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Humans and other primates are able to make relative magnitude com-
parisons, both with perceptual stimuli and with symbolic inputs that
convey magnitude information. Although numerous models of mag-
nitude comparison have been proposed, the basic question of how
symbolic magnitudes (e.g., size or intelligence of animals) are derived
and represented in memory has received little attention. We argue
that symbolic magnitudes often will not correspond directly to ele-
mentary features of individual concepts. Rather, magnitudes may be
formed in working memory based on computations over more basic
features stored in long-term memory. We present a model of how
magnitudes can be acquired and compared based on BARTlet, a repre-
sentationally simpler version of Bayesian Analogy with Relational
Transformations (BART; Lu, Chen, & Holyoak, 2012). BARTlet operates
on distributions of magnitude variables created by applying dimen-
sion-specific weights (learned with the aid of empirical priors derived
from pre-categorical comparisons) to more primitive features of
objects. The resulting magnitude distributions, formed and main-
tained in working memory, are sensitive to contextual influences such
as the range of stimuli and polarity of the question. By incorporating
psychological reference points that control the precision of magni-
tudes in working memory and applying the tools of signal detection
theory, BARTlet is able to account for a wide range of empirical phe-
nomena involving magnitude comparisons, including the symbolic
distance effect and the semantic congruity effect. We discuss the role
of reference points in cognitive and social decision-making, and impli-
cations for the evolution of relational representations.
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1. Introduction

Humans and other primates have sophisticated abilities to learn and make judgments based on rel-
ative magnitude. Magnitude comparisons are critical in making choices (e.g., which of two products is
more desirable?), making social evaluations (e.g., which person is friendlier?), and in many other
forms of appraisal (e.g., who can run faster, this bear or me?). In addition to making comparisons
based on elementary perceptual dimensions (e.g., identifying the longer of two line segments or the
brighter of two lights), people are able to make analogous judgments based on symbolic dimensions
using information stored in memory (e.g., the relative size or intelligence of various animals). Non-hu-
man primates are also capable of at least rudimentary symbolic comparisons. For example, rhesus
monkeys are capable of learning shapes (Arabic numerals) that correspond to small numerosities
(1–4 dots), such that the shapes acquire neural representations overlapping those of the correspond-
ing perceptual numerosities and can be compared on that basis (Diester & Nieder, 2007).

Striking parallels have been observed between perceptual and symbolic judgments. In particular,
both perceptual and symbolic judgments yield a distance effect, such that the ease of judgments (in-
dexed by accuracy and/or reaction time) increases with the magnitude difference between the objects
being compared (e.g., Moyer, 1973; Moyer & Bayer, 1976; Moyer & Landauer, 1967). A symbolic dis-
tance effect is observed not only with quasi-perceptual dimensions such as size, but also with more
abstract dimensions such as animal intelligence (Banks, White, Sturgill, & Mermelstein, 1983) and
with scalar adjectives of quality (e.g., good, fair; Holyoak & Walker, 1976). Non-human primates also
exhibit a distance effect for judgments along various perceptual dimensions, including numerosity
(Nieder & Miller, 2003).

When judgments are made using contrastive polar concepts (e.g., ‘‘choose brighter’’ versus ‘‘choose
dimmer’’, ‘‘choose better’’ versus ‘‘choose worse’’), both perceptual (Audley & Wallis, 1964; Petrusic &
Baranski, 1989; Wallis & Audley, 1964) and symbolic judgments also yield a semantic congruity effect:
for objects with high values on the dimension, it is easier to judge which object is greater, whereas for
objects with low values, it is relatively easier to judge which is lesser (e.g., Banks, Clark, & Lucy, 1975;
see Moyer & Dumais, 1978, for an early review). Like the distance effect, semantic congruity effects
have also been obtained with monkeys (Cantlon & Brannon, 2005). A further phenomenon, the mark-
edness effect, refers to the fact that for some pairs of polar adjectives, one (the ‘‘unmarked’’ form) is
easier to process overall than the other (Clark, 1969). For example, the ‘‘unmarked’’ question ‘‘Which
is larger?’’ tends to be answered more rapidly overall than the ‘‘marked’’ question ‘‘Which is smaller?’’
(Clark, 1969; Clark, Carpenter, & Just, 1973). The impact of markedness implies that the congruity ef-
fect often takes the form of an asymmetrical interaction.
1.1. How are magnitudes generated?

Numerous models of symbolic magnitude comparisons have been proposed, and we will review
several of them below. However, in the present paper we focus on a question that (even though it
is arguably the most basic of all) has seldom been asked, far less answered: where do subjective mag-
nitudes come from? In the case of perceptual judgments with unidimensional stimuli (e.g., tones vary-
ing in loudness), it is reasonable to assume that a specific neural channel generates magnitudes. For
symbolic comparisons, the tacit assumption has been that the long-term memory representation of
each object being compared includes a magnitude value (perhaps with an associated variance), and
that these magnitudes are simply retrieved and loaded into working memory, where a comparison
process operates.

For a few types of symbolic comparisons, such as numerical magnitudes of digits, it may indeed be
the case that each object has a pre-stored magnitude in long-term memory. But for more complex
dimensions this assumption is questionable, and indeed quite unrealistic. Even symbolic size judg-
ments, which are closely linked to perceptual features, are unlikely to always be based on pre-stored
magnitudes, as size is actually a complex function of three-dimensional shape. Indeed, recent evidence
indicates that although numerical magnitudes are automatically activated when reading integers, size
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magnitudes associated with animal names are activated only when the reader has the goal of making
size comparisons (Hoedemaker & Gordon, 2013). People may have stored size values for a few ‘‘land-
mark’’ objects (e.g., an elephant or a mouse), but are unlikely to have pre-stored size values for less
familiar animals (e.g., a beaver or a swordfish). The notion that magnitudes are pre-stored becomes
yet more implausible for the wide range of dimensions on which people can make symbolic compar-
isons, especially in the interpersonal and social realm (e.g., intelligence, friendliness, religiosity,
conservatism). Rather than being elementary components of concept meanings, magnitudes may
often be derived, context-dependent features (Goldstone, 1994; Smith, Gasser, & Sandhofer, 1997).
Furthermore, rather than being pre-stored, magnitudes may be computed as needed in response to
a query.

It follows that a comprehensive account of symbolic magnitude comparisons must begin with a
model of how symbolic magnitudes are discovered. One general hypothesis is that magnitudes can
be generated by operations performed on vectors of more elementary features associated with
individual objects. Fig. 1 provides a visualization of the sort of input that might underlie people’s
everyday knowledge of various types of animals. These representations were derived from norms of
the frequencies with which participants at the University of Leuven generated features characterizing
various animals (De Deyne et al., 2008; see Shafto, Kemp, Mansinghka, & Tenenbaum, 2011). Each
animal in the norms is associated with a set of frequencies across more than 750 features. Fig. 1
includes feature vectors for 30 example animals based on the 50 features most highly associated with
a larger set of animal names (Lu et al., 2012). Although these ‘‘Leuven vectors’’ presumably only
approximate people’s knowledge about animal concepts, they have the great virtue of being derived
from independent sources of data, rather than being hand-coded. The simulations reported in the
present paper are based on inputs extracted from the Leuven vectors, as well as similar feature vectors
created using the topic model (Griffiths, Steyvers, & Tenenbaum, 2007).

Could individual Leuven features be directly used as measures of magnitude? One might have sup-
posed, for example, that the value of the feature ‘‘is big’’ would be sufficient to predict relative size. But
although this dimension is indeed the single most important factor predicting size, it is far from suf-
ficient. The Leuven features were derived from the frequencies with which participants generated
attributes, and animals for which their large size is salient (often in reference to a subcategory) tended
to have higher feature values for ‘‘is big’’ (e.g., based on a comparison of feature values for that attri-
bute alone, the Leuven dataset indicates that an eagle is larger than a giraffe). To address this problem
we need distributed representations that can be used to compute derived magnitude dimensions.

To provide such distributed representations, Lu et al. (2012) developed Bayesian Analogy with
Relational Transformations (BART), a model of how one-place scalar adjectives (e.g., large, smart) and
two-place comparative relations (e.g., larger, smarter) can be learned from non-relational feature
vectors. Using various inputs, including Leuven vectors and vectors derived using the topic model
(Griffiths et al., 2007), the model was applied to the acquisition of concepts related to four continuous
dimensions: size, ferocity, speed and intelligence. BART incorporates information from a prior proba-
bility distribution over a space of weights, as well as examples of animal pairs that instantiate a rela-
tion, to obtain a posterior distribution over the weight space, which is used to predict whether the
relation holds for novel pairs. Learning is supervised, as the model received training examples that
are associated with truth values for the instantiated relation (e.g., the model is told that ‘‘cow is larger
than dog’’ is true). Only positive examples of relations are used (since children’s concept learning
seems to be largely guided by positive examples; see Bloom, 2000). The representations of relational
concepts created by BART for each of the four magnitude dimensions of interest turned out to be
highly distributed, based on at least 20 statistically predictive features (see Lu et al., 2012, figure
10, pp. 634–635).

