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Deviations from the predictions of covariational models of causal attribution have often been re-
ported in the literature, These include a bias against using consensus information, a bias toward
attributing effects to a person, and a tendency to make a variety of unpredicted conjunctive attribu-
tions. It is contended that these deviations, rather than representing irrational biases, could be due
to (a) unspecified information over which causal inferences are computed and (b) the questionable
normativeness of the models against which these deviations have been measured. A probabilistic
extension of Kelley's analysis-of-variance analogy is proposed. An experiment was performed to
assess the above biases and evaluate the proposed model against competing ones. The results indicate

that the inference process is unbiased.

As early as the age of 3, children form their own hypotheses
about the causes of events happening in their world (e.g., Bul-
lock, Gelman, & Baillargeon, 1982). The child’s preoccupation
with understanding the causes of events continues into adult-
hood, presumably because this knowledge is required for suc-
cessful interaction with the environment. Assuming that the
goals of causal explanation are the prediction and potential con-
trol of future events, it would seem important for people to in-
duce causes in a rational (i.e., normative) manner.

Work on causal attribution, in fact, began with the proposal
that causal induction is normative. On the basis of earlier work
by Heider (1958), Kelley (1967) proposed that people are intu-
itive scientists. According to Kelley’s influential model, causal
inferences are based on the principle that he termed covaria-
tion. The principle can be traced back to Mill’s (1843/1973)
“joint method of agreement and difference,” an inductive
method that Mill proposed as normative, More specifically,
Kelley proposed that causal inferences are based on a statistical
interpretation of the covariation principle as instantiated in the
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analysis of variance (ANOVA). Analysis of variance is, of course,
generally regarded as a normative inductive procedure.

Subsequent research on causal attribution, however, has iden-
tified many deviations from the predictions of covariational
models. These deviations include (a) a bias against using con-
sensus information, (b) a bias toward attributing effects to a
person, and (c) a tendency to make a variety of other unpre-
dicted attributions, particularly conjunctive ones (e.g., see Bor-
gida & Brekke, 1981; Hilton & Slugoski, 1986; Jaspars, Hew-
stone, & Fincham, 1983; Nisbett & Ross, 1980).

Is the causal attribution process inherently biased? We argue
that to answer this question it is important to distinguish be-
tween the data on which the causal inference process operates
and the process of inference computation itself. Just as false
conclusions in deductive reasoning can be reached by the use
of valid deductive rules when the premises on which the rules
operate are false (Henle, 1962), so observed biases in inductive
reasoning may be due to the nature of the input (i.e., the set of
information on which inference is computed and the pattern of
that information) rather than to biases in the process of infer-
ence computation itself. Previous work on causal attribution
typically has not made this distinction or has not accurately
identified the data on which induction operates. Consequently,
in most cases it is not possible to determine whether observed
biases occur in the inference process per se or in the data on
which the inference process operates.

Even when the pattern of information on which inference is
computed is identified, a model must be normative if deviations
from it are to be considered “‘biases.”” We suggest that some devi-
ations from previous models may, in fact, be rational inferences,
and we propose a normative model against which to reassess
biases—our probabilistic contrast model.' 1t is a covariational

"In an earlier article, we (Cheng & Novick, 1990) referred to this
model as the “‘qualitative contrast model.”
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model based on estimated differences in the probabilities of the
effect conditional on the presence versus the absence of poten-
tial causal factors. Our model can be viewed as an extension
of Kelley’s (1967, 1973) analogy between causal induction and
analysis of variance and of Jenkins and Ward’s (1965) contin-
gency rule. (We discuss the relationship between our model and
related models from the cognitive psychology literature in
Cheng & Novick, 1989a.) Although Kelley’s ANOVA model has
inspired an enormous amount of research, the analogy between
the model and an actual analysis of variance has been left rela-
tively vague. This vagueness has allowed interpretations of the
model that were, in fact, inconsistent with the analogy (e.g., Mc-
Arthur, 1972; Orvis, Cunningham, & Kelley, 1975; Pruitt &
Insko, 1980), as we will discuss. Our model formulates the anal-
ogy without assuming the implausible mental computations
underlying the analysis of variance. In the final section of this
article, we report an experiment that reassesses the above-men-
tioned biases and tests our model against competing ones (For-
sterling, 1989; Hilton & Slugoski, 1986; Jaspars et al., 1983;
Orvis et al., 1975) in light of types of additional information
that typically have been ignored in experiments on causal attri-
bution,

Normative Covariation-Based Models

Before we present our explanation of the biases, we will
briefly review two models of causal attribution that may be re-
garded as both descriptive and normative. They represent
different interpretations of Kelley’s (1967, p. 194) covariation
principle, which states: “The effect is attributed to that condi-
tion which is present when the effect is present and which is
absent when the effect is absent.” The models based on these
interpretations are the ones against which the biases have been
measured.

Kelley’s Analysis of Variance Model

Kelley (1967, 1973) interpreted his covariation principle sta-
tistically in his ANOVA model. He proposed the dimensions of
persons (P), stimuli (S), and time/modalities (7') as indepen-
dent variables in the model, as illustrated in his Persons X Enti-
ties X Time/Modalities cube. To measure covariation along
these respective dimensions, Kelley proposed three information
variables, which he referred to as consensus, distinctiveness,
and consistency. According to this model (Kelley, 1967; Kelley
& Michela, 1980), one infers the cause of a given P’s response
to a certain S on a particular occasion 7 based on one’s percep-
tion of the degree of (a) consensus between P’s response to .S
and other people’s responses to S (on occasion T), (b) distinc-
tiveness of P’s response to S from P’s responses to other stimuli
(on occasion T), and (c) consistency of P’s response to S on
occasion T with P’s responses to S on other occasions. Note that
consensus and consistency are inversely proportional to covari-
ation (e.g., high consensus indicates low covariation between
the particular person and the effect), whereas distinctiveness is
directly proportional to covariation.

