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Abstract 

Logical consistency and objectivity are cornerstones of science 
that distinguish it from cult and dogma.  Scientists’ concern with 
objectivity has led to the dominance of associative statistics, which 
define the basic concept of independence on observations.  The 
same concern with avoiding subjective beliefs has led many 
scientific journals to favor frequentist over Bayesian statistics.  Our 
analysis here reveals that to infer causes of a binary outcome, (1) 
the associative definition of independence results in a logical 
inconsistency -- even for data from an ideal experiment -- for both 
frequentist and Bayesian statistics, and (2) removing the logical 
error requires defining independence on counterfactual causal 
events. The logically coherent causal definition is the one 
intuitively adopted by humans. Our findings have direct 
implications for more consistent and generalizable causal 
discoveries in medicine and other sciences. 

Keywords: Causal inference, rationality, cognition, statistics. 

Introduction 
Whenever we humans or other animals apply causal 
knowledge to achieve a desired outcome, we implicitly 
assume that the future resembles the past. Without the 
assumption that the course of nature remains invariant, all 
experience becomes useless (Hume, 1739). But what is the 
course of nature if not change (e.g., seeds sprout, species 
evolve, oceans warm, stars implode)? What we assume to 
remain invariant in nature are -- instead of events -- the 
forces of change, namely, causation (Kant, 1781; Kitcher, 
1995). The fact that we routinely base actions on our causal 
knowledge (e.g., I strike this match because I expect it to 
ignite) is indubitable evidence that we hold the causal 
invariance assumption across the learning and application 
contexts. The present paper examines a previously 
unsuspected role that this assumption should play in 
scientific causal inference, leading to implications for more 
rational evaluations of hypotheses regarding causes of a 
binary outcome (e.g., a student graduating or not, an 
organism being dead or alive). 

To test causal hypotheses based on data from experiments 
or quasi-experiments, the statistics in typical scientific use 
define invariance (often termed “independence” or “no 
interaction”) on observations (Fienberg, 1980/2007; Jaynes, 
2003; Wickens, 1989).  Objectivity would seem to dictate 
this definition, given that the input necessarily consists of 

observations only. Because causal relations are inferred and 
inherently unobservable (Hume, 1739), defining invariance 
on causal relations seems objectionable.   

Thus, for the respective purposes of scientific causal 
discovery and of justifying the application of causal 
knowledge, there are two distinct definitions of invariance: 
the associative and the causal. The associative conception 
defined on observable events traces its inspiration to the 
philosophical works of Hume (1739), who questioned the 
grounds for our compelling belief that causation exists in 
the world.  The causal conception defined on causal 
influences rests on Kant’s (1781) argument that an 
ontological commitment to causation is essential for a 
coherent interpretation of the world. We use “causal 
influence” here in the sense of capacity or power, which 
when realized explains the occurrence of the outcome.  

There is a discrepancy between the two definitions, but 
the discrepancy has not seemed problematic: The unspoken 
consensus is that while causal invariance justifies 
generalization, it plays no role in causal discovery.  
Accordingly, using associative statistics to test experimental 
data is standard practice, and is viewed as appropriate as 
long as the experimental manipulation, which disambiguates 
causal direction, succeeds in eliminating confounding. 

The consensus opinion, however, is mistaken. Here we 
show that even in the ideal case in which there are no 
confounding variables, the definition of invariance 
incorporated in a measure can affect the statistical output. 
Moreover, with regard to causes of a binary outcome, a type 
of outcome prevalent in medical and business research (e.g., 
a tumor cell being malignant or not, a consumer buying an 
item or not), only the definition based on counterfactual 
causal events, the Kantian causal power definition, is 
logically consistent. Notably, the coherent definition is the 
seemingly less objective one.  

To explain the inferential problem, we step back and 
examine the nature and definitions of causal invariance from 
a cognitive-science perspective, in particular, within the 
broader issue of how an intelligent agent with access to 
inherently limited information can construct a representation 
of the world that best enables desired outcomes. From this 
perspective we examine the implications of conceptions of 
causal invariance for the experimental sciences and 
everyday causal inference. 
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Causal Invariance and its Implications 
Under the premise that all changes are caused, one way of 

stating causal invariance is: a cause c of an effect e retains 
the same capacity to affect e regardless of the temporal or 
spatial context, in which alternative (often unobserved) 
causes of e may occur with different probabilities.  That is, 
the causal power of c is independent of the occurrence of 
alternative causes of e, as if those alternative causes were 
not there. A change in the capacity of a cause to produce its 
effect potentially indicates the causal mechanism operating 
differently.1 As we show later, this interpretation of causal 
invariance applying the concept of independence (i.e., “no 
interaction”) to causal powers enables logical implications 
of the assumption to emerge, by enabling a mathematical 
definition of causal invariance (Eq. 4).   