The simulation results reported by Lu et al. (2012) suggest that concepts related to symbolic
magnitudes can be discovered by inductive learning, rather than simply assumed to be directly
available in long-term memory. Moreover, the Bayesian approach in general (and the BART model
in particular) implies that magnitudes will be represented not as deterministic values, but rather as
probability distributions. The probabilistic framework is in agreement with the intuition that symbolic
magnitudes (e.g., the size of a kangaroo, the intelligence of a goat) are ‘‘fuzzy’’ rather than firm, and
thus judgments related to these attributes are susceptible to the influence of context.
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Fig. 1. Illustration of Leuven vectors for some example animals. The cell intensities represent feature values (light indicates
high frequency values, dark indicates low frequency values).
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Our goal in the present paper is to provide an integrated account of how symbolic magnitudes,
represented in working memory as probability distributions, can be created and then used to make
comparative judgments. We will first briefly review previous accounts of the three major phenomena
observed in studies of comparative judgment: symbolic distance effects, semantic congruity effects,
and markedness. We will then show how a model incorporating assumptions about the attentional
control of magnitude representations in working memory can provide a unified account of these core
phenomena.
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1.2. Alternative models of symbolic magnitude comparisons

We will not attempt an exhaustive review of the large literature on mental magnitude compari-
sons, but rather will focus on findings that give rise to some of the principles we include in our current
model (for broader reviews of work with humans see Moyer & Dumais, 1978; Petrusic, 1992; for a
review of work with non-human primates see Cantlon, Platt, & Brannon, 2009).

There is virtually complete consensus among current researchers that the ubiquitous distance
effect reflects some form of internalized representation of magnitude akin to positions on a number
line, such that larger magnitudes are more readily discriminable. This notion goes back at least to
Moyer (1973), who referred to an ‘‘internal psychophysics’’ for symbolic comparisons. Behavioral
studies have identified striking parallels between symbolic distance effects and those observed in
overt perceptual comparisons (e.g., Audley & Wallis, 1964; Holyoak & Patterson, 1981; Moyer & Bayer,
1976). As in the case of perceptual comparisons, the pattern of difficulty for symbolic comparisons
suggests that internal magnitudes are typically compressed such that subjective magnitude differ-
ences decrease as the absolute magnitudes of the objects being compared increase (Shepard, Kilpatric,
& Cunningham, 1975). More recent work has provided strong evidence that humans and other prima-
tes are equipped with specialized neural circuitry for dealing with approximate magnitude on various
dimensions (e.g., Cantlon, Brannon, Carter, & Pelphrey, 2006; Dehaene & Changeux, 1993; Piazza,
Izard, Pinel, Bihan, & Dehaene, 2004; Piazza, Mechelli, Price, & Butterworth, 2006; Piazza, Pinel,
Le Bihan, & Dehaene, 2007; Pinel, Piazza, Bihan, & Dehaene, 2004).

Several models for magnitude comparisons have been proposed (for a review see Petrusic, 1992).
The evidence distinguishing among them mainly involves the congruity and markedness effects. The
congruity effect has been interpreted in multiple ways. An expectancy model (Banks & Flora, 1977;
Marschark & Paivio, 1979) assumes that the congruity effect arises because the comparative is pre-
sented prior to the stimulus pair, enabling the person to prepare in some way for stimuli within a cer-
tain range (e.g., either small or large objects). However, robust congruity effects are found even when
the comparative is presented after the stimuli to be compared, in a design in which questions about
multiple dimensions were intermixed (Holyoak & Mah, 1981). Other studies yielded similar disconfir-
matory findings (Banks et al., 1983; Howard, 1983; Shoben, Sailor, & Wang, 1989).

A related explanation of the congruity effect attributes the phenomenon to differential frequency of
association between each comparative and items of various magnitudes (i.e., the ‘‘greater’’ compara-
tive may be more often used with items of high magnitude, and the reverse for the ‘‘lesser’’ compar-
ative). However, Rylass and Smith (2000) taught adults novel comparatives, and found that a
congruity effect arose even when the training set was designed to eliminate any correlation between
the form of the comparative and the magnitude of items. These and other findings concerning acqui-
sition of comparative terms (Ryalls, Winslow, & Smith, 1998) suggest that the congruity effect reflects
the meaning of the contrastive terms, rather than unbalanced presentation frequencies during learn-
ing that might influence expectancies about items.

A frequency-based explanation has also been offered for markedness effects, as unmarked forms of
adjectives are typically used more frequently than the corresponding marked forms. Often the marked
term is aptly applied only to the range of magnitudes extending from the negative pole to the mid-
point, whereas the unmarked term can be aptly applied across the full magnitude range (Clark,
1969). However, the finding of a markedness effect in monkeys, in a design in which the two forms
of the implicit query occurred on an equal number of trials during training, suggests that markedness
effects cannot be fully explained by unequal frequency of linguistic use (Cantlon & Brannon, 2005).

The semantic coding model (Banks, Fujii, & Kayra-Stuart, 1976; Banks et al., 1975) attributes the
congruity effect to categorical codes based on language (e.g., ‘‘large’’ and ‘‘small’’). In this model, the
congruity effect reflects systematic differences in the probability that the codes for the objects will
match the linguistic form of the comparative. Although the model provides a good quantitative fit
to some data sets (Banks et al., 1976), it faces a number of problems as a general explanation of
symbolic comparisons. Because it is based on linguistic codes, the model is severely strained by the
fact that distance, congruity and markedness effects are also observed with non-linguistic primates,
such as monkeys (Cantlon & Brannon, 2005; Cantlon et al., 2009). Also, the model cannot explain
evidence that similar effects are observed in direct judgments of discriminability among ordered items
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(e.g., the form of comparative used in the question influences the relative spacing of cities along an
east–west dimension as recovered by scaling methods; Holyoak & Mah, 1982). Finally, the model
predicts that the magnitude of the congruity effect will be independent of factors that influence
decision difficulty (Banks et al., 1975). However, there is considerable evidence that the magnitude
of the congruity effect in fact varies systematically with decision difficulty (Petrusic, 1992; Petrusic
& Baranski, 1989; Shaki, Leth-Steensen, & Petrusic, 2006).

1.3. Reference-point models

The final major class of models (and the one most relevant to the present proposal) includes those
that locate the congruity and markedness effects within the process of magnitude comparison itself.
The intuitive idea is that when judging (for example) whether an elephant is larger than a hippo, the
subjective magnitude difference is in fact more discriminable than when judging whether an elephant
is smaller than a hippo. Such discriminability effects might arise by a mechanism through which the
form of the question modulates magnitude representations in working memory. A number of specific
models have been proposed, which share the hypothesis that the polarity of the comparative serves to
establish a reference point at or near the corresponding end of the continuum, and that magnitude dif-
ferences between objects close to the reference point are discriminated more easily than otherwise
comparable differences between objects far from the reference point (Holyoak, 1978; Holyoak &
Mah, 1982; Jamieson & Petrusic, 1975; Marks, 1972). Holyoak (1978) argued that attending to a ref-
erence point at the congruent extreme of a dimension aids in coding the polarity of the question (i.e.,
distinguishing between ‘‘choose greater’’ versus ‘‘choose lesser’’ for a specific pair of comparatives).

Reference-point models are not inherently linguistic, and hence can in principle be applied to com-
parative judgments in non-linguistic species (Cantlon et al., 2009); they can accommodate the influ-
ence of the question form on direct discriminability judgments (Holyoak & Mah, 1982); and in some
variants (Marks, 1972) they predict the general finding that congruity effects are larger when deci-
sions are more difficult (Petrusic, 1992; see Banks et al., 1975, for a derivation). In addition, refer-
ence-point models can potentially explain another critical property of the congruity effect, which is
that it is sensitive to the range of magnitudes exhibited in the stimulus set. For example, if the pre-
sented stimuli are all relatively small animals (e.g., smaller than a dog), then the relatively large ani-
mals within this restricted set (e.g., rabbit and beaver) will show an advantage for ‘‘choose larger’’ over
‘‘choose smaller’’ (Čech & Shoben, 1985; Čech, Shoben, & Love, 1990; see also Petrusic & Baranski,
1989). Similar range effects have been observed in studies of comparative judgments by monkeys
(Jones, Cantlon, Merritt, & Brannon, 2010). It is natural to suppose that an observer could strategically
shift reference points to reflect the magnitude range of the presented stimuli.

A number of explanations of how a reference point exerts its effect have been proposed. Jamieson
and Petrusic (1975) and Holyoak (1978) suggested that observers assess the ratio of distances from
each object to the reference point, rather than simply taking the difference. The distance ratio provides
good quantitative fits to some data sets, including data from experiments in which an explicit refer-
ence point is specified at an intermediate point on the scale (e.g., judging which digit, 2 or 3, is closer
to 5; Holyoak, 1978). However, other data sets are less well fit by the quantitative form specified by
the distance ratio. For example, although scale compression triggered by the form of the comparative
can be observed in non-speeded discriminability judgments, the effects tend to be smaller than the
distance ratio would predict (Holyoak & Mah, 1982).

Perhaps reference points directly alter mean magnitudes of items, expanding differences close to
the reference point relative to differences far from it. However, shifts in discriminability might instead
reflect changes in variances of magnitude, rather than in mean values. Marks (1972), building on the
assumptions of signal detection theory, suggested that internal magnitudes are represented as distri-
butions that encode uncertainty, which is reduced in the region of a reference point (i.e., the variance
or ‘‘discriminal dispersion’’ of magnitude representations is lower for magnitudes close to a reference
point). Marks did not develop a quantitative model; however, related reference-point models have
introduced evidence-accrual mechanisms, consistent with the basic idea that comparative judgments
are based on iterative sampling from magnitude distributions (see Petrusic, 1992). The model we
propose in the present paper adopts the key idea proposed by Marks (1972), that the form of the



D. Chen et al. / Cognitive Psychology 71 (2014) 27–54 33
comparative affects discriminability by dynamically altering magnitude variances based on distance
from a reference point.

