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From Covariation to Causation: A Causal Power Theory

Patricia W. Cheng
University of California, Los Angeles

Because causal relations are neither observable nor deducible, they must be induced from observable
events. The 2 dominant approaches to the psychology of causal induction—the covariation approach

and the causal power approach—are each crippled by fundamental problems. This article proposes
an integration of these approaches thai overcomes these problems. The proposal is that reasoners
innately treat the relation between covariation (a function denned in terms of observable events)
and causal power (an unobservable entity) as that between scientists' law or model and their theory

explaining the model. This solution is formalized in the power PC theory, a causal power theory of
the probabilistic contrast model (P. W. Cheng & L. R. Novick, 1990). The article reviews diverse
old and new empirical tests discriminating this theory from previous models, none of which is
justified by a theory. The results uniquely support the power PC theory.

How does a reasoner come to know that one thing causes

another? Psychological work on this issue of causal induction

has been dominated by two basic approaches that have generally

been regarded as opposing each other. One of these, the covaria-

tion approach, traces its roots to David Hume (1739/1987).

This approach is motivated by the problem that the reasoners'

sensory input—the ultimate source of all information that they

have—does not explicitly contain causal relations. It follows

that acquired causal relations must be computed from the sen-

sory input in some way. One's sensory input clearly yields such

information as the presence and absence of a candidate cause

and of the effect, as well as the temporal and spatial relations

between them. Treating such "observable" information as the

input to the process of causal induction, models under this ap-

proach attempt in some way to assess covariation between a

candidate cause and the effect (i.e., the extent to which the

two vary together). An influential model of covariation—often

called the contingency model—was proposed by researchers

across various disciplines (Jenkins & Ward, 1965; Rescorla,

1968; Salmon, 1965). Interpreting this model in causal terms,

AP,, the contingency between candidate cause i and effect e is

defined by

AP, = P(e\i) - P(e\T>, (1)
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where P(e \ i) is the probability of e given the presence of i and

P(e | J) is that probability given the absence of i. (The conditional

probabilities in the equation are estimated by the respective

relative frequency of events for which e occurs in the presence

and in the absence of i.) If AP, is noticeably positive, i is a

generative or facilitatory cause, and, if it is noticeably negative,

i is an inhibitory or preventive cause. Otherwise, i is noncausal.

In the psychological literature, the Humean approach has split

into several subdivisions. Statistical contingency models based

on the AP rule have been contrasted with various types of

associative models, in particular Rescorla and Wagner's (1972)

discrepancy-based predictive learning rule (e.g., Anderson &

Sheu, 1995; Baker, Berbrier, & Vallee-Tourangeau, 1989; Baker,

Mercier, Vallee-Tburangeau, Frank, & Pan, 1993; Baker, Mur-

phy, & Vallee-Tourangeau, 1996; Chapman, 1991; Chapman &

Robbins, 1990; Cheng & Holyoak, 1995; Cheng & Novick,

1990, 1992; Dickinson, Shanks, & Evenden, 1984; Price &

Yates, 1993; Shanks & Dickinson, 1987; Shanks, Lopez,

Darby, & Dickinson, 1996; Wasserman, Elek, Chatlosh, &

Baker, 1993; Wasserman, Kao, Van Hamme, Katagiri, & Young,

1996). They have also been contrasted with linear combination

models (e.g., Arkes & Harkness, 1983; Downing, Sternberg, &

Ross, 1985; Einhorn & Hogarth, 1986; Jenkins & Ward, 1965;

Nisbett & Ross, 1980; Schustack & Sternberg, 1981; Shaklee &

Tucker, 1980; Ward & Jenkins, 1965). It is important to empha-

size, however, that all covariation models of causality face a

major common hurdle: As many have noted, covariation does

not always imply causation. AP is clearly insufficient as a crite-

rion for causal induction, because not all covariational relations

are perceived as causal. Many things follow one another regu-

larly, yet one does not infer a causal relation between them.

Sunrise might occur every day after a rooster on a farm crows

(but sunrise does not occur at other times during the day when

the rooster does not crow), and one class for a student might

routinely follow another (but if the first class does not meet,

for example during a holiday, neither does the second). Yet one

would not infer that the rooster's crowing causes the sun to

rise or that one class causes another. None of the subtypes of

covariation models, as I show later, have provided an account
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of why some perceived covariations are given a causal interpre-

tation and others are not. Accordingly, a fundamental problem

that remains for the covariation approach is: What takes one

from covariation to causation?

This problem with the covariation approach has in part moti-

vated the power approach, the alternative view that traces its

roots lo Kant (1781/1965). According to this approach, there

exists some a priori knowledge that serves as a framework for

interpreting input to the causal induction process. Kant proposed

that people have the a priori knowledge that all events are

caused: ' 'All alterations take place in conformity with the law

of the connection of cause and effect" (1781/1965, p. 218).

Some psychologists have adopted Kant's proposal (Bullock,

Gelman, & Baillargeon, 1982). More often, this view has been

interpreted to mean that people do not infer that one thing is a

cause of another unless they perceive or know of a specific

generative source, causal mechanism, causal propensity, or

causal power linking the candidate cause to the effect (e.g.,

Ahn & Bailenson, 1996; Ann, Kalish, Medin, & Gelman, 1995;

Bullock et al., 1982; Harre & Madden, 1975; Michotte, 1946/

1963; Shultz, 1982; White, 1989, 1995).' Causal power (the

general term I use to cover all of these variants) is the intuitive

notion that one thing causes another by virtue of the power or

energy that it exerts over the other (see Taylor, 1967, for a

historical review and Cartwright, 1989, for a discussion of philo-

sophical aspects of causal power). For example, when the sun

warms one's back, one thinks of the sun as emitting energy,

some of which reaches one's skin, raising its temperature. Like-

wise, when thoughtlessness is hurtful, one thinks of that thought-

lessness as having the power to produce pain. According to the

power view, causes are not merely followed by their effects;

rather, they produce or generate their effects. Sequences such as

sunrise following crowing exhibit similar observable statistical

characteristics as causal sequences but are missing the critical

connection provided by the understanding of a causal power.

As just discussed, the problem of causal induction, which

was first posed by Hume (1739/1987), has evolved into: How

are causal relations constructed from the input that is available

to one's information-processing system and distinguished from

noncausal ones, including noncausal covariations (see Good-

man, 1983)? Although the Kantian view has intuitive appeal, it

does not address this problem. First, it suffers from the weakness

of not being computational: It does not explicitly define a map-

ping between the ultimate input to the causal induction process

and its output. Proponents of this view have not explained how

the domain-independent knowledge that all events are caused

can constrain inference from covariation in a specific domain.

Second, with respect to the problem of causal induction, the

interpretation of the Kantian view in terms of specific causal

powers is crippled by its circularity. Specific causal powers are,

by definition, causal. Moreover, they are nearly always acquired.

In other words, this approach pushes the problem one step back

but ultimately fails to solve it. The same problem arises with

regard to the specific causal powers: Unless knowledge of these

powers is innate, how do reasoners come to know them?

It is clear that neither approach is complete. I argue in this

article, however, that each captures an element of truth—covari-

ation is a component of the process of causal induction, and

reasoners do have an a priori framework for interpreting input

to that process. The theory I present integrates these approaches

to overcome their individual problems.

Unexplained Empirical Phenomena of Causal Induction

In addition to the problems afflicting each of the two ap-

proaches to causal induction, another motivation for my theory

is that there are several phenomena of natural causal induction

that are inexplicable by any current psychological approach.

Here I examine three such phenomena. These phenomena are

not new or surprising. Rather, they are so mundane that they

have generally been overlooked.

These phenomena all involve situations in which the effect

occurs equally often in the presence of a candidate cause as in

its absence (i.e., A/3, = P(e\i) - P(e\7) = 0), as do alternative

causes (so that there is no confounding). First, consider evaluat-

ing whether a candidate cause produces an effect. For this goal,

people cannot conclude that a non-contingent candidate cause

(i.e., one for which A/> = 0) is noncausal when they know that

an alternative cause is constantly producing the effect (so that

P(e |5 = 1 )• Let me illustrate this with an example. I suspected

that I was allergic to certain foods, in reaction to which I had

hives. When I went to the doctor, she made a grid of scratches

on my back and put multiple samples of various foods on the

scratched spots, one sample on each spot. After a few minutes,

she observed that hives broke out at every spot (i.e., P(e\i) —

1, where e stands for hives and i stands for a food item). She

might have concluded that I was allergic to every food tested.

But it turned out that, in addition to being allergic to some food,

I was also allergic to scratches. When my skin was scratched

without being put in contact with any food, hives also broke out

(i.e., P(e\T) =1) . The tests for allergy to foods were therefore

uninterpretable. Note that although A/> equals 0 for every food

in the test, the doctor did not conclude that I was not allergic

to any of them.

This simple anecdote confounds all current psychological ap-

proaches to causal induction. Some covariational models predict

that every candidate (every food item in this example) is non-

causal (e.g., Cheng & Novick, 1990, 1992; Rescorla & Wagner,

1972) because the effect (hives) occurs just as often within a

given context (scratching) when the candidate is present as when

it is absent. Cheng and Holyoak's (1995) model explicitly as-

sumes that reasoners would be uncertain under this situation

but does not explain why. Other covariation models predict that

the candidate is causal because the effect occurs very often in

the presence of the candidate (e.g., the a-cell rule [see Nisbett &

Ross, 1980, and Shaklee & Tucker, 1980], the a-minus-fc-cell

rule [see Shaklee & Tucker, 1980], and Schustack & Steinberg's

model, 1981, given the parameter values reported in their arti-

cle). The power view does not explain why scratching should

block an inference regarding foods. In sum, no model explains

what seems to be a reasonable answer, that the reasoner cannot

reach a conclusion.

1 Kant (1781/1965), in fact, argued that people have general, but

not specific, a priori knowledge about causality. He wrote, "certainly,

empirical laws, as such, can never derive their origin from pure under-

standing" (p. 148) and to "obtain any knowledge whatsoever of these

special laws, we must resort to experience" (p. 173).
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A second phenomenon involves the difference between causal
judgments in two situations, in both of which AP = 0. For such
situations, a distinction is required between (a) the case in
which the effect occurs only sometimes or never occurs within
a certain context (i.e., P(e\i) = P(e\T) < I), and (b) the case
illustrated by the earlier anecdote in which the effect always
(or nearly always) occurs within a certain context (i.e., P(e\ i)
= P(e\T> = 1). In the first situation, the candidate is judged to
be noncausal at asymptote (e.g., Baker et al., 1989; Cheng &
Novick, 1990; Fratianne & Cheng, 1995; Shanks & Lopez, cited
in Shanks, 1995; Waldmann & Holyoak, 1992). In the second
situation, however, the candidate is judged to have an uncertain
causal status when participants are given the option of explicitly
expressing uncertainty (Fratianne & Cheng, 1995). When parti-
cipants are not given this option, the candidate receives a rating
about midway between being a cause and being noncausal
(Chapman, 1991; Chapman & Robbins, 1990; Shanks, 1985b,
1991; Shanks & Dickinson, 1987; Waldmann & Holyoak, 1992;
Williams, Sagness, & McPhee, 1994). Providing further evi-
dence for this difference, Fratianne and Cheng (1995, Experi-
ment 3) and Waldmann and Holyoak (1992, Fjcperiment 3)
found the difference in causal judgments under these two situa-
tions to be highly reliable when they directly compared them
in a single experiment. The difference in causal judgments in
the two situations has never been explained.

A third unexplained empirical phenomenon involves the evalu-
ation of the inhibitory nature of candidate causes. Such evalua-
tions have a constraint that is diametrically opposite to that for
the evaluation of the generative nature of a candidate: Reasoners
cannot conclude that a noncontingent candidate cause is not inhib-
itory when they know that no generative cause is present in the
context, and hence the effect never occurs in the first place (i.e.,
P(e\i) = P(e\T) a 0). Consider this hypothetical example. Sup-
pose that you are a medical researcher who has developed a
drug for relieving headaches. M>u ask an assistant to conduct an
extensive test of this drug. He or she randomly assigns partici-
pants to two groups, administering the drug to one group (the
experimental group) and a placebo to the other (the control
group). After observing the participants, your assistant informs
you that there is no difference in the occurrence of headaches
between the experimental and control groups after the respective
treatments. He or she concludes that the drug is ineffective. %u
examine the results closely and find, to your surprise, that partici-
pants in the experimental group did not get headaches after receiv-
ing the drug. \bu see that your assistant was right, however, that
there was no difference between the two groups—participants
in the control group likewise did not get headaches, either before
or after receiving the placebo! Would you agree with your assis-
tant that the drug is ineffective for relieving headaches? \bur
answer is likely to be that your assistant conducted an absurd
test, the results of which are incapable of being informative:
Testing the ability of a drug to relieve (i.e., inhibit) some symp-
tom requires that at least some participants exhibit that symptom
before the administration of the drug. Remarkably, no current
model of causal induction can explain the reasonable conclusion
that the study is uninformative.

Boundary Conditions on Covariation Models

As has been shown, even when there is no confounding by
alternative causes, different causal judgments may result from

a contingency of zero. A noncontingent candidate will be inter-
preted differently depending on the goal of the inference and
the context in which the zero contingency occurs. I have consid-
ered, the following situations: (a) when an alternative cause is
known to be present and is always producing the effect (so that
P(e\i) = P(e|5 35 1); (b) when an alternative cause is present
but is producing the effect only sometimes (so that 0 < P(e \ i)
= P(e\T) < 1); and (c) when no alternative cause is present
and the effect never occurs (so that P(e\i) = P(e\T) ss 0). If
one is evaluating whether a candidate cause produces an effect, it
is not possible to draw a firm conclusion about a noncontingent
candidate when P(e\T) = 1 (i.e., in the first situation), but one
would infer that such a candidate does not produce the effect
for other values of P(e \ T). If one is evaluating whether a candi-
date cause prevents an effect, however, the conclusions regarding
the first and third situations are exactly reversed: One would
conclude that a noncontingent candidate is not an inhibitory
cause when P(e\7) = 1, whereas no firm conclusion can be
drawn about such a candidate when P(e\T) = 0. In the second
situation, when the value of P(e\T) is between these extremes,
one would conclude that a noncontingent candidate is neither a
generative nor an inhibitory cause. (The conditioning literature
[Baker et al., 1996; Miller, Bamet, & Grahame, 1995; Williams,
1996] shows parallels of these radical asymmetries between
generative and inhibitory causes at the two extreme values of
P(e\Jj.)

These systematic variations in inferences for noncontingent
candidates suggest boundary conditions for covariation models.
Why are there boundary conditions? And why is a boundary
condition for assessing generative causal power diametrically
opposite to one for assessing preventive power?

A Resolution Between the Two Views: Causal Power

Is to Covariation as Theory Is to Model

Laws and models in science, which deal with observable prop-
erties, are often explained by theories, which posit unobservable
entities. In chemistry, for example, the kinetic theory of gases
explains gas laws such as Boyle's law (pressure • volume = con-
stant) and their boundary conditions (e.g., when temperature and
the number of moles of gas are held constant for Boyle's law)
by positing gases as tiny particles in a large space moving at a
speed proportional to their temperature. The bombardment of the
particles on the container walls yields the gas laws.

I propose that causal power is to covariation as the kinetic
theory of gases is to Boyle's law. When ordinary folks induce
the causes of events, they innately act like scientists in that
they postulate unobservable theoretical entities (in this case, an
intuitive notion of causal power) that they use to interpret and
explain their observable models (in this case, their intuitive
covariation model). That is, people do not simply treat observed
covariations as equivalent to causal relations; rather, they inter-
pret their observations of covariations as manifestations of the
operation of unobservable causal powers, with the tacit goal of
estimating the magnitude of these powers. The idea that people
are intuitive scientists is by no means new (Kelley, 1967, 1973;
Nisbett & Ross, 1980), but I extend this analogy to refer to the
explaining of a model by a theory. I formalize my proposal by
postulating a mathematical concept of causal power and deriving
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a theory of a model of covariation based on that concept. I do

not claim that people either understand or use the mathematical

version of my theory, only that they implicitly use a qualitative

version of it (Cheng & Fratianne, 1995).

Scope

In this article, I assume that the topic of causal inference may

be divided into two component issues: how an acquired causal

relation is first induced and how prior domain-specific causal

knowledge (whether innate or learned) regarding superordinate

kinds influences subsequent causal judgments (Cheng, 1993;

Kelley, 1967; Morris & Larrick, 1995). A child might learn

from experience that dropping a ceramic plate on the ground

breaks it, whereas dropping a plastic plate does not, and that

touching a soap bubble causes it to pop, whereas touching a

balloon does not. These examples illustrate the process of induc-

tion. The sunrise example given earlier illustrates the influence

of prior domain-specific superordinate knowledge. The intuition

is that one cannot conceive of any causal power or mechanism

underlying crowing that produces sunrise. For example, based

on experience with sounds that one can manipulate, a reasoner

might have induced that sounds in general do not elevate objects:

Tables do not elevate in the midst of heated arguments, and

people do not elevate in the midst of a fire alarm. A rooster's

crowing does not elevate even a straw in the barn; it therefore

surely does not elevate the sun. Sound, therefore, is not a viable

causal power with respect to sunrise. Neither is any other candi-

date that crowing calls to mind.

This article addresses only the issue of causal induction. The

assumption that causal induction and the influence of domain-

specific prior causal knowledge are separable processes is justi-

fied by numerous experiments in which the influence of such

knowledge can be largely ignored (e.g.. Baker et al., 1993;

Cheng & Novick, 1990; Shanks, 1991; Wasserman, Chatlosh, &

Neunaber, 1983; Wasserman et al., 1993). The results of these

experiments demonstrate that the induction component can in-

deed operate independently of prior causal knowledge. The as-

sumption of separability does not imply that these processes

cannot jointly influence a particular causal judgment. One's

visual system, for example, clearly has a separable component

that processes external input, but the separability of this compo-

nent does not imply that external input and prior knowledge

cannot (or do not) jointly influence a perceptual episode.

Even within the scope of causal induction, this article does

not address an often-raised question: How are effects and their

candidate causes selected out of the indefinitely large pool of

possible representations? This is a fundamental issue that re-

quires extensive further study.

In sum, this article focuses on how people induce causal

relations without the benefit of domain-specific causal knowl-

edge when candidate causes and effects are clearly defined. Tb

my knowledge, no solution that is free of the problems noted

earlier has yet been offered.

Overview

In the rest of this article, I first review the probabilistic con-

trast model (Cheng & Holyoak, 1995; Cheng & Novick, 1990,

1991, 1992; Melz, Cheng, Holyoak, & Waldmann, 1993) and

present a mathematical formulation of a power theory of this

model. To distinguish this power theory from previous interpre-

tations of the power view, I refer to it as the power PC theory*

Second, 1 analyze Rescorla and Wagner's (1972) model (R-

W model from here on), the dominant alternative model to

which the probabilistic contrast model and the traditional contin-

gency model have been compared. This model is the most influ-

ential associationist model of Pavlovian conditioning of the past

quarter century. Because findings about conditioning appear to

have close parallels in human inference (e.g., Dickinson et al,

1984; Rescorla, 1988), this model has recently been adopted

more generally as a model of learning, categorization, and causal

inference (e.g., Baker et al., 1993, 1996; Chapman & Robbins,

1990; Gluck & Bower, 1988; Price & Yates, 1993; Shanks,

1995; Shanks & Dickinson, 1987; Wasserman et al., 1993, 1996;

see Siege! & Allan, 1996, for a review of the influence of this

model). In addition to this model's prominence in Pavlovian

conditioning and causal induction, another reason I am focusing

on the model is that the learning rule it incorporates is a version

of the "delta rule" commonly used in connectionist models

(e.g., Kruschke, 1992, 1993; McClelland & Rumelhart, 1985;

Rumelhart & McClelland, 1986). My analysis of this model

should therefore be relevant to connectionist models using this

rule, whatever the content domain of the model.

The central difference between my approach and the associa-

tionist approach involves the distinction between the computa-

tional and algorithmic levels of cognitive analysis (Marr, 1982).

Marr argues that the issues of what function is being computed

by an information process and why it is computed (i.e., the goal

and the constraints that motivate the process) logically precede

the issue of how a given function is computed. He classifies the

former issues as being at a computational level and the latter as

being at an algorithmic level. If the function being computed does

not mirror its human counterpart, no algorithm that computes this

function can possibly be an accurate model of human cognition.

The R-W model was founded on an algorithm for discrep-

ancy reduction on a trial-by-trial basis. Although an algorithmic

model does compute some function at the computational level,

such functions are almost never specified. One consequence

is that their properties at the computational level are rarely

systematically examined. In contrast, the power PC theory is a

computational-level explanation; it seeks to specify the abstract

function relating the input and the output of the process of

causal induction given the constraints that govern the problem

of causal induction. In this article, I provide an analysis of what

function the R-W algorithm asymptotically computes so that

it can be compared with the power PC theory at Marr's (1982)

computational level. Because the R-W model is equivalent to

the least-mean-squares rule of Widrow and Hoff (1960; see

Sutton & Barto, 1981), one might think that it is normative.

My analysis of this model in terms of causal power shows when

and why it is not.

Third, I evaluate the power PC theory and the R-W model

2 Neil Cheng Holyoak suggested this nickname for my theory when

I complained that "the causal power theory of the probabilistic contrast

model" is a mouthful. "Power PC" is also the name of Neil's favorite

personal computer.
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against old and new empirical results regarding causal induc-

tion. These include the basic influence of contingency (e.g.,

Allan & Jenkins, 1980,1983; Baker et al., 1989; Shanks, 1985a,

1987; Wasserman et al., 1983, 1993); the subtle but systematic

influence of the base rate of the effect (i.e., P(e\T)) on the

magnitude of causal judgments for candidates with a given A/1,

(Allan & Jenkins, 1983; Wasserman et al., 1983, 1993); the

distinction between causes and enabling conditions (Cheng &

Novick, 1991); the distinction between a novel candidate and

an irrelevant one (e.g., Baker & Mackintosh, 1976), the causal

counterpart of blocking and induced overshadowing in Pavlov-

ian conditioning (e.g., Baker et al., 1993; Chapman & Robbins,

1990; Dickinson & Burke, 1996; Fratianne & Cheng, 1995;

Price & Yates, 1993; Shanks, 1991; Waldmann & Holyoak,

1992), of overexpectation and the absence of it (Park & Cheng,

1995), and of conditioned inhibition and the direct and indirect

extinction of such inhibition (Williams, 1995, 1996; Yarlas,

Cheng, & Holyoak, 1995); the asymmetry in the interpretation

of zero contingencies between the induction of generative and

preventive causes manifested in blocking, conditioned inhibition

and its extinction, overexpectation, and the influence of P(e\T)

on the magnitude of causal judgments for candidates with the

same AP,; the retrospective nature of some causal judgments

(e.g., Chapman, 1991; Williams etal., 1994; Yarlas etal., 1995);

preasymptotic performance (e.g., Dickinson & Burke, 1996;

Shanks, 1985a); the influence of the utility of the outcome

(Chatlosh, Neunaber, & Wasserman, 1985, Experiment 2); and

trial-order effects and other findings involving ambiguous causal

estimates (e.g., Chapman, 1991; Shanks, 1991, Experiment 3;

Shanks, 1995; Wagner, Logan, Haberlandt, & Price, 1968; Wil-

liams etal., 1994).

Fourth, 1 review linear combination models, showing that they

are clearly inaccurate as models of causal induction. Despite their

many shortcomings, such models aptly describe a robust finding

that indisputably contradicts both the probabilistic contrast model

and the asymptotic predictions of the R-W model: Reasoners

tend to weight frequencies of the effect in the presence of a

candidate cause more than those in its absence (e.g., Anderson &

Sheu, 1995; Baron, 1994; Dickinson & Shanks, 1986; Schus-

tack & Stemberg, 1981; Wasserman et al., 1993). I show that

this apparent bias follows from the normative power PC theory.