The concept of causal invariance serves two distinct 
functions. First, as a working hypothesis, a defeasible 
default assumption, it justifies causal generalization and 
prediction. By rendering inference compositional, it enables 
the generation of logically consistent answers to an 
unlimited variety of questions regarding an outcome’s 
occurrence in an unlimited range of application contexts 
(Cheng et al., 2007). Second, as a definition of what it 
means for the nature of a cause to remain the same (rather 
than as a description of a particular causal mechanism), 
causal invariance serves as a criterion for hypothesis 
revision. Thus, if a generalization proves wrong, as would 
often happen in the dynamic mental construction of our 
complex causal world, the deviation from expectation 
signals a need to better capture invariance.  In this second 
role, causal invariance is a navigation device that orients 
hypothesis testing towards its goal of formulating the 
simplest explanation of a phenomenon that allows 
invariance to obtain (Carroll & Cheng, 2010). 

Consider the alternative, the non-uniformity of nature, as 
the default. Not only would predictions and applications be 
impossible, so would hypothesis revision -- given no 
expectation, there is no deviation from expectation to guide 
revision towards causal invariance. Thus, the choice is a) 
inapplicable and stagnant causal knowledge or b) risky 
causal inference with the potential for effective 
generalization and hypothesis revision.  In its two roles, as a 
default and a criterion for revision, causal invariance 
embodies the conviction that the world is knowable, that 
one can tease things apart, comprehend them, and mentally 
recompose them at will. 

Defining Causal Invariance: Hume versus Kant 
Assuming causal invariance requires two leaps of faith.  

The first is apparent: faith that the future resembles the past.  
The second is subtler: faith in the existence of causation, a 
faith Hume (1739) resisted.  Here we show why the second 

                                                             
1 Although c may interact with causal factors in the background, 

as long as these factors and preventive causes occur just as 
frequently in the learning and application contexts, c will appear to 
operate the same way across contexts (Cheng, 2000). 

leap plays a central role in rational causal discovery, in 
particular, why an associative definition of invariance, 
omitting this leap, is irrational for causal discovery.   

We classify models as causal or associative depending on 
whether or not they have a definition of independence on 
causal influences. Whereas the ontological commitment to 
the existence of causation under the causal view enables this 
view to define independence on causal influences (e.g., 
Cartwright, 1989; Cheng, 1997; Lu, Yuille, Liljeholm, 
Cheng & Holyoak, 2008; Pearl, 2000; Sheps, 1958; Sloman, 
2005; Yuille & Lu, 2008), the lack of this a priori 
assumption confines the associative view to defining 
independence on observations only (e.g., the cross product 
ratio; Fienberg, 1980/2007; Wickens, 1989). These two 
views differ most clearly for causes and effects that are 
represented by binary variables with a “present” value and 
an “absent” value; our argument therefore uses this variable 
type.  For this variable type, observable events consist of the 
values of candidate cause c and of effect e. We denote the 
“present” and “absent” values by “1” and “0” respectively.    
 
The Associative View The associative view defines 
independence on observations of c and e (we use c and e as 
variables or values depending on context):  if c occurs 
independently of e, then 

P(c =1, e =1) = P(c =1) • P(e =1)  (Eq. 1), 
where P(c =1, e =1) is the probability of the joint occurrence 
of c and e.  This view computes associations, and leaves 
causal inference to a separate and subsequent interpretation 
of the associative output, for example, according to 
scientists’ principles of experimental design or as Hume’s 
“habit of mind”.  To enable predictions, this view typically 
amends Eq. 1 with additional assumptions, often variations 
of linearity or additivity. This amendment implicitly extends 
the definition of independence; deviation from linearity is 
what signals the need for interaction terms.  