Reference-point models in general, including Marks’s (1972) specific proposal of the modulation of
variance as a mechanism, are broadly consistent with the wider literature on attentional influences on
magnitude representation. Miller’s (1956) classic paper focused on the limited channel capacity
available to make absolute magnitude judgments (and explicitly linked signal variance with informa-
tion transmission). In psychophysical work, Luce, Green, and Weber (1976) proposed that observers
are able to strategically control attention bands, selectively monitoring a relatively narrow intensity
range. Luce et al. suggested that neural variability of the internal representation of intensities will
be reduced within the favored attention band, yielding greater sensitivity as measured by signal-
to-noise ratio. Nosofsky (1983) found evidence that observers can indeed strategically shift attention
to a specific intensity band, thereby facilitating discrimination of tones in the favored region. He also
argued, based on a literature review, that this flexible allocation of attention to a magnitude band is
limited to just one such location along a continuum; hence performance falls off monotonically with
distance from the favored region.

A reference-point explanation has also been offered for the markedness effect. It is possible that
markedness, like the congruity effect, fundamentally arises from the inherent meaning of compara-
tives, and in particular from the fact that many comparative pairs have an inherent asymmetry in their
polarity: one end is positive or ‘‘greater’’ and the other end is negative or ‘‘lesser’’. If markedness is
rooted in the underlying meaning of comparatives, then the effect might reflect some additional pro-
cessing difficulty encountered in maintaining precise magnitude distributions when focusing on the
‘‘negative’’ or ‘‘lesser’’ pole. Marks (1972) suggested that the markedness effect could be modeled
by assuming that the precision of magnitude representations falls off more rapidly moving from the
lesser than from the greater reference point. We will also adopt this assumption, which serves to
integrate the markedness effect with the semantic congruity effect.

In sum, psychophysical work provides broad support for the hypothesis that observers can
selectively modulate attention to a favored region along a magnitude continuum. Given the many
established parallels between perceptual and symbolic magnitude comparisons, it is natural to
hypothesize that similar mechanisms operate in symbolic tasks. Moreover, reference points estab-
lished by the form of the question and the range of the presented stimuli can readily be viewed as cues
that establish attention bands. Mark’s (1972) proposal that such modulation operates by influencing
the variance of magnitude representations provides a key theoretical element in the model we will
describe below. The hypothesis that attention operates in part by modulating variability in an internal
representation is also consistent with findings concerning visual detection and discrimination tasks
(Dosher & Lu, 2000; Rahnev et al., 2011).
2. Magnitude representations in BARTlet

2.1. Multiple levels of representation for comparative relations

Our goal in the present paper is to provide a unified model of how symbolic magnitudes can be
discovered and used to make comparative judgments. The model we propose, termed BARTlet (i.e.,
the diminutive form of BART), builds on the learning capability of BART (Lu et al., 2012) but makes
simpler representational assumptions. A key idea incorporated in both models is that learning can
be bootstrapped by incorporating empirical priors—a ‘‘favorable’’ initial knowledge state derived from
some related but simpler learning task. In BART, learning of explicit comparative relations (two-place
predicates, such as larger) is guided by empirical priors derived from initial learning of one-place
predicates (e.g., large, small).

BARTlet also emphasizes the role of bootstrapping operations that allow learning at a lower level to
guide subsequent learning at a higher level (for a more detailed discussion of bootstrapping, see Lu
et al., 2012, p. 618). Although we do not aim to provide a serious developmental model (which would
require a detailed specification of the inputs available to children), we do aim to implement a learning
process that can acquire magnitude information from inputs of realistic complexity. Moreover, we
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focus on learning from inputs that were not hand-coded, but rather were generated by an autonomous
process (i.e., independently of the modelers). We use two different sets of inputs as a further way of
showing that the learning model is robust and does not depend on specific details of what features are
included in the input.

Given that humans are able to make magnitude comparisons between objects that they may never
have previously considered together (e.g., which is larger, a walrus or a fox?), our goal was to create a
model that can learn from a limited set of examples and then generalize to novel comparisons. At the
same time, we also wished to capture the significant commonalities between magnitude comparisons
performed by humans and by non-human animals. BART learns explicit two-place relations represent-
ing comparatives (e.g., larger). In addition to supporting generalization to new animal pairs, these
explicit relations can be systematically transformed to solve analogies based on higher-order relations
between different pairs of polar adjectives (e.g., larger: smaller:: faster: slower). However, such high-
level reasoning is beyond the capability of most animals (indeed, it may be uniquely human; Penn,
Holyoak, & Povinelli, 2008). In contrast, basic comparative judgment appears to be similar in humans
and symbol-trained monkeys (Diester & Nieder, 2010; Moyer & Landauer, 1967). Many other species,
such as rats, can respond on the basis of relative magnitude when shown perceptual stimuli that vary
along simple continua (Lawrence & DeRivera, 1954). Thus as a model of basic comparative judgment,
the explicit relational representations acquired by BART appear to be over-powerful.

Fig. 2 sketches different levels of representation that may be involved in making magnitude
comparisons and reasoning with comparative relations (for a similar representational hierarchy, see
Halford, Wilson, & Phillips, 1998, 2010). At a pre-categorical level (i.e., a level of representation that
does not involve categorical distinctions or explicit predicates), simple associative or statistical mech-
anisms can perform basic magnitude comparison and learn from ordered pairs. For example, under
certain conditions the Rescorla-Wagner model of associative learning (Rescorla & Wagner, 1972;
see Wynne, 1995) can model qualitative aspects of animals’ ability to infer transitivity of choice
(e.g., after being trained on only adjacent pairs of stimuli exhibiting the reward pattern A > B, B > C,
C > D, D > E, an animal will tend to choose B over D). Other associative models can account for learning
of orderings across a broader range of conditions (von Fersen, Wynne, Delius, & Staddon, 1991).

In the present paper we adopt a statistical model capable of learning continuous-valued attributes
from a partial ordering of examples (Parikh & Grauman, 2011). This model (described more fully be-
low) learns to rank objects based on the algorithm of a support vector machine with certain additional
1-place
predicates
(e.g., large)

Pre-categorical
representations

Higher-order
relations (e.g., 
polar opposite)

2-place
predicates

(e.g., larger)

Non-relational inputs 
(object features) 

Magnitude 
comparison

bootstrap bootstrap bootstrap

Higher-order reasoning 
(analogy, transitive inference) 

Fig. 2. Relationships among inputs (bottom), levels of representation (middle row) and tasks (top) involving magnitude-related
concepts. Pre-categorical processes bootstrap acquisition of one-place predicates (the domain of BARTlet), which in turn can
bootstrap acquisition of two-place predicates and ultimately higher-order relations (the domain of BART). The lower levels have
access to external inputs (non-relational feature vectors for individual objects) and can be used to perform comparisons based
on dimension-specific magnitudes; the higher levels operate (in part or entirely) on internally-generated representations, and
can be used to perform more abstract types of reasoning, such as higher-order analogical reasoning and transitive inference.
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constraints, and hence will be referred to as RankSVM. RankSVM extracts continuous dimensions of
attributes by learning weights on object features, such that the maximum number of ranking con-
straints is satisfied for the training data. Note that RankSVM does not create representations that cat-
egorize attributes in a binary manner (e.g., elephant is large, not small); rather, this algorithm yields
representations sensitive to relative order on a dimension (e.g., elephant is ordered before horse in
size, horse is ordered before cat). Parikh and Grauman successfully tested their RankSVM model on
problems involving comparisons of realistic visual images. Though we do not claim that the algorithm
is psychologically realistic, it provides a functional model that can deal with partial orderings of ele-
ments coded by high-dimensional feature vectors. The function performed by this model is consistent
with empirical evidence that both animals and humans can learn simple orderings from a partial set of
ordered pairs (Merritt & Terrace, 2011; Trabasso & Riley, 1975; Woocher, Glass, & Holyoak, 1978;
Wynne, 1995). Moreover, its output (feature weights) can readily be translated into empirical priors
for learning one-place predicates.

The next level of representation corresponds to one-place predicates (e.g., large), which in essence
define categories of objects based on their magnitudes on some underlying dimension. Both behav-
ioral and neural evidence indicates that monkeys are capable of acquiring categorical representations
(e.g., Cromer, Roy, & Miller, 2010; Freedman, Riesenhuber, Poggio, & Miller, 2001). For realistic stim-
ulus sets, learners are unlikely to ever compare all possible pairs of N objects (a quantity that scales
with N2) on every dimension of interest. Categorical information about individual objects (a quantity
that scales linearly with N) provides an efficient additional input for learning magnitudes. As described
below, BARTlet learns one-place predicates from facts such as ‘‘a whale is large,’’ bootstrapping from
empirical priors provided by RankSVM. BARTlet thus integrates dimensional information provided by
examples of ordered pairs (via RankSVM) with categorical information, thereby refining its knowledge
about dimensional magnitudes.

The additional levels of representation sketched in Fig. 2 are based on explicit relations (i.e., pred-
icates with more than one argument, such as larger). Whereas BARTlet uses a comparison operator
(based on signal detection theory) to compare relative magnitudes derived from one-place predicates,
BART creates two-place predicates that in effect represent the comparison operator as part of the rela-
tion itself. As described by Lu et al. (2012), these more complex relational representations (arguably
unique to humans) can be learned by bootstrapping from one-place predicates, and can in turn be
bootstrapped to generate higher-order relations between relations (e.g., ‘‘polar opposite’’). We will re-
turn to the topic of levels of representation in the General Discussion. For now, we simply note that the
goal of the present paper is to show that BARTlet, a model limited to one-place predicates (i.e., without
access to explicit two-place comparatives) is capable of basic symbolic magnitude comparisons.