My analysis and review lead me to conclude that (a) the

probabilistic contrast model (Cheng & Novick, 1992) gives the

best description of the model of natural causal induction in the

reasoner's head but that this model in the head has boundary

conditions, (b) these boundary conditions are explained by the

reasoner's theory of causal power (some situations allow estima-

tion of causal power, whereas others inherently do not), and (c)

reasoners interpret the mapping between the observable input

(e.g., the presence and absence of a candidate cause and of the

effect) and the explicit output of their model (the value of Af)

according to their theory of causal power. Finally, I show how

the power PC theory overcomes some of the fundamental prob-

lems that cripple the two approaches to causal induction.

The Probabilistic Contrast Model

It has long been argued that covariation is a component of

the normative criterion for inferring a causal link between a

factor and an effect (e.g., Kelley, 1967; Salmon, 1965). This

criterion, however, has been criticized for not being descriptive

of natural causal induction. Deviations from various putatively

normative models of covariations have been reported in social

psychology, cognitive psychology, and philosophy. For example,

philosophers (Hart & Honore, 1959/1985; Mackie, 1974; Mill,

1843/1973) have noted that when one considers all events re-

lated to an effect (e.g., a forest fire), one finds that the effect

is almost invariably produced by multiple factors that are indi-

vidually necessary and jointly sufficient to produce the effect

(e.g., the dropping of a lit cigarette, the presence of oxygen, or

the combustibility of the trees). Despite the apparently equal

logical status of the contributing factors, within a certain context

people might infer that a single covarying factor (e.g., the ciga-

rette) is the cause, whereas other factors (e.g., oxygen and trees)

are merely enabling conditions. Moreover, what is perceived to

be an enabling condition in one context can become a cause in

a different context. For example, Hart and Honore (1959/1985,

p. 35) wrote that "if a fire breaks out in a laboratory or in a

factory, where special precautions are taken to exclude oxygen

during part of an experiment or manufacturing process . . . there

would be no absurdity at all in such a case in saying that the

presence of oxygen was the cause of the fire.'' Likewise, the

causal attribution literature in social psychology has reported

that people suffer from a variety of biases (for reviews, see

Cheng & Novick, 1990; Jaspars, Hewstone, & Fincham, 1983;

Nisbett & Ross, 1980). For example, people have a bias toward

attributing effects to a person rather than to other factors (e.g.,

a situation) that apparently have equal objective status.

Cheng and Novick (1990) proposed the probabilistic contrast

model as a generalized contingency model to provide a descrip-

tive account of the use of statistical regularity in natural causal

induction. The model, which applies to events that can be repre-

sented by discrete variables, assumes that an initial criterion for

identifying potential causes is perceived priority (causes must

be understood to precede their effects). A potential cause is

then evaluated by its contingency computed over a focal set,

which is a contextually determined set of events that the reasoner

uses as input to the covariation process. It is often not the

universal set of events, contrary to what had been assumed by

philosophers.

Factors sometimes combine in a nonindependent way to pro-

duce the effect, as when the dropping of a lit cigarette and the

dryness of the forest jointly produce a forest fire or when talent

and hard work jointly produce success. Such situations involve

conjunctive causes. According to the probabilistic contrast

model, such causes are evaluated via interaction contrasts. Here,

I do not review this model's explanation of conjunctive causes

but, instead, fociis on simple causes that produce the effect

independently of other causes. A simple candidate cause that

consists of a single factor is evaluated by a main-effect contrast

within a current focal set; using the events in that set, such a

contrast for evaluating a candidate cause i of effect e is defined

as in Equation 1. (I use the terms contrast and contingency

interchangeably.)

Confidence in the assessment of a contrast is presumed to

increase monotonically with the number of cases observed

(Cheng & Holyoak, 1995). In addition to influencing confi-

dence, number of observations changes the denominators of
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the relative frequencies used to estimate the two conditional

probabilities. The latter influence explains the differentiation

between a novel candidate cause and an irrelevant one, a phe-

nomenon that has a parallel in the classical conditioning litera-

ture: learned irrelevance (Baker & Mackintosh, 1976, 1977;

Kremer, 1971; see Cheng & Holyoak's, 1995, explanation).

The concept of a focal set explains the distinction people

make between a cause and an enabling condition. In addition

to defining a cause, Cheng and Novick (1991, 1992) defined

an enabling condition: Candidate i is an enabling condition for

a cause j if i is constantly present in a reasoner's current focal

set but covaries with the effect e in another focal set, and j no

longer covaries with e in a focal set in which ; is constantly

absent. As mentioned, the focal sets used by ordinary folk are

often not the universal set. To illustrate with the forest fire exam-

ple, because fire occurs more frequently given the dropping of

a lit cigarette than otherwise, the dropped cigarette is a cause.

Oxygen, however, is present in all forests. Its contrast therefore

cannot be computed within the current focal set. It is not caus-

ally irrelevant, however, because it does covary with fire in

another focal set, one that includes events in which oxygen is

absent as well as those in which it is present (e.g., in chemistry

laboratories). Oxygen is therefore an enabling condition. Fi-

nally, it is an enabling condition rather than an alternative cause

because, in yet another focal set in which oxygen is always

absent (e.g., also in chemistry laboratories), a lit cigarette no

longer covaries with a bigger fire.

Similarly, the probabilistic contrast model explains the induc-

tive biases reported in the social psychology literature by a

discrepancy between the focal sets assumed by the investigators

and the participants. The focal set for the investigators—the

"universal" set consisting of all of the events presented in an

experiment—is often too narrow for the participants, because

participants often recruit relevant events from their prior experi-

ence for inclusion. To test this hypothesis, my collaborators and

I manipulated the participants' focal sets in two ways: (a) We

specified and varied information that had previously been as-

sumed to be irrelevant by the investigators (Cheng & Novick,

1990), and (b) we left such information unspecified but manip-

ulated and measured participants' assumptions about it (Novick,

Fratianne, & Cheng, 1992). We found that our manipulations

produced variations in causal judgment, variations that have

been regarded as biases but are, in fact, systematically predicted

by the computation of contrast over a more accurate focal set.

In addition to explaining many biases in social causal infer-

ence and the distinctions among a single-factor cause, a conjunc-

tive cause, an enabling condition, a novel candidate cause, and

an irrelevant factor, the probabilistic contrast model also ex-

plains a set of phenomena sometimes termed cue competition:

the influence of alternative causes on the evaluation of a candi-

date cause. To explain cue competition, Cheng and Holyoak

(1995; Melz et al., 1993) added auxiliary assumptions to Cheng

and Novick's (1992) model. These assumptions specify the

focal sets reasoners prefer for computing contrast: those in

which plausible alternative causes are controlled (cf. Cart-

wright, 1989; Salmon, 1980). Preferences for how they are

controlled, however, differ depending on the nature of the assess-

ment: To assess whether a candidate cause is generative, reason-

ers prefer to compute contrast conditional on the absence of all

other plausible causes; to assess whether a candidate is preven-

tive, however, they prefer to compute contrast conditional on

some generative cause being constantly present. In addition to

specifying the optimal conditional contrasts, these auxiliary as-

sumptions specify when a contrast is uninterpretable, even while

alternative causes are controlled. For example, one of these

assumptions corresponds to the concept of a "ceiling effect"

in experimental design. This list of assumptions has sometimes

been regarded as complex or unprincipled (e.g.. Baker et al.,

1996; Shanks, 1993).

Cheng and Holyoak's (1995) model, which is adapted from

proposals in philosophy and principles of experimental design,

is an attempt at specifying when covariation implies causation.

Inherited from its parents in philosophy (Cartwright, 1989;

Salmon, 1980), however, is a serious shortcoming: Because

inference regarding a candidate cause is based on conditional

contrasts, it is dependent on knowledge about alternative causes.

This leads to a problem of how one infers the alternative causes.

To overcome this problem of how inference begins, Cheng and

Holyoak assumed an initial associationist stage. This associa-

tionist heuristic has the unfortunate side effect of undermining

the justification for inferring causation from the obtained

covariation.

Explaining the Probabilistic Contrast Model

by a Theory of Causal Power

In this section, I present an explanation of the probabilistic

contrast model (Cheng & Novick, 1990, 1992) in terms of

causal power. My explanation shows (a) the conditions under

which this model provides an estimate of causal power and (b)

how well it does so under those conditions. It assumes that the

reasoner believes that there are such things in the world as

causes that have the power to produce an effect and causes that

have the power to prevent an effect and that only such things

influence the occurrence of an effect (cf. Bullock et al., 1982;

Kant, 1781/1965). I first explain the probabilistic contrast

model in terms of the theoretical concept of generative causal

power. I then explain the same model in terms of preventive

causal power. As I derive my results, I interpret them from the

point of view of a reasoner who infers the magnitude of the

unobservable causal power from observable events based on his

or her theoretical explanation. I also consider special cases in

which he or she holds beliefs about alternative causes.

Main-Effect Contrast and Generative Causal Power

To evaluate whether a candidate cause produces an effect, my

theory explains non-negative main-effect contrasts in terms of

generative causal power.3 My analysis assumes that the power

of a cause x to produce an effect e can be represented by pf,

the probability with which x produces e when x is present. Thus,

0 s pA «= 1 for all x. Whereas P(e\x)—the probability of e

occurring in the presence of x—can be directly estimated by

observable events (the relative frequency of e occurring in the

presence of jc), px—the power of x—is a theoretical entity that

3 Clark Glymour clarified my theory.
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can only be indirectly estimated. (All conditional probabilities

are represented by uppercase Ps because they can be estimated

directly by observable events; all causal powers are represented

by small letter ps because they are theoretical entities and are

not directly observable.) P(e \ x) coincides wimp, when no other

cause is present or exists. They are not, however, equal in gen-

eral. This is because other causes, known or unknown to the

reasoner, might be present when x is present. For example, the

probability with which birth defects occur in the offspring of

women who drink alcohol during pregnancy (P( defects \ alco-

hol)) is not in general equal to the probability with which alco-

hol produces birth defects (paieoiu,i), because other causes of

birth defects might be present. How, then, does one estimate

the causal power of a candidate cause in question? To do so, I

distinguish between /, the candidate cause, and the composite

of (known and unknown) causes alternative to i, which I desig-

nate as a.4 P(e\i) and p, are not equal if a is present and

produces e in the presence of i (i.e., if P(a\ i) • pa =£ 0).

Let me summarize my assumptions in terms of my notations:

1. when i occurs, it produces e with probability p,; when a

occurs, it produces e with probability pa; and nothing else influ-

ences the occurrence of e;

2. i and a influence the occurrence of e independently; and

3. i and a influence the occurrence of e with causal powers

that are independent of how often i and a occur (e.g., the proba-

bility of e being produced by a, that is, the probability of the

intersection of a occurring and a producing e, is P(a) • pa].

To evaluate whether i produces e, I first show how the theoret-

ical entities p, and pa explain an observable AP,. According to

my.theory, the reasoner theorizes that e can be produced by i

or a (independently)—that is, the event "e occurring" is the

union of two independent events: e produced by i and e produced

by a. It follows from probability theory that P(e), the probabil-

ity of the union, is the sum of the probabilities of the constituent

events minus their intersection:

P(e) = P(i)-p, + P(a)-p, - P(i)-Pi-P(a)-pa. (2)

To explain AP, in terms of this theory, consider separately

the probability of e occurring when i is present and when i is

absent. First, to explain P(e\i), conditionalize Equation 2 on i

being present (implying P(i) = 1 in this new sample space),

yielding

P(e\i) = p, + P(a\()• pa - p,-P(a\i)-Pa- (3)

That is, when i is present, e is the union of two independent

events: e produced by i and e produced by a when i is present.

Next, to explain P(e\T), conditionalize Equation 2 on i being

absent (implying P(i) = 0 in this sample space), yielding

(4)

That is, when i is absent, e is attributable to a alone.

The explanation of the two components of AP, in Equations

3 and 4 is the heart of the power PC theory for generative causes.

Reassembling these components of AP, gives AP, = P(e\i)

- P(e\7) = p, + P(a\i)-pa - p,-P(a\i)-pa - /> (a | j ) -p«-
Simplifying, we obtain

AP, = [1 - P(a\i)-p,]-Pl + (P(a\i) - P(a\T)]-Pa. (5)

The rest of the power PC theory for generative causes consists

of nothing but the mathematical consequences of Equation 5.

This equation summarizes one of the two relations between

the probabilistic contrast model and the power PC theory, the

one for the evaluation of generative power. This relation may

be interpreted in two ways. First, just as the kinetic theory of

gases explains how the movement of the theoretical particles

produces the observable gas laws, Equation 5 explains how the

theoretical entities p, andpa on the right-hand side (RHS) pro-

duce the observable AP, on the left-hand side (LHS). Second,

this equation expresses the difference between the probabilistic

contrast model (as a model without a theory) and the power

PC theory (a theory of that model). For a given focal set, the

probabilistic contrast model bases its predictions on AP,. In

contrast, the power PC theory bases its predictions on p,, which

in general only partly determines AP,. As becomes clear later

when I consider the mathematical consequences of this equation,

AP, and p, bear different relations to each other under different

conditions.

Why Covariation Does Not, in General, Imply

Causation

If an alternative cause a does exist (i.e., pa > 0), and it does

not occur independently of i (i.e., P(a\i) * P(aji ' )) , the RHS

of Equation 5 has both a positive and a negative term in addition

to the term containing p,. It follows that AP, is not interpretable

as an estimate of p,: It could overestimate p, or underestimate

it, depending on the values of P(a\i) and P(a\T). Specifically,

if the reasoner believes that it is possible for a to occur more

often in the presence of i than in its absence, he or she would

think that this variation in how frequently a occurs might pro-

duce the positive contrast for i. For example, suppose a reasoner

is trying to determine what causes mothers of young infants to

be absent-minded. The reasoner observes a positive contrast for

breast-feeding, his or her candidate cause: Proportionately more

breast-feeding than non-breast-feeding mothers are absent-

minded. The reasoner understands, however, that breast-feeding

mothers might be more sleep deprived than their non-breast-

feeding counterparts; they are more likely to be the person get-

ting up at night to feed their infants. Suppose the reasoner

understands that sleep deprivation is an alternative cause of

absent-mindedness. According to Equation 5, the higher fre-

quency of this alternative cause when mothers breast-feed their

infants than when they do not can produce a positive contrast
for breast-feeding, even if breast-feeding in fact does not cause

absent-mindedness. The reasoner would therefore refrain from

interpreting the positive contrast for breast-feeding as indicating

its causal power. In sum, this equation shows that covariation

does not, in general, imply causation.

Now, returning to show how one can evaluate whether i pro-

duces e (i.e., how p, can be estimated), 1 rearrange Equation 5

to put p, on the LHS, obtaining

4 The potential influences of i and a on e are both direct in Pearl's
(1988) terms.
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Pi = '
AP, -

- P(a\i)-Pa
(6)

a Occurs Independently of i

Although AP,, as has been shown, does not in general pro-

vide an estimate of p,, there are conditions under which it can.

Consider the special case in which a occurs independently of i,

(i.e., P(a|i) = P(a \T) = P(a)).s In this case, Equation 6 simpli-

fies to

Pi = •
AP,

(7)

Equation 7 indicates when and how well AP, gives an estimate

of p,. It might be objected that, in Equation 7, one needs to

know about/),, a theoretical entity, to obtain an estimate of p,.

In cases in which the reasoner has prior knowledge about pa,

this knowledge can be applied. In other cases, however, it might

seem that the problem of how causal inference begins reappears:

The estimation of p, begs the question of how pa is estimated.

The key to this problem offered by the power PC theory is that

an estimation of pa per se is not required. What is required is

an estimation of the product P(a)-pa (see Equation 7). This

product yields the probability of the effect attributable to a

within the focal set, a probability that can be estimated by

observing the frequency of the effect in the absence of i, because

a alone is present then (cf. Equation 4). (Because a occurs

independently of i, the same estimate holds in the presence of

i as in its absence.) This theory thereby circumvents the apparent

circularity of needing to know about p,.

Replacing P(a)-pa in Equation 7 with its estimate, P(e\T),

yields

Pi =
AP,

1 -P(e\i) '
(8)

First, consider the extreme case in which P(e\T) s 0 (i.e., the

effect [almost] never occurs when the candidate is absent, for

example, when alternative causes are constantly absent in the

focal set). In this case, p, = A/1,, which means that in this

optimal situation, the reasoner can interpret the contrast for i as

a close estimate of the causal power of i.

Now, consider the other extreme case of Equation 8, in which

P(e | T) a 1. This is the situation in which the effect is (almost)

always occurring, even when the candidate i is absent. In this

case, p, is undefined. In other words, A/1, si 0 regardless of

the magnitude of p,, which means that, in this situation, the

reasoner can no longer interpret the contrast for i as an estimate

of the causal power of ('.

Between the two extreme cases, as P(e\T) increases from 0

to 1, when AP, > 0, p, is increasingly larger than AP, because

it is equal to AP, divided by an increasingly smaller number

less than 1; in other words, AP, is increasingly a conservative

estimate of p,. Two implications follow for situations under

which a occurs independently of i. First, consider a reasoner

whose goal is to judge whether a candidate factor is causal. For

the sake of offering simple explanations, it seems that unless

there is good evidence supporting the hypothesis that a candidate

is causal, the null hypothesis that it is not should be the default.

A conservative criterion errs on the side of promoting simple

explanations. AP,, being a generally conservative estimate,

should therefore be regarded as a generally useful criterion for

judging causation. Second, consider a reasoner whose goal is

not simply to judge whether or not a candidate is a generative

cause but also to estimate its causal strength. According to Equa-

tion 8, as P(e | T) increases, a positive APf of the same magnitude

will yield higher values of p,, that is, higher estimates of the

power of i. When AP, = 0, however, because p, = 0 as long

as P(e\i) < 1, i should be judged noncausal whenever P(e\i)

< 1.

Relation to Experimental Design and Its Everyday

Analogues

Although some of the mathematical consequences of Equation

5 correspond to apparent biases (as shown later), others are

recognizable as principles of experimental design. I have shown

that one consequence of this equation is that covariation does

imply causation when alternative causes are believed to occur

independently of the candidate (e.g., when alternative causes

are constant) and P(e\7) is not close to 1. Holding alternative

causes constant while comparing conditions is, of course, a

key principle of experimental design. Another consequence of

Equation 5 is that a contrast of zero does not indicate that the

candidate is noncausal when alternative causes are constantly

producing the effect. This consequence corresponds to the con-

cept of a ceiling effect.

Situations analogous to experiments sometimes occur natu-

rally. Let me give an example. A toddler drops a ceramic item

on the floor (a candidate cause), and it breaks (the effect).

The contrast for dropping the item is therefore positive: Given

dropping, the item breaks, but before the dropping (i.e., in its

absence), the item does not break. The child might believe (as

would an adult) that, except for the candidate cause and the

effect, conditions before and during dropping remain un-

changed. This belief is especially plausible when the sequence

of events can be repeated at will. For this child, then, an episode

of dropping a ceramic item forms a natural experiment. Ac-

cording to the power PC theory, the child should therefore be

willing to infer from the positive contrast that dropping a ce-

ramic item on the floor causes the item to break. Thus, the

power PC theory explains the conditions under which covaria-

tion implies causation, in both experiments and their everyday

analogues.

s First, note that this is not the same assumption as / and a indepen-

dently producing e, which means that i produces e with die same proba-

bility regardless of whether a produces e. Second, note that Feller (1950/

1957) denned two events as independent if their intersection has a

probability equal to the product of the probabilities of the individual

events. By this definition, independence between two events is symmetri-

cal. Therefore, when a occurs independently of i, a and i occur indepen-

dently of each other. I prefer the asymmetrical wording here, however,

because it conveys more intuitively the idea that regardless of whether

i is present, a occurs with the same probability, an idea that corresponds

to the principle of keeping alternative causes constant in experimental

designs.
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Summary

The power PC theory not only specifies when covariation

reveals causation, but also explains why covariation sometimes

reveals causation and other times not. When a, the composite

of alternative causes, does not occur independently of candidate

cause i, AP, does not reflect causal status. But when a does

occur independently of i (e.g., when a is constant in a focal

set), then to assess the generative nature of i, we see that,

excluding the extreme case in which the effect (almost) always

occurs (i.e., P(e) = 1) in the focal set, AP, should provide an

estimate of the causal status of i. When the effect (almost)

never occurs in the absence of i (i.e., P(e\7) s; 0, e.g., when a

is constantly absent), AP, gives the closest estimate of the

power of j. This estimate is increasingly conservative as P(e\T)

increases.

Main-Effect Contrast and Preventive Causal Power

Rather than raising the probability of an effect, some causes

lower this probability. Such causes are often called preventive

or inhibitory causes (e.g., Kelley, 1967, 1973). 1 assume that a

preventive cause i has the power to stop an (otherwise oc-

curring) effect e from occurring with probability p,. To evaluate

whether i prevents e, I make assumptions that are otherwise

identical to those for evaluating generative causal power (see

list of assumptions on p. 373).

I now explain how p, —the preventive power of i—and pa

explain a nonpositive AP,. (As before, a represents a composite

of alternative causes that has a net generative effect.) In this

case, the reasoner theorizes that the event "e occurring" is the

intersection of two independent events: e produced by a and e

not stopped by i. It follows that P(<?), the probability of the

intersection, is the product of the probabilities of the constituent

events:

Using this theory to explain P(e\i), I conditionalize Equation

9 on i being present, yielding

P(e\i) = P(a\i)-p,-(l -p.). (10)

Using this theory to explain P(e\T), I conditionalize Equation

9 on i being absent, yielding the same result as Equation 4:

P(e\T) = P(fl|r) 'p,,. The explanation of the two components

of AP, in Equations 4 and 10 forms the heart of my theory for

preventive causes. Replacing these components in AP, with their

explanations, it can be seen that

AP,. = P(a\i)-p. - P(a\i)-p.-p, - P(a\T)-pa. (11)

The relation between the probabilistic contrast model and the

power PC theory for the evaluation of generative causal power

was shown earlier. Equation 11 shows the analogous relation

between AP, and p, for the evaluation of preventive causal

power.

Why Covariation Does Not, in General, Imply
Causation

Equation 11 shows that, as for generative causes, if a does

not occur independently of i, AP, does not provide an estimate

of p:. Because the RHS of this equation has both a positive

term and a negative term in addition to the term containing p,,

AP, can overestimate p,, or underestimate it, depending on the

values of P(a|i) and P(a\T). For example, suppose thatp, =

0. A negative AP, could result if a occurs less often in the

presence of i than in its absence. In this case, AP, overestimates

the preventive power of i. Conversely, suppose that p, > 0. If

a occurs more often in the presence of (' than in its absence,

AP, can underestimate the preventive power of i.

To see the power PC theory's predictions for p,, I rearrange

the terms in Equation 11 to put p, on the LHS, yielding

P, = '
- AP,

P(a\i)-pa

(12)

When a Occurs Independently of i

As for generative causes, although AP, does not, in general,

provide an estimate of the preventive power of i, there are

conditions under which it can do so. Consider the case in which

a occurs independently of i. Because P(a|i) = P(a\i) = P(a),

Equation 12 simplifies to

-AP,

P(a)-p«
(13)

Recall that P(a) • p, yields the probability of e attributable to

a within the focal set, which can be directly estimated when a

occurs independently of i by observing the frequency of e in

the absence of i. Replacing P(a)-pa in Equation 13 with its

estimate, P(e\T), yields

Pi =
-AP,

P(e\T)
(14)

From Equation 14, it can be seen that in the one extreme in

which P(e\T> =s 1, p, =s -AP,. That is, for reasoners who

believe that a occurs independently of i, if they observe that e

always occurs in the absence of i, they would regard AP/ as a

good estimate of —p,. This implies that if AP, is a negative

number, —x, then in this situation i stops the effect from oc-

curring with a power of magnitude x. Note that this optimal

situation for evaluating preventive causal power is opposite to

that for generative causal power, in which alternative causes are

constantly absent.

