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Abstract 
Bayesian Analogy with Relational Transformations (BART) 
is a discriminative model that can learn comparative relations 
from non-relational inputs (Lu, Chen & Holyoak, 2012). Here 
we show that BART can be extended to solve inference 
problems that require generation (rather than classification) of 
relation instances. BART can use its generative capacity to 
perform hypothetical reasoning, enabling it to make quasi-
deductive transitive inferences (e.g., “If A is larger than B, and 
B is larger than C, is A larger than C?”). The extended model 
can also generate human-like instantiations of a learned 
relation (e.g., answering the question, “What is an animal that 
is smaller than a dog?”). These modeling results suggest that 
discriminative models, which take a primarily bottom-up 
approach to relation learning, are potentially capable of using 
their learned representations to make generative inferences. 

Keywords: Bayesian models; generative models; 
discriminative models; relation learning; transitive inference; 
deduction; induction; hypothetical reasoning 

Introduction 

Generative and Discriminative Models 
Bayesian models of inductive learning can be designed to 
focus on learning either the probabilities of observable 
features given concepts (generative models) or the 
probabilities of concepts given features (discriminative 
models; Friston et al., 2008; Mackay, 2003).  Generative 
models are especially powerful as they are capable of not 
only classifying novel instances of concepts (using Bayes’ 
rule to invert conditional probabilities), but also generating 
representations of possible instances. In contrast, 
discriminative models focus directly on classification tasks, 
but do not provide any obvious mechanism for making 
generative inferences. 

In recent years, generative Bayesian models have been 
developed to learn complex concepts based on relational 
structures (e.g., Goodman, Ullman & Tenenbaum, 2011; 
Kemp & Jern, 2009; Kemp, Perfors & Tenenbaum, 2007; 
Tenenbaum, Kemp, Griffiths & Goodman, 2011). 
Representations of alternative relational structures are used 
to predict incoming data, and the data in turn are used to 
revise probability distributions over alternative structures. 
The highest level of the structure typically consists of a 

formal grammar or a set of logical rules that generates 
alternative relational “theories”, which are in turn used to 
predict the observed data. That is, the set of possible 
relational structures is provided to the system by specifying 
a grammar that generates them. 

Despite their impressive successes, there are some reasons 
to doubt whether the generative approach provides an 
adequate basis for all psychological models of relation 
learning. Since the postulated grammar of relations is not 
itself learned, the generative approach implicitly makes 
rather strong nativist assumptions. Moreover, generative 
models of relation learning do not fit the intuitive causal 
direction. For example, it seems odd to claim that a binary 
relation such as larger than somehow acts to causally 
generate an ordered pair (e.g., <dog, cat>) that constitutes 
an instantiation of the relation. It seems more natural to 
consider how observable features of the objects in the 
ordered pair give rise to the truth of the relation, i.e., to 
apply a discriminative approach. 

Discriminative Models of Relation Learning 
Recently, discriminative models have also been applied to 
relation learning. Silva, Heller, and Ghahramani (2007) 
developed a discriminative model for relational tasks such 
as identifying classes of hyperlinks between webpages and 
classifying relations based on protein interactions. Although 
their model was developed to address applications in 
machine learning, the general principles can potentially be 
incorporated into models of human relational learning. One 
key idea is that an n-ary relation can be represented as a 
function that takes ordered sets of n objects as its input and 
outputs the probability that these objects instantiate the 
relation. The model learns a representation of the relation 
from labeled examples, and then applies the learned 
representation to classify novel examples. A second key 
idea is that relation learning can be facilitated by 
incorporating empirical priors, which are derived using 
some simpler learning task that can serve as a precursor to 
the relation learning task. 