2.2. Deriving magnitudes from unstructured feature vectors

In BARTlet, magnitudes are created by applying learned dimension-specific weights to more prim-
itive features of objects. Magnitudes are represented in working memory as derived features that fol-
low specified probability distributions, modulated by reference points. BARTlet (like BART) represents
a one-place predicate (e.g., large) using a joint distribution of weights over object features, as illus-
trated in Fig. 3 (bottom). A predicate is learned by estimating the probability distribution
PðwjXS;USÞ, where Xs represents the feature vectors for objects in the training set, the subscript S indi-
cates the set of training examples, and US is a set of binary indicators, each of which (denoted by U)
indicates whether a particular object instantiates the predicate or not. The vector w constitutes the
learned predicate representation, which can be interpreted as weights reflecting the influence of
the corresponding feature dimensions in X on judging whether the predicate applies. Formally, the
posterior distribution of weights can be computed by applying Bayes’ rule using the likelihood of
the training data and the prior distribution for w:
PðwjXS;USÞ ¼
PðUSjw;XSÞPðwÞR
w PðUSjw;XSÞPðwÞ

: ð1Þ



w1 w2 w3

w: weights

x: feature vector

MM: Derived magnitude
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4
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. . .

Fig. 3. In the BARTlet model, weight distributions derived from one-place predicates (e.g., large) are applied to the feature
vector for an individual animal to compute a derived magnitude (normally distributed) for that object.
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The likelihood is defined as a logistic function for computing the probability that an object instantiates
the predicate, given the weights and feature vector:
PðU ¼ 1jw;xÞ ¼ ð1þ e�wTxÞ
�1
: ð2Þ
The prior distribution P(w) in Eq. (1) is assumed to follow a normal distribution with mean and covari-
ance matrix as parameters. To define the prior, the BARTlet model relies on initial learning at a simpler
representational level to bootstrap subsequent learning at a more complex level. Specifically, BARTlet
uses weights learned by RankSVM as means and a standardized covariance matrix (e.g., variance of 1,
covariance of 0) as the empirical prior for learning one-place predicates. The RankSVM model takes
ordered pairs as inputs, where each object is represented by a feature vector. Its algorithm is a support
vector machine, which in essence performs linear regression with an additional constraint to mini-
mize weight values. The novel feature of RankSVM is the further addition of a penalty for violating
the given partial ordering of objects (for a full mathematical description, see Parikh & Grauman, 2011).

RankSVM was developed for machine-learning purposes, and we make no claim for the psycholog-
ical plausibility of its algorithm. However, there is ample evidence that many types of animals can
learn simple orderings from a partial set of pairs. For both animals (Merritt & Terrace, 2011; Wynne,
1995) and humans (Trabasso & Riley, 1975; Woocher et al., 1978), orderings are typically learned
‘‘from the ends in’’, with the extreme or ‘‘landmark’’ objects being acquired prior to those that lie clo-
ser to the middle of a continuum. In the present simulations, we trained RankSVM with ordered pairs
that mainly involved the half dozen animals with the highest or lowest values on the relevant contin-
uum. The resulting weights then served as empirical priors for BARTlet, which in turn received rela-
tively extreme animals as examples (positive or negative) of each one-place predicate.

2.3. From weight distributions to derived magnitudes

The weight distribution that BARTlet acquires for a one-place predicate such as large provides all
the information required to specify the magnitude of each animal on each dimension. As shown in
Fig. 3, the magnitude of an object on a dimension (e.g., size) can be derived as a weighted sum of
the feature values x for this object:
M ¼
X

i

wixi; ð3Þ
This weight distribution codes not only first-order statistics (means, lwi
), but also second-order sta-

tistics (variances and covariances) that capture the uncertainty of the estimated weights, as well as
inter-weight correlations. Because the weights are normally distributed, the derived magnitude vari-
able M follows a normal distribution with a mean of lM and a variance of r2

M , which are calculated
according to:
lM ¼
X

i

lwi
xi; ð4Þ

r2
M ¼

X
i

x2
i VarðwiÞ þ

X
i

X
j–i

xixjCovðwi;wjÞ: ð5Þ
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The variance of the derived magnitude reflects uncertainty about the magnitude value and can be
modulated by factors such as attention, in a manner that we will describe. Importantly, BARTlet does
not make use of explicit relations when making symbolic comparisons. Rather, BARTlet evaluates
which of two objects is larger (or smaller, faster, etc.) by the more primitive operation of comparing
the derived magnitudes of the two individual objects, using the framework of signal detection theory.

2.4. Reference points in symbolic comparisons

BARTlet adds two explicit algorithmic assumptions: People operate under limited capacity to main-
tain veridical estimates of magnitudes in working memory, and the focus of attention on a particular
magnitude range is controlled by reference points. Because the representation of magnitudes includes
uncertainty, it is straightforward to implement the key assumption that magnitude discriminability is
influenced by reference points, which operate by influencing the associated variances (Marks, 1972).
BARTlet selectively attends to a particular region of the relevant dimensional spectrum (e.g., the high
end of the size spectrum when choosing the larger of two objects), leading to greater discriminability
between objects in that favored region (Fig. 4). The distance to a reference point is calculated by com-
paring an object to a reference object, and this distance is used to scale the magnitude variance of the
object. As a result, magnitudes of objects closer to the reference point have greater precision (i.e., less
uncertainty), whereas the magnitudes of objects farther from the reference point have less precision.

BARTlet generates magnitude values (M) based on unmarked one-place predicates (e.g., large), and
hence M values are positive and monotonic relative to the unmarked form (e.g., large animals are asso-
ciated with high size values, and small animals with low size values, rather than the reverse). We as-
sume that because the unmarked form of the question requires reversing the natural scale (e.g.,
‘‘smaller’’ focuses attention on low magnitudes), precision diminishes more quickly with distance
from the reference point in the case of the marked comparative.

Specifically, BARTlet uses the following procedure to answer a comparative query such as, ‘‘Which
is larger, an elephant or a giraffe?’’ First, the model establishes a reference point based on the compar-
ative involved in the question and all presented stimuli (i.e., the context). Because the comparative in
this question is larger, the reference point is taken to be the object among the presented stimuli with
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Fig. 4. BARTlet’s representations of magnitudes in working memory. Based on the assumption that reference points at the
extremes control attention, variances of magnitude distributions increase with distance from the reference point at the extreme
consistent with the question. The increase in variance with distance from the reference point is assumed to be greater for the
marked form of a comparative.
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the highest mean magnitude on the size dimension. (If the comparative were instead slower, the ref-
erence point would be the object with the lowest mean magnitude on the speed dimension.) Based on
the selected reference point, the model computes D, the maximum possible distance from the refer-
ence point within the current context (i.e., the subjective range on the relevant dimension). This value
is simply the absolute difference in mean magnitudes between the reference point and the opposite-
extreme reference point. For larger, the opposite-extreme reference point is the object among the pre-
sented stimuli with the lowest mean size magnitude.

The model computes the means and unscaled variances according to Eqs. (4) and (5) for the mag-
nitudes of the two objects being compared. In our example, the mean and variance of the size magni-
tude is computed for both the elephant and the giraffe. Then, for each object being compared, the
model computes d, a measure of the distance between that object and the reference point as a propor-
tion of the maximum possible distance from the reference point.1 This value corresponds to the abso-
lute difference between the mean magnitudes of the object and of the reference point, divided by D. For
each object being compared, the model scales the variance of its magnitude by aebd, where a is an inter-
cept parameter and b is a slope parameter, both free parameters. The specific parameter values were se-
lected to be consistent with the qualitative assumptions of the model. In our simulations, a was set to
0.1, implying that the variance of an object’s magnitude is decreased by 90% when that object’s mean
magnitude is equal to that of the reference point. The values of b were selected so as to yield magnitude
variances that are about 10 times (for unmarked relations; b = 4.6) or 20 times (for marked relations;
b = 5.3) as high as the original variances when an object is maximally distant from the reference point.
Thus, magnitude variances are assumed to increase more rapidly for marked relations than for unmarked
relations as distance from the reference point increases (cf. Marks, 1972). In the present model, variances
increase exponentially with distance from the reference point; however, a variety of neural mechanisms
for gain control could potentially implement the impact of attention on gain control (Dosher & Lu, 2000;
Rahnev et al., 2011; for a review see Reynolds & Chelazzi, 2004).
2.5. Measuring discriminability between magnitudes

BARTlet models the discriminability between magnitudes of two objects that are made available to
a comparison process. Based on signal detection theory, a natural measure of discriminability is da,
which is the variant of d

0
appropriate when variances are unequal (Wickens, 2002, p. 65):
1 We
present
points a
and the
da ¼
lM1
� lM2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2
M1
þ r2