In the other extreme in which P(e\T) st 0 (because P(a) a

0 or pa s 0), it can be seen that p, is undefined. In this case,

AP, =s 0 regardless of the value of p,. That is, if the reasoner

observes that e never occurs in the absence of i, she or he would

believe that it is not possible to estimate p, from AP,. Note

that the values of P(e \ T) for which p, is undefined are at opposite

extremes for the evaluation of generative and preventive causal

powers.

In between these two extremes, when 0 < P(e\T) < 1, the

reasoner should regard a negative AP, as a conservative estimate

of —p, . Moreover, for a negative AP, of the same magnitude,

as P(e\J) decreases, higher strengths should be inferred for «'.

This direction of change relative to the value of P(e\ i) is oppo-

site to that in the interpretation of a positive contrast. When
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AP, = 0, however, p, = 0, according to Equation 14, as long

asP(e\J) > 0.

Summary

Analogous to my analysis of a positive contrast, the power

PC theory explains as well as specifies the conditions under

which negative covariation reveals the operation of a preventive

cause. In this case, when the composite alternative cause occurs

independently of inhibitory candidate cause i, excluding the

extreme case in which the effect (almost) never occurs in the

focal set, AP, should provide an estimate of the preventive

power of i. When the effect (almost) always occurs in the

absence of;, AP, gives the closest estimate of the power of i.

This estimate is increasingly conservative as P(e\T) decreases.

This direction of change in the estimation of a negative AP,

relative to the value of P(e \ 7) is opposite to that in the interpreta-

tion of a positive A/",. As for generative causes, however, when

inhibitory candidate i does not occur independently of a, AP,

does not reflect causal status.

Predictions of the Power PC Theory

The two theoretical interpretations of the probabilistic con-

trast model in terms of generative and preventive causal powers

specify when covariation does and does not reveal these kinds

of powers. These interpretations also explain why it does when

it does. My analysis generates many testable predictions. As

mentioned earlier, I propose that people implicitly follow a qual-

itative version of my mathematical analysis rather than the analy-

sis itself. The predictions of the power PC theory are therefore

ordinal.

One prediction is that even untutored reasoners, including

children, will be unwilling to judge a covarying candidate to be

a genuine cause (to use Suppes's, 1970, terminology) if they

are aware of the existence of an alternative cause and believe

that it does not occur independently of the candidate cause in

their focal set. That is, reasoners have an implicit understanding

of potential confounding by the alternative causes that they know

about. (This is not the same as understanding possible confound-

ing by unknown alternative causes, which would require explicit

knowledge of the variables in the power PC theory, independent

of their instantiations.) If they misjudge a spurious cause to be

a genuine one (i.e., erroneously infer causality from covaria-

tion), it is because they erroneously believe that the conditions

for estimating causal power are met when they are not. For

example, a reasoner may believe that a occurs independently of

;' when it actually does not. Likewise, she or he may believe

that there are no alternative causes of an effect when there are.

In these situations, the reasoner would erroneously interpret AP>

as an estimate of /?,.

Thus, one boundary condition for estimating causal power

from covariation is that alternative causes occur independently

of the candidate cause. For situations in which reasoners believe

that this condition is met, the power PC theory predicts that

they would judge a candidate with a noticeably nonzero contrast

to be a genuine cause. Even for such situations, however, this

theory predicts additional boundary conditions for the interpret-

ability of a contrast of zero. According to Equations 7 and 13,

whether such a contrast is interpretable as an estimate of causal

power depends on two factors. One is the base rate of the effect

(i.e., P(a)-pa, which is equal to P(e\T». When this rate is

clearly between 0 and 1, a noncontingent candidate should be

judged as noncausal. When this rate approximates either 0 or

1, however, judgment depends on the goal of the inference: Is

one concerned with assessing the generative or preventive nature

of the candidate? Just as the kinetic theory of gases explains

the boundary conditions for Boyle's law, the power PC theory

explains the boundary conditions for contrast, including the dia-

metrically opposite conditions that depend on the type of power

being assessed.

In turn, the interaction between the base rate of the effect

and the nature of the assessment for noncontingent candidates

explains and predicts the variations in causal judgments regard-

ing such candidates noted in the introduction. The doctor in my

food-allergy anecdote could not tell whether a food item caused

hives because scratching, an alternative cause, was always pres-

ent and always producing hives, in which case the denominator

in Equation 7— l—P(a)-pa —is 0. Analogously, the re-

searcher in my headache anecdote could not tell whether the

drug relieves headaches because the test is conducted among a

population that does not have headaches, in which case the

denominator in Equation 1 3 — P ( a ) - p a — i s 0. These are the

two cases in which AP, does not give an estimate of p, even

when alternative causes are controlled. In addition. Equation 7

explains the difference in the certainty of causal judgments for

potentially generative candidates with a zero contrast depending

on whether the effect always or only sometimes occurs.

In addition to specifying boundary conditions for interpreting

contrasts, the power PC theory also makes predictions about

changes in estimated causal strength for candidates with the

same contrast as the base rate of the effect changes. For candi-

dates with a positive AP of the same magnitude, as the base

rate of the effect increases, the candidate will be inferred to

have a greater causal power. An opposite trend is predicted for

negative APs of the same magnitude as a function of this base

rate. A less obvious prediction of the power PC theory (derived

in a later section) is that reasoners should weigh frequencies of

the effect in the presence of a candidate cause more than those

in its absence. Both of these predictions have been regarded as

biases.

Seeking Causation From Covariation

Note that, according to my analysis, to infer causation from

covariation the reasoner need not know what the alternative

causes are (i.e., the identity of a) or how strong they are (i.e., the

value of pa). Such information can be used when it is available

(Equations 7 and 13), but it is not required (Equations 8 and

14). Rather, the reasoner needs only to know that the alternatives

(whatever they are) occur independently of the candidate cause

(e.g., are constant) and to observe the base rate of the effect in

the relevant context, noting the extreme base rates that disallow

causal inferences. The a priori knowledge required is that there

are such things as causes that have the power to produce an

effect or to inhibit it. This knowledge, which is embodied in

the process of induction, enters my analysis in the form of

variables (i.e., p: and pa in Equations 5 and 11) that do not
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require any prespecified values, variables that may adopt a

causal or a noncausal value depending on purely observable

events. The a priori knowledge is therefore domain independent.

Because the reasoner need not know the identity or the magni-

tude of any cause before inducing the causality of a candidate

cause, there is no circularity in my analysis. This analysis ex-

plains how causal inferences can begin: Given the a priori

knowledge, inference of causality from covariation is justified

under a specified set of conditions.

The analysis I presented specifies how reasoners would inter-

pret a given AP under various conditions. This analysis does

not directly specify which conditions a reasoner would seek

among those possible. For reasoners whose goal is to infer causal

power, however, it seems plausible that they should attempt to

obtain the best estimates of the causal powers of candidate

causes. My analysis justifies their choices. A comparison be-

tween Equations 6 and 7 justifies why such a reasoner should

prefer to assess covariation in focal sets in which alternative

causes are constant: a occurs independently of candidate cause

i in these focal sets. The optimal way to obtain a set of events

in which a occurs independently of / is to manipulate i. If

manipulation is impossible, reasoners might attempt to select

sets of events among those observed in which a occurs indepen-

dently of i, although they are likely to be less confident that

independence holds. Likewise, Equations 7 and 13 justify why

reasoners should prefer focal sets in which alternative causes

are constantly absent to assess the generative nature of a candi-

date cause, whereas they should prefer those in which alternative

causes are constantly present to assess the preventive nature of

a candidate cause: Contrast gives the closest estimate of causal

power in such focal sets.

Even among focal sets in which a occurs independently of i,

however, not all will allow an estimation of the causal power

of i. If there is one set, and only one set, that does allow

this estimation, there would be no conflicting information, and

reasoners should adopt that set as their focal set. If there is more

than one available set that reveals causal power, but these sets

are consistent in the causal power they indicate, there would

still be no conflicting information. If the causal powers revealed

in multiple informative sets conflict, however, reasoners would

have to either withhold judgment or resolve the conflict in some

way. Finally, if none of the focal sets in which a occurs indepen-

dently of i allows an unambiguous estimation of causal power,

or if the information available does not allow any partitioning

that renders a independent of i, reasoners would have to either

withhold judgment or select the next best available set (or sets)

with reduced confidence if forced to make a decision.

Once the leap from observed covariation to underlying causal

power has been made, people may apply their acquired causal

knowledge to causal judgments about cause-effect relations

that are believed to be of the same kind (Cheng & Lien, 1995).

For example, learning that remote controls can operate a televi-

sion set and a driveway gate "prepares" the reasoner to accept

that the covariation between pressing a remote control and the

opening of a garage door is also due to a similar causal power.

The generalization of acquired causal knowledge extends the

scope of a covariational relation that has been deemed causal.

Some researchers have pitted covariational models of the in-

duction process against evidence for the influence of prior do-

main-specific causal knowledge, suggesting that the latter pro-

cess offers an alternative solution to the problem of when covari-

ation implies causation (e.g., Ann & BaiJenson, 1996; Ann et

al., 1995; Shultz, 1982; White, 1989; see Cheng, 1993, for an

analysis). Ahn et al. (1995), for example, wrote that "people

seek out and prefer information about causal mechanisms rather

than information about covariation" (p. 299) and that "when

direct information about mechanisms is difficult or impossible

to attain, . . . covariation methods can be useful heuristics"

(pp. 339-340) for distinguishing between "true causality and

spurious correlation" (p. 341). Work adopting this approach

has demonstrated how prevalent the influence of prior domain-

specific causal knowledge is, convincingly arguing that the prob-

lem of when covariation implies causation in many cases should

be pushed one step back in time, to the acquisition of the causal

mechanisms. As mentioned earlier, however, this approach ulti-

mately fails to provide an answer to that problem.

A Computational-Level Analysis of the R-W Model

A goal of this article is to analyze the R-W model in terms

of causal power. A causal power analysis of a model, however,

requires as a prerequisite a mathematical function characterizing

the model's asymptotic behavior. Connectionist models, which

specify an algorithm and a representation, typically do not per-

mit such characterizations. Tb make predictions for these mod-

els, researchers generally have to rely instead on computer or

thought simulations of specific experiments. One of the attracti-

ons of the R-W model is that it turns out to be an exception

to this rule. I now present an analysis of what function the R-

W algorithm asymptotically computes.

The R-W model represents the learning of an association

between cue i (e.g., a tone that is present in the current event)

and outcome j (e.g., shock) by a change in the strength of a

link between two elemental units in a network, one representing

cue i and the other representing outcome j . (Cue i and outcome

j are traditionally termed the conditioned stimulus and the un-

conditioned stimulus, respectively. In causal terms, if each cue

i is a candidate cause, then j is the effect.) For any cue i that is

present during the event, strength is revised according to the

rule

AV,, = «.A-(\ - I vti (15)

where AK> is the change in associative strength between cue

unit; and outcome unity as a result of the current event, a, and

Pi are rate parameters that respectively depend on the salience

of i and j, and \, is the actual outcome. Typically, if the outcome

is present, \j is defined as 1; if the outcome is absent, this value

is defined as 0. Similarly, /?, is typically assumed to be a larger

number when the outcome is present than when it is absent.

2»=i Vn, the outcome predicted by the model, is defined as the

sum of the current strengths of links to unit j from all units

representing the n cues present in that event. If cue i is absent

during the event, the associative strength of its cue unit remains

unchanged. (This restriction of strength revision to present cues

implies that a, has a weight of 0 when » is absent.) Learning

continues until there is no discrepancy between the actual and
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predicted outcomes (averaged over a number of trials). The

strengths that are updated according to Equation 15 are equiva-

lent to weights on the links in a two-layered connectionist net-

work, with the predicting cues being represented on the input

layer and the predicted outcome on the output layer.

Asymptotic Weights for Designs for Which

the R—W Model Does and Does Not Compute

Conditional Contrasts

In Appendix A, I show that, assuming that (a) \ equals 1 for

trials on which the effect occurs and 0 otherwise and (b) the

learning rates remain constant across trials on which the effect

does and does not occur, for experimental designs that satisfy

a condition I term nesting, the R-W model asymptotically com-

putes conditional contrasts. The first assumption allows the

strengths of connections to be interpreted as probabilities when

the nesting condition is satisfied. The parameter \ is a scaling

factor in this model (see Rescorla & Wagner, 1972). The second

assumption means that both learning rates, a, and f i j , are con-

stant across trials on which the effect does and does not occur

for all trials relevant to the strength of i. (Recall that the strength

of a cue is not updated when it is absent; therefore, i is present

on all of these trials.) Although a,, being associated with the

cue rather than the effect, is typically assumed to be constant

for a given cue across these trials, /3, is often assumed to be

greater when the effect occurs than when it does not. Although

many researchers conduct simulations of the R-W model under

this assumption, most asymptotic predictions of this model, in-

cluding blocking, conditioned inhibition, extinction of condi-

tioned inhibition, superconditioning, and overexpectation, are

in fact independent of this assumption (see Miller et al., 1995;

see also the derivations of some of these predictions in Melz et

al., 1993). The two well-known exceptions concern the phe-

nomena of the relative validity of cues (Shanks, 1991; Wagner

et al., 1968; Wasserman, 1990) and the influence of the base

rate of the effect on the perception of contingency (Wasserman

et al., 1993). I separately discuss these special cases. For all

other cases, my derivation directly applies.

I first show that in a design with multiple cues, if every

combination of cues in the design except the one with a single

cue can be characterized as a proper superset of all combinations

with fewer cues, then the design is nested. For example, the

design with cue combinations a, ab, and abc is nested, whereas

the design with cue combinations a, ab, and be is not nested.

(A letter denotes a cue, and a cluster of letters denotes a cue

combination; for example, ab denotes the combination con-

sisting of cues a and b.) According to the R-W model, for any

combination with multiple cues in a nested design, the sum of

the strengths of the cues in it that do not belong to the next

smaller combination is asymptotically equal to the contrast for

those cues (as a composite) conditional on the presence of the

cues in the smaller combination (i.e., the rest of the cues in the

larger combination; Equation A23 in Appendix A). For example,

in the design with the combinations a, ab, and abc, the strength

of c is equal to the contrast for c conditional on the presence

of both a and b, and the strength of b is equal to the contrast

for b conditional on the presence of a. I also show in Appendix

A that when the cue combinations are not nested, the strength

of a cue is not, in general, equal to any of its (conditional or

unconditional) contrasts.

I then generalize my definition of nesting to designs involving

partially overlapping cue combinations. I refer to the type of

nesting that does not involve such combinations (which I just

described) as simple nesting. By partially overlapping, I mean

that the combinations are neither disjoint nor a superset or subset

of each other. I show that, for such designs, the R-W model

still asymptotically computes conditional contrasts as just speci-

fied if, for every pair of partially overlapping combinations, all

supersets of one combination (including the combination iteelf)

share the same intersection with the other combination, and this

intersection occurs as a separate combination. An example of

this type of nesting is the design a, ab, and ac. The intersection,

a, of the partially overlapping sets ab and ac occurs as a separate

combination. Therefore, the strength of c is equal to the contrast

for c conditional on the presence of a; likewise, the strength of

b is equal to the contrast for b conditional on the presence of

a. The example of an unnested design given earlier is still un-

nested by this definition because the intersection, b, of the par-

tially overlapping sets ab and be does not occur as a separate

combination.

A visual characterization of a nested set that contains partially

overlapping sets is that the partially overlapping sets form a

"tree" structure in which there are multiple "branches," with

each path from the bottom of the trunk to the tip of a branch

forming a simple nested set. This characterization assumes that

cues along the same path below a cue are cumulative, as illus-

trated in Figure 1. In this figure, each branch of the tree accom-

panied by a label represents a stimulus. For an example of a

simple nested set within this tree, consider the path from the

trunk (which happens to have only one cue) labeled a to the

tip of the branch labeled d. The simple nested set represented

by this path consists of the following combinations: a, ab, abc,

and abed. The figure shows partially overlapping sets in which

the branching is upward, as in a tree, as my definition of nesting

implies. A set of combinations would be unnested if the analo-

gous representation does not form a possible tree, in that cues

along the same path are not cumulative as defined or the

branching occurs downward, as when trunks from multiple trees

grow together or when the tips of different branches merge.

In summary, In a design with multiple cues, if there are no

Combinations in 4 simple nested sets:

1. a, ab, abc, abed

2. a, ab, abc, abce

3. a, ab, abf

4. a, ag, agh

Figure 1. Tree representation of a nested set that contains partially

overlapping stimulus combinations.
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partially overlapping cue combinations unless for every pair of

such combinations, (a) all supersets of one combination share

the same intersection with the other combination, and (b) this

intersection occurs as a separate combination, then the design

is nested. In other words, except for such partially overlapping

combinations, every combination of stimuli in a nested design

can be characterized as a proper superset of any combination

that contains some but not all stimuli in it. According to the R-

W model, for any cue combination in a nested design, the total

strength of the stimuli in it thai do not belong to the next proper

subset is asymptotically equal to the contrast for those stimuli

(as a composite) conditional on the presence of the stimuli in

the smaller combination (i.e., the rest of the stimuli in the larger

combination). When a design is not nested, except for special

cases, the R-W model does not compute conditional contrast.

Application of the Derivation to

Experimental Paradigms

A mathematical analysis of the asymptotic behavior of the

R-W model yields an understanding of what the associative

strengths computed by the model actually represent. This under-

standing is useful in several ways. First, it eliminates the need

to conduct computer simulations of the R-W model for many

experimental designs. More important, this understanding elimi-

nates uncertainty regarding differences in predictions between

this and other models. When two models make the same predic-

tion for a given situation, it is possible that they actually compute

the same function or that they compute different functions that

happen to yield the same value. Only in the latter case should

an investigator look for variations for which the models yield

different values using the same design. The application of my

analysis to experimental designs allows one to deduce when

each of these two possible relations is true. My analysis specifies

(a) the conditions under which the R-W model does and does

not compute conditional contrasts and (b) the contrast it com-

putes when it does compute a contrast. For some of these de-

signs, the R-W model asymptotically computes the exact same

function as another model, that of Cheng and Holyoak (1995).

Most important, my analysis enables an interpretation of the R-

W model in terms of causal power— the determinant of whether

a model's prediction will generalize beyond the set of data on

which it is based. As I show later, although the R-W model

asymptotically computes conditional contrasts when the cue

combinations have a nested structure, not all such contrasts

computed by the model provide an estimate of causal power.

When this model computes a conditional contrast that gives an

estimate of causal power, it accounts for the observed results;

otherwise, it does not. An interpretation in terms of causal power

pinpoints how and why the R-W model fails when it fails and,

hence, might guide the development of a superior algorithmic-

level model.

In the next section, I apply the result of my derivation to find

the contrast computed by the R-W model for many well-known

designs or adaptations of them in the classical conditioning

literature: unconditional contingency (e.g., Rescorla, 1968; Was-

sermanetal., 1993), blocking (e.g., Chapman &Robbins, 1990;

Fratianne & Cheng, 1995; Kamin, 1968; Shanks, 1991), induced

overshadowing (e.g., Baker et al., 1993; Price & Yates, 1993),

overexpectation (e.g., Park & Cheng, 1995; Rescorla, 1970),

acquisition of conditioned inhibition (e.g., Miller & Schacht-

man, 1985; Williams, 1995; Williams & Docking, 1995; Yarlas

et al., 1995), and extinction of conditioned inhibition (e.g.,

Hallam, Matzel, Stoat, & Miller, 1990; Miller & Schachtman,

1985; Williams & Docking, 1995; Yarlas et al., 1995; Zimmer-

Hart & Rescorla, 1974). My analysis applies to these designs

because the asymptotic predictions of the R-W model for them

are not dependent on a difference between learning rates when

the outcome does and does not occur.

Before considering specific experimental designs, however,

let me note three phenomena the explanations of which are

beyond the reach of the R-W model. This model fails in these

cases because its predictions are based on a single output param-

eter: the strength of the association between a stimulus and the

outcome. First, this feature of the model renders it incapable of

explaining why people can be simultaneously aware that a rela-

tion is covariational (i.e., AP * 0) and that it is noncausal

(e.g., dinner covaries with sunset but does not cause it). In

contrast, the power PC theory has two output parameters: the

output of the probabilistic contrast model, AP, and that of the

theory of this model, p,. Thus, Equations 5 and 11, respectively,

explain how a positive AP and a negative one can fail to be

interpretable estimates of causal power. Second, the R-W model

cannot explain the distinction people make among a cause,'an

enabling condition, a causally irrelevant factor, and a novel fac-

tor. An enabling condition is not simply a cause with an interme-

diate strength, and a novel factor is neither a factor with zero

strength nor one with an intermediate strength. Finally, the R-W

model cannot explain what my allergy and headache anecdotes

illustrate: Even when alternative causes occur independently of

the candidate (so that AP is not confounded), whereas some

zero contrasts indicate noncausality, others indicate that no

causal inference can be drawn. Experimental evidence for the

third phenomenon is included in the following section.

Empirical Tests of the Power PC Theory
and the R-W Model

Reasoners can potentially compute contrasts over indefinitely

many possible partitions of events. Do they indeed select sets

of events among those available that optimally reveal causal

power? For example, do they attempt to select focal sets in

which alternative causes occur independently of the candidate

cause? For such sets, do reasoners interpret nonzero contrasts

according to the power PC theory, that is, as a joint function of

conditional APf and P(e\T), as specified in Equations 8 and

14? Even among such sets, not all zero contrasts reveal causal

power. Do reasoners interpret zero contrasts according to

whether they reveal causal power? I now describe some empiri-

cal tests of the power PC theory that address these questions. I

first review tests of the selection of focal sets and the interpreta-

tion of contrasts as estimates of causal power in studies involv-

ing multiple varying candidate causes. These include tests of

the interactive predictions regarding the boundary conditions for

interpreting contrasts as estimates of generative and preventive

causal power. I then review studies involving a single varying

candidate. These studies test the power PC theory's prediction



380 CHENG

that the magnitude of causal estimates is a joint function of AP<

and P(e\T).

In this section, in addition to evaluating the power PC theory

against these findings, 1 evaluate two competing accounts of

causal induction against them: the R-W model and the tradi-

tional contingency model. I also discuss several studies that

have been interpreted as contradicting the probabilistic contrast

model and, hence, might be interpreted as contradicting the
power PC theory.

Selection of Focal Sets: Tests of the Traditional

Contingency Model Involving Multiple

Varying Candidate Causes

One answer to the question of whether reasoners attempt to

select focal sets in which alternative causes occur independently

of the candidate cause comes from studies testing the traditional

contingency model. Before Cheng and Novick's (1992) pro-

posal that reasoners select sets of events for computing contrast,

all causal induction models in psychology assumed, by default,

that whatever function is computed is computed over the univer-

sal set of events, which, for an experiment using unfamiliar

materials, implies the entire set of events in the experiment. For

the traditional contingency model, this means that unconditional

contingency is what the reasoner is assumed to compute (e.g.,

Baker et al., 1989, 1993; Chapman & Robbins, 1990; Dickinson

et al., 1984; Price & Yates, 1993; Rescorla, 1968; Shaklee &

Tucker, 1980; Shanks, 1985a, 1985b, 1987, 1991; Ward & Jen-

kins, 1965; Wasserman et al., 1993). Some of these studies

involved test situations that included multiple varying candidate

causes. Equations 5 and 11 show that for such situations, the

traditional contingency model does not, in general, provide esti-

mates of causal power, because the contingency for a candidate

cause in the universal set can be confounded by alternative

causes. Do reasoners use the universal set (i.e., base their causal

judgments on unconditional contingency), or do they select a

set in which alternative causes are constant (i.e., base their

causal judgments on conditional contingency), as predicted by

the power PC theory?