In addition to proposing this general model, Kelley made spe-
cific attributional predictions for three particular configura-
tions of consensus, distinctiveness, and consistency informa-

tion: (a) Low consensus, low distinctiveness, and high consis-
tency (LLH) should lead to a person attribution; (b) high
consensus, high distinctiveness, and high consistency (HHH)
should lead to a stimulus attribution; and (c) low consensus,
high distinctiveness, and low consistency (LHL) should lead to
a circumstance attribution. (We will use the term configuration
to denote the pattern of information on the three variables of
consensus, distinctiveness, and consistency.) In terms of covari-
ation, the LLH configuration, for example, indicates high co-
variation along the person dimension and low covariation along
the other two dimensions, thus leading to a “main-effect” attri-
bution of person in Kelley’s (1973) terms.

An extension of the ANOVA model was proposed by Orvis et
al. (1975), according to which the three configurations de-
scribed above, considered more fundamental than other con-
figurations, are used as templates on the basis of which predic-
tions for other configurations are made. Consider, for example,
a situation involving high consensus, low distinctiveness, and
low consistency (HLL). The high consensus in this configura-
tion matches only the HHH template, thus suggesting a stimu-
lus attribution. The low distinctiveness matches only the LLH
template, suggesting a person attribution. Finally, the low con-
sistency matches only the LHL template, suggesting a circum-
stance attribution. Because each of these three attributions is
suggested with equal frequency, the template model predicts
that the cause will be attributed to a combination of the three
attributions, with the combination being in the form of an
*“and/or” relation (i.e., person and/or stimulus and/or circum-
stances; see Orvis et al., 1975, p. 607). As Jaspars et al. (1983)
and Forsterling (1989) have noted, because attributions for
some configurations are based on a pattern-matching process,
the template model is not consistent with the ANOVA analogy.

Jaspars, Hewstone, and Fincham’s
Inductive Logic Model

Jaspars et al. (1983; also see Hewstone & Jaspars, 1987) pro-
posed a deterministic interpretation of Kelley’s (1967) covaria-
tion principle in what they termed their “inductive logic
model” for causal attribution. Like Kelley, Jaspars et al. applied
their model to configurations of consensus, distinctiveness, and
consistency information. In this model, each piece of informa-
tion given in an attribution problem is coded in terms of
whether it involves (a) the person in question or other people, (b)
the stimulus in question or other stimuli, and (c) the occasion in
question or other occasions. In addition, the presence or ab-
sence of the effect (i.e., the behavior in question) is noted. Ac-
cording to this model, people note for each possible causal fac-
tor (or conjunction of factors) whether it is present when the
effect is present and absent when the effect is absent, and iden-
tify a factor (or conjunction of factors) that is both necessary
and sufficient for the occurrence of the effect as the cause. This
model instantiates Mill’s “joint method” for the three dimen-
sions of persons, stimuli, and occasions based on configura-
tional information.

Hypothesized Biases

Several findings pose problems for the two covariation-based
models discussed above. We briefly review the person and con-
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sensus biases that have been well-documented in the literature,
as well as various other deviations from these models.

Person and Consensus Biases

Although Kelley’s (1967, 1973) predictions have received
strong support from several major studies (McArthur, 1972,
1976; Orvis et al., 1975), these studies have also revealed some
large deviations from the predictions. In this section, we con-
sider the bias against using consensus information relative to
information on the other two variables and the related bias to-
ward attributing effects to a person.

In an experiment that orthogonally varied two levels (high
versus low) of consensus, distinctiveness, and consistency, Mc-
Arthur (1972) found that consistency information accounted
for 41% of the variance in circumstance attributions and dis-
tinctiveness accounted for 12% of the variance in stimulus attri-
butions, but consensus information accounted for only 6% of
the variance in person attributions. This same underuse of con-
sensus information was observed in the prediction of total vari-
ance in causal attributions: Consistency accounted for 20% of
the variance, distinctiveness accounted for 10% of the variance,
and consensus accounted for 3% of the variance. This bias
against using consensus information has been found in numer-
ous other studies (for reviews, see Alloy & Tabachnik, 1984;
Borgida & Brekke, 1981; and Kassin, 1979), leading some in-
vestigators to argue that it is a general phenomenon (e.g., Bor-
gida, 1978; Nisbett & Borgida, 1975). To complicate the pic-
ture, however, other work has found that the consensus bias does
not occur under all conditions (Hansen & Donoghue, 1977;
Hewstone & Jaspars, 1983; Kulik & Taylor, 1980; Pruitt & In-
sko, 1980; Ruble & Feldman, 1976; Weiner et al., 1971; Wells
& Harvey, 1977; Zuckerman, 1978).

The bias toward attributing effects to a person rather than to
a stimulus or to circumstances has likewise appeared in many
studies (e.g., McArthur, 1972; Orvis et al., 1975; Pruitt & Insko,
1980). For example, Jaspars et al. (1983) noted that 82% of Mc-
Arthur’s (1972) subjects attributed an effect to the person when
the presence of the person was both necessary and sufficient to
produce the effect, compared with 62% stimulus attributions
and 33% circumstance attributions when those factors were
necessary and sufficient. This bias toward person attributions is
consistent with what Ross (1977) has called the “fundamental
attribution error.”” Like the consensus bias, however, the person
bias does not appear in all situations. For example, Hilton and
Jaspars (1987) found a bias toward attributing effects to the
stimulus instead. Yet another pattern was found in Forsterling’s
(1989, Table 5) data, indicating that person, stimulus, and time
attributions were equally likely to be made, with mean ratings
of 8.2, 8.0, and 8.5 (on a 10-point scale), respectively, when each
of those factors was both necessary and sufficient for the effect
to occur.

The above two biases, to the extent that they occur, indicate
apparent deviations from the predictions of any purely covaria-
tion-based model such as Kelley’s ANOvA model or Jaspars et
al’s inductive logic model, because the amounts of covariation
along the three dimensions were presumably counterbalanced
in the set of stimuli.