M2
Þ=2

q : ð6Þ
A complete model of symbolic magnitude comparisons needs to specify a decision process that would
translate degree of discriminability into accuracy and reaction time for comparative judgments. For
example, the decision diffusion model (Ratcliff, 1978; Ratcliff & McKoon, 2010; Ratcliff, Van Zandt,
& McKoon, 1999) is an extension of signal detection theory to the time domain, accumulating infor-
mation continuously on the basis of repeated samples (also see Link, 1990; Petrusic, 1992). The diffu-
sion model has a plausible neural realization (e.g., Ratcliff, Cherian, & Segraves, 2003; Wong & Wang,
2006). If applied to comparative judgment, a theoretical measure of discriminability, such as da, could
be used to predict the average value across repeated samples (corresponding to the mean of the drift
rate in a diffusion process). Because our present focus is on variables that influence discriminability
(i.e., information quality), rather than on the decision process per se, we will simply use BARTlet to
make qualitative predictions of decision difficulty, based on values of da. We assume (as the diffusion
model predicts) that decreases in discriminability will make the decision process more difficult, yield-
ing slower and/or less accurate comparative judgments.
assume for simplicity that reference points are established using the range of presented stimuli. Of course, the range of
ed stimuli will typically become apparent to the observer over the course of exposure to a series of examples. Reference
re therefore likely to be updated dynamically, reflecting a compromise between prior expectations about stimulus range
range actually observed in the context (Petrusic & Baranski, 1989).
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Fig. 5. Scatter plots of human magnitude ratings (based on data from Holyoak and Mah, 1981) versus mean magnitudes derived
from BARTlet using Leuven vectors for animals on four dimensions.
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3. Simulations of symbolic magnitude judgments using Leuven vectors

3.1. Predicting human magnitude ratings

We first evaluated whether the M values learned by BARTlet in fact reflect the subjective magni-
tudes of animals on the relevant dimensions. The ‘‘ground truth’’ for all training examples and test
pairs was provided by norms derived from ratings by college students on the dimensions of size, feroc-
ity, intelligence and speed (Holyoak & Mah, 1981). For the animals used in the simulations reported in
the present paper, intercorrelations among the four dimensions were moderate, ranging from .38 (size
with speed) to .60 (size with fierceness). For our first set of simulations, we identified a set of 44
animals that also appeared in the Leuven norms (de Deyne et al., 2008). Each animal was represented
by a vector of 50 continuous-valued features (see Lu et al., 2012, pp. 631–632, for a description of how
the Leuven vectors were created).

As described earlier, learning of one-place dimensional predicates (large, fierce, intelligent, fast)
proceeded in two stages. First, RankSVM was provided with the ordering for each of the top three
and bottom three animals on the relevant dimension relative to all other animals, intermixed with
an additional 100 pairwise orderings selected at random from the pool of all possible pairs of 44
animals.2 The mean weights estimated by RankSVM (linearly scaled by a factor of 5 to roughly match
the range of weights BARTlet would infer from an uninformative prior) became the empirical priors
2 The specific selection of training examples is not critical to the performance of the model. We aimed to limit the number of
training examples so that the model was forced to generalize on test pairs. The emphasis on early learning of extreme ‘‘landmark’’
animals is consistent with the typical pattern observed in learning orderings (Potts, 1974; Rylass & Smith, 2000).
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on weight means for BARTlet.3 As RankSVM does not provide a covariance matrix, an uninformative prior
(variances = 1, covariances = 0) was used. Second, BARTlet was provided with the 20 animals with the
highest values (positive examples) and the 20 with the lowest values (negative examples) on the relevant
dimension. These training examples were drawn from the entire pool of 129 animals in the Leuven
norms. The resulting weight distributions across the 50 features of the Leuven inputs (Fig. 1) were highly
distributed, based on at least 20 statistically predictive features for each of the four magnitude dimen-
sions of interest.

The weight distribution for each one-place predicate was used to calculate M values for each ani-
mal, as described earlier. Fig. 5 shows the scatter plots of mean M values versus human magnitude
ratings for each of these dimensions. Spearman rank-order correlations ranged from .86 to .96 for
the four dimensions. These results indicate that magnitude values, derived from weight distributions
acquired by BARTlet’s learning mechanism from large, independently-generated feature vectors (Leu-
ven vectors; see Fig. 1), are quite accurate in predicting human judgments about subjective magni-
tudes of animals on the four dimensions.
3.2. Symbolic distance effect

To evaluate whether BARTlet exhibits the ubiquitous symbolic distance effect obtained for compar-
ative judgments by humans, we formed all possible pairs of the 44 animals previously identified,
which served as testing items for each of the unmarked comparative relations corresponding to the
four rated dimensions in Holyoak and Mah’s (1981) norms: larger, fiercer, smarter, and faster. To ensure
that the differences in magnitudes between animals in a pair were likely to be distinguishable by
humans, we excluded pairs that differed by less than .5 on the normed ratings for the relevant dimen-
sion. The resulting pairs of animals were grouped into four distance bins, such that animals very close
on the relevant dimension fell into bin 1 and animals maximally far apart on that dimension fell into
bin 4. Fig. 6 plots the mean da value for each distance bin, averaged across the four unmarked compar-
3 The use of the prior provided by RankSVM increased the rank-order correlations between human magnitude ratings and
magnitudes derived from the model by approximately .10 (relative to an uninformative prior) for the Leuven inputs and about .02
for the topics inputs.
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ative relations. Results for the four marked relations are similar. Consistent with a symbolic distance
effect, BARTlet’s predicted discriminability increases with the distance between the pair of animals.
3.3. Semantic congruity effect

To test BARTlet’s ability to predict the congruity effect, for each of the four dimensions we selected
five animal pairs that were either both at the high end (e.g., whale–elephant for size) or both at the low
end (e.g., goldfish–fly). We selected pairs that were at least minimally discriminable based on the
learned weight distributions. All these pairs were relatively close in magnitude, as the congruity effect
is typically maximized when both pairs are near to an extreme and hence close in magnitude. A con-
gruity effect was observed for all four dimensions, as indicated by the interaction apparent in each pa-
nel (see Fig. 7). In each case the interaction shows an asymmetry, with the advantage of the unmarked
congruent form of the question (e.g., ‘‘choose larger’’ for large animals) being slightly greater than the
corresponding advantage of the marked congruent form (e.g., ‘‘choose smaller’’ for small animals). In
other words, the congruity effect was modulated by a markedness effect, as is commonly observed in
behavioral studies (e.g., Holyoak & Mah, 1981).
3.4. Influence of stimulus range on congruity effect

An important additional finding concerning the congruity effect is that it is influenced by the range
of magnitudes represented in the stimulus set (e.g., Čech & Shoben, 1985, for humans; Jones et al.,
2010, for monkeys). Since BARTlet sets its reference points dynamically based on the magnitude range
relevant to the current context, it naturally predicts how the congruity effect will vary with the con-
text. To test this aspect of the model, we created four sets of stimuli based on the size dimension, or-
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dered in size from Set 1 (pairs of largest animals) to Set 4 (pairs of smallest animals). Sets 1 and 4 were
the same pairs used to test the basic congruity effect (see Fig. 7). Sets 2 and 3 were intermediate in size
(e.g., Set 2 included alligator-pig; Set 3 included cat-sparrow). The size distance between the two ani-
mals in each pair was closely matched across all four sets. In two different tests, BARTlet made ‘‘choose
larger’’ and ‘‘choose smaller’’ judgments using either the full range of magnitudes (i.e., Sets 1–4), or a
restricted range (i.e., Sets 2–3 only). As shown in Fig. 8, both tests yielded congruity effects; however,
the magnitude of the congruity effect for the critical Sets 2–3 based on middle-sized animals was sub-
stantially larger when these intermediate sets were tested alone (restricted range; 2.03 in da units)
than when they were intermixed with the pairs of very large or very small animals (full range; 1.11
in da units). BARTlet thus provides an account of how context can influence comparative judgments
by dynamically altering reference points.
4. Simulations of symbolic magnitude judgments using topics vectors

To derive topics vectors, we obtained a preprocessed version of the English Wikipedia corpus in
which entries shorter than 512 words were removed, as were words that are not in a standard English
dictionary or that are on a list of ‘‘stop words’’ (high-frequency function words that have low semantic
content, such as the, and, etc.), resulting in a total of 174,792 entries and 116,128 unique words. We
ran the topic model (Griffiths et al., 2007) on this corpus to obtain 300 topics. The algorithm was used
to generate three Markov chains, taking the first sample after 1000 iterations and then sampling once
every 100 iterations, for a total of eight samples from each chain or 24 samples overall. Each sample
yielded a matrix in which the (i, j)th entry is the number of times that word i has been assigned to
topic j. From this matrix, we derived a vector for each word based on the conditional probability of
each topic given that word (i.e., each resulting word vector is based on the relative frequencies of
the different contexts within which the word could occur), using the same procedure employed by
Lu et al. (2012) for outputs of the topic model ran on a different corpus.

Samples from a single Markov chain were very similar, in that the same 300 topics seemed to be
found in each (based on examining the most probable words for each topic), but different chains
produced different sets of topics. To create a single unified set of topics vectors for all words, we first
averaged the word vectors based on samples from the same chain to produce a single set of word
vectors for each chain. We then unified the three different chains (averaged across eight samples each)
through the following procedure: First, for each of the averaged chains, we chose the 30 features
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(topics) that had the highest sums across the vectors of the 77 animal words in Holyoak and Mah’s
(1981) norms (i.e., the 30 most prevalent topics for these animal concepts). Using the resulting animal
vectors (reduced to 30 features for each chain), we then ran the full BART model to learn the relations
larger, fiercer, smarter, and faster. We examined BART’s generalization performance for these relations
using the animal vectors from each chain (using the same tests as Lu et al., 2012). Starting with all 30
features from the chain that produced the best performance, we added features one at a time from the
other two chains (each of which also had 30 features) in order of BART’s performance on the chains. To
minimize redundancy, a feature was added only if its correlations across the 77 animals with the
features chosen so far were all less than .80. This process resulted in a total of 52 selected features.
All simulations reported below were run using these topics vectors of length 52.