Some researchers tested the traditional contingency theory

against the R-W model (e.g., Baker et al, 1993; Chapman &

Robbins, 1990; Price & Yates, 1993; Shanks, 1991). These re-

searchers have interpreted their results as supporting the R-W

model. All of these studies controlled for unconditional contrast

across conditions but varied conditional contrast for the target

candidates between conditions. As has been noted in several

articles (Cheng & Holyoak, 1995; Melz et al., 1993; Shanks,

1995; Spellman, 1996b), support for the R-W model in these

studies in fact implies support for the conditional contingency

account. The R-W model asymptotically computes conditional

contrast in all except one of these experiments (Shanks, 1991,

Experiment 3, which I discuss separately). I illustrate subse-
quently how these studies also support the power PC theory.

Induced Overshadowing

Some of these studies adapted the overshadowing design from

Pavlovian conditioning (Mackintosh, 1983), in which a stronger
and a weaker cue that are presented in combination are intro-

duced in the same phase and receive an equal amount of informa-

tion. These studies differed from the traditional overshadowing

design in that variations in the salience of the cues were induced

during the experiment.' In these induced overshadowing studies

(all 16 designs used in Baker et al., 1993, except the ones

labeled PR.5/1, PR.5/-1, and PR-.5/1; Price & Yates, 1993;

Spellman, 1996a), denoting the two varying cues as A and B

and the context as C, the cue combinations are C, AC, BC,

ABC. These cue combinations are not nested, because the tips

of two branches (A and B) merge. The frequencies of the various

trial types presented in these studies, however, happen to allow

the R-W model to compute conditional contrasts. In Appendix

B, I show that, for this design, the R-W model converges on

the same solution as for a nest set (e.g., C, BC, and ABC)

formed by ignoring a combination (e.g., AC) if the contrast for

a varying cue (e.g., A) conditional on the presence of the other

varying cue and the context (i.e., P(e\ABC) - P(e'\ABC)) is

equal to its contrast conditional on the absence of the other cue

and the presence of the context (i.e., P(e \ ABC) - P(e\ ABC)).

This condition holds for all of the induced overshadowing stud-

ies just mentioned. The R-W model therefore computes condi-

tional contrasts in these studies just as in nested designs.

To interpret the results of these studies with respect to the

power PC theory, I consider separately (a) comparisons between

contingent candidate causes (i.e., candidates with nonzero con-
ditional contingencies), in which one candidate had a higher

conditional contrast than the other (Baker et al., 1993, Condition

.5/.8 vs. Condition .5/0 in Experiment 2; Price & Yates, 1993;

Spellman, 1996a), and (b) comparisons involving at least one

noncontingent candidate cause (i.e., a candidate with a condi-

tional contingency of 0; all other comparisons between induced

overshadowing designs in Baker et al., 1993; Spellman, 1996a).

For the former type of comparisons, the conditional contrasts

all satisfy the boundary conditions of the power PC theory

(Equations 8 and 14 show that only zero contrasts can fall

outside these boundaries). Because the R-W model computes

conditional contrasts, its ordinal predictions often coincide with

those of the power PC theory. They do for all of these

comparisons.

Comparisons between contingent candidate causes. Spell-

man (1996a), for example, compared causal judgments regard-

ing candidate causes that had the same unconditional contin-

gency of zero; however, conditional on the absence of the alter-

native cause, the candidate in one condition had a contrast of

.33, and the candidate in another condition had a contrast of

—.33. Because one conditional contrast was positive and the

other was negative, regardless of the values of P(e \ i) that enter

into the computation of these conditional contrasts, the power

PC theory predicts that the candidate with the more positive
conditional contrast should receive a more positive causal rating

than the other. This prediction was confirmed.

Likewise, participants in Baker et al. (1993) rated the target

candidate cause (camouflage for a tank under their cover story)

as more causal in the .5/0 condition than in the ,5/.8 condition,

" The traditional overshadowing phenomenon can be explained by my

theory only with the aid of auxiliary assumptions regarding the salience

of the cues. Note that, to explain this phenomenon, the R-W model also

requires assumptions regarding the salience of the cues.
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even though unconditional contingency for the candidate cause

was .5 in both conditions. Causal power can be estimated from

either the focal set in which the alternative candidate (a plane

in their cover story) was present or that in which it was absent.

Assuming that participants based their causal judgments on the

latter focal set, the one in which AP gives a better estimate of

causal power, they would judge camouflage to be more causal

in the former condition. In this condition, the contrast for camou-

flage conditional on the absence of the plane was .50, with

P(e | T) = .25 (where j represents camouflage), yielding a causal

power of .67 according to Equation 8. In the latter condition,

this contrast was .21, with P(e \ i) = .04, yielding a causal power

of .22. The power PC theory therefore explains Baker et al.'s

results. An analogous interpretation in terms of causal power

applies to Price and Yates's (1993) results, which showed the

same pattern as Baker et al.'s (see Spellman, 1996b, and Shanks,

1995, for detailed analyses of Price and Yates's experiments in

terms of conditional contrasts).

In sum, all comparisons involving contingent candidates show

that participants based their causal judgments on focal sets in

which alternative causes were constant rather than on the univer-

sal set. These results support the power PC theory as well as

the R-W model.

Comparisons involving a noncontingent candidate cause.

Comparisons between contingent and noncontingent candidate

causes always showed a higher absolute rating for noncontingent

candidates, despite their identical unconditional contingencies

(Conditions .5/1 vs. .5/0, -.5/-1 vs. -.5/0, .5/-1 vs. .5/0,

-.5/1 vs. -.5/0, and PR.5/0 vs. PR.5/.4 in Baker et al., 1993;

Spellman, 1996a). Because some of the zero contrasts were

undefined for the evaluation of either generative or preventive

causal power, the interpretation of this finding with respect to

the power PC theory requires an assumption: When participants

were uncertain of the causal status of a candidate that had a

zero contrast, they rated it as less causal than a noncontingent

candidate. This assumption is necessary as a result of two

sources of ambiguity: (a) None of these studies provided a

context that clearly indicated whether the participants were to

evaluate generative or preventive causal power, and (b) none of

the studies provided participants with the option of expressing

uncertainty.

It might be argued that participants in the studies just dis-

cussed, which used a within-subject design, simply selected

focal sets in which contrast varied across conditions, perhaps

as a result of an experimental demand to give different answers

across conditions. To rule out this explanation, Spellman com-

pared causal judgments across conditions in which the condi-

tional contrast for the candidate cause remained at 0 but the

unconditional contrasts varied, from —.5 to 0 to .5. She re-

ported that participants rated the candidate in these three condi-

tions highly similarly, showing that they based their causal

judgments on focal sets in which alternative causes were con-

trolled, regardless of which type of contrast varied. Other stud-

ies comparing two or more noncontingent candidates, however,

showed more variable ratings. For example, of the 12 condi-

tions (some with the same design) in Baker et al. (1993) in

which the target candidate was noncontingent, 3 showed a

rating that reliably deviated from 0 (e.g., Conditions 0/1 and

0/0 in Experiment 1).

Comparisons between noncontingent candidates in these stud-

ies are difficult to interpret because of the two sources of ambi-

guity mentioned earlier; given that the kind of causal power to

be assessed was not specified to the participants, whether a

particular zero contrast is defined with respect to the power PC

theory could depend on the nature of the assessment assumed

by a participant. Moreover, even when such a contrast is defined,

small misperceptions of AP can lead to large apparent biases

for noncontingent candidates, as I explain when I review studies

involving a single varying candidate. A study by Fratianne and

Cheng (1995), described later, avoided these interpretation

problems.

Blocking

Some studies testing the traditional contingency model used

the blocking design borrowed from Pavlovian conditioning. In

this design, the first phase presents trials pairing the presence

of a predictive cue with an outcome and the absence of this cue

with the absence of the outcome (e.g., Chapman & Robbins,

1990; Dickinson et al., 1984; Shanks, 1991, Experiment 2).

The second phase presents trials pairing the combination of this

predictive cue and a novel cue (the candidate cue in question)

with the outcome. These cue combinations are nested; hence,

the R—W model computes conditional contrasts. For example,

in Chapman and Robbins's study (1990, Experiment 1), partici-

pants were presented trials pairing the presence of a predictive

cue, P, with the outcome (P+). They were also presented with

trials pairing the presence of a nonpredictive cue, N, with the

absence of the outcome {N—). On trials in which no cue was

present, the outcome was absent. Then, in a second phase, a

novel cue B (the to-be-blocked cue), in combination with P,

was paired with the outcome (PB+). Likewise, another novel

cue C (the control cue), in combination with N, was paired

with the outcome (NC+). Assuming the constant presence of

a context cue, X, to represent trials on which no explicit cue is

present, the design in this experiment was X— , XP+, XPB+,

XN-, XNC+. The cue combinations X, XP, XPB, XN, and

XNC are nested; there are partially overlapping combinations

(XP and XPB each partially overlap with XN and XNC), but

for every pair of partially overlapping combinations (e.g., XP

andXAT), all supersets of one combination (e.g., XP and XPB)

share the same intersection with the other combination (they

both intersect with XN by X), and this intersection (X) occurs

as a separate combination. In other words, the paths from the

respective "tips," B and C, of the two branches of the tree

structure are the simple nested sets (a) X, XP, XPS and (b)

X, XN, XNC. It follows that the strength of B according to the

R-W model is equal to its contrast conditional on the presence

of X and P, and this contrast is zero (because P(<?|XPB) =

P(e\ XPB) = 1. This model therefore predicts that the strength

of B should asymptotically be zero. Similarly, it follows that

the strength of C is equal to its contrast conditional on the

presence of X and N, and this contrast is 1 (because P(e \ XNC)

= 1 but P(e\XNC) = 0). This model therefore predicts that

despite the same unconditional contingency for B and C, B

should have a lower causal strength than C.

This ordinal prediction has been supported in many studies

using variants of the blocking design (e.g., Chapman, 1991;
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Chapman & Robbins, 1990; Dickinson & Burke, 1996; Dickin-

son et al., 1984; Shanks, 1991): The blocked cue received a

lower causal rating than a control cue that has been identically

paired with the outcome (and has the same unconditional contin-

gency) but has been presented only in combination with (a) a

nonpredictive cue (e.g., Chapman, 1991; Chapman & Robbins,

1990; Dickinson & Burke, 1996; Shanks, 1991, Experiment 2)

or (b) another novel cue (e.g.. Chapman, 1991; Dickinson et

al., 1984). These findings, which have often been regarded as

support for the R-W model, equally support an account in terms

of conditional contrasts because the R-W model computes con-

ditional contrasts in these studies (for similar analyses of vari-

ants of the blocking design, see Melz et al., 1993). These results

show that, rather than using the universal set, reasoners select

focal sets in which alternative causes are controlled.

Note, however, that the zero contrast for B is undefined ac-

cording to Equation 8, because P(e\XPB) = 1. If participants

assumed that they were to evaluate generative causal power,

the power PC theory would predict that participants should be

uncertain of the causal status of B, in contrast to the R-W

model, which predicts that participants should be confident that

B is noncausal. All human studies using the blocking design in

which (a) the trials were discrete (so that the power PC theory

applies) and (b) the predictive (i.e., blocking) cue was always

paired with the effect (so that the zero contrast for the to-be-

blocked cue is undefined) showed a mean rating for the indeed

blocked cue that was about midway between being a cause

and a noncause (Chapman, 1991; Chapman & Robbins, 1990;

Dickinson et al., 1984; Shanks, 1991; Shanks & Dickinson,

1987; Waldmann & Holyoak, 1992; Williams et al., 1994; it is

not clear whether this was true of Dickinson & Burke's study,

1996, because they did not directly report ratings but, rather,

reported differences between ratings). This finding of partial

blocking has been interpreted to reflect uncertainty and, hence,

to contradict the R-W model (Cheng & Holyoak, 1995; Melz

et al., 1993). This interpretation is plausible given that an inter-

mediate rating has often been reported for candidates about

which participants received no information at all (e.g., Williams,

1995; Williams & Docking, 1995). To the contrary, Shanks

(1993) interpreted the intermediate ratings to be consistent with

the R-W model by arguing that performance in these studies

was merely preasymptotic. It is not possible to disambiguate

the interpretation of the intermediate ratings without further

experimentation. First, there is no clear definition of when per-

formance is asymptotic. More important, these studies—not

having been designed to test the power PC theory—neither

specified the type of causal power to be assessed nor allowed

the option of expressing uncertainty.

This difference in the interpretation of a zero contrast points

to an important theoretical distinction between the power PC

theory and the R-W model. The R-W model bases its predic-

tion regarding the causal ratings of the blocked cue directly on

the (conditional) contrast for this cue. An explanation of this

prediction was provided by Cheng and Novick (1992), who

derived that, if one assumes that causes have the power to pro-

duce their effects with some positive probability, the contrast

for a candidate cause with a given power is reduced, in the

extreme to zero, when alternative independent causes of the

same effect arc present. That is, they explained the phenomenon

of blocking in terms of this reduction in the magnitude of con-

trast. My current analysis turns this explanation on its head:

Whereas Cheng and Novick assumed that causal judgments are

directly based on contrast, the value of which they predicted on

the basis of assumptions about causal power, I now assume that

causal judgments are directly based on causal power, which is

only indirectly estimated by contrast. This difference in the

interpretation of the blocked cue's zero contrast should allow

discrimination between the power PC theory and the R-W

model if the dependent measure is sensitive to this difference.

Summary

Studies testing the traditional contingency model using multi-

ple candidate causes uniformly show that, instead of using the

universal set, reasoners select focal sets in which alternative

causes occur independently of the candidate cause (i.e., sets

that optimally reveal causal power) and make causal judgments

according to contrasts in these sets. All interpretable results

strongly support the power PC theory. These studies do not,

however, discriminate the power PC theory from the R-W

model because their procedures underspecified what is required

(according to the power PC theory) for an unequivocal interpre-

tation of observed causal judgments.

Selection of Focal Sets: Tests Discriminating Between

the Power PC Theory and the R-W Model

Some studies that test the boundary conditions predicted by

the power PC theory do avoid the ambiguities just noted, as a

result of either the dependent measure used or the causal knowl-

edge induced by the participants before the evaluation of the

critical candidate cause. In this section, I review several such

studies based on three well-known designs borrowed from Pav-

lovian conditioning: blocking, overexpectation, and conditioned

inhibition.

The Boundary Conditions for Evaluating Generative

Power as Manifested in Blocking

To avoid the ambiguities found in the previous studies, Frati-

anne and Cheng (1995, Experiment 3) tested a variant of the

blocking design. Unlike previous blocking studies, they (a)

specified the type of causal power that participants were to

assess, in their case generative power only, and (b) used a

response scale that allowed participants to explicitly differenti-

ate among certainty that a candidate cause is noncausal, uncer-

tainty that a candidate is causal, and certainty that a candidate

is causal.

Fratianne and Cheng (1995) presented each participant in

their experiment with two cover stories, each of which involved

assessing the generative nature of three unfamiliar candidate

causes. For example, one of the stories concerned helping a

botanist determine whether chemicals A, B, and C in fertilizers

produce a certain effect (e.g., the growth of a root fungus in

plants). Each of the two information patterns summarized in
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Figure 2 was presented in the context of each of the cover

stories. The information indicated in each cell of the figure,

presented to the participants as an item in a randomized list,

applies to a group of trials (e.g., plants). (A question mark in

a cell in the figure indicates that no information regarding that

cell was presented.) Pattern 1 contains the pattern of information

in the traditional blocking design, where A is the blocking cue

and B is the to-be-blocked cue. (Unlike the traditional blocking

design, this experiment presented all information in the same

phase.) Participants were asked whether a candidate "causes"

a certain effect, and they answered by rating each of the three

candidates on a scale that ranged from — 100 (completely con-

fident that the candidate is not a cause) to + 100 (completely

confident that the candidate is a cause), with a rating of 0

indicating no confidence at all about the causal status of the

candidate.

Part of this experiment replicated other studies but removed

the previous interpretative ambiguities. Recall that the power

PC interpretation of previous comparisons involving a noncon-

tingent candidate requires the assumption that when participants

are uncertain of the causal status of the candidate, they rate it

as less causal than a contingent one. The comparison between

candidate B in Pattern 1 and candidate Y in Pattern 3 was de-

signed to show that reasoners select focal sets in which alterna-

tive causes are controlled without this assumption. The uncondi-

tional contrasts for these candidates were equal: As can be seen

in Figure 2, information in the left column of each contingency

table for Pattern 1 (i.e., P(e \ B)), is equivalent to that for Pattern

3 (i.e., P(e\ Y)); and likewise for information in the right col-

umns (i.e., P(e\B) - P(e\f)). Candidate B, however, had a

contrast of zero conditional on the presence of alternative cause

Pattern 1
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Key:

e The Effect Always Occurs
T The Effect Never Occurs
? The Outcome is Unknown

Figure 2. Pattern 1 and Pattern 3 outcome information in Fratianne and
Cheng (1995, Experiment 3). The contingency tables indicate whether or
not the effect occurs for the various combinations of candidate causes

A, B, and C.

A (i.e., P(e \ AB) - P(e \ AB) = 0; see the top four cells across

the two contingency tables in Pattern 1); the corresponding

candidate in Pattern 3, Y, had a contrast of one conditional on

the absence of alternative cause X (i.e., P(e\ %Y) - P(e\XY)

= 1; see the bottom four cells across the two contingency tables

in Pattern 3). These were the only contrasts available for candi-

dates B and Y for which alternative plausible causes occur inde-

pendently of the candidate.7 Because participants were unambig-

uously asked to evaluate the generative power of the candidates,

Equation 8 unequivocally applies, indicating that the conditional

contrast of zero for B does not reveal causal power (because

the effect always occurs even in the absence of B). In contrast,

the conditional contrast of one for Y does. Thus, whereas the

traditional contingency model predicts that participants should

be equally confident that B and Y are causal, the power PC

theory predicts that they should be uncertain of the causal status

of B and, therefore, more confident that Y is causal than they

are that B is. Refuting the traditional contingency model, partici-

pants clearly and reliably judged Y as causal (with a mean

confidence rating of 92) more confidently than they judged B

(with a mean rating of — 20). These results using our dependent

measure confirm the previous finding that reasoners select focal

sets in which alternative causes are controlled.8

Recall that previous studies cannot differentiate between can-

didate causes with zero contrasts that do or do not reveal causal

power according to the power PC theory. To test this novel

prediction of the theory, Fratianne and Cheng (1995) created

multiple focal sets in which the conditional contrast for a candi-

date equals 0 but not all of which reveal causal power. Candidate

C in Pattern 1 and candidate Z in Pattern 3 both had a contrast

of zero conditional on the absence of alternative causes (see the

lower right corners of each contingency table in the two pat-

terns). Because the effect did not occur in the absence of C or

Z, the contrasts for these candidates in these focal sets should

be good estimates of their causal powers according to Equation

8. Now, recall that the only available conditional contrast for

candidate B in Pattern 1 was also zero, but this contrast does

7 As explained later, C in Pattern 1 and Z in Pattern 3 are noncausal
according to the power PC theory. They therefore need not be constant
in the focal sets for B and Y, respectively. The conditional contrasts for
B and Y remain unaltered, however, by including, respectively, C in
Pattern 1 and Z in Pattern 3 as alternative causes and conditionalizing

on their absence.
"Like Spellman (1996a), Fratianne and Cheng (1995) also varied

unconditional contrasts while controlling for conditional contrasts. Can-
didate A in Pattern 1 and candidate X in Pattern 3 had equal contrasts
conditional on the absence of alternative plausible causes, the contrast
predicted to optimally reveal causal power: They each had a contrast of
I conditional on the absence of alternative causes (see the right columns
of the two contingency tables for each pattern). The unconditional con-
trast for these candidates, however, differed: This contrast was 1 for A

but less than 1 for X. Thus, for this pair of candidates, whereas the
traditional contingency model predicts that A should be rated causal
with higher confidence, the power PC theory predicts that the two candi-
dates should be rated causal with equal confidence. The mean ratings
of these candidates were highly similar, as predicted by their conditional
contrasts according to the power PC theory. The mean rating of A (95)
was not reliably different from the mean rating of X (93). Differences
in unconditional contrast did not matter.
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not reveal causal power. The power PC theory therefore predicts

that participants should judge C and Z as noncausal more confi-

dently than they judge that B is. This is what Fratianne and

Cheng found: Even though all three candidates, B, C, and Z, had

conditional contrasts of zero, participants were reliably more

confident that C (mean rating = —88) and Z (mean rating =

—91) were noncausal than they were that B was (mean rating

= —20). This pattern of results contradicts the predictions of

the R-W model. One might note that the differences in uncondi-

tional contrast among these candidates do predict the pattern of

results for this set of candidates. Only the power PC theory,

however, successfully predicts the pattern of results for all of

the candidates.

In sum, Fratianne and Cheng's (1995) results show that,

rather than basing their causal judgments on the entire set of

events presented by the experimenter, participants selected focal

sets in which alternative causes were controlled. When a contrast

in such a focal set revealed causal power, participants confi-

dently judged whether a candidate was causal or noncausal ac-

cording to its value. When a contrast in such a focal set did not

reveal causal power, however, participants were unsure of the

causal status of the candidate (as was the doctor in my allergy

anecdote). These results, which are based on a dependent mea-

sure that removes the ambiguities in previous studies, clearly

support the power PC theory and contradict the R-W model. In

particular, they support the power PC theory's novel prediction

regarding a boundary condition for interpreting positive

contrasts.

A Boundary Condition on "Overexpectation " Resulting

From Combining Generative Causes

Fratianne and Cheng's (1995) experiment tested the boundary

conditions for assessing generative power. Going beyond previ-

ous studies, they tested the boundary condition specifying

P(e | i) < 1 by comparing, among focal sets in which alternative

causes occur independently of a candidate cause, (a) one in

which the effect always occurs even in the absence of the candi-

date (B in Pattern 1) and (b) one in which the effect never

occurs in the absence of the candidate (e.g., Z in Pattern 3). A

more stringent test of this boundary condition is to compare the

former situation with one in which the effect only sometimes

occurs in the absence of the candidate. A particularly interesting

design for such a test is based on the Overexpectation design

(Kremer, 1978; Rescorla & Wagner, 1972) in the Pavlovian

conditioning literature. This design involves two learning

phases. In Phase 1, stimuli A and B are separately established

as exciters (A+ and B+): Whenever A or B is present, the

outcome occurs; on other trials, no stimulus occurs, and the

outcome also does not occur. In Phase 2, the combination of A

and B is shown to also lead to the effect (AB +) to the same

degree as did each of the individual stimuli in Phase 1: Whenever

the combination of A and B occurs, the outcome occurs; on

other trials, when no stimulus occurs, the outcome also does

not occur. Tests subsequent to Phase 2 typically reveal that the

excitatory power of both A and B has decreased relative to Phase

1. The R-W model predicts this result because the sum of the

associative strengths of A and B after Phase 1 "overpredicts" the

outcome associated with the AB compound in Phase 2, leading to

reduction in both weights.