These ideas were incorporated into Bayesian Analogy 
with Relational Transformations (BART), a discriminative 
model that can learn comparative relations from non-
relational inputs (Lu, Chen & Holyoak, 2012). Given 
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independently-generated feature vectors representing pairs 
of animals that exemplify a relation, the model acquires 
representations of first-order comparative relations (e.g., 
larger, faster) as weight distributions over the features. 
Learning is guided by empirical priors for the weight 
distributions derived from initial learning of one-place 
predicates (e.g., large, fast). BART’s learned relations 
support generalization to new animal pairs, allowing the 
model to discriminate between novel pairs that instantiate a 
relation and those that do not. Moreover, BART’s learned 
weight distributions can be systematically transformed to 
solve analogies based on higher-order relations (e.g., 
opposite). 

BART has thus demonstrated promise as a discriminative 
model of relation learning, which does not presuppose an 
innate grammar of relations. However, the challenge 
remains to extend the model to tasks requiring generative 
inferences. For example, people are able to construct actual 
instantiations of relations, answering questions such as, 
“What is an animal that is smaller than a dog?” (Although 
one might suppose that such questions could be answered 
by undirected trial-and-error, we shall see that people’s 
answers are often systematically guided by their 
representations of the relation and of the animal provided as 
a cue.) Another challenging task is purely hypothetical 
reasoning, which requires making inferences about arbitrary 
instances of the relation. Comparative relations such as 
larger exhibit the logical properties of transitivity and 
asymmetry, supporting deductions such as “If A is larger 
than B, and B is larger than C, then A is larger than C.” 
Children as young as five or six years can make such 
transitive inferences reliably (Halford, 1992; Goswami, 
1995; Kotovsky & Gentner, 1996). In the present paper we 
describe an extension of the BART model that addresses 
these challenges of making generative inferences. 

BART Model of Relation Learning 

Domain and Inputs 
We focus on the same domain and inputs used in the initial 
BART project (Lu et al., 2012): the domain of comparative 
relations between animal concepts (e.g., a cow is larger than 
a sheep). To establish the “ground truth” of whether various 
pairs of animals instantiate different comparative relations, 
Lu et al. used a set of human ratings of animals on four 
different continua (size, speed, fierceness, and intelligence; 
Holyoak & Mah, 1981). These ratings made it possible to 
test the model on learning eight different comparative 
relations: larger, smaller, faster, slower, fiercer, meeker, 
smarter, and dumber. 

Each animal concept is represented by a real-valued 
feature vector. In order to avoid the perils of hand-coded 
inputs (i.e., the possibility that the model’s successes may 
be partly attributable to the foresight and charity of the 
modelers), we use what we call “Leuven vectors.” These 
representations are derived from norms of the frequencies 
with which participants at the University of Leuven 

generated features characterizing 129 different animals (De 
Deyne et al., 2008; see Shafto, Kemp, Mansinghka, & 
Tenenbaum, 2011). Each animal in the norms is associated 
with a set of frequencies across more than 750 features. We 
created vectors of length 50 based on the 50 features most 
highly associated with the subset of 44 animals that are also 
in the ratings dataset (Lu et al., 2012). Figure 1 provides a 
visualization (for 30 example animals and the first 15 of the 
50 features) of these high-dimensional and distributed 
representations, which might be similar to the 
representations underlying people’s everyday knowledge of 
various animals. 

 
 
Figure 1: Illustration of Leuven vectors (reduced to 15 
features to conserve space) for some example animals. The 
cell intensities represent feature values (light indicates high 
values and dark indicates low values). 

Relations as Weight Distributions 
BART represents a relation using a joint distribution of 
weights, w, over object features. A relation is learned by 
estimating the probability distribution ,( ,| )P S SRw X  where 

SX  represents the feature vectors for object pairs in the 
training set, the subscript S indicates the set of training 
examples, and SR  is a set of binary indicators, each of 
which (denoted by R) indicates whether a particular object 
(or pair of objects) instantiates the relation or not. The 
vector w constitutes the learned relational representation, 
which can be interpreted as weights reflecting the influence 
of the corresponding feature dimensions in X on judging 
whether the relation applies. The weight distribution can be 
updated based on examples of ordered pairs that instantiate 
the relation. Formally, the posterior distribution of weights 
can be computed by applying Bayes’ rule using the 
likelihood of the training data and the prior distribution for 
w: 