We illustrate the linear combination of associative 
strengths with the ΔP model (Jenkins & Ward, 1965; 
Salmon, 1965),  

  ΔP = P(e =1 | c =1) − P(e =1 | c =0) (Eq. 2), 
where P(e =1 | c =1) and P(e =1 | c = 0), respectively, denote 
the probability that e occurs given that c occurs and given 
that c does not occur.  Eq. 1 is a special case of Eq. 2, the 
case in which ΔP=0.  To tease apart the influence of c from 
all other influences on e, our analysis partitions all direct 
causes of e into c and a, where a represents a composite of 
alternative causes of e in the context. When c is absent, the 
occurrence of e is explained by a.  Let wc represent the 
weight (i.e., strength) of the association between c and e, and 
wa represent that between a and e.  ΔP has been shown to be 
a maximum-likelihood estimator of wc in the Bayesian 
framework (Griffiths & Tenenbaum, 2009; Tenenbaum & 
Griffiths, 2001).  

When there is no confounding (i.e., a occurs just as often 
whether or not c occurs), ΔP estimates wc.  Thus, replacing 
ΔP with wc and P(e =1 | c =0) with wa, Eq. 2 can be rewritten 
and rearranged to give the linear equation:  



P(e =1 | c =1) = wc+ wa  (Eq. 3). 
That is, when multiple causes are present, the occurrence of e 
according to this model is explained by a sum of the 
associative strengths of the causes. Bayesian structure-
learning models can likewise adopt the linear definition (Lu 
et al., 2008; Yuille & Lu, 2008; Tenenbaum & Griffiths, 
2001).   

Similarly, generalized linear models (GLMs [Fienberg, 
2007; McCullagh & Nelder, 1989]), some process models in 
psychology (e.g., Rescorla & Wagner, 1972), and prominent 
causal models in epidemiology (Rothman et al., 2008) also 
adopt the definition in Eq. 1 amended with variants of 
linearity. For example, logistic regression, likely the most 
commonly used model for evaluating causal hypotheses in 
medical research and widely used in business research as 
well, amends Eq. 1 with a logistic scale transformation to 
better justify the linearity. A feature common across the 
generalizations in GLMs is “the presence in all the models of 
a linear predictor based on a linear combination of 
explanatory or stimulus variables” (McCullagh & Nelder, 
1989, p. xvi). 

Now, consider a situation in which representation in terms 
of observable events alone cannot capture the constancy of a 
causal relation across contexts. When effect e is binary, a 
factor’s capacity to influence e may have no observable 
manifestations, even when there is no confounding.  Suppose 
c is a cause of e that does not interact with any other cause of 
e. Yet, whenever e is already present (regardless of which 
other cause produced it), introducing c will yield no change 
in the state of e, indistinguishable from introducing a 
noncausal factor. For example, suppose someone is already 
dead (the binary outcome in question) from being hit by a 
car.  Being hit by another car will show no change in the 
outcome (the person is still dead), despite the sameness of the 
forces underlying car accidents (the second car would have 
killed the person too). In such occlusion events, unobservable 
causal capacities lose their mapping onto observable changes.  
Given the lack of constancy in this mapping, postulating 
capacities becomes crucial for representing a stable causal 
world; observable changes, as used in associative models, or 
even actual causation in an episode, as used in 
epidemiological causal models (Rothman, Greenland & Lash, 
2008), would be inadequate.  Just as objects occluded in the 
2-d visual input on our retinas are assumed to continue to 
exist in the world, so should occluded causal capacities. 
 

The Causal View The causal view builds on Hume’s 
insight – that causal knowledge is induced from noncausal 
data – but goes beyond it:  Intervening between the 
observable input and the causal output is a causal 
explanation of the data.  This explanation, under Kant’s 
domain-general a priori causal framework, posits the 
existence of such things as causal relations: theoretical 
events that yield observed phenomena. We denote “causing” 
by “” (e.g., “ce” denotes “c causing e”).  Once causal 
events are assumed to exist, the definition of their 
independence analytically follows:   

if ce is independent of ae, then 

P(ce, ae) = P(ce) • P(ae)   (Eq. 4). 
P(ce) is the probability of c causing e; it corresponds to 
the theoretical probability that e would occur if c is present 
but no other (observed or unobserved, generative or 
preventive) cause of e were present. The probability is 
theoretical because it is impossible to know that a context 
has no unobserved causes. Note that P(ce) is not a 
conditional probability involving two random variables, but 
instead the probability associated with a single random 
variable.  Likewise, P(ae) is the probability of a causing 
e, and P(ce, ae) is the probability of one of the two 
causes, c or a, producing e and the other cause also 
producing e if e had not been already produced.2 

Notice that the definition in Eq. 4 centers on conjunctive 
causation in an “occlusion” event.  The conjunctive causal 
event (e.g., a dead car-accident victim being killed by a 
second car) can never occur (rather than happen to not have 
occurred).  Our “” notation serves as a reminder that the 
causal events denoted are nonexistent and theoretical.   