Cheng, Park, Yarlas, and Holyoak (1996) explained that, from

the perspective of the power PC theory, this result depends on

the fact that the laboratory-animal studies have used events (e.g.,

shock administered at various times) that are naturally interpre-

ted as occurring with certain rates in continuous time rather

than with certain probabilities (Gallistel, 1990). Rates have no

a priori upper bound (except that imposed by technology and

perceptual systems), in contrast to probabilities, which have an

upper bound of 1. For example, an experimenter might define

a trial to be of a certain length in time (e.g., 2 min), with a

shock occurring once every trial as indicating that it occurs with

a probability of 1. However, it is physically possible for shocks

to occur at rates higher than this artificial upper bound and be

perceived as such up to the limit imposed by the participants'

perceptual system. (Like probabilities, however, rates do have

a lower bound, it is physically impossible for effects to occur

at a rate slower than 0 per unit time interval.) For generative

causes, therefore, rates do not have an analogue of the boundary

condition specifying P(e\i) < 1, a condition that applies to

probabilities rather than rates. The failure of the AB compound

in Phase 2 to increase the rate beyond that associated with

each cue alone is thus normatively interpreted in terms of rates

as evidence that neither cue is as potent as it had appeared in

Phase 1.

Discrete effects (e.g., being pregnant) that occur in discrete

trials (e.g., a woman), however, are naturally coded in terms

of probabilities rather than rates. The boundary condition for

generative causes predicted by the power PC theory should

therefore apply. As I explain later, this theory predicts that

whether Overexpectation occurs should depend on whether the

candidates are paired with the effect all of the time (the "ceil-

ing" case) or only sometimes (the "nonceiling" case). In con-

trast, the R-W model, as a result of its additivity, does not

distinguish between these two cases and predicts Overexpecta-

tion in both.

Estimating generative causal power in a ceiling and a noncei-

ling situation. First, consider the ceiling situation. Recall that

in Phase 1, when either candidate A or B is present, the effect

always occurs; otherwise, the effect does not occur. This design

implies that, for each candidate cause, there is a focal set in

which causes alternative to the candidate occur independently

of it. With respect to the assessment of candidate A, this focal

set consists of trials on which B is absent. In this set, the only

alternative cause is the ' 'context,'' which is constant and there-

fore independent of A. Therefore, either Equation 8 or 14 ap-

plies. Because the contrast for A in this set is positive, the choice

is Equation 8. For candidate A, P(e\j) in Equation 8 equals 0,

because the effect does not occur when the context alone is

present. Under these conditions, this equation indicates that this

contrast, which equals 1, provides a good estimate of the causal

power of A. The same reasoning applies to candidate B. There-

fore, if reasoners select focal sets that reveal causal power, they

should rate both A and B as highly causal in Phase 1.

Accumulating information across the two phases allows the

selection of a second type of focal set in which causes alternative

to a candidate are constant. With respect to the assessment of

candidate A, this additional focal set consists of trials on which



POWER PC THEORY 385

B and the context are always present. In this focal set, the

contrast for A, P(e \ ABC) - P(e \ ABC), where C is the context,

is 0: Both conditional probabilities equal 1. (Recall that in Phase

1 in the ceiling situation, when A or B is present, the effect

always occurs; likewise, in Phase 2, when the AB compound is

present, the effect always occurs.) According to the power PC

theory, however, this contrast is uninterpretable as an estimate

of causal power; because the effect always occurs in the absence

of A, P(e\i) in Equation 8 equals 1. Equation 8, the equation

for evaluating generative causal power, is relevant because A

has been inferred to be generative in Phase 1. Thus, in this case,

prior causal knowledge specifies which equation is relevant. The

same reasoning applies to candidate B, for which the analogous

conditional contrast is likewise 0 and likewise uninterpretable.

Therefore, although the contrast for each candidate changes

from 1 in the focal set used in Phase 1 to 0 in the focal set

available in Phase 2, there is no conflict in the interpretation

according to causal power. Accordingly, the power PC theory

predicts that reasoners will not change their causal assessment

of either A or B during Phase 2. That is, contrary to the predic-

tion of the R-W model, overexpectation will not occur in the

ceiling situation.

To serve as a baseline for comparison, consider a control

group that uses an identical design and procedure as the experi-

mental group, except that one of the two candidate causes, A,

is not paired with the effect in Phase 1. According to the power

PC theory, A should be noncausal: P(e\AB) - P(e\AB) = 0.

However, B should have the same causal power in the experimen-

tal and control groups because its contrast conditional on the

absence of A has the same value (namely, 1) and the same base

rate of the effect (namely, 0) in both groups; therefore, these

groups should not differ in their assessment of B in Phase 1.

More important with respect to the prediction of overexpecta-

tion, because A is noncausal in the control group, the relevant

contrast for B is the unconditional one, which does not change

across phases; in both phases, P(e\B) = 1 and P(e\E) = 0.

Therefore, this model predicts that the estimated causal strength

of B should not change across phases (i.e., there should be no

overexpectation) in the control group, and thus there should be

no difference between the two groups.

Now consider a nonceiling situation. The only difference in

design between this situation and the previous one is that in

those stimulus contexts in which the effect occurs (for both the

experimental and control groups), rather than always occurring,

it occurs with a constant probability that is clearly greater than

0 and less than 1. It follows that, for the experimental group in

this situation, the contrast for either A or B in Phase 1 conditional

on the absence of the other is clearly between 0 and I. These

contrasts should be good estimates of generative causal power,

because the only alternative cause in these focal sets is the

context, which does not produce the effect. The causal power

of either A or B should therefore be clearly less than 1. Now,

in Phase 2 of the nonceiling situation, as in the ceiling situation,

the contrast for either candidate conditional on the presence of

the other is 0, because the effect occurs with the same frequency

in the presence of the AB compound as when either candidate

is present in the earlier phase. Contrary to those in the ceiling

situation, however, these contrasts should provide an estimate

of causal power: P(e\i) in Equation 8 is clearly less than 1 in

these focal sets (because the probability of the effect produced

by alternative cause A or B is clearly less than 1). Therefore, a

conflict appears between the causal powers inferred in the two

phases.

There are multiple ways of resolving this conflict, not all of

which would result in overexpectation under a power analysis.

Consider a reasoner who assumes that the candidate causes have

stable causal powers and who trusts the observations in Phase

2 but doubts those in Phase 1. This reasoner could resolve the

conflict by hypothesizing that the proportion of cases in Phase

1 for which A or B produced the effect is lower than originally

estimated. Such a modification would result in lower estimates

of causal power for A or B, which would be consistent across

the two phases. Accordingly, the power PC theory predicts that

overexpectation will occur in the nonceiling situation if the

experimental procedure encourages participants to trust the ob-

servations in Phase 2 but doubt those in Phase 1; that is, the

causal ratings for B in Phase 2 should be lower in the experimen-

tal group than in the control group.

In sum, the power PC theory predicts a possible reduction in

the perceived causal power of A and B during Phase 2 of the

overexpectation design using discrete trials when the effect oc-

curs with a nonceiling probability in the presence of A, B, or

their combination but no such reduction when the effect occurs

with a ceiling probability of 1 in these stimulus contexts.

The overexpectation design not only tests the boundary condi-

tion specifying P(e \ i) < 1 but also tests the selection of focal

sets. Note that the unconditional contrast for B in Phase 1 is

lower in the experimental group than in the control group in

both the ceiling and nonceiling situations: Because A (which

appears in the absence of B) is paired with the effect only in

the experimental group, P(e\ E) is higher in this group. In addi-

tion, the unconditional contrast does not change for either A or

B across phases in either the ceiling or the nonceiling situation.

If participants do not select focal sets in which alternative causes

occur independently of the candidate cause, B in Phase 1 should

be rated less causal in the experimental group than in the control

group in both the ceiling and the nonceiling situations. More-

over, causal judgments regarding A and B should not change

across phases, for the experimental group in the nonceiling situ-

ation as well as for other groups. These predictions based on

unconditional contrasts contradict those derived from the power

PC theory.

Power analysis of the contrasts computed by the R-W model

in the overexpectation design. The R-W model's prediction

of overexpectation rests on a comparison between the two

phases of the overexpectation design. Recall that Phase 1 has

the following design: C-, AC+, and BC+ (where C is the

context cue). This design is nested because C, the intersection

of the partially overlapping combinations AC and BC, occurs

by itself as a separate combination. According to my derivation,

this model computes the contrasts for A or B in this design

conditional on the presence of the context alone. Because the

context does not produce the effect (i.e., P(e\i) equals 0), these

contrasts closely estimate causal power according to Equation

8. The prediction of the R-W model therefore coincides exactly

with that of the power PC theory in this case.

In Phase 2, the design is C- and ABC+. Because ABC is

a superset of C, this design is also nested. For this design, the
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model computes the contrast for AB as a composite conditional

on the presence of the context alone. Because the effect occurs

with equal probability in the presence of noncontext stimuli in

this design, the contrast for this composite has the same value

as that for the individual stimuli in Phase 1. The additivity

assumption of the R—W model therefore yields the prediction

that the strengths of the individual stimuli in Phase 2 will asymp-

totically be reduced to half their previous strengths. For the

nonceiling experiment, this direction of change is consistent

with that predicted by a hypothesized revision of observations

in Phase 1 to obtain a consistent estimate of causal power across

phases. But recall that, with regard to the ceiling experiment,

the only contrast that reveals the causal power of A or B is that

obtained in Phase 1. Because the prediction of the R-W model

for Phase 2 does not correspond to this contrast (instead, it

predicts a value half the magnitude of this contrast), a power

analysis predicts that the model should fail.

Experimental test of overexpectation using discrete trials.

To test the predicted selection of focal sets and interpretability

of zero contrasts derived from the power PC theory, Park and

Cheng (1995) conducted two overexpectation experiments us-

ing discrete trials with humans performing a causal induction

task. These experiments were identical in design except for

the theoretically crucial distinction between whether the critical

stimulus contexts produce the effect sometimes (nonceiling ex-

periment) or always (ceiling experiment). College students

were presented with a cover story in which they were asked to

infer how likely it is that various newly discovered (fictitious)

proteins called "endomins," which were said to sometimes be

produced by the body, caused hypertension in people who have

those endomins. Trials therefore consisted of people, who are

discrete entities.

The two experiments respectively used the designs just de-

scribed for the ceiling and nonceiling situations: For the ceiling

situation, the probability of hypertension given any pattern of

endomins was 1 whenever it was positive in the designs de-

scribed; for the nonceiling situation, these probabilities were

.75. On each learning trial, participants were given a "hospital

record" listing information about the presence or absence of

three endomins and of hypertension in a particular patient.'

None of the participants had been exposed to probability theory.

As a means of measuring the participants' causal judgments,

they were given a response sheet that listed patterns of endomins

(the three individual endomins, the combination of A and B,

and no endomins). For each pattern, participants were asked,

"Out of 100 patients with this pattern of endomins, how many

do you think have hypertension?''

Recall that for the discrete-trial version of the overexpectation

design, the power PC theory predicts overexpectation for rea-

soners in a nonceiling situation who trust the observations pre-

sented in Phase 2 but doubt those in Phase 1. To create an

experimental procedure allowing the power PC theory to make

different predictions for a ceiling and a nonceiling situation, the

instructions encouraged all participants to doubt the observa-

tions in Phase 1 if they perceived conflicting information in the

two phases. At the beginning of Phase 2, every participant was

told that there may or may not be some inaccurate diagnoses

of patients whose records they have jusl seen but that the diagno-

ses of the patients whose records they were going to see were

certainly accurate.

The results of both experiments were in accord with the pre-

dictions of the power PC theory. As predicted, on one hand, in

the experimental group of the nonceiling experiment, the mean

number of patients (out of 100) who were estimated to have

hypertension for the critical stimulus B decreased reliably (by

10) across the two phases. This reduction was reliably greater

than the corresponding decline (of 2) observed in the control

group, a decline that was not reliable. On the other hand, in the

ceiling experiment, the estimates for B were virtually unchanged

across phases (ranging from 99 to 100) in both the experimental

and control groups. The number of participants who did or did

not show a reduction in their estimate for B in Phase 2 indicated

the same pattern of results. In the nonceiling experiment, a

reliably larger proportion of participants in the experimental

group than in the control group showed a decline in their esti-

mate for B from Phase 1 to Phase 2. In contrast, in the ceiling

experiment, there was no difference between groups; none of

the participants in either group showed such a decline.

In sum, as predicted by the power PC theory, but no other

theory, stimulus B lost perceived causal power in Phase 2 for the

experimental group (but not the control group) of the nonceiling

experiment. In contrast, the perceived causal power of this stimu-

lus remained unchanged in both groups of the ceiling experi-

ment. Also as predicted by the power PC theory, the experimen-

tal and control groups rated B similarly in Phase 1, in both the

nonceiling experiment (78 and 74 for the two groups, respec-

tively) and the ceiling experiment (99 for both groups), despite

the lower unconditional contrast for B in the experimental

groups.

Implications. The results obtained by Park and Cheng

(1995) provide strong support for the interpretation of contrasts

as estimates of causal power. The power PC theory accurately

predicts a boundary condition on the phenomenon of overexpec-

tation for human causal induction with events that are naturally

encoded in terms of probabilities. Depending on whether each

of two individual cues sometimes (nonceiling experiment) or

always (ceiling experiment) produced the effect, the estimated

causal power of each individual cue was, respectively, (a) re-

duced (as a result of overexpectation) or (b) not reduced when

the two cues were presented in combination with the same prob-

ability of the effect as had been observed for each cue alone.

Recall that Pavlovian conditioning studies using the same design

as the ceiling experiment did obtain overexpectation. The critical

difference is that these conditioning studies presented events

that occurred with certain rates rather than probabilities, and an

overexpectation design implemented with such events should

9 Our only modification to the standard overexpectation design was

the addition of a third stimulus. This stimulus was always presented in

isolation; therefore, its addition should not affect the strengths of other

stimuli according to both the R-W model and the power PC theory (see

Appendix A). This stimulus was always followed by the effect with a

probability of .92 in both phases for both groups in the nonceiling

situation and with a probability of 1 in both phases for both groups in

the ceiling situation. It was added to provide a comparison for confirm-

ing that a probability of .75 was perceptibly below a near ceiling level

(it was).
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yield overexpeetation according to an analysis of causal power.

Without an interpretation in terms of causal power, no model

of covariation (including the R-W model) is able to account

for the observed differences in overexpeetation (a) between the

ceiling and nonceiling experiments and (b) between the ceiling

experiment and the conditioning experiments.

Moreover, Park and Cheng's (1995) experiments provide fur-

ther support for the selection of focal sets that optimally reveal

causal power. The overexpeetation observed in their nonceiling

experiment cannot be explained in terms of unconditional con-

trasts, which did not change across phases. Neither can such

contrasts explain why participants in the experimental and con-

trol groups rated B similarly in Phase 1 for both experiments,

despite the difference in unconditional contrast for this candidate

between groups.

A Boundary Condition on the Interpretation of

Inhibitory Causes

Conditioned inhibition. Whereas the overexpeetation design

permits a test of the boundary condition particular to the assess-

ment of generative power predicted by the power PC theory, a

causal analogue of another conditioning design permits a test of

the corresponding boundary condition for assessing preventive

power predicted by this theory: the extinction of conditioned

inhibition (or, in causal terms, the reduction in perceived power

of a preventive cause). The initial acquisition of conditioned

inhibition was first described by Pavlov (1927). In this proce-

dure, some outcome occurs in the presence of a stimulus A

(A+) but not in its absence; neither does this outcome occur

when A is paired with a second stimulus X (AX—). If we let C

represent the context, then the design for conditioned inhibition

is C—, CA+, and CAX—. Exposure to these events leads to A

being perceived as predicting the outcome and X as inhibiting

it. This perception of inhibition can be behaviorally tested via

a transfer task known as summation. Pavlov (1927) showed

that when X is later paired with some novel excitatory stimulus

B, the response that had been previously evoked by B is attenu-

ated. The summation of B and X indicates that the learner pos-

sesses a generalized inhibitory representation of the X stimulus

independent of the stimulus with which it was originally paired.

The power PC theory predicts that reasoners will judge X to

be inhibitory in this design, consistent with Pavlov's (1927)

and Rescorla's (1969) findings using animals and Williams's

(1995) and Williams and Docking's (1995) findings using hu-

mans with inference tasks. The only contrast for X when alterna-

tive causes are controlled (i.e., P(e\CAX) - P(e\CAX) is

negative. Equation 14—the equation for evaluating inhibitory

power—therefore applies, yielding the prediction that X would

become an inhibitor. This contrast is also the one computed by

the R-W model for X. Because every stimulus combination

in this design except the one with a single stimulus can be

characterized as a superset of all combinations with fewer stim-

uli, the design is nested, and the model computes the contrast

for X conditional on the cues in the next smaller combination,

CA. The R-W model therefore makes the same prediction as

the power PC theory.

Extinction of conditioned inhibition. The extinction of a

conditioned inhibiting stimulus (such as X described earlier)

occurs when new information leads to X no longer being per-

ceived as preventive. Under a "direct" procedure, the condi-

tioned inhibiting stimulus X is subsequently presented alone with

no outcome (X—). Letting C represent the context as before, the

design is C- and CX-. The intervening experience with X in

the absence of excitatory cause A yields the contrast P(e\ CAX)

- P(CAX) = 0. Because the design is nested in this phase,

this contrast is the one computed by the R-W model for X.

This model therefore predicts that the inhibitory power of X

will become extinguished. According to the power PC theory,

however, this contrast is uninterpretable as an estimate of the

inhibitory power of X: Prior causal knowledge about X indicates

that Equation 14 is relevant, and, for this contrast, P(e\i) in

this equation equals 0. The new information therefore does not

conflict with the estimate for X obtained in the earlier phase.

Accordingly, this intervening experience will not alter the previ-

ous estimate, and the direct procedure will not lead to the extinc-

tion of conditioned inhibition.10

Experiments using this design with both humans and labora-

tory animals have supported this prediction of the power PC

theory, contradicting that of the R-W model. Zimmer-Hart and

Rescorla (1974) found that when a conditioned inhibitory stimu-

lus (a light flash) was presented alone with no outcome, it

retained its inhibitory strength in later summation trials when

paired with a novel excitatory stimulus (a tone). Yarlas et al.

(1995) replicated this pattern of results on a summation test

using humans with a causal inference task.

Note that the preceding prediction of the power PC theory

is the preventive analog of the theory's prediction of lack of

overexpeetation when generative causes that produce the effect

at a ceiling level are combined. Recall that in Phase 2 of the

overexpeetation design, information regarding the critical candi-

date in the presence of an alternative generative cause yields a

contrast that is uninterpretable as an estimate of the candidate's

generative power according to Equation 8, because the effect

always occurs in the presence of the alternative cause. The power

theory therefore predicts (correctly) that this contrast will be

ignored in favor of an available contrast that is interpretable.

Analogously, in the extinction phase of the conditioned inhibi-

tion design, experience with X in the absence of generative cause

A yields a contrast that is uninterpretable as an estimate of the

inhibitory power of X according to Equation 14, because the

effect never occurs in the absence of A. Reasoners are therefore

predicted to ignore this contrast in favor of an interpretable one

obtained earlier.

Counterintuitively, the power PC theory predicts that the in-

hibitory power of Xwill be extinguished in an "indirect" proce-

dure, in which the previously generative candidate A, which had

been inhibited by X, is at a later time no longer paired with the

presence of the outcome (i.e., A — ) . According to the power PC

theory, the relevant conditional contrast, P(e\CAX) -

P(e\CAX), which had been negative when A was generative,

will be reduced given the subsequent events (the value of the

10 The unconditional contrast for X is also unaffected by the direct
extinction procedure. However, it is the relevant conditional contrast
that is crucial, as was observed in Fratianne and Cheng (1995), Park
and Cheng (1995), and other studies reviewed in the overshadowing
and blocking sections.
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first term remains at 0, whereas the value of the second shifts

from 1 toward 0). Several studies of animal conditioning, extin-

guishing either the conditioning context or some previously gen-

erative candidate (Best, Dunn, Batson, Meachum, & Nash,

1985; Hallam et al., 1990; Kaplan & Hearst, 1985; Kasprow,

Schachtman, & Miller, 1987; Lysle & Fowler, 1985; Miller &

Schachtman, 1985), have yielded results consistent with the

selection of this optimal contrast: Conditioned inhibition was

extinguished via the indirect "retrospective" procedure. Wil-

liams and Docking (1995) and Yarlas et al. (1995) replicated

this finding with humans using causal inference tasks.

For this retrospective procedure, as for other retrospective

procedures, the R-W model fails. It does not revise the strength

of inhibitory stimulus X in the extinction phase of this procedure

because the stimulus is absent. This stimulus therefore retains

the value of its contrast from the acquisition phase rather than

changing to its updated value in the extinction phase, the value

that is informative according to the power PC theory.

Implications. With respect to the extinction of conditioned

inhibition, just as with overexpectation, it thus appears that the

power PC theory provides an accurate model of causal inference

as well as Pavlovian conditioning. Both the failure of the direct

procedure to "extinguish" a preventive cause in Yarlas et al.

(1995) and the success of the indirect extinction procedure in

Williams and Docking (1995) and Yarlas et al. (1995) strongly

support the predictions of the power PC theory. Confirming

the boundary condition for evaluating preventive causal power

predicted by the power PC theory, the direct procedure failed

to extinguish such a cause. As in the case of the hypothetical

test of the headache-relieving drug, the zero contrast for a candi-

date is uninterpretable when no causes are producing the effect.

Preventive causes are instead extinguished indirectly by extin-

guishing the generative cause that the preventive cause pre-

viously inhibited, confirming the optimal contrast for assessing

the preventive power of a candidate cause predicted by this

theory.

At the same time, these results are diametrically opposite to

those predicted by the R-W model. The failure of the direct

procedure illustrates that treating a preventive cause as the mir-

ror image of a generative cause, as this model does, is problem-

atic. Whereas the strength of a generative cause can be reduced

by presenting it without the effect (Williams, 1995; Williams &

Docking, 1995; Yarlas et al., 1995), the strength of a preventive

cause cannot be reduced using the same procedure, as predicted

by the different optimal focal sets for evaluating generative and

preventive power. The success of the indirect extinction proce-

dure illustrates that the R-W model's assumption that the

strength of a cue is not updated when it is absent is problematic

when the updated value does reveal causal power.

Summary of Studies Involving Multiple

Varying Candidate Causes

Studies testing the traditional contingency model using the

blocking and induced overshadowing designs uniformly support

the power PC theory's prediction regarding the selection of

focal sets in which alternative causes occur independently of a
candidate cause: Causal judgments were observed to depend on

contrast within such focal sets—the focal sets that potentially

reveal causal power—rather than within the universal set that

consisted of all information provided by the experimenter. These

studies, however, do not allow an evaluation of this theory's

predictions regarding the different boundary conditions for in-

terpreting generative and preventive powers within focal sets in

which alternative causes are controlled, predictions that discrim-

inate between the power PC theory and the R-W model. Studies

that do allow such an evaluation support the power PC theory.

On one hand, Fratianne and Cheng (1995) and Park and Cheng

(1995), respectively using the blocking design and the overex-

pectation design, tested the predictions of this theory regarding

nonnegative contrasts as estimates of generative causal power.

Participants based their causal judgments on contrast, including

a zero contrast, in focal sets in which alternative causes were

controlled when these causes were sometimes (Park & Cheng,

1995) or never (Fratianne & Cheng, 1995) producing the effect.

In contrast, they either ignored a zero contrast in such a focal

set when an alternative cause was always producing the effect

(Park & Cheng, 1995) or were uncertain of its causal implica-

tions if such a contrast was the only one available (Fratianne &

Cheng, 1995). On the other hand, Williams and Docking (1995)

and Yarlas et al. (1995), using the conditioned inhibition design,

tested the predictions of the power PC theory regarding nonposi-

tive contrasts as estimates of preventive causal power. Partici-

pants based their causal judgments of preventive causal power

on contrast, including a zero contrast, in focal sets in which

alternative causes were controlled when the effect always or at

least sometimes occurred in the absence of the candidate,

whereas they ignored a zero contrast in such a focal set when

the effect never occurred in the absence of the candidate.