 ( ) ( ) ( )
( ) ( )
| ,

| , .
| ,

P P
P

P P
=
∫

S S
S S

S Sw

R w X w
w X R

R w X w
  (1) 

The likelihood is defined as a logistic function for 
computing the probability that a pair of objects instantiates 
the relation, given the weights and feature vector: 
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The prior, P(w), is a Gaussian distribution and is 
constructed using a bottom-up approach in which initial 
learning of simple concepts provides empirical priors that 
guide subsequent learning of more complex concepts. 
Specifically, BART extracts empirical priors from weight 
distributions for one-place predicates such as large to guide 
the acquisition of two-place relations such as larger. Lu et 
al. (2012) trained BART on the eight one-place predicates 
(e.g., large, small, fierce, meek) that can be formed using 
the extreme animals at each end of the four relevant 
continua (size, speed, ferocity, and intelligence). 

After learning the joint weight distribution that represents 
a relation, BART discriminates between pairs that 
instantiate the relation and those that do not by calculating 
the probability that a target pair Tx  instantiates the relation 
R: 
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Although the general framework of the relation learning 
model is straightforward, the calculations of the 
normalization term in Eq.  (1) and the integral in Eq. (3) are 
intractable, lacking analytic solutions. As in Silva, Heller, 
and Gharamani (2007), we employed the variational method 
developed by Jaakkola and Jordan (2000) for Bayesian 
logistic regression to obtain closed-form approximations to 
the posterior weight distribution ,( )|P S SX Rw  and the 
predictive probability ( 1| , , ).T TP R = S Sx X R   

Extension to Generative Inference 
The goal of the present paper is to endow BART with 
generative abilities, allowing it (for example) to complete a 
partially-instantiated relation, answering questions such as, 
“What is an animal that is smaller than a dog?” We use the 
weight representation for a relation learned by BART to 
construct a new generative model for the completion task. 
When presented with a cue relation (e.g., smaller) and a cue 
object (e.g., dog), the model produces possible responses for 
the remaining object (e.g., cat) so that the ordered object 
pair satisfies the relation. More specifically, given the 
features of an object B, ,Bx  and the knowledge that relation 
R holds for the object pair (A, B), the model generates a 
probability distribution for the features of object A, ,Ax  by 
making the following inference: 
 ( ) ( ) ( )| , 1 1| , | .B A B A BAP R P R P= ∝ =x x x x x x  (4) 

The likelihood term, ( )1| , ,A BP R = x x  is the probability 
that relation R holds for a particular hypothesized object A, 
,Ax  and the known object B, .Bx  It is defined using a 

logistic function, just as in Eq. (2): 
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Relative to Eq. (2), we have only introduced small 
differences in the notation. The learned relational weights, 
w, are written as two separate halves: weights associated 

 
 
Figure 2: Illustration of the generative model for inferring 
an animal that is larger than a sheep. Colors annotate 
probability densities (red indicates high values and blue 
indicates low values). The top panel shows the prior and 
posterior distributions with 2 7σ =  (favoring similarity-
based completions such as cow), and the bottom panel 
shows the prior and posterior with 2 25σ =  (favoring 
“landmark” completions such as elephant). Various animals 
are represented in the two-dimensional space based on their 
size and speed ratings. The posterior was generated using 
the relational weights that BART learned from the full 
ratings input (i.e., all four dimensions). 
 
with the first relational role ( 1w ) and weights associated 
with the second relational role ( 2w ). Similarly, the feature 
vector x for a pair of objects is separated into the feature 
vector for object A ( Ax ) and the feature vector for object B  
( Bx ). 