Deviations From Predictions for Particular
Configurations

Kelley (1967, 1973) made predictions for only three of the
eight possible information configurations. In contrast, Jaspars
et al. (1983; also see Hewstone & Jaspars, 1987) made predic-
tions for all eight configurations. Their prediction for one of
these additional configurations is a particularly clear standard
against which biases may be judged: For the high consensus,
low distinctiveness, high consistency (HLH) configuration, the
inductive logic model predicts that no causal attribution is pos-
sible, because no factor covaries with the effect. This prediction,
which follows directly from the application of the covariation
principle to the configuration, is consistent with the spirit of
Kelley’s ANOVA model, even though Kelley did not explicitly
make the prediction.

Contrary to this prediction, the HLH configuration has been
a locus of both of the biases described above. For this configu-
ration, subjects in several studies showed a clear preference for
attributing the effect to the person, despite the lack of covaria-
tion of the person with the effect. For example, 45% of the sub-
jects in McArthur’s (1972) study, 43% of the subjects in Study
2 of Orvis et al. (1975), and 23% of the subjects in Jaspars’s
(1983) study made a person attribution. In addition, subjects
often attributed the effect to the stimulus (19% of the subjects
in Study 2 of Orvis et al.; 20% of Jaspars’s subjects; and 31% of
Hilton & Jaspars’s, 1987, subjects) or to the combination (i.e.,
conjunction) of the person and the stimulus (35% of McAr-
thur’s subjects; 27% of Jaspars’s subjects; and 24% of Hilton &
Jaspars’s subjects). Similarly, Orvis et al. found many attribu-
tions to “the person and/or the stimulus” (56% and 31% of the
subjects in Studies ! and 2, respectively).

Deviations from Jaspars et al.’s predictions for other config-
urations have also been found. Consider the high consensus, low
distinctiveness, low consistency (HLL) configuration, for which
the inductive logic model predicts an attribution to the time
dimension.? In the studies of Hilton and Slugoski (1986) and
Forsterling (1989), subjects were asked to rate each main effect
and interaction attribution for how complete an explanation it
provided for the target event. The predicted occasion attribu-
tion received a mean rating of 5.6 on a 7-point scale in Hilton
and Slugoski’s data and a mean rating of 8.5 on a 10-point scale
in Forsterling’s data. In Hilton and Jaspars’s (1987) study, the
circumstance attribution was chosen by 19% of the subjects. In
all three sets of data, however, conjunctive attributions also were
perceived as important causal factors. In Forsterling’s data, the
stimulus-and-occasion attribution received a mean rating of
7.7. In Hilton and Slugoski’s data, that attribution received a
mean rating of 5.1. In addition, the person-and-occasion attri-
bution received a mean rating of 5.7. The corresponding per-

2 The circumstance attribution is ambiguous because it could be in-
terpreted by subjects either as a simple effect of occasion or as some
interactive combination of the person, stimulus, and occasion. Because
of this ambiguity, we only report the results of those studies for which
the response form included either (a) interactions of the circumstances
with persons and stimuli in addition to the simple circumstance attribu-
tion or (b) the unambiguous “occasion” attribution (and interactions
of the other variables with that variable).
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son-and-circumstance attribution was chosen by 20% of Hilton
and Jaspars’s subjects. Conjunctive attributions have also been
found for the LLH and HHH configurations (e.g., Hilton &
Jaspars, 1987; Hilton & Slugoski, 1986; Jaspars, 1983; Mc-
Arthur, 1972), for which main effects of person and stimulus,
respectively, have been predicted.

An Informationa! Explanation of the Biases

Why are there such biases, and why do they capriciously ap-
pear under some conditions but not others? Many explanations
have been proposed to answer these questions. A common one
is that prior expectations sometimes override presumably more
objective data-based processing (Alloy & Tabachnik, 1984;
Kassin, 1979; Orvis et al., 1975; Tversky & Kahneman, 1982).
In discussing the deviations from Jaspars et al.’s (1983) model
for the HLH configuration, Hilton and Slugoski (1986) took the
more radical view that the biases do not stem from amendments
to the covariational criterion of causality, but rather from sub-
jects’ use of a different criterion altogether—the criterion of an
“abnormal condition.” Recently, we (Cheng & Novick, 1990)
proposed an informational explanation for the person and con-
sensus biases that retains the position that causal induction is
based on an assessment of covariation. We now extend this ex-
planation to account for the additional biases described above.

Recall that earlier we made a distinction between the infer-
ence process itself and the information on which the inference
process operates (i.e., the input to that process). Most experi-
ments testing covariation-based models have specified the input
in terms of the variables of consensus, distinctiveness, and con-
sistency. As noted by several investigators (Cheng & Novick,
1990; Forsterling, 1989; Hilton, 1988, 1990; Jaspars et al.,
1983; Pruitt & Insko, 1980), information on these three vari-
ables, apparently often assumed to represent all the data rele-
vant to making causal attributions, actually covers only a subset
of the potentially relevant information. For example, consensus
information indicates the amount of agreement between the
person in question and other people in their responses to a par-
ticular stimulus on a particular occasion, rather than the
amount of response agreement between the person and other
people with respect to all the stimuli on all the occasions. Thus,
consensus information covers only Region 1 in Figure 1. Sim-
ilarly, distinctiveness and consistency information respectively
cover Regions 2 and 3. The figure demarcates eight regions of
information in Kelley’s (1967, 1973) Persons X Stimuli X Occa-
sions cube. Three vertical slices of the cube are represented sep-
arately, with each slice representing a different occasion. Region
0 denotes the target event to be explained.

In experiments specifying only configurational information,
it is typically not known what assumptions subjects might have
made spontaneously regarding the occurrence of the effect in
the nonconfigurational parts of the cube (Regions 4-7 in Figure
1). We propose (also see Cheng & Novick, 1990) that because
causal attribution is a function of the data on which the infer-
ence rules operate, as well as of the rules themselves, the appar-
ent biases found in previous experiments—rather than being
due to the inferential process—may reflect the assumptions
made by subjects regarding the pattern of information for the
unspecified cells of the cube. The cognitive literature indicates

that people often go beyond the information given in arriving
at an analysis of a situation (e.g., Bruner, 1957; Harris, 1977,
Johnson, Bransford, & Solomon, 1973). In the causal attribu-
tion literature, this conclusion is supported by existing data in-
dicating that subjects do make use of nonconfigurational infor-
mation. Hilton and Slugoski (1986) reported that people’s
causal attributions were influenced by their implicit knowledge
of norms (i.e., “presuppositions about what a class of persons
generally does to a class of stimuli”; Hilton, Smith, & Alicke,
1988, p. 531). Such knowledge fills the rest of the cube shown in
Figure 1 homogeneously with the same pattern of information.
Similarly, Pruitt and Insko (1980) reported that “comparison-
object consensus” (i.e., how other people respond to other stim-
uli on this occasion) influenced causal attributions. Compari-
son-object consensus fills Region 6.