Although none of the events in Eq. 4 is observable, the 
intervening causal explanation of the data (e.g., when e 
occurred in the presence of c, it occurred because c caused it 
or a caused it) maps observable event frequencies (e.g., how 
often e occurred when c was present) onto their theoretical 
causal probabilities [e.g., P(ce OR ae)].  Thus, 
P(e=1|c=1) estimates P(ce OR ae). The latter in turn 
can be expressed in terms of the constituent events in Eq. 4: 
 

P(ce OR ae)= P(ce)+ P(ae)−P(ce, ae) (Eq. 5), 
where the final term equals the product, P(ce) • P(ae), 
if c and a produce e independently (Eq. 4).   

Under this view, causal interpretation is integral to the 
computation of the numerical output (e.g., Cheng, 1997; 
Griffiths & Tenenbaum, 2009), rather than subsequent to it. 
Data analysis incorporates causal invariance.   

The difference between the two views and its implications 
for rational scientific causal inference has not received 
attention. Like frequentist statistics for the experimental 
sciences, causal Bayes nets adopt the separation of statistics 
and causal inference. The “generic” parameterization most 
commonly adopted in causal Bayes nets uses neither the 
associative nor the causal definition, and the “noisy OR” 
parameterization in Eq. 5 is used for efficiency rather than 
rationality. In a similar vein, Bayesian causal models allow 
both the associative and causal definitions (Griffiths & 
Tenenbaum, 2009; Lu et al., 2008; Yuille & Lu, 2008). 

  
The Rationality of the Two Views  Is it rational to define 
causal invariance on unobservable, imaginary events, as the 
causal view does?  Ceteris paribus, it is objectionable to use 
unobservable events.  What is at stake, however, is logical 
consistency. What it means for the nature of a cause in our 
physical world to remain invariant across contexts is non-

                                                             
2 “No interaction” between the occurrences of c and e, as 

defined in Eq.1, is a special case of the independence of causal 
powers as defined in Eq. 4 when there is no confounding and 
ΔP=0. 



arbitrary.  There is only one way for a causal mechanism in 
a coherent world to operate the same way, without change.  
For binary causes and effects that are “present” or “absent,”  
Eqs. 4 and 5 specify the only logically consistent definition 
of causal invariance (e.g., so that c causes e with indeed the 
same probability in one context as in another).  In other 
words, systematic deviation from independence as specified 
in these equations indicates causal interaction.  (Note that 
for other variable types and combinations of variable types, 
the singular meaning of causal invariance in the world is 
captured by other mathematical functions.) 

We first explain the correlated influences inherent in 
associative amendments by illustrating how the linear model 
in Eq. 3 deviates from causal invariance.  The additivity in 
Eq. 3 holds only if the capacities of c and of a to cause e are 
mutually exclusive [i.e., P(ce, ae) = 0; there are no 
occlusion events].  But, to define independence as mutual 
exclusivity (i.e., to define “no correlation” as a negative 
correlation) is self-contradictory.   

To see the self-contradiction without the abstraction of 
causal inference, consider a simple concrete example 
involving two events regarding a deck of playing cards: 
drawing a diamond and drawing a face card.  (Assume that 
the deck has diamonds and face cards, among other cards.)  
Defining independence between the two events as mutual 
exclusivity of the events would entail asserting that the 
chance of drawing a face card is the same for diamonds as 
for other suits if and only if face cards and diamonds are 
mutually exclusive: when there are no face cards that are 
diamonds.  The chance of drawing a face card then would 
be 0 for diamonds but not for other suits.  The mutual-
exclusivity definition therefore implies a logical 
contradiction: “the chance of drawing a face card is the 
same across suits only if it is not the same across suits.”  