The prior for the features of object A, ( )| ,BAP x x  is the 
conditional distribution given the features of object B. It is 
defined as the following: 
 ( ) ( )2, .|A B BNP σ=x xx I  (6) 
We assume that object B (the referent) serves a starting 
point for generating object A, so the means of ( )| BAP x x  
are taken to be the feature values of object B, reflecting a 
certain degree of semantic dependency between the two 
objects (i.e., people’s tendency to think of A objects that are 
similar to B). The prior also encodes the assumptions that 
the features of A are uncorrelated and have the same 
variance 2 ,σ  the value of which is a free parameter 
reflecting the strength of the model’s preference for 
generating A objects that are similar to B. 

Our generative model infers a feature distribution for 
object A that reflects a compromise between (1) maximizing 
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the semantic similarity of A and B, which is reflected in the 
prior term; and (2) maximizing the probability that the 
relation holds, which is reflected in the likelihood term. We 
adapted the variational method to estimate the posterior 
distribution, using the following update rules for the mean µ 
and covariance matrix V of the feature distribution, as well 
as the variational parameter ξ: 
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Figure 2 illustrates the operation of the model in 
generating an animal (A) that is larger than a sheep (B). The 
feature distribution for A is updated from a prior favoring 
some degree of similarity between the two animals (left 
panel; top: high similarity, bottom: low similarity) to a 
posterior distribution after taking into consideration the 
relation (i.e., larger) instantiated by the animals (right 
panel). These distributions are shown in a simplified two-
dimensional feature space (the size and speed ratings for 
animals; Holyoak & Mah, 1981).  

Modeling Transitive Inference 
Comparative relations such as larger exhibit the logical 
properties of transitivity and asymmetry, supporting 
deductions such as, “If A is larger than B and B is larger 
than C, then A is larger than C.”  Such hypothetical 
reasoning seems to depend on the ability to generate 
arbitrary instantiations of the relation without any guidance 
from object features (as the object representations are 
semantically empty). Our first test evaluated whether the 
generative extension of BART enables transitive inferences 
on comparative relations using arbitrary hypothetical 
instances. 

Operation of the Model 
The basic approach to transitive inference is 
straightforward: The model “imagines” objects A, B, and C 
that instantiate the two given premises, as in the example 
above, and then tests the unstated relationship for the pair 
<A, C>. If the larger relation that BART has learned is 
indeed transitive, then any such instantiation will satisfy the 
conclusion, “A is larger than C.” This test is done 
repeatedly, in essence searching for a counterexample. If no 
counterexample is ever found, the transitive inference is 
accepted. 

Specifically, for each of the eight comparative relations 
that BART learned, we first let the model “imagine” an 
animal B (because the statement “A is larger than B” implies 
that B is the referent against which A is being compared) by 
sampling a feature vector from a distribution representing 

the animal category. This is a Gaussian distribution with a 
mean vector and covariance matrix that were directly 
estimated from the feature vectors of the 44 animals in the 
Leuven dataset that are included in the ratings dataset. 

Given the sampled animal B, the generative model 
constructs a distribution for animal A (e.g., to satisfy the 
premise that “A is larger than B”) by letting B fill the second 
role of the relevant relation. Similarly, the model constructs 
a distribution for animal C (e.g., to satisfy the premise that 
“B is larger than C”) by letting B fill the first role of the 
same relation. Next, the model creates feature 
representations for specific animals A and C by setting their 
feature vectors, Ax  and ,Cx  to be the means of the inferred 
feature distributions for A and C, respectively. Note that 
these “imagined” animals are hypothetical: although their 
features are sampled from the distribution of animal 
features, the results will seldom correspond to actual 
animals. To ensure that the premises have actually been 
satisfied, the model accepts the imagined animal A only if 
( 1| , ) 0.5BAP R = >x x  and ( 1| , ) 0.5,ABP R = <x x  and the 

imagined animal C only if ( 1| , ) 0.5B CP R = >x x  and 
( 1| , ) 0.5.C BP R = <x x  
Finally, if Ax  and Cx  have been accepted as satisfying 

the premises, the model calculates both ( 1| , )CAP R = x x , 
denoting the probability that A is larger than C, and 
( 1| , ),ACP R = x x denoting the probability that C is larger 

than A.  The model concludes that the relation holds for the 
pair <A, C> (and not for <C, A>) if ( 1| , ) 0.5CAP R = >x x  
and ( 1| , ) 0.5,C AP R = <x x  implying that a counterexample 
has not yet been found to refute the transitive inference.  