Based on the topics vectors, the same general procedure was used to learn one-place predicates
with BARTlet as was used for Leuven vectors (i.e., initial weights acquired using RankSVM provided
empirical priors for the learning of one-place predicates). The weights obtained by RankSVM were
scaled by a factor of 10 rather than by a factor of 5 (to better match the scale of weights learned from
topics vectors). The top and bottom 20 animals on each dimension (used as training data for BARTlet
after the RankSVM stage) were drawn from the 77 animals in Holyoak and Mah’s norms, rather the
129 animals in the Leuven dataset. The same method was used as before for calculating magnitude
means and variances for each animal on each dimension.
4.1. Predicting human magnitude ratings

As we had done for the Leuven vectors, we performed correlational analyses to predict the human
ratings (from Holyoak & Mah, 1981) using magnitudes extracted from the one-place predicates
learned by applying BARTlet to topics vectors (except across a total of 77 animals, rather than the
0

2

4

6

8

10

-300 -100 100 300

-300 -100 100 300 -300 -100 100 300

-300 -100 100 300

H
um

an
 M

ag
ni

tu
de

 R
at

in
g

Predicted Mean Magnitude

Size

0

2

4

6

8

10

H
um

an
 M

ag
ni

tu
de

 R
at

in
g

Predicted Mean Magnitude

Ferocity

0

2

4

6

8

10

H
um

an
 M

ag
ni

tu
de

 R
at

in
g

Predicted Mean Magnitude

Intelligence

0

2

4

6

8

10

H
um

an
 M

ag
ni

tu
de

 R
at

in
g

Predicted Mean Magnitude

Speed

Fig. 9. Scatter plots of human magnitude ratings (based on data from Holyoak and Mah, 1981) versus mean magnitudes derived
from BARTlet using topics vectors for animals on four dimensions.
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44 available with Leuven vectors). Scatter plots are shown in Fig. 9. Spearman rank-order correlations
were lower than for the Leuven vectors, but all were reliable, ranging from .73 to .82 across the four
dimensions.

4.2. Symbolic distance effect

As shown in Fig. 10, the topics vectors yielded a robust distance effect (calculated in the same way
as for the Leuven vectors, except using an additional distance bin made possible because a larger set of
animals was available).

4.3. Semantic congruity effect

As done previously for Leuven vectors, we selected sets of five pairs of animals consisting of ani-
mals near the high or else low end of each of the four continua. Each pair was at least minimally dis-
criminable but relatively close in magnitude (as the congruity effect is maximized for comparison of
items with similar magnitudes).

Fig. 11 shows the congruity effects obtained for each of the four dimensions. A robust congruity
effect was obtained for each. A markedness effect (overall advantage for the unmarked form of the
comparative) was obtained for all of the dimensions (though more pronounced for size and ferocity
than for the other two). Because the topics vectors yielded cruder magnitude codes than did the
Leuven vectors, we did not attempt to model the effect of range (as it was too difficult to generate
discriminable pairs at more than two levels of overall magnitude).

5. General discussion

5.1. Relational comparisons without explicit relations

In the present paper we have presented a model, BARTlet, that provides a unified account of how
subjective magnitudes on different dimensions can be learned from more elementary features, repre-
sented and modulated in working memory, and used to assess the discriminability of objects. Previous
models of symbolic magnitude comparisons have tacitly assumed that magnitude values on the
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relevant dimensions are prestored in long-term memory as features of objects. We argue that this
assumption is unrealistic, even for a quasi-perceptual dimension such as size, and especially for the
many complex social and interpersonal dimensions on which people can make comparisons (e.g.,
intelligence, religiosity). By building on BART, a Bayesian model of how comparative concepts can
be learned from examples by statistical inference (Lu et al., 2012), we were able to integrate an ac-
count of how magnitudes are compared with an account of how magnitudes can be created in working
memory based on prior learning about comparative concepts. The generality of the approach was
demonstrated by applying the model to two sets of inputs (Leuven vectors and topics vectors), each
of which was generated autonomously. BARTlet serves as an existence proof that symbolic compari-
sons can be modeled using high-dimensional distributed representations of elementary features,
without assuming pre-existing dimensions, and without hand-coding inputs.

The operation of BARTlet, in comparison to its ‘‘smarter’’ precursor, BART, provides an instructive
computational example of how a relational task (comparative judgment of magnitudes) can be per-
formed without explicit relational representations. BART forms explicit representations of first-order
relations such as larger (defined by weight distributions over pairs of objects assigned to distinct
roles). In contrast, BARTlet operates only on weight distributions for one-place predicates (e.g., large),
bootstrapping from priors on mean weights derived from pre-categorical comparisons (a partial
ordering of pairs from which mean weights are learned by RankSVM, a model based on statistical
regression). Magnitudes of individual objects are derived directly from the learned weight distribu-
tions for one-place predicates. BARTlet then proceeds to use an implicit comparison operation, which
can be characterized in terms of signal detection theory, to assess which of two objects is the larger.
No explicit larger relation is needed for BARTlet to choose the larger of two objects. BARTlet is thus an
existence proof that the ability to make comparative judgments does not require explicit relational
representations, consistent with evidence that rudimentary types of symbolic magnitude comparisons
are within the capabilities of non-human primates (Cantlon et al., 2009).
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Whereas BART is a computational-level model (Marr, 1982) of how comparatives can be learned,
BARTlet adds explicit algorithmic assumptions concerning the representation and processing of
magnitudes, based on consideration of limited computational resources in working memory. These
core assumptions are firmly rooted in long-standing theories concerning attentional influences on
magnitude representation. Human (and non-human) observers have limited capacity in working
memory to maintain veridical estimates of magnitudes, which therefore vary in their precision (Miller,
1956). To partially compensate, observers focus attention on a favored region, or magnitude band,
along the relevant continuum (Luce et al., 1976; Nosofsky, 1983). When making comparisons based
on relative concepts, such as ‘‘choose larger’’ or ‘‘choose smaller’’, attention is guided by a reference
point located at or near the end of the continuum cued by the form of the question (Holyoak, 1978;
Jamieson & Petrusic, 1975; Marks, 1972). More specifically, selective attention causes the precision
of magnitudes in working memory to be greatest (i.e., associated with low variance) for values close
to the reference point, decreasing with distance from the reference value (Marks, 1972). The decrease
in precision with distance from the reference point tends to be asymmetrical, with a steeper function
for the ‘‘marked’’ form of the question (e.g., ‘‘choose fiercer’’ as opposed to ‘‘choose meeker’’).

Armed with these algorithmic assumptions, together with the tools of signal detection theory, we
showed by a series of simulations that BARTlet can predict (1) human ratings of subjective magnitudes
for animals along four different dimensions, (2) the symbolic distance effect, (3) the semantic congru-
ity effect, (4) the modulation of the congruity effect by the polarity of the comparative (i.e., marked-
ness), and (5) the context sensitivity of the congruity effect (i.e., the influence of the magnitude range
of the presented stimuli). Furthermore, BARTlet accounts for all of these phenomena based on magni-
tude distributions that emerge from prior statistical learning of weight distributions over a high-
dimensional feature space. No previous theory of magnitude comparisons has provided a comparable
integration with the acquisition of comparative concepts.

5.2. Reference points in magnitude comparisons

BARTlet provides a computational realization of a qualitative hypothesis proposed four decades ago
by Marks (1972): Reference points cued by the form of comparative questions systematically modu-
late the precision of magnitudes represented in working memory, yielding the semantic congruity
effect. The reference-point hypothesis implies that the congruity effect results from differences in
the discriminability of magnitudes represented in working memory, rather than a bias in encoding
(e.g., Marschark & Paivio, 1979) or a linguistic influence (Banks et al., 1975). BARTlet provides a
well-specified mechanism by which reference points can alter discriminability in direct judgments
of discriminability (Holyoak & Mah, 1982) as well as speeded tasks. The modulation of precision will
maximally impact discriminability between objects with relatively similar magnitudes, in accord with
the general finding that congruity effects are larger when the objects being compared are closer in
magnitude (Petrusic, 1992). The BARTlet model could easily be extended to account for the impact
of explicit reference points (e.g., in a task requiring selection of which of two digits is closer in mag-
nitude to 5; Holyoak, 1978), which can shift the favored attention band to an intermediate region on a
continuum.

BARTlet generates magnitude values (M) based on unmarked one-place predicates (e.g., large), and
hence M values are positive and monotonic relative to the unmarked form (e.g., large animals are
associated with high size values, and small animals with low size values, rather than the reverse).
We assume that because the unmarked form of the question requires reversing the natural scale
(e.g., ‘‘smaller’’ focuses attention on low magnitudes), precision diminishes more quickly with distance
from the reference point in the case of the marked comparative. Our approach thus provides a mech-
anism by which polarity could impact magnitude judgments made by non-linguistic animals (Cantlon
& Brannon, 2005). This interpretation supports the hypothesis that the linguistic differences associ-
ated with markedness in human languages can be traced to more fundamental representational dif-
ferences in magnitude continua.