My review shows that when the R-W model computes a

conditional contrast that reveals causal power (and hence makes

the same prediction as the power PC theory), it is supported

empirically, as in studies of conditioned inhibition, of induced

overshadowing, and of overexpectation using continuous trials;

a study of overexpectation using discrete trials whenP(e|i) < 1

for both candidates in this design (i.e., the effect only sometimes

occurred in the presence of each of the two candidate causes);

and studies of blocking in which the dependent measure did not

discriminate between certainty of noncausality and uncertainty

of causal status. Otherwise, this model is not supported, as in

studies of the extinction of conditioned inhibition, a study of

overexpectation using discrete trials when P(e\i) = 1 for both

candidates in this design, and a blocking study that does allow

the discrimination between certainty of noncausality and uncer-

tainty of causal status.

Causal Estimates as a Joint Function of Contingency

and the Base Rate of the Effect: Tests of the

Traditional Contingency Model Involving

a Single Varying Candidate Cause

I now turn to the evaluation of the power PC theory's predic-

tions for studies involving a single varying candidate cause

(other causes are held constant). Such studies show that the

magnitude of observed causal ratings is a function of (a) contin-
gency, as predicted by the traditional contingency model, the

R-W model, and the power PC theory, and (b) the base rate

of the effect, as predicted by the power PC theory alone.
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Many studies have tested the traditional contingency model

using designs involving a single varying candidate cause i by

orthogonally varying the probability of an effect given the pres-

ence of the candidate, P(e\i), and this probability given its

absence, P(e\ T). These studies have uniformly reported that the

magnitude of observed causal ratings was a function of the

contingency for the candidate cause C conditional on the con-

stant presence of a context cue X (e.g., Anderson & Sheu, 1995;

Baker et al., 1989; Shanks, 1985a, 1987, 1995; Wasserman et

al., 1983, 1993). In the most comprehensive study to date in-

volving a single varying candidate, in which Wasserman et al.

(1993) varied five values of P(e\i) and P(e\i) orthogonally,

the correlations between mean observed causal ratings and con-

tingency were .97 and .98 in two experiments. These results

strongly support the traditional contingency model.

When the test situation involves a single varying candidate

cause, this model's predictions coincide entirely with the asymp-

totic predictions of the R-W model if its learning rate parame-

ters are assumed to be constant across trials on which the effect

does or does not occur (Appendix A; Chapman & Robbins,

1990). Because the context (X), the only alternative cause, is

constantly present, the unconditional contrast for C(P(e | C) —

P(e | C) is equivalent to its contrast conditional on the presence

of X (i.e., P(e\XC) - P(e\XC). In other words, the universal

focal set in these studies is a focal set that reveals causal power.

The two cue combinations in this design are XC and X, which

are nested. From my derivation, it follows that the strength of

C according to the R-W model is equal to the contrast for C

conditional on the presence of X (Equation A23 in Appendix

A). As I show in a later section, the power PC theory predicts

that as long as the boundary conditions indicated by Equations

8 and 14 are satisfied, when contingency is manipulated by

changing either the frequency of the effect in the presence of

the target cue or that in its absence, as in the studies just cited,

the change in estimated causal power of the target cue is always

in the same direction as the change in its contrast (i.e., P(e\XC)

- P(E | XC) and proportional to it. The predictions of the R-W

model, which are identical to those of the traditional contingency

model, therefore coincide ordinally with those of the power PC

theory. In sum, the results supporting the traditional contingency

model equally support the power PC theory and the R-W

model: They converge in predicting that causal judgments are

a function of contingency.

Despite the impressive accordance between contingency and

the observed values, researchers have reportad a "bias" due to

the probability of the effect (P(e)) for candidate causes with

the same value of AP, both for candidates with a contingency

of zero (Allan & Jenkins, 1980,1983; Alloy &Abramson, 1979;

Baker et al., 1989; Chatlosh et al., 1985; Dickinson et al., 1984;

Shanks, 1985a, 1987) and for candidates with a nonzero contin-

gency (Allan & Jenkins, 1983; Wasserman et al., 1983, 1993).

I consider judgments regarding noncontingent and contingent

candidates separately, because they have different interpretations

according to the power PC theory.

Bias in Judging Noncontingent Candidates

For noncontingent candidates, participants in several studies

reliably judged candidates as more positive when the probability

of the effect was high than when it was low (e.g., Baker et al.,

1989; Chatlosh et al., 1985; Dickinson et al., 1984). For exam-

ple, Baker et al. (1989, Experiment 3) reported that when P(e)

was .75, the mean rating given to a noncontingent candidate was

positive, but when P(e) was .25, this mean rating was negative,

and the two mean ratings differed reliably. (Note that for non-

contingent candidates, P(e) = P(e\i) = P(e\T).) All studies

reporting such a bias used a within-subject design in which

the same group of participants judged candidates with positive,

negative, and zero contingencies. For each candidate, partici-

pants were not restricted to assessing either its generative or its

inhibitory nature.

The reported influence of P(e) on the judgment of noncontin-

gency candidates might appear to contradict the power PC the-

ory (it contradicts the R-W model and the traditional contin-

gency model). I show later, however, that this "bias" is consis-

tent with the power PC theory if (a) there are variations in the

objective value of AP from participant to participant (with a

mean of 0 across participants) or (b) participants are likely to

misperceive an objective AP of 0. One or both of these condi-

tions obtained in all of the studies in which this bias was re-

ported. (The zero contingencies in these studies were unlikely

to be perceived as undefined, because P(e\i) did not approxi-

mate 0 or 1.) Recall that a nonzero AP (when its boundary

conditions are satisfied) provides an increasingly conservative

estimate of causal power in opposite directions as a function of

P(e\i) depending on whether one is evaluating generative or

preventive power. As a result, participants might have selectively

exaggerated any objective or subjective deviation of the value

of AP from zero depending on the direction of the deviation,

as explained below.

Suppose that a participant perceives a purportedly noncontin-

gent candidate to have a small positive AP. When P(e) is high,

and hence P(e\T) is high, AP underestimates the generative

power of the candidate (Equation 8); consequently, the partici-

pant should compensate for the underestimation by giving an

estimate that is higher than the perceived positive value of AP.

When P(e \ i) is low, however, AP closely estimates the genera-

tive power of the candidate. Therefore, the participant in this

situation should give the perceived value of AP directly as an

estimate.

Conversely, suppose that a participant perceives a purportedly

noncontingent candidate to have a small negative AP. When

P(e) is high, and hence P(e\i) is high, AP closely estimates

the preventive power of the candidate (Equation 14); conse-

quently, the participant should give the perceived value of AP

directly as an indication of the preventive power of the candidate.

When P(e) is low, however, AP underestimates the preventive

power of the candidate. The participant in this situation might

then compensate by giving an estimate that is more negative

than the perceived negative value of AP (to indicate greater

preventive power on the given rating scales).

Now, if some participants perceive the AP of the candidate

to be positive and some perceive it to be negative, and the sign

of the perception is independent of whether P(e) is high or low,

then across the entire group of participants a higher P(e) would

give rise to a higher mean estimate of causal strength: Whereas

causal estimates measured when P(e) is high would include

exaggerated positive estimates (and unexaggerated negative and
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zero estimates), those measured when P(e) is low would in-

clude exaggerated negative estimates (and unexaggerated posi-

tive and zero estimates). When objective or subjective deviations

of the value of AP from 0 are probable, such as when the

number of trials at the time of the assessment is small, this

bias is more likely to operate. Moreover, the fact that the same

participants judged both the generative and the preventive nature

of the candidates would amplify the bias by pulling estimates

in opposite directions when P(e) is high (estimates of generative

power are pulled up) and when it is low (estimates of preventive

power are pulled down).

Shanks and Lopez (cited in Shanks, 1995, and Shanks et al.,

1996) were successful in avoiding this bias by using a relatively

large number of trials per condition (40) and a between-subjects

design in which each participant judged the contingency of only

one candidate. The between-subjects design, in addition to the

large number of trials, might have produced more accurate judg-

ments: It avoided proactive interference from preceding contin-

gencies, and participants might have paid more attention on the

whole because they had less to do. In two of the conditions, the

contrast for the candidate cause was zero: In one condition, P(e)

was .25; in the other condition, P(e) was .75. According to both

Equations 8 and 14, a contrast of zero for the candidate cause in

such situations does indicate a lack of power of the candidate to

produce the effect. In accord with this prediction, the observed

mean causal ratings indeed converged on zero as the trials in-

creased both when P(e) was high and when it was low.

In sum, although causal judgments on candidate causes with

zero contingencies have been reported to increase as a function

of the base rate of the effect, such an influence need not refute

normative accounts. Rather, it follows from the power PC theory

when there is reason to believe that participants might have

perceived a purportedly noncontingent candidate to have a non-

zero contingency. When some likely factors that contribute to

this perception were removed, noncontingent candidate causes

were indeed judged to be noncausal. That is, for zero as well

as nonzero contingencies, asymptotic studies that varied one

candidate cause strongly support the prediction made by the

traditional contingency model, the R-W model, and the power

PC theory: Causal judgments are a function of AP.

Predicted Influence of the Base Rate of the Effect on

the Magnitude of Estimated Generative and Preventive

Causal Powers

Several articles have reported that candidate causes with the

same nonzero AP were judged differently depending on P(e)

(Allan & Jenkins, 1980, 1983; Wasserman et al., 1983, 1993).

Because results were not always presented in such a way to

allow inferential statistics for testing the influence of P(e), these

findings—although intriguing and apparently systematic—are

sometimes only suggestive. These deviations from objective AP

are biases with respect to the traditional contingency model. As

I show later, these deviations concerning positive contingencies

in studies using discrete trials are also biases with respect to

the R-W model under the typical assumption that 0, the param-

eter in the model associated with the outcome, is larger when

the outcome is present than when it is absent. In contrast, these

deviations are normative according to the power PC theory.

Recall that the power PC theory predicts that causal judgment

is a joint function of contingency and the base rate of the effect:

For a positive AP, of the same magnitude, as P(e 11) increases,

higher strengths will be inferred for candidate cause i; for a

negative AP, of the same magnitude, as P(e\i} increases, lower

strengths should be inferred for i. Wasserman et al. (1993)

conducted the most comprehensive study to date relevant to

these predictions. On one hand, because Wasserman et al.'s

experiments used continuous trials, which are more appropri-

ately represented in terms of rates rather than probabilities, the

power PC theory does not directly apply. On the other hand, as

I argue later, for the evaluation of preventive power, it does not

matter whether events are represented in terms of probabilities

or rates: They have analogous interpretations in terms of causal

power, and the same prediction regarding the influence of the

base rate of the effect applies.

Participants in Wasserman et al.'s (1993) experiments were

asked to judge whether tapping a key had any effect on the

occurrence of a white light. The light occurred with various

probabilities at the end of 1-s sampling intervals. Because sec-

onds on a time scale are not discrete entities, the occurrence of

the light is more appropriately represented in terms of rates

rather than probabilities. As I mentioned, unlike probabilities,

rates do not have an upper bound. For example, contrary to the

maximum "probability" of one light flash every second set by

Wasserman et al., the light could have flashed at a higher rate.

Rates do have a lower bound, however; events cannot occur at

a rate slower than not occurring at all. Wasserman et al.'s light,

for example, could not have flashed at a rate any slower than 0

times every second.

A power analysis can be applied to events that occur with

certain rates, just as I did for probabilistic events. Such an

analysis would show consequences of the lower bound of rates

for preventive causes but no parallel consequences of an upper

bound for generative causes (unless one comes close to the

limits of perception). Let me illustrate this with a concrete

example. First, consider evaluating the preventive power of a

candidate cause of effects that occur with rates. Suppose there

is an observable change of — .50 flash per second in rate when

a candidate occurs in comparison with when it does not, assum-

ing that alternative causes occur independently of the candidate.

When the context (i.e., alternative cause a in my analysis) is

producing the flash at the rate of .75 per second, a candidate

cause would need to have a power to reduce the rate by two

thirds to yield the Observable change of — .50 flash per second.

By comparison, when the context is producing the flash at the

rate of 1.0 per second, the candidate cause would need to have

a power to reduce the rate by only a half to obtain the same

observable change. Thus, analogous to negative contrasts in the

case of effects that occur with probabilities, for the same observ-

able reduction in rate due to a candidate cause, as the base

rate of the effect increases, a lower preventive power would be

inferred for the candidate.

The pattern of results reported by Wasserman et al. (1993)

supports this prediction regarding the evaluation of preventive

power. Judged contingencies" were systematically less negative

" I use the term contingency to be consistent with Wasserman et al.'s

(1993) report, in the sense of the analog of contingency (which is



POWER PC THEORY 391

1.0

0.0-

-0.5 •

-1.0

Contingency

Q
o
A

1.0

.75

.50

.25

.00

-.25

-.50

-.75

-1.0

0.00 0.25 0.50 0.75 1.00

Figure 3. Mean scaled causal rating scores in Experiment 1 of Wasserman et al. (1993) as functions of

AP and P(e\i). (Lines join scores with the same contingency.) Adapted from "Rating Causal Relations:

The Role of Probability in Judgments of Response-Outcome Contingency,1' by E. A. Wasserman, S. M.

Elek, D. L. Chatlosh, and A. G. Baker, 1993, Journal of Experimental Psychology: Learning, Memory, and

Cognition, 19, p. 178. Copyright 1993 by the American Psychological Association. Adapted with permission

of the author.

(i.e., judged to have less preventive causal power) for the same

objective negative contingency as the rate of the effect in the

absence of tapping increased (see the right panels of Figures 1

and 3 in Wasserman et al., 1993; the right panel of their Figure

1 is adapted as Figure 3 here P(e \T) is denoted as P(e \ ~i) in

the figure).

In a similar study manipulating P (e \ i) and P(e \ T) using fewer

values, Wasserman et al. (1983) reported the change in the

observed mean causal judgments for candidates with negative

contingencies as P(e |I) increased: For the comparison between

pairs of candidate causes with the same negative contingencies

in each of the seven experimental groups, the candidate with a

higher P(e\T) was judged less negative. The results reported do

not allow paired-comparison t tests, but estimating the pooled

variance by assuming that the means came from independent

samples, a procedure that should provide conservative estimates

of reliability given the within-subject comparisons, the reduc-

tions were highly reliable for four of the comparisons, ((35) =

2.89 and r(35) = 2.06 for the two groups in Experiment 1,

f(17) = 2.95 for the first group in Experiment 2, and ((17) =

3.40 for the second group in Experiment 3 (p < .05 for each

comparison).

Wasserman et al. (1993) interpreted their results as support-

ing the R-W model. (This is one of the phenomena I mentioned

denned in terms of probabilities) for cases involving effects that occur

with certain rates.

earlier in which the R-W model requires varying values of 0.)

Adopting a higher value of /} in this model when the outcome

is present than when it is absent, in which case the R-W model

is equivalent to a weighted A/3 model, these researchers were

able to explain the influence of the base rate of the effect on

candidates with the same negative contingencies. Note that vary-

ing the value of this parameter is necessary if the R-W model

is to explain the ordinal pattern of their results. Without this

variation, the R-W model is equivalent to the traditional contin-

gency model (Appendix A and Chapman & Robbins, 1990),

which is contradicted by such an influence. In contrast, the

power PC theory explains Wasserman et al.'s (1983, 1993)

pattern of results without any parameters.

Now consider evaluating the generative power of a candidate

cause of effects that occur with rates. Whereas a preventive

cause decreases the rate of the effect by some proportion of the

distance to the lower bound of 0, the rates of the effect produced

by generative causes are additive. Compare a situation in which

the context is producing the flash at the rate of 0 per second

with a situation in which the context is producing it at the rate

of .25 per second. A candidate that has the power to produce

the flash at a rate of .50 per second would yield an observable

difference of + .50 flash per second in rate in both situations.

In other words, generative causal powers are additive for effects

that occur with rates. Consequently, events that occur with rates

have no analogue of (a) the boundary condition for the evalua-

tion of generative power specifying P(e\T) < 1 and (b) the

influence of the base rate of the effect on the magnitude of
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estimated causal power given the same positive contrast. There-

fore, the power PC theory cannot be evaluated by Wasserman

et al.'s (1993) results regarding positive contingencies.

To evaluate the power PC theory's prediction regarding the

influence of P(e\i) on the judgments of candidate causes with

the same positive contingencies, studies using discrete trials are

required. I am not aware of studies using discrete trials that are

as systematic as Wasserman et al.'s (1983,1993) for the purpose

of evaluating this influence. Some conditions in Allan and Jen-

kins's (1983) experiments, however, do suggest support for the

power PC theory's prediction. A large majority of their condi-

tions, all of which used discrete trials, involved nonnegative

contingencies. Among these conditions, only the ones in which

the two values of a binary candidate cause consist of an ' 'event''

(e.g., a joystick is moved) and a "nonevent" (the joystick is

not moved), and the two values of the effect likewise consist

of an event (e.g., a dot moving down a computer screen) and

a nonevent (the dot remaining in place), seem to provide clearly

interpretable results for the purpose of assessing the power PC

theory.12 In these relevant conditions, of the nine pairs of candi-

date causes that had the same positive contingencies but different

P(e\T), the candidate with a higher P(e\T) was given a more

positive causal rating (i.e., greater causal power) in seven pairs.

Some of these differences were large (more than 10 points on

a 40-point scale). Only two pairs showed the reversed ordering,

and the differences within each pair were relatively small (less

than 5 points). Note that the general influence of P(e|i) on the

estimated magnitude of causal power observed here was oppo-

site in direction to that observed for negative contingencies in

Wasserman et al.'s (1993) experiments, as predicted by the

power PC theory.

Because the R-W model treats positive and negative contin-

gencies symmetrically, if the values assumed for 0 in that model

have the same ordinal values as in Wasserman et al.'s (1993)

simulations, this model predicts an influence of P(e\7) for these

positive contingencies opposite in direction to what was gener-

ally observed by Allan and Jenkins (1983; see Wasserman et

al.'s [ 1993] simulations of this model). That is, even with varia-

tion in parameter values, as long as these values are consistent

across studies, the R-W model cannot explain the influence of

P(e\T). In contrast, the power PC theory explains the pattern

of results and does so without any parameters.

Summary

The universal focal set in studies of causal induction varying

a single candidate cause does reveal causal power according to

the power PC theory. These studies show that causal judgments

are joint functions of P(e \ T) as well as of AP,, as predicted by
Equation 8 of the power PC theory for nonnegative contingen-

cies and as predicted by Equation 14 for nonpositive contingen-

cies. Neither the R-W model nor the traditional contingency

model can explain the pattern of results.

Apparent Refutations of the Power PC Theory

A number of phenomena have been interpreted as contradict-

ing the probabilistic contrast model (Cheng & Holyoak, 1995):

Given the same values of conditional contrasts, either across

trials or across conditions, performance has been shown to vary

depending on various factors (Shanks, 1993; Shanks et a].,

1996). They might also be considered as contradicting the

power PC theory.

These phenomena sometimes involved preasymptotic perfor-

mance, as in Shanks's (1985a, 1987) studies of acquisition

preformance and Dickinson and Burke's (1996) study of the

effect of consistency in the pairing of blocking cues and to-be-

blocked cues on forward and backward blocking. In the latter

study, participants in one of the two conditions (the "varied"

pairing condition) were presented with only a single instance

of each pairing between a blocked cue and a to-be-blocked cue.

Other times, such phenomena involved components of infer-

ence such as conflict resolution or decision making, components

that are separable from the process of causal induction. Some

studies that reported trial-order effects provided participants

with information relevant to causal power that was conflicting

or ambiguous across trials, so that participants might not have

arrived at a single solution across time (e.g., Chapman, 1991,

Experiment 2). For example, in a study by Shanks and Lopez

(cited in Shanks, 1995, and Shanks et al., 1996, Experiment 4),

participants saw trials in which (a) the combination of cues A

and B was followed by an outcome and (b) cue B alone was

not followed by the outcome (AB+, B-) in Stage 1. Then, in

Stage 2, they saw trials in which (a) the combination of cues

A and C was not followed by the outcome and (b) cue C alone

was followed by the outcome (AC-, C + ). Participants also
saw a second set of three cues that had an identical pattern of

contingencies, except that the patterns for the two stages were

reversed. Trial order exerted a strong effect in that participants,

at the end of Stage 2, rated A, the critical cue, reliably and

substantially less causal than its analog in reverse order.

For this design, the simplest interpretation of information

relevant to cue A presented in Stage 1 according to a power

analysis is that this cue is causal (P(eIAB) - P(e\AB) - 1,

with the effect occurring at a base rate of 0). Information pre-

sented in Stage 2, however, contradicts this interpretation

(P(e\AC) - P(e\AC) - -I, with the effect occurring at a

base rate of 1). One way of resolving this conflict is that A

changes across phases from producing the effect to preventing

the effect. For the analogue of A with the information presented

in reverse order, the analogous resolution is that it changes across

phases from preventing the effect to producing the effect.

Similarly, the relative validity design (Shanks, 1991, Experi-

ment 3; Wagner et al., 1968; Wasserman, 1990), the other phe-

nomenon mentioned earlier in which the R—W model requires

varying values of /?, does not allow any unambiguous estimation

of causal power (see Melz et al., 1993). Other studies reported

that participants exposed to different prior experiences subse-
quently rated identical candidate causes differently (Williams

et al., 1994). In these studies, prior experience encouraged dif-

ferent interpretations of causal power of the same ambiguous

situation, so there is no single interpretation across conditions.

11 Other conditions in their experiments are difficult to interpret be-

cause the candidate cause or the effect could each consist of a pair of

events (e.g., the joystick is moved to the left or to the right). It is not

clear whether participants interpreted each pair of events as denned by

the experimenter or as two candidate causes and two effects.
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Some trial-order effects involved nonasymptotic performance

for a similar reason (Chapman, 1991, Experiment 4). By vary-

ing values of A and (3, the R-W model explains results from

some but not all of these studies involving ambiguous or con-

flicting estimations of power (see Shanks et al., 1996, for a

discussion of some of these phenomena with respect to the R-

W model).

A study that involved both the probability and the utility

of an outcome has also been interpreted as contradicting the

traditional contingency model and the statistical contingency

view in general. In a study by Chatlosh et al. (1985, Experiment

2), participants were asked to rate different objective contingen-

cies between an action and an outcome. For some participants,

the outcome was understood to be related to monetary gain,

whereas, for others, the outcome had no monetary consequences.

Chatlosh et al. found that when there was a positive contingency,

the ratings were higher in the monetary gain condition than in

the neutral one. In contrast, when the contingency was negative,

the ratings were more negative in the monetary condition than

in the neutral one.

The concepts manipulated in this study—the perceived utility

of the outcome and the expected probability of the outcome

given certain actions—are distinct in theories of decision mak-

ing. To see the intuitive difference between these concepts, sup-

pose that whenever Mary asks her father for money, he always

gives her 1 cent, whereas whenever she asks her mother, she

always gives her 1 dollar. Presumably Mary would direct her

requests to her mother rather than to her father." Such a response

pattern would not imply that the child has failed to learn that

there are deterministic contingencies involved in both cases.

Returning to Chatlosh et al.'s (1985) findings, to show that their

findings do contradict contingency theories, one would have to

demonstrate that it is impossible to develop a dependent measure

that is sensitive to this intuitive distinction between utility and

expected probability.