We conducted tests of transitive inference using the 
relational representations that BART learned based on 100 
randomly-chosen training pairs. For comparison, we also 
tested a baseline model that substituted an uninformative 
prior for the empirical prior that guides BART’s relation 
learning (see Lu et al., 2012). For each of the eight 
comparative relations, the relation learning model was run 
ten times, each time with a different set of training pairs and 
resulting in a different learned weight distribution. For each 
of these learned weight distributions, we let the model 
generate 100 A-B-C triads satisfying the premises, testing 
the relevant relationship between A and C for each triad. To 
assess the influence of the free parameter in model 
predictions, the tests were conducted multiple times with 
different values of 2σ  ranging from 1 to 1000. The 
strongest tests are those in which 2σ  is set at low values, 
creating a strong prior preference that A, B, and C are 
similar to one another. When the similarity constraint is 
strong, the model is forced to generate animals that are 
similar on the relevant dimension, and hence more likely to 
yield a counterexample. When the value of 2σ  was reduced 
below 1, the models produced many instantiations that did 
not satisfy the required premises (i.e., A > B, B > C, and not 
vice versa). We therefore treated the value of 1 as the 



minimal value of 2σ  that yields triplets of animals with 
discriminable values on the relevant dimension. 

Results and Discussion 
Figure 3 shows the mean proportion correct (i.e., the mean 
proportion of triads that satisfy the conclusion based on 
transitive inference) for BART and the baseline model as a 
function of 2σ . These results are averaged over the eight 
comparative relations. The critical result is that the BART’s 
accuracy remains constant at 100% as 2σ  is reduced to the 
effective minimal value of 1. Thus, BART demonstrates 
what may be considered an inductive approximation to 
deduction: despite exhaustive search for a counterexample 
to the transitive inference, no counterexample is ever found. 
In contrast, the baseline model often fails to infer that A > C 
(and not vice versa) even when the value of 2σ  is as large 
as 100. 

 
Figure 3: Mean proportion correct on the transitive 
inference task for BART and baseline model, as a function 
of the variance parameter. These results are averaged across 
the eight comparative relations. 

Animal Generation Task 
A second evaluation of the model involves predicting the 
distribution of human responses in an animal generation 
study conducted using Amazon Mechanical Turk. In this 
free-generation study, participants typed responses to 
queries of the form, “Name an animal that is larger than a 
dog.” They were instructed to enter the first animal that 
came to mind. Four comparative relations (larger, smaller, 
faster, and slower) and nine cue animals (shark, ostrich, 
sheep, dog, fox, turkey, duck, dove, and sparrow) were 
used. At least 50 responses were collected for each of the 36 
relation-animal pairs. To minimize learning across trials, we 
asked each participant to answer only two questions about a 
single animal: either larger and then slower, slower and 
then larger, faster and then smaller, or smaller and then 
faster. 

The same relation-animal pairs were presented to the 
model after it had been trained on the relevant relations. For 
each question, the model produces a continuous posterior 
distribution for the feature vector of the missing animal 
using Eq. (4). This distribution was used to calculate the 
probability densities for the feature vectors of all animals 
among the human responses that had Leuven vectors. These 
probability densities were normalized to produce a discrete 

 
Figure 4: Observed human response proportions and 
BART’s predictions for the queries, “Name an animal that is 
smaller than a dog” (top), and “Name an animal that is 
slower than a dog” (bottom).  
 
probability distribution over the animals included in the 
human responses. The model’s predicted probabilities were 
averaged across the ten runs. 

