method of difference. Furthermore, we derive Kelley’s
(1971) discounting principle as a corollary of our modification
of his ANOVA model. We also specify how the normality crite-
rion and previous explanations of the distinction between
causes versus enabling conditions in terms of necessity and
sufficiency may be regarded as special cases of our model.

In addition to extending our previous theoretical analyses,
we extend our interpretation of previous empirical results. We
show that (a) our (Cheng and Novick, 1991, Experiment 2) find-
ings contradict the predictions made by the linear-combination
rules and Suppes’s (1984) model, (b) the differing results re-
ported by Nisbett and Borgida (1975) and Wells and Harvey
(1977) in their controversial debate regarding the use of consen-
sus information are both consistent with our model, and (c) the
differing attributions of actors and observers are also consistent
with our model.

It seems that causal induction is the proverbial elephant.
Many researchers reported on various of the multiple facets of
covariation computation, a component of causal induction that
has been regarded as essential. These seemingly inconsistent,
nonoptimal, shifting facets of this putatively essential compo-
nent have led some to conclude that a coherent elephant of
causality does not exist. We by no means claim that we have a
complete view of the beast; as we mentioned, there are impor-
tant aspects of causality that we skirt. On the basis of our own
work and our interpretation of others’ reports, however, we be-
lieve we have put together enough pieces to suggest that an
elephant is indeed there and that it shows signs of being an
adaptive animal.
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Appendix

Role of a Given Cause in the Context of Independent Alternative Causes

We derive the contrast for a potential cause according to our probabi-
listic contrast model in the cases in which independent alternative
causes (a) could be present, (b) are known to be present, and (c) are
known to be absent in the event to be explained. We compare these
contrasts with the situation in which only a single cause is present in
the target event.!

Let M denote the event in which potential cause m is present and M
denote the event in which m is absent for the situation in which there is
a single cause. Let m denote the event in which m is present and m
denote the event in which m is absent for the situation in which alterna-
tive causes, 7y, . . . , 1, could be present. Assume that P(M) = P(m) and
that the effect does not occur when no causes are present. Let e denote
the presence of the effect, and P, (¢) denote the probability of a single
cause n; producing e.

Because e does not occur if none of the causes present produces e,

Pelm) = 1 — P&lm)
=1-{l - PeIM)] IfIl [t - P(e)}
Pe|m) = 1 — Pe|m)
=]~ Ii [1 - P,(e)].
For the case in which the presence of ; is unknown,
P.(e) = P(n)P(ejn,).

For the case in which #; is known to be present,'?

P,(e) = Peln,). (A1)
For the case in which all »; are known to be absent,
P,(e)=0. (A2)

Probabilistic Contrast Model
For event M,
Apy = Ple|M) — P(e|M),

where P@M) = 0.
For event m,

Ap, = Ple|m) — Pe|m)

k
=1-[1-PelM)] Hl (1 - P,(e)]
k
- {1- I_:[l [t - P(a)]}

k k
= Pe|M) ]f_Il {1 = P,(e)] = Apy I_Tl {1 - P,

Because [l — P,(@)] <1 if n; is a cause of ¢, Ap,, < Apy. That is, the
probabilistic contrast for 7 is decreased by the addition of n;, as stated
by Kelley’s discounting principle. The magnitude of the decrement
from Apy to Ap,, is (a) proportional to both p(ejn;) and the prevalence of
n; when the presence of #; is unknown and (b) proportional to pien;)
when #; is known to be present. For the special case in which one or
more alternative causes always produces ¢ when it is present and it is
known to be present whenever m is present (see Equation Al and Foot-

k

note 12), II[1 — P, (e)] = 0; therefore, Ap,, = 0. For the case in which all
-l

n; are known to be absent, Ap,, = Apy.

Suppes’s Model
Similar predictions follow from Suppes’s model. For event M,
APy = Pe|M) — He),
where
P(e) = P(e and M) + P(e and M).
Therefore,
APy = Ple|M) — Ple|M)P(M) — Ple] M)P(M)
= [1 — AM)I[P(e|M) — P(e|M)] = [1 — PAM)]Apw.

Similarly, for event m,

AP, = [1 — Pm)}Ap,,

k k
=[1 — Am)]Apy Hl [1 = P.(e)] = APy Hl [1 - P.(o)}

Because {1 — P, ()] <1 if n;is a cause of ¢, AP,, < AP, if P(M) < 1.
That is, when m is not constantly present, the contrast for m is de-
creased by the addition of n,. The magnitudes of the decrements from
AP, to AP,, in the cases in which (@) the presence of », is unknown, (b)
n; is known to be present, and (c) n; is known to be absent paraliel those
for the probabilistic contrast model.

"' We thank Thomas Wickens for his valuable comments on an ear-

lier draft of our derivations. In particular, we thank him for generaliz-
ing our derivations to apply to an indefinite number of alternative
causes.

12 Equations Al and A2, respectively, imply the restriction of the
focal set to events in which n; is present and events in which »; is absent.
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