Given that subjects seem to make use of explicit or implicit
information over nonconfigurational parts of the cube in deriv-
ing causal attributions, it is possible that when one takes infor-
mation over the entire cube into account, there may be no sys-
tematic inferential biases at all. The experiment we report tests
this hypothesis.

Previous Approaches to the
Incompleteness of Information

Investigators who have noted the incompleteness of configu-
rational information have taken diverse approaches regarding
the issue. According to Jaspars et al. (1983, p. 10), “[This lim-
ited information] represents an incomplete, fractional replica-
tion design in which the independent variables are not orthogo-
nal. Even an explicit analysis of variance with the aid of a com-
puter programme would not be easy.”” They concluded that
subjects must be doing something other than an implicit ANOVA
and proposed their inductive logic model, which derives attribu-
tions based entirely on configurational information.

Pruitt and Insko (1980) indicated that consideration should
be given to the consistency of (a) the other-people-to-target-ob-
ject relation (Region 4 in Figure 1), (b) the target-person-to-
comparison-object relation (Region 5), and (c) the other-people-
to-comparison-object relation (Region 7), besides comparison-
object consensus (Region 6). However, they did not study all of
these regions of the cube, choosing to add only comparison-
object consensus to the conventional configuration in their
study. The information presented to their subjects was, there-
fore, still incomplete for an analysis of variance. Their findings
were analyzed in terms of the effects of each of the four informa-
tion variables rather than in terms of an analysis of variance
using the three dimensions of persons, stimuli, and occasions as
independent variables. Thus, their model, although presented
as an extension of Kelley’s ANOVA model, does not make use of
the analogy to analysis of variance (also see Forsterling, 1989).
(For the same reason, McArthur’s, 1972, predictions are not
based on the ANOVA analogy.)

Hilton (1988, 1990) and Forsterling (1989) have taken very
similar approaches regarding this issue. Both noted that the
completion of information would enable the computation of an
analysis of variance. Hilton recast his previous findings with
Slugoski (Hilton & Stugoski, 1986) in terms of an analysis of
variance, illustrating the effect of norms in terms of a two-way
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Figure 1. The eight regions of information in Kelley’s (1967) Persons X Stimuli X Occasions cube.
(The shaded regions indicate configurational information.)

analysis of variance (assuming high consistency for all informa-
tion). Similarly, Forsterling presented an interpretation of the
ANOVA analogy applied to information over the entire cube. His
interpretation, as we will discuss, is equivalent to the determin-
istic principle underlying Jaspars et al’s (1983) inductive logic
model. Forsterling differs from Jaspars et al. only in that he ap-
plied the principle to the entire cube rather than to configura-
tional information alone. Forsterling’s experiment, using mate-
rials involving deterministic covariation for a 2 X 2 X 2 cube,
generally supported his model.

The Probabilistic Contrast Model of Causal Induction

As mentioned earlier, even when the pattern of information
on which inference is computed is identified, whether devia-
tions from a particular model are biases depends on whether
the model is normative. We propose a model against which to
reassess biases—our probabilistic contrast model. Our work
builds on the ideas of Kelley (1967, 1973), Hilton (1988, 1990),
and Forsterling (1989). Extending the work of Hilton and Slu-
goski (1986), we address all of the biases discussed earlier, as
well as the apparent capriciousness of these biases, within the
framework of our model and our distinction between inference
rules and data.

One limitation of previous models is that the analogy be-
tween causal induction and an analysis of variance has been left
vague. For example, theorists (e.g., Forsterling, 1989; Kelley,
1973) have proposed simply that people perform a *“naive” ver-
sion of the statistical ANOVA. Kelley (1973, p. 109) suggested
that the “naive ANOVA is a poor replica of the scientific one,”
but we are not aware of any specification of how the naive AN-
Ova compares with the statistical procedure. Our model is such
a specification. It is an explicit model of causal induction that
abstracts from the ANOVA analogy its key elements, avoiding
the assumption of the complex quantitative computations un-
derlying the statistical procedure (e.g., sums of squares and
F ratios).

Our model of causal induction is a probabilistic analogue of
statistical contrasts. It is termed a contrast model because it re-
fers to contrasts between a particular value on a dimension and
other values on that dimension, or to contrasts involving partic-
ular combinations of values as opposed to other combinations
of values. These are intended to reflect, respectively, responses

such as “There is something special about the person™ and
*“There is something special about the combination of this per-
son and this stimulus.” Such responses correspond to specific
contrasts rather than to general main effects or interactions in
the analysis of variance. We do not believe that people mentally
perform the complex quantitative computations underlying sta-
tistical contrasts. Therefore, our model only requires that peo-
ple be able to estimate and compare proportions, a task that has
been found to be performed reasonably well by naive subjects
(Alloy & Abramson, 1979; Robinson, 1964; Shuford, 1961).
Our model accounts for causal induction based on qualitative
as well as quantitative data, as we will explain when we make
predictions for the stimuli in our experiment.