Our analysis so far may seem irrelevant to current 
frequentist statistics: nonlinear GLMs, which avoid a logical 
shortcoming of linear models for analyzing data with binary 
outcome variables, have long replaced linear models for that 
purpose (Fienberg, 1980/2007; Wickens, 1989). But, GLMs 
in fact do not sidestep the contradiction in other associative 
models. First, GLMs concur with the ΔP model in adopting 
the mutual-exclusivity definition for special cases involving 
data that have the feature of symmetry. We illustrate this 
agreement presently with a logistic-regression analysis of 
fictitious data in a story in an experiment designed for 
preschool children. Second, GLMs more generally carry the 
broader contradiction of defining independence as 
interaction. Because P(e =1|c =1) estimates P(ce OR ae), 
Eqs. 3 and 5 can be directly compared.  They differ by the 
final (negative) term in Eq. 5 being omitted in Eq. 3.  A scale 
transformation that would avert the contradiction would 
therefore need to result in subtracting the product, wc• wa, 
from the right-hand-side of Eq. 3.  But this is neither the 
intent nor the result of the transformations in GLMs. The 
logistic function, for example, is symmetric (see s-shaped 
curve in Figure 1), as is characteristic of associative models.  
In contrast, for every value of wa, subtracting wc• wa from the 

sum, wc+ wa, yields an asymmetric concave function of wc (as 
wc increases, an increasing amount is subtracted from the 
linear sum).   

Without the a priori postulate that causal relations exist, 
associative models cannot coherently define independence 
on the missing relations, hence cannot justify the application 
of causal knowledge. They cannot, even when ideal 
experiments are concerned, because the error is logical. 
An Illustration of the Associative and Causal Views 
Arriving at Opposite Conclusions We return to the 
mutual-exclusivity definition of causal invariance in 
associative statistics. In a story presented to preschoolers in 
our experiment, two brothers -- a farmer and a zookeeper – 
try to figure out what prevents red dots from appearing on 
the faces of animals at their farm and at zoo. The candidate 
preventive causes of red dots are two treats:  a grain and a 
type of leaves.  At the farm, the brothers gave the grain to 
all 10 animals there: 9 of them had red dots before eating 
the grain, and 6 did so afterwards.  At the zoo, the brothers 
gave both treats -- grain and leaves -- to all 10 animals 
there: 4 of them had red dots before eating the two treats, 
and only one had red dots afterwards. The question is: 
which treat is one’s best bet for removing red dots from the 
faces of farm and zoo animals? 

Regardless of how “sameness” is defined, the rationale 
underlying the choice is:  Assuming the grain operates “the 
same way” across contexts (i.e., farm and zoo), if the 
influence of the intervention (grain at farm vs. both treats at 
zoo) remains invariant across contexts, one’s best guess 
would be that leaves had no effect – grain alone would 
already explain the outcome. But, if the influence of the 
intervention varies across contexts, one would attribute the 
difference to leaves. 

According to the causal view, the grain operating with the 
same causal mechanism across contexts implies that for 
every animal (all 20), grain has the same causal power to 
remove red dots. We denote the two interventions by 
“farm_iv” and “zoo_iv” respectively and “red dots on the 
face” by “red” in the calculations below.  The causal power 
of candidate cause c to prevent effect e, pc, is estimated 
according to (Cheng, 1997): 

pc =
P(e =1| c = 0)!P(e =1| c =1)

P(e =1| c = 0)
              (Eq. 6) 

Thus, 

pfarm_ iv = pgrain =
9 10! 6 10
9 10

=1 3               (Eq. 7) 

Likewise, 

pzoo_ iv =
4 10!1 10
4 10

= 3 4                  (Eq. 8) 

But, according to causal invariance (Eqs. 4 and 5), 
pzoo_ iv = pgrain + pleaves ! pgrain " pleaves               (Eq. 9) 

It follows that 
3 4 =1 3+ pleaves !1 3" pleaves              (Eq. 10) 
Therefore, pleaves = 5 8.   



Because 5/8 is greater than 1/3 (i.e., the leaves treat is a 
stronger cure than grain), the causal view prescribes 
choosing leaves.  

Associative models, whether Bayesian or frequentist, all 
reach the opposite conclusion, prescribing grain instead.  
The mutual-exclusivity definition implies that the set of 
animals with “no red dots” due to grain, 3 out of 10 animals, 
has no overlap with the set due to the contextual cause at 
each place: grain should therefore heal 3 animals both at the 
farm and at the zoo. Because 3 animals indeed had their red 
dots “go away” at each place, leaves must have no effect. 
The ΔP model therefore prescribes grain. 