The strong evidence that reference points influence discriminability implies that the semantic
congruity effect is properly viewed as an example of the broader class of framing effects that impact
decision making (Tversky & Kahneman, 1981). Indeed, semantic congruity effects have been observed
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not only in magnitude comparisons involving objects, but also in judgments of preferential choice. For
example, Birnbaum and Jou (1990) found that judging which individual is ‘‘liked more’’ for generally
likeable individuals took less time than judging between unlikeable individuals, whereas judging
which individual is ‘‘liked less’’ for likeable individuals took more time than judging between unlike-
able individuals (also Nagpal & Krishnamurthy, 2008). The mechanisms instantiated in the BARTlet
model may well prove applicable to decision making in areas such as consumer choice and social
judgment.

The general notion of reference points has also been introduced in linguistic models of the inter-
pretation of scalar adjectives (Tribushinina, 2009), which are interpreted in a context-sensitive man-
ner. Scalar adjectives such as large, warm, and average refer to positions along a continuous dimension
of magnitude; they are interpreted not as absolute values, but rather in relation to the noun category
being modified (Partee, 1995). Thus an eagle is a large bird, but not an especially large animal; a tall
boy is tall for a boy, but not for a tree. The interpretation of scalar adjectives requires scaling a
subjective magnitude, or a probability of category membership derived from a magnitude, based on
comparison to a norm or range derived from knowledge about the noun concept (see Barner &
Snedeker, 2008).

5.3. The power and limits of magnitude representations

The parallels between the patterns of performance observed in monkeys and humans when
performing magnitude comparisons suggest that this type of comparative judgment is based on
evolutionarily primitive mechanisms. More broadly, neural and other evidence indicates that primates
have evolved a specialized system for processing approximate magnitude, in which the intraparietal
sulcus plays a key role (e.g., Cantlon et al., 2006; Dehaene & Changeux, 1993; Piazza et al., 2004, 2006,
2007; Pinel et al., 2004).

One reason for the apparent ubiquity of magnitude representations is that they can serve to answer
multiple types of questions, each of which also provides learning opportunities. BARTlet learns mag-
nitudes by integrating training with partial orderings (e.g., elephant is ordered before dog on the size
dimension), the type of information provided to RankSVM, with training based on categorical inputs
(e.g., elephant is large). Its acquired magnitude information might then be used to answer other inter-
related types of questions (e.g., How large is a dog? Is a dog large? Is it larger than a cat? Is it smaller
than a bear? Which is closer in size to a bear, a dog or a fox?). Feedback on the answers to any of such
questions could be used to refine magnitude representations for a wide range of individual animals
(not just those directly queried), thereby improving the model’s ability to answer any question that
depends on these magnitudes.

The fact that magnitudes are involved in answering many different questions and can be learned by
multiple routes explains why evolution has apparently placed a premium on the creation of special-
ized neural hardware for manipulating such representations. Given the ubiquitous importance of com-
parative judgments in decision making, a system for discovering and manipulating magnitudes will be
broadly advantageous. Nonetheless, unidimensional magnitude representations have their limita-
tions. One limitation is that the neural system for approximate magnitude acts as a bottleneck.
Precisely because any dimension can be coded in terms of a single internal number line, it is very dif-
ficult to code distinct orderings on separate dimensions for a single set of objects (Banks & White,
1982), a bottleneck that contributes to the ‘‘halo effect’’ (DeSoto, 1961). In addition, the validity of a
one-dimensional magnitude representation is inherently limited, as is apparent whenever we try to
reduce a complex multidimensional situation to a single number that serves as a ‘‘score’’ (e.g., GPA
as a summary of a student’s academic ability, h-index as a summary of a scientist’s scholarly impact,
dollar earnings as a summary of a year of one’s life).

5.4. Limitations and possible extensions of the BARTlet model

Although the BARTlet model captures several basic phenomena related to symbolic magnitude
comparisons, it currently has a number of empirical limitations. We have focused on the distance,
semantic congruity, and markedness effects, which are arguably the phenomena most universally ob-
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served in studies of symbolic magnitude comparisons. An additional phenomenon, typically observed
for comparisons involving a closed-set series for which only ordinal information is available (e.g., an
arbitrary ordering of elements for which magnitude information is not provided), is a bow-shaped se-
rial position curve: accuracy and decision time indicate greater difficulty for pairs drawn from near the
center of the list than for pairs closer to the ends. A bowed serial position curve is not observed for
magnitude continua such as those on which we have focused in the present paper, but it is found
for arbitrary orderings, both for humans (e.g., Potts, 1974; Trabasso & Riley, 1975; Woocher et al.,
1978) and many animal species, including squirrel monkeys (McGonigle & Chalmers, 1977), rats
(Davis (1992) and pigeons (von Fersen et al., 1991; for a review see Merritt & Terrace, 2011).

Although BARTlet does not currently model learning and performance with arbitrary series, it is in
fact well-suited to be extended in this direction. One leading hypothesis is that bow-shaped serial po-
sition curves reflect positional discriminability (Holyoak & Patterson, 1981; Merritt & Terrace, 2011).
The basic idea is that if individual items lack featural information that conveys magnitude, they are
instead coded by their position relative to the beginning and end terms, which are learned first and
serve as anchors. In accord with the representations used by BARTlet, these positional codes will be
imprecise, approximating a normal distribution centered on an item’s veridical position. Positional
codes can be compared in the same way as codes for ‘‘true’’ magnitudes. The codes for central items
will necessarily have greater overlap, and may well have higher variances than end items (Bower,
1971; Murdock, 1960; Trabasso & Riley, 1975). Thus, a natural extension of BARTlet would use the
same basic type of representation—continuous-valued codes, normally distributed and varying in pre-
cision—to explain comparisons based on arbitrary ordered sets of elements. Such an extension would
generate responses that exhibit distance effects, congruity effects, bow-shaped serial position effects,
and transitivity of choice, as is empirically observed.

There has been some debate concerning whether, or in what way, magnitude codes are spatial in
nature. The apparent empirical differences between learning and performance with dimensional mag-
nitude codes versus positional codes suggest that although both are essentially analog (i.e., continu-
ous-valued), magnitude codes are not necessarily spatial (nor are they inherently visual; Holyoak,
1977). In contrast, positional codes seem to be more spatial in nature, akin to an internal array (Holy-
oak & Patterson, 1981; Woocher et al., 1978). Nonetheless, similar brain areas are involved in compar-
isons of both types (see Cantlon et al., 2009).

A behavioral phenomenon often cited in support of a specifically spatial interpretation of magni-
tude codes, especially for number, is the SNARC effect (‘‘Spatial Numerical Association of Response
Codes’’; Dehaene, 1992; Dehaene, Bossini, & Giraux, 1993). When evaluating a number (e.g., deciding
whether it is odd or even), people typically respond to small numbers more quickly when the response
key is to the left, and to large numbers more quickly when the response key is to the right. The SNARC
effect thus suggests that number magnitude has a natural mapping onto the left–right axis of space
(small numbers associated with the left).

The original tasks that exhibited a SNARC effect only used numbers, and did not involve magnitude
comparisons. More recently, SNARC-like effects have also been observed in comparison judgment
tasks, but the empirical picture is quite complex. Shaki, Petrusic, and Leth-Steensen (2012) reported
that (1) a typical SNARC effect is found for digit comparisons with both ‘‘larger’’ and ‘‘smaller’’ instruc-
tions, (2) a typical SNARC effect is found for animal size comparisons with a ‘‘choose smaller’’ instruc-
tion, but a reverse SNARC effect is found for a ‘‘choose larger’’ instruction; (3) a short, newly-learned
height ordering behaves much like size comparisons; (4) the above pattern for English speakers (1–3)
is reversed for Israeli-Palestinians who habitually read right-to-left. A rough characterization of Shaki
et al.’s (2012) findings is that although by default small numerical magnitudes are associated with the
left, for non-numerical continua this bias is overridden by a preference to place the reference point on
the left (or more generally, on the side from which orderings usually begin—hence the reversal due to
cultural experience).

BARTlet does not model output processes, so it does not provide any obvious insight into the
SNARC effect. However, as Shaki et al. (2012) noted, ‘‘. . .the mere fact that spatial information is being
activated in association with the activation of magnitude information does not, in and of itself, con-
clusively imply that such spatial information is then actually being used by the comparison process
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itself’’ (p. 525). Whatever the SNARC effect may imply about spatial processing, there is reason to
doubt it has a deep connection to the comparison process that is the focus of BARTlet.

A further limitation of BARTlet stems from the fact that it can only compute comparative relations,
and does not store or retrieve facts. People can certainly learn specific relational facts that arise repeat-
edly, or are tied to the intrinsic meanings of words (e.g., we commonly see dogs that are larger than
cats; we know mountains are larger than hills because of how these terms are defined), and compar-
isons of this sort are made relatively quickly (Holyoak, Dumais, & Moyer, 1979). BARTlet does not
account for the role of fact retrieval in magnitude comparison. It should be emphasized, however, that
fact retrieval seems to play a modest secondary role. The initial demonstration of distance effects
involving the digits 1–9 (Moyer & Landauer, 1967) was especially compelling because although adults
surely know the fact that 3 is larger than 2 very well, they nonetheless find it easier to decide that 8 is
larger than 2. In general, the ease of mental comparison seems to trump that of fact retrieval.

5.5. Relation to previous models of learning dimensional representations

As a learning model, BARTlet is based on the BART model, which Lu et al. (2012, pp. 640–642) dis-
cussed in relation to other models of relation learning. Here we consider three models (roughly or-
dered from least to most explicit in their relational representations) that have addressed the
acquisition of continuous dimensions and/or linear orderings.