The human results were complex, and here we report only 
a partial and preliminary attempt to make a comparison with 
model predictions. Qualitatively, human responses were 
dominated by two trends: (1) reporting an animal similar to 
the cue animal and fitting the cue relation (e.g., cat for 
“smaller than a dog”), or (2) reporting a “landmark” animal 
at an extreme of the continuum (e.g., turtle for “slower than 
a dog”). The landmark animal coupled with the cue animal 
provides an ideal example of the cue relation.  This tradeoff 
between reporting animals that are similar to the cue animal 
and reporting animals that are landmarks for the cue relation 
(and usually more dissimilar to the cue animal) is captured 
by the single free parameter in the generative module, 2.σ  
As explained earlier (see Figure 2), a low 2σ  results in a 
response distribution that favors animals similar to the cue 
animal, whereas a high 2σ  leads to a preference for 
response animals that are more likely to satisfy the cue 
relation with respect to the cue animal (i.e., landmark 
animals for the cue relation). 

To reflect the unique pattern of human responses to each 
question, the variance parameter in the generative model 
was chosen separately for each question (from the values, 1, 
5, 10, 50, and 100) to maximize the average of Pearson’s r 
and Spearman’s ρ (rank-order) correlations between the 
model’s predicted probabilities and the observed response 
proportions for that question. Here we present results for 
two illustrative questions. The top panel of Figure 4 shows 
the model’s predicted response distribution and the human 
response distribution for the request, “Name an animal that 
is smaller than a dog.” The human response pattern reveals a 
strong influence of semantic similarity between the cue 
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animal and generated animal. The most common human 
response was cat, followed by mouse (the landmark animal 
for the smaller relation). With 2σ  = 10, the correlation 
between the model predictions and the human response 
pattern was r = .76. 

The bottom panel of Figure 4 depicts the model 
predictions and human response pattern for the request, 
“Name an animal that is slower than a dog.” For this 
question, the most common response was the landmark 
animal turtle. With 2σ  = 50, the correlation between the 
model predictions and the human response pattern was r = 
.72. The higher variance assumed for this question (relative 
to that for the smaller question) reflects the dominance of 
the landmark response for the slower question. 

Note that even though the two questions use the same cue 
animal (dog), different sets of animals were generated 
depending on the cue relation, revealing that humans do 
take relations into consideration in this free generation task. 
The model showed a similar pattern of results. 

Conclusions 
These results provide initial evidence that a discriminative 
model of relation learning, BART (Lu et al., 2012), can be 
extended to yield generative inferences. These inferences 
can involve relations between either hypothetical (in the 
case of transitive inference) or actual (in the case of the 
animal generation task) objects. In the latter free generation 
task, preliminary analyses indicate that BART achieves 
some success in modeling human response patterns. 

The model’s ability to make transitive inferences based on 
relations it has learned in a bottom-up fashion from 
examples illustrates the potential power of the 
discriminative approach to relation learning. Importantly, 
BART is not endowed with any notion of what a “transitive 
and asymmetric” relation is (though like a 6-year-old child, 
it is endowed with sufficient working memory to integrate 
two relations as premises). Rather, it simply uses its learned 
comparative relations to imagine possible object triads, and 
without exception concludes that the inference warranted by 
transitivity holds in each such triad. The model thus 
approximates “logical” reasoning by a systematic search for 
counterexamples (and failing to find any), akin to a basic 
mechanism postulated by the theory of mental models 
(Johnson-Laird, 2008). The fact that BART achieves error-
free performance in the tests of transitive inference is 
especially impressive given that its inductively-acquired 
relational representations are most certainly fallible (e.g., 
the model makes errors in judging which of two animals 
close in size is the larger; see Lu et al., 2012). It turns out 
that imperfect representations of comparative relations, 
acquired by bottom-up induction, can be sufficiently robust 
as to yield reliable quasi-deductive transitive inferences.  
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