Contrasts are assumed to be computed for attended dimen-
sions that are present in the event to be explained. For main-
effect contrasts, we define a cause to be a factor for which Pfil,
the proportion of cases for which the effect occurs when factor
i is present, is greater (by some criterion) than P{~i], the pro-
portion of cases for which the effect occurs when factor i is ab-
sent. (These proportions are estimates of the probabilities of the
effect occurring conditional on the presence of i and the absence
of i, respectively. A tilde before a factor label denotes the ab-
sence of that factor.) In other words, a cause is a factor, the pres-
ence of which (relative to its absence) increases the likelihood of
the effect. The criterion is an empirically determined parameter
that defines a noticeable difference. The magnitude of the crite-
rion should reflect people’s awareness of random sampling
fluctuations as well as the role of sample size in people’s inter-
pretations of such fluctuations (e.g., see Nisbett, Krantz, Jep-
son, & Kunda, 1983). We leave investigation of this parameter
for future research. In this article we focus our discussion on
clear-cut contrasts. We assume that the sample of cases on each
dimension is relatively large and that the criterion for differ-
ences in proportions is not too small, to rule out situations for
which differences are distinguishable only by statistical meth-
ods. To illustrate a main-effect contrast in terms of Kelley’s Per-
sons X Stimuli X Occasions cube, if the proportion of cells in
which the target effect occurs for Person 1 (the top plane in Fig-
ure 2) is greater than the corresponding proportion for other
people (the rest of the cube), then a target effect involving Per-
son 1 will be attributed to Person 1.

So far, we have only considered causes that consist of a single
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Figure 2. Information relevant for specifying an interaction contrast
according to the probabilistic contrast model.

factor (e.g., the effect is due to something about a particular
person). Sometimes, however, effects are due to a conjunction
of factors. For example, someone’s allergy to a substance may
be attributable to the conjunction (i.e., interaction) of the par-
ticular person and the particular substance. Whereas a main-
effect contrast in our model requires a noticeable difference be-
tween the proportions of cases in which the effect occurs in the
presence of a factor and in the absence of it, an interaction con-
trast requires a noticeable difference between such differences
for levels of an orthogunal factor. In other words, it requires a
second-order difference.

Consider Figure 2 again. Let Person i be a particular value
along the person dimension (i = | in Figure 2) and Stimulus j
be a particular value along the stimulus dimension (j = 1 in
Figure 2). Further suppose that we wish to determine whether
the conjunction of Person i and Stimulus j would be considered
a cause for a target event involving Person i, Stimulus j, and
Occasion k. A comparison involving four proportions is rele-
vant: For events in which Person i is present (i.e., the top plane
in the figure), let Pfi,j] be the proportion of occasions (cells along
the remaining dimension) on which the effect occurs when
Stimulus j is present (the darkly shaded beam in the figure) and
let Pfi,~j] be the corresponding proportion when Stimulus j is
absent (the lightly shaded area); for events in which Person i is
absent (i.e., the bottom four planes), let P{~i,j] be the propor-
tion of occasions on which the effect occurs when Stimulus j is
present (the striped area) and P{~i,~j] be the corresponding
proportion when Stimulus j is absent (the unshaded area). If the
difference between Pji,j] and Pfi,~j] is noticeably greater than
the difference between P]~i,j] and P|~i,~j], or, equivalently, if
the difference between Pfi,j] and P{~i,j] is noticeably greater

than the difference between Pfi,~j] and P{~i,~j], then the con-
junction (combination) of Person i and Stimulus j is a cause
(e.g., if the proportion of cells in which the target effect occurs
is large in the darkly shaded beam but the proportion for the
rest of the cube is uniformly small). Interaction contrasts in-
volving the other two combinations of dimensions are defined
analogously. More generally, interaction contrasts involving n
factors are defined as nth order differences, where » is any posi-
tive integer. (People will no doubt have greater difficulty with
interaction contrasts involving greater complexity, and at some
maximum level of complexity computation presumably will
become impossible. However, because the probabilistic contrast
model is a computational model [in Marr’s, 1982, sense of the
term] that specifies what is computed, rather than a process
model that specifies how the computation is carried out, it does
not deal with such processing limitations. It seems reasonable
to expect that a model of processing limitations should apply
across many different types of tasks rather than being specific
to inference tasks.)

The causal factors we have considered so far have been facili-
tatory factors, that is, factors that increase the likelihood of the
effect. Analogously, there are also inhibitory factors, which de-
crease the likelihood of an effect. For example, the presence of
a vaccine in one’s body decreases the likelihood of one contract-
ing a particular disease (also see Hilton & Slugoski, 1986, and
Kelley, 1973, on this distinction). Our probabilistic contrast
model distinguishes between inhibitory and facilitatory factors
(unlike the standard ANOVA, which squares all differences and
therefore loses all information about directionality). In our
model, the difference in proportions is positive for facilitatory
main-effect contrasts and negative for inhibitory main-effect
contrasts. For interaction contrasts, the difference between the
differences is positive for facilitatory combinations of factors
and negative for inhibitory combinations.

Note that our model clearly allows for multiple alternative
causes, and distinguishes them from conjunctive causes (i.e.,
causes involving multiple necessary factors). Any factor whose
presence increases the probability of an effect is a possible cause
of the effect. If multiple factors are observed to increase the
probability of the effect, then each is a cause of the effect and
none is necessary. The multiple alternative causes, of course,
can be any combination of main-effect causes and/or conjunc-
tive causes (i.e., interactions). We will provide examples of situ-
ations with multiple alternative causes when we describe our
stimuli.

To summarize, our model is a probabilistic interpretation of
the covariation principle. More specifically, it is an analogue of
statistical contrasts that requires only the assessment and com-
parison of (quantitative or qualitative) proportions. Like its sta-
tistical counterpart, however, it is a general procedure that is not
committed to particular dimensions (e.g., the three in Kelley’s
cube) or even to any particular number of dimensions.’