Logistic regression is a GLM used for predicting the 
probability of the occurrence of a dichotomous outcome 
(e.g., red_dots vs no red_dots) by fitting data to a logistic 
function of a linear combination of input variables (e.g., 
grain, leaves, background causes at the farm and at the zoo).  
For the farm-and-zoo scenario (see Figure 1), because the 
pattern of events is symmetrical around the probability of .5, 
the same reduction in P(red_dots) occurs at the farm and at 
the zoo (see vertical dashed lines) at symmetrical segments 
of the logistic curve. Therefore, the grain (see heavy 
horizontal dashed lines) -- which explains the reduction in 
the probability of animals with red dots at the farm – 
explains the entire reduction at the zoo as well. That is, 
logistic regression detects no influence at all from leaves, 
either by itself or in an interaction, concurring with the ΔP 
model. Increasing sample size does not change this 
conclusion. 

 
Figure 1. A schematic explanation of the probability of the 

outcome according to logistic regression: the probability of 
having red dots at the farm and at the zoo, before and after 
the respective interventions in the scenario, as a logistic 
function of the weighted sum of the four predictor variables.  

 

Preschoolers in our experiment chose leaves, in 
accordance with the causal view. Recall that the causal view 
avoids the incoherence of the associative view by defining 
causal invariance on counterfactual causal events. Note that 
the causal explanations involve no prior domain-specific 
knowledge; the causal-invariance assumption is domain-

general and the input consists of data alone. This view 
thereby achieves objectivity without sacrificing coherence.   

If the world happens to be causal, then a leap of faith to 
assume unobservable causal capacities would be adaptive, 
by enabling a coherent definition of causal invariance in our  
representation.  Coherence is essential because there are 
infinitely many possible representations of the world based 
on available observations, only some of which support 
generalization to new contexts. Reasoners use logical 
consistency and, more generally, parsimony of the 
represented explanations to prune the vast search space and 
efficiently converge on truth, if truth exists (Kelly, 2007). 
Causal discovery should therefore require general-purpose 
Sherlock Holmeses, who make use of coherence to infer 
how things work. 

Discussion 
In summary, noting a simple logical consequence of 

Kant’s a priori assumption of causation for rational causal 
inference, we have shown that -- contrary to the unspoken 
consensus among scientists -- the causal invariance 
assumption critically affects causal discovery.  To evaluate a 
causal relation involving a binary outcome variable that is 
“present” or “absent”, only invariance defined on causal 
capacities is logically consistent and supports generalization 
to new contexts. Thus, associative statistics, for which 
invariance is only defined on observations, may arrive at a 
fallacious conclusion even when applied to data from a 
perfect experiment.  

The potential for the associative and causal views to 
arrive at opposing recommendations has obvious 
implications. For example, a critical linear-regression 
analysis in the influential Seven Countries Study (Keys, 
1980), a large longitudinal study on how diet affects 
coronary heart disease and other health outcomes, shows 
that controlling for saturated fat, consumption of sugar is 
unrelated to death (a binary outcome). Medical and public-
health dietary advice in the U.S. based on this and other 
analyses in the study (Keys et al., 1984; Menotti et al., 
2003), using linear models as was common practice, has 
created a food industry that produces low-fat but high-sugar 
foods (e.g., fat-free salad dressings with added sugar to 
compensate for taste). More generally, these associative 
analyses formed the foundation for three decades of dietary 
advice to adhere to a low-fat diet, without special attention 
to sugar intake (as distinct from caloric content).  There is 
currently no causal analogue of logistic regression, which 
allows predictor variables that are continuous (e.g., 
consumption of sugar) as well as discrete. As we have 
shown for binary outcome variables, coherent causal 
generalization requires a causal framework, and applying 
causal instead of associative statistics to evaluate the 
influences of fat and sugar intake could potentially reverse 
estimates of the magnitude of their harm or change their 
assessed causal status.  The researchers could have found 
that consumption of sugar causes coronary heart disease, 
diabetes, cancer and other diseases constituting the 
metabolic syndrome, as recent evidence indeed suggests.  A 
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more rational statistical approach could have profoundly 
altered the course of the obesity epidemic in the U.S. and 
worldwide. 

Note that one interpretation of associative models that 
would remove the incoherence we noted is to posit a 
mediating continuous variable and to assume that the causes 
operate independently on this continuous variable rather 
than on the observed binary outcome variable.  The linear 
definition of causal invariance holds for continuous 
outcome variables, thereby removing the incoherence.  
Regardless of the plausibility of the revised hypothesis with 
the mediating variable, note that it is deviation from the 
criterion of causal invariance that signals the need to revise 
the simple hypothesis (Carroll & Cheng, 2010), the 
tenacious goal being to achieve causal invariance. 
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