Rather than contradicting the power PC theory, the preceding

phenomena in fact lie outside its scope. The power PC theory

is a computational-level theory of causal induction and, as such,

concerns asymptotic performance reflecting this process. These

phenomena illustrate other aspects of inference (e.g., a decision-

making procedure) that are required for a complete explanation

of reasoning performance, both asymptotic and otherwise. It is

not my aim in this article to discuss these additional aspects of

reasoning, but let me briefly illustrate that these phenomena are

consistent with the power PC theory if it is augmented with

some plausible assumptions. Acquisition curves, for example,

might be explained by adding to the power PC theory an as-

sumption about perceived reliability of causal judgments as a

function of sample size (Cheng & Holyoak, 1995) or by adopt-

ing a Bayesian process for the assessment of the conditional
probabilities in the AP metric (Fales & Wasserman, 1992).

Likewise, results regarding trial-order effects due to conflicting

representations of causal power might be explained by a conflict

resolution rule according to which, in the absence of other rea-

sons for resolving a conflict, greater weight is given to the more

recent representation.

Implications

Studies of causal induction varying single as well as multiple

candidate causes converge in supporting the predictions of the

power PC theory. To explain the existence of boundary condi-

tions for interpreting contrast, as revealed in the focal sets that

reasoners select from the many possible ones available, the

difference between the preferred focal sets for evaluating genera-

tive and preventive causal powers, and the different conditions

under which a contrast is uninterpretable as an estimate of gener-

ative or preventive power, Cheng and Holyoak (1995) had to

add auxiliary assumptions to Cheng and Novick's (1990) proba-

bilistic contrast model. These assumptions, most of which have

parallels in the principles of experimental design, were based

only on intuition. Even with these auxiliary assumptions, Cheng

and Holyoak's model cannot explain the influence of the base

rate of the effect on the evaluation of candidate causes with the

same contingency, let alone the difference between this influence

for positive and for negative contingencies. In contrast, all of

these phenomena are the mathematical consequences of two

equations (Equations 5 and 11), equations that are simple expla-

nations of the probabilistic contrast model by a theory of genera-

tive and preventive causal powers. These equations do not con-

tain any parameters and do not require any of Cheng and Holy-

oak's auxiliary assumptions.

Many of these phenomena—in particular, the asymmetry be-

tween generative and preventive causes in its multifarious mani-

festations—confound the R-W model, even at an ordinal level,

despite the use of its parameters. Although this model finds an

optimal least-mean-squares solution for a given set of data, such

solutions do not necessarily generalize beyond the given set.

They often do not. A comparison with the power PC theory

suggests that some a priori assumption about the nature of cau-

sality is necessary.

Linear Combination Models

An apparent bias that is often described in terms of linear

combination models is that frequencies of the effect in the pres-

ence of a candidate cause tend to be weighted more than those

in its absence (e.g., Schustack & Sternberg, 1981). Adding to

the list of phenomena reviewed earlier, this often reported

"bias" contradicts the R-W model, even when both of its

learning rate parameters are allowed to vary across trials (see

Wasserman et al., 1993). In contrast, this bias, just as the influ-

ence of P(e 17) on noncontingent candidates with the same i\P,,

follows from the normative power PC theory. Before deriving

this tendency from the power PC theory, I first review linear

heuristic models with respect to test situations involving a single

candidate cause and those involving multiple varying candidate

causes.

According to linear heuristic models of causal induction

(Arkes & Harkness, 1983; Nisbett & Ross, 1980; Schustack &

Sternberg, 1981; Shaklee & Tucker, 1980; Ward & Jenkins,

1965), reasoners base their causal judgments on heuristics that

are linear combinations of four frequency variables: a, the fre-

quency of the joint presence of a candidate cause and the effect;

b, the frequency of the presence of the candidate cause coupled

with the absence of the effect; c, the frequency of the absence

n This example is from Michael Waldmann (personal communication,

1993).
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of the candidate cause coupled with the presence of the effect;

and d, the frequency of the joint absence of a candidate cause

and the effect. The weight associated with one or more of these

frequencies is zero in some models, which means that causal

judgments are based on a subset of the frequencies that have

nonzero weight. All variants of such models have a positive

weight for a. Schustack and Steinberg's (1981) regression mod-

eling showed that the weights for a and d were positive, whereas

those for b and c were negative. Other models assign a zero

weight to b, c, or d, but no variant reverses the sign of the

weights observed by Schustack and Sternberg.

Empirical and Intuitive Refutations of Linear Models

Linear combination heuristics have been refuted as an account

of natural causal induction in studies involving a single candi-

date cause (Chatlosh et al., 1985; Cheng & Novick, 1991, 1992;

Wasserman et al., 1983). Chatlosh et al. (1985) and Wasserman

et al. (1983) found that when individual participants' causal

ratings were correlated with various judgment rules or heuris-

tics, variants of linear models showed a lower correlation than

the Af rule. To test linear models and the probabilistic contrast

model where their predictions diverge, Cheng and Novick

(1992) noted that linear models predict that the prevalence of

the effect should influence causal judgments on candidate causes

that remain constantly present in the focal set. According to

heuristics that have a positive weight for a and a negative weight

for b, constantly present candidates should be considered causes

when the effect is prevalent (a is large), whereas they should

be considered inhibitors when the effect is rare (b is large). For

all other existing variants of this class of models (i.e., models

that assume a zero weight for b), constant factors should more

likely be considered causes when the effect is prevalent than

when it is rare. Linear models therefore predict that inhabitants

of Edinburgh (where rain is prevalent) should believe that a

factor that is constantly present in that environment—such as

gravity, car exhaust, or houses—causes rain (the effect),

whereas inhabitants of Los Angeles (where rain is rare) should

believe that such a factor inhibits rain or should be less likely

to believe that such a factor causes rain. Contrary to these

predictions, people's intuition and the probabilistic contrast

model tell them that gravity is an enabling condition for rain,

and car exhaust and houses are irrelevant to rain. Experimental

findings confirm that varying the prevalence of the effect had

absolutely no impact on judgments of the causal status of candi-

dates that are constantly present (Cheng & Novick, 1991).

Linear models are further refuted by studies involving multi-

ple varying candidate causes, for example, by Fratianne and

Cheng (1995) and Park and Cheng's (1995) studies I described

earlier. First, note that in Fratianne and Cheng's experiment, not

only were the unconditional contrasts equated across the critical

candidates B (in Pattern 1) and Y (in Pattern 3), each of the

four frequencies used by linear models were also equated across

these candidates. This holds under the plausible assumption that

participants did not assume different sample sizes when given

identical information about candidate causes. Accordingly, lin-

ear models, regardless of the weights assigned to the four fre-

quency variables, predict that these candidates should receive

the same causal rating. Contradicting this prediction, recall that

Y was judged as causal far more confidently than B was.

Second, for Park and Cheng's (1995) experiments, linear

models that include c as a parameter (i.e., have a negative weight

for c) make the same prediction as the traditional contingency

model: The critical candidate B should be rated less causal in

the experimental group than in the control group at the end of

Phase 1 of both the ceiling and the non-ceiling experiments.

Because both candidates A and B were paired with the effect

in the experimental group, whereas only B was in the control

group, B had a positive c in the experimental group but a zero

c in the control group: In the absence of B, the effect sometimes

occurred in the experimental group (due to the pairing of A

with the effect) but never occurred in the control group. Recall

that this prediction was flatly contradicted by Park and Cheng's

results.

Third, all linear models predict that, for the control group of

Park and Cheng's (1995) ceiling experiment, the causal strength

of A should increase from Phase 1 to Phase 2. Recall that in

Phase 1 of this group, A was never paired with the effect,

whereas in Phase 2, A (in combination with B) was always

paired with the effect. The value of a for this candidate should

therefore increase from 0 to a positive number. Because all

variants of linear models have a positive weight for a, they

invariably predict an increase in the causal strength of A across

phases. Contrary to this prediction, the mean causal estimate

for A showed no sign of such an increase; it in fact showed a

small and unreliable decline.

Why Events in Which the Candidate Cause

Is Present Are Weighted More

Thus, linear models are inaccurate as models of natural causal

induction, both for situations involving a single varying candi-

date cause and for those involving multiple varying candidate

causes. The bias described by such models, however, poses a

problem for normative models. It has been observed in many

studies that people tend to weight cells a and b more heavily

than cells c and d (Anderson & Sheu, 1995; Kao & Wasserman,

1993; Schustack & Sternberg, 1981; Wasserman et al., 1993).

For example, Wasserman et al. (1993) found that varying the

frequency of the effect in the presence of the candidate cause

(a and b) produced a larger range of observed causal ratings

than varying this frequency in the absence of the candidate cause

(c and d) by an identical amount. This differential weighting is

inexplicable by normative contingency models (e.g., Allan,

1980; Cheng & Novick, 1990, 1992; Wasserman et al., 1983).

As a result of these and other deviations from the traditional

contingency model, Wasserman et al. abandoned it in favor of

the R-W model, and Anderson and Sheu (1995) concluded that

reasoners use a weighted contingency model. (As mentioned,

this differential weighting is also inexplicable by the R-W

model.)

I show subsequently that this prediction of linear models that

have higher weights for cells a and b than cells c and d coincides

with the prediction of the power PC theory. Unlike linear models

and the weighted contingency model, however, the power PC

theory explains the differential weighting without the use of any
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parameters (for a normative explanation that adopts a Bayesian

approach, see Anderson, 1990).

Why a and b Are Weighted More Than c and d for

Generative Causes

First, consider the evaluation of generative causal power. Re-

call that, according to the power PC theory, the generative nature

of a candidate i is assessed by Equation 8. To restrict the range

of contrasts to the scope of this equation, assume that AP, 2:

0. Let x represent the numerator of the RHS of this equation

(i.e., A/3,) and y represent its denominator (i.e., 1 - P(e\J}),

so that

Pi = '
P(e\i) - P(e\T) = x

l-P(e\i) y'

By the definitions of * and y, it follows that

(16)

(17)

Note that P(e\i) is estimated by the relative frequency a I (a

+ b), and P(e\T) is estimated by the relative frequency cl

(c + d).
Increasing contrast. First, consider increasing a nonnega-

tive AP, by some amount z, with z > 0. Let us first compare
the consequences of doing so by increasing a and by reducing

c. Note that to be able to increase a presupposes that P(e\i)

< 1. Now, because AP, a 0, P(e\i) < 1 implies that P(e\T)

must also be less than 1. From Equation 17, it can be seen that

P(e\i) < 1 also implies that x < y. In other words, x/y < 1.

But both x and y are non-negative: x = A/5, a 0 by assumption,

and y > 0 because P(e\T) < 1 and y = 1 - P(e\7). Therefore,

x/y a; 0. In sum, 0 « x/y < 1.
Let me denote the new estimated power of candidate i when

a is changed by pt te,. When a is increased.

P(e\i) + z- P(e\i)

l-P(e\i)
(18)

When c is decreased by the same absolute amount as a is in-

creased, the new estimate due to changing c, which I denote by

Pitt-,, is

P(f\i) - [P(e\T) - i] x + z
A(c) = —: ,„, ,~ :;— = —;—• U")

1 - [P(e\i) - z] y + z

Because x/y a: 0 and z > 0, it follows that

x+z

y +
(20)

That is, p,la, > p,-(1.,. Now it might be hypothesized that increas-

ing a increasesp, (i.e., (x + z)ly > x/y), but reducing c reduces
Pi (i.e., (x + z)/(y + z) < x/y). On this hypothesis, the change

in pi due to reducing c might have a larger absolute magnitude

than that due to increasing a. In fact, increasing AP, by increas-

ing a or reducing c always increases p,. It is easy to see that,

because z > 0,

+ z x

y y
(21)

Now, because x/y < 1 (so that z is a larger proportion of x

than of y),

x + z x

y + z y

Summarizing Equations 20, 21, and 22, we obtain

x + z . x + z x_

y + z y '

(22)

(23)

Thus, the increment in a produces a larger change in p, than

does the decrement in c. That is, a receives more weight

than c.

The other two ways of increasing AP, are to reduce b and

to increase d. In the preceding argument, because increasing a

and reducing b are represented identically as P(e\i) + z, and

reducing c and increasing d are represented identically as P(e \ T)

- z, this argument also applies to a comparison between reduc-

ing b and increasing d. (Simply replace "increasing a" in the

preceding argument by "reducing b" and replace "reducing

c" by "increasing d.") Thus, when a nonnegative AP, is in-

creased an identical amount by decrementing b or incrementing

d by the same absolute number, p, is increased in both cases,

and the change in b increases p, more than does the change in

d (i.e., b receives more weight than d).

Reducing contrast. Analogously, consider reducing a non-

negative AP, by amount z. Let us first compare how much

reducing a and increasing c changes p,. As before, jc s= 0 by

assumption. Now note that to be able to increase c presupposes

that P(e\T) < 1. This implies that y > 0. Therefore, x/y a 0.

From Equation 17, it can be seen that x ^ y, because P(e\i)

=s 1, P(e\i) being a probability. In other words, x/y -^ 1. In

sum, 0 s x/y < 1.

When a is reduced,

*<., = — • (24)
y

When c is increased by the same amount as a is reduced,

AM = ̂ -^ • (25)
y - z

Because x/y s: 0 and z > 0, if the reduction in AP, leaves it

within the positive range14 (i.e., x > z), then

(26)

In other words, p,<„, <p, (1>. Analogous to the case of increasing

AP,, however, it might be argued that reducing a reduces p,

14 If this reduction exactly cancels out AP; (i.e., x - z), then p,(a) =
Puc,. That is, a receives the same weight as c. And, if the reduction in
AP, changes its sign (i.e., x < z), then the analysis of the evaluation
of preventive causes in the next section applies.
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(i.e., (x — z)/y < x/y), but increasing c increases/), (i.e., (x

- z)l(y - z) > x/y), and that the change in p, due to changing

c has a larger absolute magnitude than that due to changing a.

To the contrary, reducing AP,- by reducing a or increasing c

either reduces or does not change p,; it never increases it. It is

easy to see that, because z > 0,

- < - .
y

(27)

Now, because x/y s 1 (so that z is at least as large a proportion

of x as it is of y),

x - z x_

y - z y

Summarizing Equations 26, 27, and 28, we obtain

x

y '

(28)

(29)

Thus, for changes that leave a nonnegative AP, within the posi-

tive range, when this AP,- is reduced an identical amount by

decrementing a or incrementing c by the same absolute number,

the change in a reduces p, more than does the change in c. In

summary, for such changes, when a nonnegative AP, is reduced

as well as when it is increased, a receives more weight than c.

As explained earlier, the exact same argument applies to a

comparison between the effects of increasing 6 and reducing d

by the same absolute amount. Thus, for changes that leave a

nonnegative AP, within the positive range, the change in b

reduces p, more than does the change in d. In summary, for

such changes, when a nonnegative AP,- is reduced as well as

when it is increased, b receives more weight than d. (I return

later to the case when AP, is reduced to 0 or below.)

Why a and b Are Weighted More Than c and d for

Preventive Causes

An analogous analysis of the evaluation of preventive power

yields the same differential weighting. Recall that, according to

the power PC theory, the preventive nature of a candidate i is

assessed by Equation 14. To restrict the range of contrasts to

the scope of this equation, assume that AP, == 0, which implies

thatP(e|i) == P(e\T). Now let x represent the numerator of the

RHS of this equation (i.e., — AP,) and y represent its denomina-

tor (i.e., P(e|I)), so that

_ _ P(e\D - P(e\_i± = x (3Q)

By the definitions of x and y here, it follows that

x = y~P(e\i). (31)

Increasing a nonpositive contrast (i.e., making it less nega-

tive). Consider increasing a nonpositive AP, by some amount

z, with z > 0 as before. Let us first compare the consequences

of doing so by increasing a and by reducing c. Note that to be

able to reduce c presupposes that P(e\T) > 0. That is, y > 0.

We also know that because P(e\i) s P(e\T),x a 0. Therefore,

x/y > 0. From Equation 31, it can be seen that because P(e \ i)

& 0, x == y . In other words, x/y =s 1 . In sum, 0 s x/y s 1 .

When a is increased,

P(e\i) - [P(e\i) + z] x-z
- — - -

P(e\T) y

When c is decreased by the same amount as a is increased,

_ [P(e\T) - z\ - P(f\i) _ x - z

(32)

(33)

As can be seen, the new estimated powers shown in Equations

32 and 33 correspond respectively to those in Equations 24 and

25, the estimates obtained with Equation 8 when a nonnegative

AP, is reduced. Also, as for the earlier situation, 0 == x/y == 1

here. The previous argument therefore applies here, yielding

Equation 29. Thus, for increases in a nonpositive AP, that leave

it within the negative range, when this AP, is increased (i.e.,

when its absolute magnitude is reduced) an identical amount

by incrementing a or d or by decrementing c or b, the change

in a reduces p, more than does a change of the same magnitude

in c, and the change in b reduces p, more than does a change

of the same magnitude in d. That is, for such changes, a and b

receive more weight than c and d.

Reducing a nonpositive contrast (i.e., making it more nega-

tive). Now consider reducing a nonpositive AP, by amount

z. As before, let us first compare the consequences of doing so

by reducing a or increasing c. We know that x s: 0, by assump-

tion, because AP, == 0. Now, to be able to reduce a presupposes

that P(e\i) > 0. Because AP, == 0, P(e\i) > 0 implies that y

= P (e | T) > 0. Therefore, x/y ^ 0. From Equation 31, it follows

that P(e\i) > 0 also implies x < y. In other words, x/y < 1.

In sum, 0 s; x/y < 1.

When a is reduced,

P(e\i) - [P(e\i) - z] = x + z

P(e\T) y
(34)

When c is increased by the same amount as a is reduced,

Pile} = '

z] - P(e\i)

P(e\T) + z y + z
(35)

As can be seen, the new estimated powers shown in Equations

34 and 35 turn out to correspond respectively to those in Equa-

tions 18 and 19, the estimates obtained with Equation 8 when

a nonnegative AP, is increased. Also, as for the earlier situation,

0 s x/y < 1. The earlier argument therefore applies here, yield-

ing Equation 23. Thus, when a nonpositive AP, is reduced (i.e.,

when its absolute magnitude is increased) an identical amount
by decrementing a or d or by incrementing c or b, p, is increased

in all cases. Moreover, the change in a increases p, more than

does a change of the same magnitude in c, and the change in b

increases p, more than does a change of the same magnitude in

d. That is, a and b receive more weight than c and d.

Let me return now to the case when AP, is exactly cancelled

out or when its sign is altered. When AP, is either increased or

reduced to 0, a receives the same weight as c, as is evident in
Equations 24, 25, 32, and 33. By the same argument, b receives
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the same weight as d. When the change in AP, alters its sign

so that the alternative power equation applies (Equation 8 or

14), the consequences of the total change in AP, on p, can be

assessed by combining the consequences on both sides of 0.

Because the derivations for both generative and preventive pow-

ers show that a and b receive more weight than c and d (except

when A/1, is changed to 0), the same differential weighting

must hold for a change that crosses from one type of causal

power to the other.

Summary

Because linear combination models make predictions that are

indisputably refuted by observations of situations that involve

either a single candidate cause or multiple candidate causes,

these models are implausible as descriptions of natural causal

induction. These models, however, capture a robust finding that

contradicts "normative" contingency models: Reasoners tend

to weigh frequencies of the effect in the presence of a candidate

cause (a and c) more than those in its absence (b and d). This

differential weighting does not contradict the normative power

PC theory; rather, it follows from it. No alternative account can

explain both this differential weighting and the various influ-

ences of the base rate of the effect on the evaluation of candi-

dates with the same AP f.

The Power PC Theory as a Solution to Problems

of the Covariational and Power Views

Summary of the Power PC Theory

Because acquired causal relations are neither directly observ-

able nor deducible, they must be induced. The goal of causal

induction is to uncover the causal structure of the world given

the input to one's processing system. This task, however, is

underconstrained; what appears to be the same pattern of input

can stem from either a causal or a noncausal environmental

correlate. As I noted, the two previous approaches to causal

induction—the covariation and power approaches—each have

some fundamental problems. To overcome these problems, I

proposed introducing a presumably innate constraint: The envi-

ronment contains such things as causes that either produce or

prevent an effect.15 Given this constraint, the solution to the

problem is to treat the relation between covariation and power

as analogous to that between scientists' model or law and their

theory of it. Whereas models and laws concern observable enti-

ties, theories posit unobservable entities.

This solution, as formalized in the power PC theory, reveals

itself in a diverse set of phenomena involving ordinal differences

in causal judgments regarding single and multiple generative

and preventive candidate causes. These phenomena include the

basic influence of contingency (e.g., Baker et al., 1989; Wasser-

man et al., 1993), the subtle but systematic (and seemingly

irrational) influence of the base rate of the effect on the magni-

tude of causal judgments for candidates with a given negative

contingency (Wasserman et al., 1983, 1993), the opposite in-

fluence of this base rate on the magnitude of such judgments for

candidates with a given positive contingency (Allan & Jenkins,

1983), apparent biases reported in the social psychology litera-

ture (Cheng & Novick, 1990), the distinction between causes

and enabb'ng conditions (Cheng & Novick, 1991), the distinc-

tion between genuine and spurious causes, the distinction be-

tween a novel candidate and an irrelevant one (Cheng & Holy-

oak, 1995), the boundary condition for interpreting generative

power as manifested in blocking (Fratianne & Cheng, 1995;

Waldmann & Holyoak, 1992) and overexpectation (Park &

Cheng, 1995), the boundary condition for interpreting inhibitory

power as manifested in the extinction of conditioned inhibition

(e.g., Williams, 1995; Yarlas et al., 1995), the asymmetry be-

tween these boundary conditions, retrospective changes in

causal judgments (e.g.. Chapman, 1991; Yarlas et al., 1995),

and the apparently irrational tendency to weigh information re-

garding the presence of a candidate cause more than that regard-

ing its absence (e.g., Anderson & Sheu, 1995; Schustack &

Sternberg, 1981; Wasserman et al., 1993). Whereas the power

PC theory provides a unified and parameter-free explanation for

these phenomena, every alternative model of causal induction

fails to explain many of them.

At the same time that the power PC theory explains many

apparent biases, this theory provides an explanation of the prin-

ciples of experimental design, such as the use of control groups,

random assignment, avoidance of ceiling effects, and the re-

quirement that all extraneous variables be held constant between

the experimental and control groups. Unlike Cheng and Holy-

oak's (1995) model, which enlists some of these principles as

assumptions, the power PC theory provides a unified explana-

tion and justification for these principles.

1 assume that the power PC theory describes an innate compo-

nent of the process of causal induction. In this theory, the expla-

nation of a model by a theory and the constraint mentioned

earlier are a priori assumptions; without them, causal induction

cannot begin. These assumptions seem to be necessary for ex-

plaining the critical findings involving causal reasoning in hu-

mans, because these findings are inexplicable by alternative

models. However, these findings (e.g., the asymmetry in bound-

ary conditions for interpreting generative and preventive power)

often have parallels in classical conditioning studies using labo-

ratory animals, findings that are equally inexplicable by alterna-

tive models. Now, whereas it might be argued that college stu-

dents (participants in the human studies) have attended many

science classes in which to learn the idea of explaining a model

by a theory, meek laboratory animals are seldom offered the

opportunity. The a priori assumptions in the power PC theory

must therefore be innate.