3 Our model assumes that a cause must be perceived as preceding its
effect. In other words, covariation should be computed only for factors
that are perceived to be temporally prior to the effect. We assume per-
ceived temporal priority rather than manipulation as an augmenting
criterion because manipulation, although a standard criterion in many
sciences, seems too strong a requirement for everyday induction. Mi-
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EXPERIMENT

The two purposes of our experiment are (a) to evaluate our
probabilistic contrast model against alternative models of
causal attribution (Forsterling, 1989; Hewstone & Jaspars,
1987; Hilton & Slugoski, 1986; Jaspars et al., 1983; Kelley,
1967, 1973; Orvis et al., 1975) and (b) to test whether the causal
inference process is unbiased when the relevant set of informa-
tion is considered. To accomplish our goals, we took the strategy
of specifying information over the entire cube. By adopting this
strategy, we do not mean to imply that people typically have
complete information. It is almost certainly the case that they
typically do not. Rather, our position is simply that a test of any
model of inference must be considered for the set of events and
dimensions to which subjects attend. Unless we know this focal
sef, it will be impossible to determine whether the inference
process per se is inherently biased. Because there is evidence
that people use information in nonconfigurational parts of the
cube in making causal attributions (Hilton & Slugoski, 1986;
Pruitt & Insko, 1980), specifying information over the entire
cube is one way to manipulate the relevant information and
thereby test our hypotheses.® Neither do we wish to imply that
people always attend to the dimensions of persons, stimuli, and
occasions. The particular dimensions, as well as the particular
number of dimensions, in our materials were chosen to (a) allow
a comparison between our model and previous models and (b)
provide an explanation for the apparent biases previously re-
ported for materials incorporating these dimensions.

To contrast our model with previous proposals, we con-
structed sets of problems for which all problems in a set had the
same configuration, but every problem in the set had a different
pattern of information over the rest of the cube. All previous
models (Hilton & Slugoski, 1986; Jaspars et al., 1983; Orvis et
al., 1975), with the exception of Forsterling (1989), were con-
figuration based. Hilton and Slugoski (1986) made two predic-
tions for the HLH configuration (but not for other configura-
tions) depending on whether the scenarios involve “scripted”
or “‘nonscripted” events. Because all of our problems used non-
scripted events, one interpretation of all configuration-based
models is that they predict the same attribution(s) for all prob-
lems sharing a configuration (i.e., in a set). In contrast, our
model predicts different attributions for each of the patterns of
information within each set.

An alternative set of predictions for configuration-based
models, however, may be derived by applying the principles un-

chotte’s (1963) classic experiments, for example, did not involve manip-
ulation, and yet induced the perception of causality (when certain tem-
poral and spatial constraints were satisfied). In our view, manipulation
plays an indirect role in two ways: by being a means of establishing
psychological temporal priority and by eliminating the possibility of
increases in the probability of the effect due to other potential causal
factors. Our assumption concerning perceived temporal priority is one
that we will neither systematically test nor discuss, although it seems
that this assumption, along with others such as conditional indepen-
dence (Reichenbach, 1956), may play an important role in explaining
the realization (by at least some people) that no causal conclusions
should be drawn from a correlational study, even when the correlation
is strong.

derlying those models to information over the entire cube, sepa-
rating those principles from the literal predictions previously
made. Under this approach, Jaspars et al.’s (1983) model yields
the same predictions as Forsterling’s (1989), because the deter-
ministic covariation principle underlies both models. For each
of our sets of problems sharing a configuration, that principle
predicts no possible attribution for all, or most, of the patterns.
For one set of problems, Hilton and Slugoski’s (1986) abnormal
conditions focus (ACF) model makes many of the same predic-
tions as our model. For the other sets, however, it makes the
prediction of no possible attribution for most of our problems,
because the effect to be explained is normal rather than abnor-
mal. A systematic shift in causal attributions across problems
within a set for all sets, as predicted by our model, will be incon-
sistent with the derived predictions of any previous model.

We addressed the issue of biases in two ways. First, we coun-
terbalanced information over the three dimensions of the cube
so that any bias toward a dimension or an information variable
cannot be attributed to asymmetries in the input. Notice that
such an evaluation of bias is independent of any particular cova-
riation-based model of causal attribution. Second, we con-
structed patterns of information over the nonconfigurational
parts of the cube that, according to our model, should (together
with configurational information) lead to interaction attribu-
tions that have been reported but that are not predicted by pre-
vious models. Obtaining such attributions would demonstrate
that these apparent deviations can, in fact, be explained by a
normative covariational model. To our knowledge, no explana-
tion of such apparent deviations has ever been proposed, despite
their striking presence in many studies.

To counterbalance information across the three dimensions
of the cube, we rotated each of five complete patterns of infor-
mation (detached from the labeled axes) from one axis to each
of the other two axes in turn, creating a total of 15 problems.
We pivoted the rotations at the front top left corner to keep the
target event constant. (Equivalently, the pattern of information
can remain stationary and the axis labels can be moved.) An
example of this rotation is shown in Figure 3 for the pattern of
information in which one face of the cube is different from the
rest of the cells. In Figure 3a, the face of the cube corresponding
to Person | differs from the rest of the cube (i.e., the effect occurs
in that face of the cube but not in the rest of the cube). By rotat-
ing this pattern to each of the other two axes, it is possible to
construct two other structurally equivalent patterns of informa-
tion for which the face of the cube representing Stimulus 1 (see
Figure 3b) or Occasion 1 (see Figure 3c) differs from the rest of
the cube. Notice that the pattern of information in Figure 3a
has the LLH (low consensus, low distinctiveness, high consis-
tency) configuration. Rotating a pattern with that configuration
results in patterns with the HHH and HLL configurations (see
Figures 3b and 3c, respectively). These are three of the four con-
figurations we used in our materials. We also used the HLH
configuration.

Because our problems were constructed by rotating patterns
of information as described above, our set of problems is sym-

4 We leave to subsequent work the task of examining the assumptions
and causal attributions made in the face of incomplete information.
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(a) Pattern of information indicating a strong main-effect contrast
for Person 1 (LLH Configuration, Problem 1).
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(b) Pattern of information indicating a strong main-effect contrast
for Stimulus 1 (HHH Configuration, Problem 4).
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(c) Pattern of information indicating a strong main-effect contrast
for Occasion 1 (HLL Configuration, Problem 7).

Figure 3. Three orientations of the pattern of information
for Structural Equivalence Set A.

metrical across the three dimensions of persons, stimuli, and
occasions. Therefore, each of the three main-effect attributions
(to the specific person, to the specific stimulus, and to the spe-
cific occasion) should occur equally often. Likewise, each of the
two-way interaction attributions should occur equally often.
Given the completeness and symmetry of information in our
problems, any reliable biases obtained would be attributable to
the inference process.