Smith, Gasser, and Sandhofer (1997) developed a multi-layer neural network model that learns
dimensional adjectives by back-propagation. This model focuses on the interactive constraints pro-
vided by sensory, perceptual and linguistic information. Smith et al. argued that dimensional attri-
butes, such as large or red, need not correspond to invariant features at the sensory level, but rather
can be learned as distributed representations over more elementary features. Learning in their model
involves updating weights on features; the magnitudes of weights are interpreted as indicators of
learned selective attention. These assumptions are shared by BARTlet. Though the Smith et al. model
has not been directly applied to the task of magnitude comparisons, it might well be extended in that
direction. As a standard neural network, the model learns weights as point estimates, and hence does
not capture differences in precision. But at a global level, the Smith et al. model is similar in spirit to
BARTlet, taking a basically bottom-up approach to the acquisition of dimensional concepts, and oper-
ating without explicit representations of comparative relations.

DORA (Discovery of Relations by Analogy) is a symbolic-connectionist model that learns both one-
place predicates (e.g., large) and two-place relations (e.g., larger), focusing on comparatives (Doumas,
Hummel, & Sandhofer, 2008). Like BARTlet (and BART), it emphasizes bottom-up learning from objects
coded as feature vectors (though it has not yet been tested on high-dimensional inputs of the sort used
in the present paper). DORA includes a comparator operator that is well-suited for performing mag-
nitude comparisons. Because DORA’s predicates are initially most similar to the specific cases from
which they were learned, the model predicts a congruity effect early in learning (e.g., for children,
the representation of large will be more similar to large than small objects, and vice versa for small,
leading to a congruity effect). As the model continues to refine its predicates using a feature-intersec-
tion mechanism, its representations of dimensional adjectives will tend to become more ‘‘magnitude
neutral.’’ It is therefore less clear whether the model could account for congruity effects observed in
studies with adults. However, it is possible that DORA could be extended to include assumptions about
the role of reference points.

Finally, an extremely general framework for learning relational structures has been proposed by
Kemp and Tenenbaum (2008, 2009). By coupling a generative grammar for structural forms with a
hierarchical Bayesian inference engine, their integrated model can generate many different structures
to explain data patterns, including trees, multidimensional spaces, grids, rings, chains and (most
importantly in the present context) linear orders. As Kemp and Tenenbaum acknowledge, ‘‘. . .we offer
a modeling framework rather than a single model of induction. Our framework can be used to con-
struct many specific models. . .’’ (2009, p. 22). Any specific model within the framework involves a
combination of assumptions about the available forms and about the processes that operate on forms
to make inductive inferences. Given its flexibility, a model could presumably be created within the
framework that would closely emulate BARTlet (or BART, or other alternative models).
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The power of the framework is also its Achilles’ heel as a psychological theory. Without clear con-
straints, it is hard to derive testable predictions. However, we can evaluate the specific model of linear
orderings that Kemp and Tenenbaum (2008) provided. This model has two basic problems as a
psychological proposal. First, given that the model can learn many different structural forms, it does
not account for the empirical fact that linear orderings are special in the realm of animal cognition. As
we have seen, a great variety of species can make comparative judgments based on linear orderings.
By contrast, animals have considerably more difficulty learning circular orderings, or rings (von Fersen
et al., 1991). The special status of linear orderings is a natural consequence for BARTlet and other mod-
els that base comparisons on magnitudes, or some similar unidimensional quantity. But within the
Kemp and Tenenbaum framework, there is no apparent reason why rings should be any more difficult
to learn than linear orders (though a prior could be arbitrarily imposed to favor either one).

A second basic problem is that the Kemp and Tenenbaum model of linear orders does not account
for the ubiquitous distance effect. Their model creates explicit asymmetric relations between all pos-
sible pairs in an ordering (e.g., if elements A through E form a linear order, the learned structure would
not only include links A > B, B > C, etc., but also B > D, B > E, etc.). The proposed inference processes
(Kemp & Tenenbaum, 2009) imply that the strength of an inference concerning any two elements
in a structure will be monotonic (in one direction or the other) with the length of the chain of links
connecting the elements. But in the linear order model, the chain length is constant (one) for all pairs;
hence the model predicts that (for example) a reasoner could evaluate B > C just as easily as B > D.

An ordering structure of this form was used to account for patterns of dominance behavior among
members of a monkey troop (observed by Range & Noë, 2002; see Kemp & Tenenbaum, 2008, Fig. 4a, p.
10689). In fact, as we will discuss below, it is possible to explain monkeys’ choices regarding whether
or not to exhibit submissive behavior toward a conspecific without assuming that they form explicit
comparative relations at all, far less a complete explicit representation of all pairwise relations. Thus,
while the Kemp and Tenenbaum model of linear orders provides a useful tool for extracting the types
of representations employed by (human) primatologists, it is problematic if interpreted as a psycho-
logical model of the mental representations that guide the choice behavior of primates.

5.6. Re-representation and the emergence of explicit relations

A great virtue of computational models is that they can bring clarity to important conceptual dis-
tinctions that might otherwise be blurred, or dismissed as a matter of semantics. A longstanding ques-
tion in comparative psychology has been whether or not non-human animals (especially primates)
‘‘think’’, ‘‘reason’’, ‘‘use logic’’, or ‘‘understand relations’’ in fundamentally the same way as humans
do. Various relational tasks have figured prominently as sources of evidence, including comparative
judgment and transitive choice. As noted earlier, many species, from pigeons to primates, exhibit tran-
sitivity of choice (see Merritt & Terrace, 2011). Some have viewed such performance as tantamount to
Piagetian transitive inference (e.g., if a 5-year old child is told that object B is bigger than object C, and
object A is bigger than object B, then the child will likely be able to infer that A is bigger than C, despite
knowing nothing about the features of the objects).

But in fact, transitivity of choice and Piagetian transitive inference involve completely different task
demands, with little in common other than their misleadingly similar names (Halford, 1984; Markovits
& Dumas, 1992). Transitivity of choice can be accomplished by using perceptually-based training data
(ordered pairs and/or individual objects) to learn approximate quantities associated with individual
items (e.g., magnitude codes, positional codes, values, or associative strengths). Examples of associative
and statistical models that can accomplish learning of this type include the Rescorla-Wagner model
(Rescorla & Wagner, 1972), Value Transfer Theory (von Fersen et al., 1991), RankSVM (Parikh &
Grauman, 2011), and BARTlet. Although these models differ in many important ways, all provide
mechanisms for performing relational judgments without explicit relations.

Accordingly, demonstrating success in basic comparative judgments tasks, or in transitivity of
choice paradigms, cannot in principle provide evidence for the use of explicit comparative relations.
Morgan’s Canon can prudently be applied: ‘‘In no case may we interpret an action as the outcome
of the exercise of a higher psychical faculty, if it can be interpreted as the outcome of the exercise
of one which stands lower in the psychological scale’’ (Morgan, 1894, p. 53). If we replace the quaint
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Victorian phrase ‘‘psychical faculty’’ with ‘‘relational complexity’’ or ‘‘representational rank’’ (Halford
et al., 1998; Phillips, Halford, & Wilson, 1995), then Morgan’s Canon continues to provide a valuable
guide for comparative (and cognitive) psychology in the 21st century.

As Penn et al. (2008) argued based on a review of comparative studies, there is overwhelming evi-
dence that many species of animals can make relational judgments based on perceptual information,
yet no compelling evidence that any non-human primate is able to reason about relations. At the same
time, it appears that the neural system supporting comparisons based on approximate magnitude in
non-human primates operates in humans as well (Dehaene & Changeux, 1993). Apparently, humans
have not lost the simpler mechanisms available to other animals for comparing magnitudes, but rather
have exploited these mechanisms as a foundation for symbolic mathematical thinking (Opfer &
Siegler, 2012). More generally, humans appear to have surpassed the intellectual capacity of any other
species on earth by acquiring neural machinery that enables the re-representation of lower-level
information in terms of explicit relational concepts.

As a small computational example of such re-representation, BARTlet becomes the prequel to
BART, which uses one-place predicates such as large to bootstrap acquisition of explicit two-place rela-
tions such as larger. A system that is restricted to magnitude representations (lacking the ability to
form explicit relational representations) inevitably ‘‘hits the wall’’ when faced with more complex
symbolic tasks. A monkey (and BARTlet) can learn to choose the larger or the smaller of two objects.
But a human (and BART) can also acquire an explicit representation of the relations larger and smaller,
and go onto reason about them (e.g., noticing that larger is related to smaller in much the same way as
fiercer is related to meeker; Lu et al., 2012).

Similarly, associative and statistical mechanisms that can support transitivity of choice prove com-
pletely inadequate when confronted with a Piagetian transitive inference task. The latter task requires
a ‘‘one shot’’ inference based on integration of two binary premises in working memory, without re-
peated acquisition trials, and without support from perceptual cues or magnitude codes. Reliable suc-
cess is not achieved by any species except humans, and not until preschool age (Andrews & Halford,
1998; Halford, 1984; Halford, 1993). Piagetian transitive inference is heavily dependent on a mature
and intact human frontal cortex (Waltz et al., 1999). We have recently extended the BART model to
enable it to use its learned representations to solve abstract transitive inference problems (Chen,
Lu, & Holyoak, 2013). Perhaps surprisingly, explicit comparative relations are not required to make
comparative judgments. However, they prove essential for any reasoner who aspires to think about
what such judgments mean.
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