My approach has its roots not only in the works of Hume

(1739/1987) and Kant (1781/1965) but also in more recent

work. A number of researchers have proposed that induction is

normative (Kelley, 1967, 1973; Peterson & Beach, 1967). Oth-

ers have specifically interpreted contrast in terms of causal

power (Baker et al., 1989; Cheng & Novick, 1992; Dickinson

1S Another such constraint that 1 discussed—that causes and effects

can occur in the form of various types of variables (e.g., a discrete

effect can occur in discrete entities or in continuous time)—is not

specific to the process of causal induction. There are no doubt other

innate constraints, notably domain-specific ones. This article does not

discuss the latter constraints because I would like to see what can be

explained by minimal assumptions about innateness.
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et al., 1984; Waldmann & Holyoak, 1992) or more generally

interpreted covariation as the measurement of, or evidence for,

causal power (Ahn et al., 1995; Cartwright, 1989; Waldmann,

1996). The contributions of the power PC theory are that (a)

it is the first example of a formal theory of a psychological

model, (b) it explains a diverse range of phenomena regarding

causal induction, and (c) it solves some basic problems af-

flicting the covariation and power views of causal induction.

A Solution to Problems of the Covariational

and Power Views

The relation between a model and a theory of the model

makes it possible to pinpoint the conditions under which covari-

ation implies causation, thus overcoming the most fundamental

problem afflicting the covariation view. This relation provides

a justification for the leap from covariation to causation: If one

is willing to assume that there are such things as causes that

either produce or prevent an effect, then, under specific condi-

tions, covariation reveals causal power. The general inequality

between covariation and causation is a problem that pervades

all covariational models of causality, associationist or statistical.

Without a causal power theory, it is difficult to see how any

covariation model can free itself of the chains that bind the

interpretation of even formal statistical covariation.

At the same time, the power PC theory motivates a separate

assumption typically made by covariation models: that causes

are temporally prior to their effects (see Pearl, 1996; Wald-

mann & Holyoak, 1992). Covariation between two types of

events has no inherent temporal order. It is possible, for example,

to form an association from the effect to the cause. But if

reasoners have the intuitive notion that causes produce (or pre-

vent) the effect, it follows that the cause must precede the effect

(even if only by an infinitesimal amount) because a cause must

exist before it can produce any consequences. The cause should

therefore precede the effect at least in theory, if not by measur-

able time. The power PC theory provides a coherent link be-

tween covariation and temporal priority.

The assumption that people have a causal power theory of

their covariation model not only solves the preceding problems

afflicting the covariation view, but also solves the two problems

afflicting the power view. Recall that this view previously has

never presented a solution to the problem of causal induction;

it has never specified a mapping between the input and the

output of the causal induction process. Unlike previous variants

of the power view, the power PC theory specifies how the final

output, which is an estimate of the causal power of a specific

candidate cause, is computed from the input, which consists of

the input to the covariation process. This input is solely re-

stricted to observable events: the presence and absence of the

candidate causes and of the effect. The power PC theory thereby

honors Hume's indisputable point that causal relations are not

explicit in one's sensory input, at the same time that it specifies

the a priori causal knowledge that interacts with the sensory-

based input.

Also recall that the power view has appeared to be circular,

implying that people do not learn that a relation is causal unless

they already understand it to be causal. The power PC theory

removes this circularity. The a priori causal knowledge assumed

is general rather than specific. This theory specifies how a gen-

eral notion of causes producing or stopping an effect can interact

with observable information to yield a theory of covariation, a

theory that allows specific causal powers to be inferred. Ac-

cording to this theory, the causal power of a candidate cause

can be assessed without prior knowledge about itself, or even

the identity of alternative causes. All that is required as input is

observable information sufficient to separate the causal power

of the candidate from that of alternative causes.

I have not touched on the important issue of how prior do-

main-specific causal knowledge (whether innate or learned) re-

garding superordinate kinds influences subsequent causal judg-

ments. Even within the issue of how reasoners come to know

that one thing causes another, I have focused only on (a) effects

and candidate causes that are clearly defined and that can be

represented in terms of probabilities and (b) simple causes that

influence the occurrence of an effect independently of back-

ground causes within a context. For such situations, however,

the theory I proposed presents a theoretical solution to the prob-

lem of causal induction first posed by Hume more than two and

a half centuries ago. Moreover, the fact that this theory provides

a simple explanation for a diverse set of phenomena regarding

human reasoning and Pavlovian conditioning suggests that it is

the solution adopted biologically by humans and perhaps other

animals.
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Appendix A

Deriving Asymptotic Weights for Designs for Which the R-W Model Does

and Does Not Compute Conditional Contrasts

Deriving Asymptotic Weights

The goal of this appendix is to characterize the R-W model (1972)

at Mart's (1982) computational level, that is, to find the mathematical

function characterizing the model's asymptotic behavior. Because my

derivation concerns asymptotic weights, I first describe a method for

deriving such weights (Melz et aL, 1993). To obtain the asymptotic

weights of a two-layered network that updates the weights of its links

according to the R-W model, first note the equivalence between the R-

W learning rule and the least mean squares rule of Widrow and Hoff

(1960; see Sutton & Barto, 1981). The equivalence implies that the R-

W rule implements an iterative algorithm for computing the solution to

a set of linear equations defined by the set of stimulus-response patterns

presented to the network (Widrow & Hoff, 1960). A pattern is a config-

uration of stimuli and a response deterministically describing a set of

trials. If the input patterns are linearly independent, then the R-W rule

will discover a unique solution. Even if the input patterns are not linearly

independent, the network will still converge provided that the learning

rate is sufficiently small and that the various patterns occur with sufficient

frequency in the input sequence. The network will converge so as to

minimize the sum of the squared errors over the patterns. That is, the

equation

, - I vrll ( A l )

will be minimized, where p is the index for a particular stimulus-

response pattern, ^p is the frequency of pattern p, ip is the learning rate

associated with pattern p(r} and %-, respectively, for the presence and

the absence of outcome y), \, is the actual outcome for the pattern

(usually represented as 0 wheny is absent and as 1 when./' is present),

and £ V^ is the predicted outcome for the pattern, which is equal to
i

the sum of the weights Vf associated with every cue i occurring in the

pattern. TJ is the product of the rate parameters a, and /#/ in Equation

15 for trials on which; is present; y} is this product for trials on which

j is absent. If TJ = yh the ip term may be omitted from the equation. I

assume that TJ = y, in the rest of this appendix.

Thus, the asymptotic weights of a network, according to the R-W

model, can be calculated analytically by minimizing the sum of the

squared errors given by Equation Al. This minimum value may be

obtained by setting the partial derivatives with respect to each weight

to 0 and solving the resulting set of equations.

Asymptotic Weights for Designs for Which the R-W Model

Computes Conditional Contrasts

Design With Two Cues

To illustrate the instantiation of Equation Al , first consider a simple

contingency design involving two candidate cues, Cue 1 and Cue 2. Cue

1 is the constant context assumed by applications of the R-W model

(see Rescorla & Wagner, 1972), and Cue 2 is a varying cue. Because

one of my goals in this section is to provide a preview of the argument

used in the more general derivation of the relation between R-W and

conditional contrasts, I do not apply Equation Al here in the most

straightforward manner.

In this design, there are two patterns of trials on which Cue 1 is the

only cue present. Assume that there are a total of &, such trials, with

the outcome j occurring (\, = 1) on TT, trials (one pattern) and the

outcome not occurring (\ t = 0) on k] — TT} trials (the other pattern).

According to Equation Al, the error from these two patterns, denoted

as E] , is as follows:

E, = 7 T , ( 1 - l - 7 T , ) ( 0 - V,) 2

Therefore, the partial derivative of Et with respect to Vi is

Setting Equation A3 to 0 yields

(A2)

(A3)

(A4)

That is, considering in isolation the trials on which a single cue (Cue

1 in this case) is present, the associative strength between that cue and

the outcome (i.e., the weight of the link) is equal to the relative frequency

of trials on which the outcome occurs in the presence of that cue.

Effect of adding a combination containing an additional cue on the

partial derivative of the total error E with respect to Vt. Now consider

two additional patterns in which Cue 1 and Cue 2 are both present.

Assume that there are a total of k2 such trials, with the outcome j

occurring on 7r2 trials and not occurring on fc2 - tt2 trials. According to

Equation Al, for a network with these four patterns,

E = E, •*• E«, (A5)

where E denotes the total error and E+2 denotes the error due to the

two patterns in which Cue 2 is included in addition to Cue 1.

We know that

E« = !T2[1 - (V, + V2)f + (fe - 7T2)[0 - (V, + V2)]2

= t2V! + ijVl + 2k2V,V2 - 2ir2V, - 2n2V2 + 7i2. (A6)

It follows that the partial derivatives of E+2 with respect to V, and V2

are, respectively,

av,
' = 2k2V, + 2k2V2 - 2w2 (A7)

and

dE_ _ 8E, 9Et2

8V, ~ flVi + 9V,

-^ = 2№ + 2*!V2 - 2vr2. (A8)

Because E is the sum of Ej and E+2 (Equation A5), it follows that

(A9)
V i

From Equations A7 and A8, we see that

f? = ff <A10)

But d&^rdV-i is equal to the partial derivative of the total error E with
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respect to Cue 2 (i.e., 8E«/8V2 = 8E/8V2). This is because dE,/dV,

= 0 as a result of E, not containing any K2 terms. Like the partial

derivative of E with respect to all other cues, 3E/3V2 is set to 0 to

minimize the sum of squared errors. Now, because tfE^/dV, = 9E+2/

9V2 = SE/SVj = 0,

__

8V, ~ 9V, dV,

8E,

8V,
( A l l )

That is, the partial derivative of the total error E with respect to V,

remains unchanged by the addition of the combination containing V2 in

addition to V,; therefore, as for the previous case in which Cue 1 occurs

alone, V, = ir,/i,.

Solving for V2. To solve for V2, we set Equation A8 to 0, obtaining

(A12)

From Equations A4 and A12, it follows that

the outcome occurs. By adding this new combination, two patterns are

therefore added: On irn trials, all n cues are present, and the outcome

occurs; on kn - 7rn trials, all n cues are again present, but the outcome

does not occur. The sum of the additional squared error terms due to

these two patterns, E+n, is

E-n = 7T/1 - S V;-

= kn I (V?) + 2kn X y - 27rn (A14)

(The double summation term in Equation A14 collects all V^V) terms

for which i * j . I separate the VtVj terms from the Vj terms for the

purpose of obtaining their partial derivatives separately.) Note two impli-

cations of Equation A14. First, it implies that the partial derivative of

E+n with respect to Vn is

.-,,, = 2KnVn + 2kn 2_, V, — 2TTn. (A15)

= T~T- CA13)
k2 &i

Recall that 7r2/k2 is the relative frequency of trials on which the outcome

occurs in the presence of Cue 1 and Cue 2, and Tr./fc, is the relative

frequency of trials on which the outcome occurs in the presence of Cue

1 and the absence of Cue 2. Therefore, V2, the strength of the link from

Cue 2 to outcomey, estimates P(j\ Cue 2-Cue 1) - P(;|Cue 2-Cue

1), the contrast for Cue 2 with respect to outcome j conditional on the

presence of Cue 1. (A dot between the names of cues in the contrast

denotes "and." This notation is omitted when a single letter represents

a cue.) A different derivation of the same result was presented by Chap-

man and Robbins (1990).

Design With n Nested Cues

To generalize the preceding result, I consider a design with n cues (n

is an integer greater than 1) in which every combination of cues except

the one with a single cue can be characterized as a proper superset of

all sets with fewer cues. I refer to such cue combinations as nested.

(All cues that are always present or absent together are treated as a

single composite cue. Cues that are never presented in combination with

any of the « cues do not affect the weights of these cuesAI and are not

considered part of the design for my purpose here.) If I denote cues by

letters and combinations by sequences of letters, then an example of a

nested set of combinations would be a, ab, abc. An example of a

nonnested set would be a, ab, be, where the be combination is not a

superset of the smaller set a. I show subsequently that, for any combina-

tion with multiple cues in a nested set, the strength of the cue in it that

does not belong to the next smaller combination is equal to the contrast

for that cue conditional on the presence of the rest of the cues in the

larger combination.

Effect of adding a combination that contains a novel cue. First,

consider forming a new combination by adding novel Cue « to a combi-

nation with n — 1 distinct cues ordered from Cue 1 to Cue n — 1. Then

add this new combination to the set of all combinations containing any

cue from Cue 1 to Cue n — I . Let kn be the total number of trials with

all n cues present, and let 7rn be the number of such trials on which

But 9E+n/dVn is also the partial derivative of the total error E with

respect to Vn (i.e., dE+n/dVn = dE/dVn). This follows because £„_,,

the total error for all patterns in the design except those containing cue

n, does not contain any Vn terms, implying that 8En-i/dVn = 0. (By

definition, the added patterns are the only two patterns in the entire

design in which cue n appears.) Setting dF-,/dVn (which is equal to

dE+JdVn) to 0, we obtain

V, + L V, = jp . (A16)

That is, when a combination contains novel cue n and n ~ I other cues

that appear in other combinations, the sum of the strengths of all n cues

is equal to the relative frequency of the outcome for that combination

of cues. Therefore,

; v , . (A17)

Second, Equation A14 also implies that

for i = 1, 2, . . . , n - 1. (A18)
dE+n

dVn 9V,

This is so because all n cues are present in the two additional patterns

and are not differentiable from each other with respect to these patterns

alone. Because 8E../8V,, = dE/dVn = 0, it follows that

8E.H.

8V,
• 0 for i = 1, 2, . . . , n - I . ( A I 9 )

A1 Applying Equation Al, we see that the sum of the additional

squared error terms due to adding a separate cue s, E+J, does not contain

any term involving any of the n cues. Its partial derivative widi respect

to any of the « cues is therefore 0, implying that adding cue 5 does not

affect the partial derivative of the total error E with respect to any of

them. In other words, the set of equations for deriving the asymptotic

weights of the n cues will remain unchanged.

(Appendixes continue on next page)
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Thus, adding the combination containing cue n does not change the

partial derivative of the total error E with respect to any of the other

cues (i.e., &E/dV{ = dE^/dVj for i = 1, 2 n - 1) and, hence,

does not affect the'asymptotic weights of any of the other cues. In other

words, adding a combination that contains a cue that does not appear

in any other combination does not change the asymptotic weights of the

cues in the other combinations.

Iterating solution. Because the addition of the combination that con-

tains novel cue n does not affect the asymptotic weights of any of the

other cues, this combination can be ignored. Now suppose that the

remaining set of combinations formed by the n — 1 cues is nested, so

that the smallest combination consists of Cue 1, the next smallest consists

of Cue 1 and Cue 2, and so on, with the largest consisting of Cue 1 to

Cue n — 1. The same reasoning that yields Equation A16 then applies

to every outermost combination in the remaining nested set as one

iteratively peels off the previously outermost combination. In sum, for

any cue x in the nested set, where n > x ^ I,

(A20)

Applying Equation A20 to the combination that contains all cues from

Cue 1 to Cue n - I yields

S V - = ^ i . (A21)

Making use of Equation A21 to solve for Vn in Equation A17, we obtain

(A22)

That is, Vn, the weight of the link from cue n to outcome j , estimates

/»0' |Cuel-Cue2. . . -Cuen- 1 -Cuen) - />(./'| Cue 1 -Cue 2 .. .-Cue

n — 1 • Cue n), the contrast for cue n conditional on the presence of

the other n - 1 cues.

Because peeling off outer combinations containing Cue n or

Cue n - 1 does not affect the asymptotic weights of any of the other

cues, the preceding derivation can be applied to any cue x and cue jc -

1 in the nested set for n > x > 1, yielding the general result

(A23)

That is, Vx, the strength of the link from any cue x in the nested set to

outcome./, estimates the contrast for that cue conditional on the presence

of the x — 1 cues in the next smaller combination in the set.

In sum, in a design with multiple cues, if every combination of cues

except the one with a single cue can be characterized as a proper superset

of all sets with fewer cues, then the strengths of the cues in each combina-

tion sum to the relative frequency of the outcome given that combination

(Equation A20). These frequencies estimate the corresponding condi-

tional probabilities. Because the strengths of the cues are additive in the

R-W model, it follows that, for any combination with multiple cues,

the strength of the cue in it that does not belong to the next smaller

combination is equal to the contrast for that cue conditional on the

presence of the cues in the smaller combination (i.e., the rest of the

cues in the larger combination; Equation A23).

Generalizing to Partially Overlapping Combinations

My derivation of the asymptotic weights of the R-W model for a

nested design can be readily generalized to designs involving partially

overlapping cue combinations. By partially overlapping, I mean combi-

nations that share some cues but that each have distinctive cues (i.e.,

they are neither disjoint nor a superset or subset of each other). For

such designs, if for every pair of combinations that partially overlap

with each other, all supersets of one combination (including itself) share

the same intersection with the other combination, and this intersection

occurs as a separate combination, then the R-W model still computes

conditional contrasts asymptotically as specified earlier. Such sets share

acommon "trunk" of a set of cue combinations that are nested (includ-

ing the trivial case of a single combination) but then branch out in

different nested cue combinations involving additions of cues that are

disjoint across branches. An example of a design that satisfies this condi-

tion is a, ab, and ac. In this design, the combinations ab and ac partially

overlap. They have distinctive cues b and c but share a common trunk

a that occurs as a separate combination. Another example is the design

a, ab, abc,ad, and ade. Consider combinations ab and a^in this design.

They partially overlap with each other, with a as their intersection, and

this intersection occurs as a separate combination. All supersets of ab

(i.e., ab and abc) share this intersection with ad. Likewise, all supersets

of ad (i.e., ad and ade) share this intersection with ab. As I show

subsequently, the R-W model still computes conditional contrasts for

such sets.

First, consider n cues ordered from Cue 1 to Cue n, the combinations

of which form A, the nested set considered earlier with no partially

overlapping combinations. Second, consider a trunk that consists of set

B, a subset of A for which k is the cue unique to the largest combination,

n > k >r 1. Now consider growing a branch based on this trunk: Add

a cue combination that contains this subset of k cues and an extra cue

m that is not any of the n cues.

Because the combinations in nested set A that are not in nested set

B (i.e., those that contain any cue from Cue k + 1, k + 2, . . . , to Cue

n) do not affect the weights of cues forming set B, the new set of

combinations that consists of (a) set B and (b) the combination that

contains Cue m is nested (i.e., cues from k + I, k + 2, . .. , to n can

be ignored with respect to the weights of the cues in this new set).

Now, because the relation between the two branches that share B as

their common trunk is symmetrical, the converse implication holds; Set

A remains a nested set despite the addition of the new combination that

contains cue m. Thus, Equation A20 applies to any cue in these two

partially overlapping nested sets, and Equation A23 applies to any of

these cues except the one in the smallest combination. The same argu-

ment applies to the growth of any branch anywhere on the tree if that

branch does not contain any cue in other branches of the tree (see Figure

1 and its accompanying text for a visual characterization of a nested set

that contains partially overlapping combinations).

My definition of nesting can therefore be generalized to cover partially

overlapping designs. In a design with multiple cues, if there are no

partially overlapping cue combinations unless for every pair of such

combinations, all supersets of one combination share the same intersec-

tion with the other combination (i.e., they share a common trunk, and

this trunk is the only thing they share), and this intersection occurs as

a separate combination, then the design is nested. In other words, except

for such partially overlapping combinations, every combination of stim-

uli in a nested design can be characterized as a proper superset of any

combination that contains some but not all stimuli in it.

Asymptotic Weights for Designs for Which the R-W Model

Does Not Compute Conditional Contrasts

My analysis of the conditions under which the R-W model computes

conditional contrast shows that it does so when the cue combinations

are nested. When the cue combinations are not nested, the strength of

a cue is not necessarily equal to any of its (conditional or unconditional)

contrasts. For example, consider the nonnested design mentioned earlier

with the combinations a, ab, and be. In this section, let the subscript

denote the combination, so that 7tjka, 7raj,Mflfr, and 7rh(/^ , respectively.
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are the relative frequencies of the outcome j given combinations a, ab,

and be. First, consider the combinations a and ab, assuming that the be

combination does not exist. Because a is nested within ab, the preceding

analysis of nested sets applies. Applying Equation A23 to this nested

set, we obtain

V» = *f - f . (A24)

Now consider adding the be combination. Because cue c appears only

in this combination. Equation A17 applies. For the same reason, we know

that adding this combination does not change the asymptotic weights of

cues that appear in the other combinations. That is, it does not change
Va or Vf,. Thus, by applying Equation A17 to the be combination and

substituting for Vfe, we obtain

V, . It _ V. _ Ik - (IS - M .
tfc tfc \t* kj

(A25)

Because Trtclkk is the frequency of the outcome given the presence of
only b and c, Equation A25 shows that if and only if Vb is an estimate

of the probability of outcome j occurring in the presence of b alone will

Vc be equal to the contrast of Cue c conditional on the presence of Cue

b, that is, P(j\She) - P(j\sbf). In other words, unless Cue a can be

ignored as a conditionalizing cue, as when it is believed not to cause

the outcome (i.e., if Ti^lk^, = irjkb and Kjka - 0), V, is not equal to

the contrast for Cue c conditional on the sole presence of Cue b. In that
special case in which a is not a plausible cause, the design is nested

with respect to plausible causes.

Interpreting Equation A25 in terms of the causal powers of candidate

causes a, b, and c, assuming that these are all of the cues in the focal
set and that they produce effect j independently, we see that

= P(j\bc) - P(j\ab) -t- P(j\a)

= Pb+ PC ~ Pt'Pc - (P* + Pi: - Pa'Pt) + P,- (A26)

Therefore,

Vc = P, - pb'P< + P.'Pt (A27)

Because the RHS of Equation A27 has both a positive and a negative

term in addition to pc, Vc is not interpretable as an estimate of the
power of Cue c. In sum, when the cue combinations are not nested, the

strength of a cue is not, in general, interpretable as a conditional contrast

or an estimation of causal power.

Appendix B

When the R-W Model Computes Conditional Contrasts in an Induced Overshadowing Design

In an induced overshadowing design, denoting the two varying cues

as a and b and the context as c, the design is c, ac, be, abc. Let k

denote the total number of trials with a certain cue combination, with

its subscript denoting the combination (e.g., kabc), and let TT denote the

number of trials for a cue combination on which the outcome occurs,

with its subscript again denoting the combination (e.g., TI^). First,

consider the cue combinations c, be, and abc in mis design, ignoring

the combination ac. These three combinations form a simple nested set.
Therefore, according to Equation A23 (see Appendix A), the R-W

model predicts that the strengths of cues a and b, Va and Vb, respectively,

are as follows:

K = ̂ ~^ (Bl)

and

In addition, according to Equation A20,

(B2)

(B3)

where V, is the strength of c, the cue that occurs in isolation.

Recall that the R-W model (see Equation 15) predicts that the relative

frequency with which the outcome occurs for a given cue combination
is the sum of the strengths of the cues in that combination. Therefore,
for combination ac, it predicts that

This prediction would hold for the design (i.e., the R-W model

would converge on a solution) if Vn and Vc in Equation B4 have

the same respective values as in the nested set earlier (i.e., as

in Equations Bl and B3). Thus, substituting for Va and Vc in

Equation B4 with their respective values in Equations Bl and

B3, we obtain

TTqc _ "Kgbc ^ 7T^ TTc

Rearranging this equation, we see that

(B5)

(B6)

— = K + K. (B4)

That is, the R-W model would converge on the same solution as in the

nested set c, be, and abc if the contrast for a conditional on the absence

of b and the presence of c (i.e., P(e\abc) - P(e\atc), the LHS of

Equation B6 is equal to its contrast conditional on the presence of b

and c (i.e., P(e\abc) - P(e\abc), the RHS of Equation B6).
The same argument applies when one considers the nested cue combi-

nations c, ac, and abc in this design, ignoring the combination be. More

generally, then, the R-W model converges on the same solution as in a

nested set within the induced overshadowing design if the contrast for

a varying cue (e.g., a) conditional on the presence of the other varying

cue and the context is equal to its contrast conditional on the absence
of the other cue and the presence of the context.
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