Method

Subjects

The subjects were 91 students at the University of California, Los
Angeles (UCLA). Of these, 21 participated in partial fulfillment of re-
quirements for their introductory psychology class. The remaining 70
students participated during small-group sections for their human in-
formation processing course (required for the psychology major) as part
of a class discussion of reasoning. The course did not cover any topic
on inductive reasoning before the students completed the experiment.
Because these two groups of subjects did not differ in their responses,
all analyses were based on the combined set of data.

Subjects participated in groups of 3 to 20 people. The experiment
lasted approximately 20-30 min.
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Materials

Structure

Six of our problems incorporated the HLH (high consensus, low dis-
tinctiveness, high consistency) configuration. Sets of three problems
each had the LLH, HHH, and HLL configurations. As discussed earlier,
the various problems sharing a configuration differed in the pattern of
information specified for the cells in Regions 4-7. The pattern of infor-
mation for all 15 problems is given in Table 1. For each region of the
cube, a plus indicates that the effect of interest occurs, whereas a minus
indicates that the effect does not occur. The cell corresponding to Person
1, Stimulus 1, and Occasion | (i.e., Region 0) contains a plus for all
problems. Problems that are structurally equivalent, as defined earlier,
are labeled with the same letter in the third column of Tabie 1. The five
structurally distinct patterns of information are illustrated in Figures 4
(Sets A, B, and C), 5 (Set D), and 6 (Set E). All problems are presented
in Appendix A.

The LLH (low consensus, low distinctiveness, high consistency),
HHH, and HLL problems (Nos. 1-9) were constructed by rotating each
of three distinct patterns of information 10 create three sets of three
structurally equivalent problems each. The three information patterns
are shown in Figure 4, illustrated for the LLH configuration (Problems
1-3). A plus in the figure indicates the presence of the effect, and a
minus indicates the absence of the effect. The LLH configurational in-

(a) Pattern of information specified in Problem 1 (LLH; Set A).
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(b) Pattern of information specified in Problem 2 (LLH; Set B).
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(c) Pattern of information specified in Problem 3 (LLH; Set C).
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Figure 4. The patterns of information for Structural Equivalence Sets A,
B, and C illustrated using the LLH configuration. (The shaded regions
indicate configurational information.)
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Table 1
Pattern of Information for Each of the 15 Experimental Problems
Region of the cube
Structural
Problem®  Configuration®  equivalence set® 0 1 2 3 4 5 6 7
1 LLH A T
2 LLH B + -+ o+ o+ o+ -+
3 LLH C e e S
4 HHH A + 0+ - o+ o+ = = =
5 HHH B + o+ -+ o+ -+ o+
6 HHH C e
7 HLL A e
8 HLL B + O+ 4 = =+ 4+
9 HLL C + o+ o+ -+ =+ ¥
10 HLH D + o+ o+ o+ o+ o+ - =
11 HLH D + o+ o+ o+ -+ o+ -
12 HLH D + o+ o+ o+ o+ -+ -
13 HLH E + o+ o+ o+ -+ = -
14 HLH E + o+ o+ o+ o+ = - -
15 HLH E S
Note. + indicates that the effect occurs; — indicates that the effect does not occur.

* Numbers correspond to problem labels used in the text and the appendixes. ° The three letters refer,

respectively, to high (H) versus low (L) consensus, distinctiveness, and consistency.

¢ Problems in the

same set specify patterns of information that are structurally equivalent rotations of each other.

formation appears in the shaded regions, and it remains constant across
the three problems. The nonconfigurational information in the un-
shaded regions, however, changes across problems. (Notice that Figure
4a represents the same information as Figure 3a, except that the differ-
ent occasions are laid out across the page rather than receding in depth,
and presence versus absence of the effect is indicated by pluses and mi-
nuses rather than by different shading.) For each of the LLH patterns
shown in Figure 4, the two rotations illustrated in Figures 3b and 3¢
created, respectively, corresponding problems with the HHH (Problems
4-6) and HLL (Problems 7-9) configurations.

The HLH problems (Nos. 10-15) were constructed by rotating each
of two distinct patterns of information to create two sets of three struc-
turally equivalent problems each. Figure S illustrates the three orienta-
tions of a pattern in which two faces of the cube differ from the rest of
the cells. Figure 6 illustrates those of a pattern in which one face and
one beam of the cube differ from the remaining cells. In each figure, the
configurational information appears in the shaded regions, Because the
HLH configurational information is symmetrical across the three di-
mensions of the cube (unlike the information specifying the LLH,
HHH, and HLL configurations), rotating a pattern containing the HLH
configuration preserves the configuration. Note that the nonconfigura-
tional information in the unshaded regions differs across all six prob-
lems in the two figures.

To summarize, the 15 problems were constructed from three orienta-
tions of each of five structurally distinct patterns of information over
the cube. Because two of the patterns shared the HLH configuration,
there were only four configurations represented in the problem set.
Each of the 15 problems specified a different set of information. As our
problems clearly illustrate, information in the nonconfigurational parts
of the cube can assume a vast number of patterns besides those investi-
gated by previous researchers (Hilton & Slugoski, 1986; Pruitt & Insko,
1980).

Predictions

Table 2 presents the attributions predicted by various models of
causal inference for our 15 problems. To assess the principles underly-

ing previous configuration-based models—independent of the informa-
tion to which those models have previously been applied—we derived
predictions for those models, whenever we thought possible, by applying
their principles to information over the entire cube as specified in our
problems. In the table, multiple alternative causes are separated by
commas, multiple necessary causes are linked by a multiplication sign,
inhibitory causes are denoted by a horizontal bar above the attribution,
and weak causes are enclosed in parentheses. We distinguish the ambig-
uous circumstance attribution (denoted by C) from the unambiguous
occasion attribution (denoted by O).

Template model. To apply the model of Orvis et al. (1975) to our
complete information problems, it seems that new templates, and per-
haps new rules for applying those templates, would be needed, reflecting
the fact that information other than the configuration may be relevant
for causal attribution. Unfortunately, Orvis et al. did not explicitly state
any principles that could be used to derive these new templates. We
therefore failed to extend their model, and instead list its predictions for
our problems (in the column of Table 2 labeled Template model) based
solely on the configuration represented in each problem.

Deterministic covariation principle. Jaspars et al’s (1983; also see
Hewstone & Jaspars, 1987) inductive logic model was designed to apply
to configurational information, with the realization that the informa-
tion is incomplete. However, the deterministic covariation principle un-
derlying their model (identical to Forsterling’s model, 1989) can be ap-
plied to information over the entire cube. This interpretation of the co-
variation principle states that a factor, or conjunction of factors, is
designated a cause if and only if it is both necessary and sufficient for
the effect to occur. We applied the deterministic covariation principle
to our problems and list its predictions in the corresponding column
in Table 2. As an examination of the five structurally distinct patterns
illustrated in Figures 4-6 reveals, for only one of the patterns (see Figure
4a, Structural Equivalence Set A) is there a factor that is both necessary
and sufficient for the occurrence of the effect. For the remaining four
patterns (Structural Equivalence Sets B-E), no factor or conjunction of
factors is both necessary and sufficient. The deterministic covariation
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(a) Pattern of information specified in Problem 10 (HLH; Set D).
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(b) Pattern of information specified in Problem 11 (HLH; Set D).
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(c) Pattern of information specified in Problem 12 (HLH; Set D).
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Figure 5. Three orientations of the pattern of information for Structural
Equivalence Set D. (All orientations have the HLH configuration. The
shaded regions indicate configurational information.)

principle therefore predicts attributions for only 3 of the 15 problems
(Nos. 1,4,and 7).

We now illustrate the deterministic covariation principle’s prediction
of no possible causal attributions for two problems from two different
structural equivalence sets. Consider a situation in which each of two
factors increases the likelihood of the target effect, as in Problem 10
(Figure 5a, Set D). According to our model, Person I and Stimulus | in
that problem are each a cause of the target effect. According to Forster-
ling (1989, p. 621), however, “subjects would attribute an event as being
caused by the person if the event was present for the person at all times
and at all tasks and when the event was not present for other persons at
the same and other tasks at all times.” The first condition is met by the
pattern of information in Figure 5a but the second is not, because the
effect is present for other people (namely, when they encounter Stimulus
1). In other words, because neither Person | nor Stimulus | is necessary
(i.e., the effect can occur in the absence of one or the other of these two
factors), the deterministic principle predicts that neither factor should
be identified as a cause. Moreover, no other factor or conjunction of
factors is both necessary and sufficient, so the deterministic covariation
principle predicts that no causal attribution is possible.

Now consider a situation in which our model predicts an interaction
contrast, as in Problem 2 (Figure 4b, Set B). For this problem, our
model predicts an interaction contrast of Person | X Occasion 1. Ac-
cording to Forsterling (1989, p. 621), however, subjects “would attribute
an effect to an interaction of two factors when it only occurred when
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these two causes were present and if it would not occur in the absence
of one of the causes.” But the conjunction of Person 1 and Occasion |
(an attribution of something special about this person on this occasion)
fails to meet these more stringent criteria demanded by the determinis-
tic covariation principle. It is clearly not the case that the effect only
occurs when Person | and Occasion | are present. Because no other
factor or conjunction of factors is both necessary and sufficient for the
occurrence of the effect, the deterministic covariation principle predicts
that no causal attribution is possible.

Abnormal conditions focus (ACF) model. According to Hilton and
Slugoski, commonsense reasoning is based on “‘the counterfactual and
contrastive criteria of causal ascription, as unified in the notion of an
abnormal condition" (p. 76), rather than on the covariational criterion
proposed by others. The counterfactual criterion (consideration of a
case in which a possible cause is absent) is used to determine whether a
particular factor is necessary for the occurrence of the effect. As Hilton
and Slugoski pointed out, the counterfactual criterion by itself cannot
account for causal induction, because typically there are many condi-
tions necessary for the occurrence of any given effect. For example
(from Hart & Honore, 1959), the speed of a train, the presence of a
faulty rail, and the weight of the cars may all have been necessary for a
particular train derailment, but ordinarily only the faulty rail will be
indicated as the cause of the derailment (the other necessary factors
being relegated to the status of mere conditions). Borrowing from the
philosophical literature (Hart & Honore, 1959; Mackie, 1974), Hilton

(a) Pattern of information specified in Problem 13 (HLH; Set E).
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(b) Pattern of information specified in Problem 14 (HLH; Set E).
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(c) Pattern of information specified in Problem 15 (HLH; Set E).
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Figure 6. Three orientations of the pattern of information for Structural
Equivalence Set E. (All orientations have the HLH configuration. The
shaded regions indicate configurational information.)
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Table 2
Predictions Made by Various Models for the Problems Used in the Experiment
Deterministic = Abnormal
Template  covariation conditions
Problem® Configuration® model principle focus model  Probabilistic contrast model
1 LLH P P P P
2 LLH P nc nc PXO0,0,(P)
3 LLH P nc nc PxS,S, (P
4 HHH S S S S
5 HHH S nc nc PxS,P,(S)
6 HHH S nc nc $x0,0,(S)
7 HLL P,S,C o] 0 (0]
8 HLL P,S,C nc ne $X0,5,(0)
9 HLL P,S,C nc nc PxO0,P,(0)
10 HLH P,S nc P,S P,S,PX
3 HLH P,S nc P,O P,O,PX0O
12 HLH P, S nc S,0 S,0,§X0
13 HLH P, S nc P P,SX0,(S,0,PXS,PX0)
14 HLH P,S nc S S,PX0,(P,0,PXS,5X0)
15 HLH P,S nc 0 O,PXxS,(P,S,PX0,5X0)
Note. In columns 3-6, P = person, S = stimulus, O = occasion, C = circumstance, and nc = no cause.

Multiple alternative causes are separated by commas, and multiple necessary causes are linked by X. Inhibi-
tory factors are denoted by a bar above an attribution. Weak causes are enclosed in parentheses.

2 Numbers correspond to problem labels used in the text and the appendixes.

®The three letters refer,

respectively, to high (H) versus low (L) consensus, distinctiveness, and consistency.

and Slugoski (1986) introduced their contrastive criterion of causal se-
lection: “Abnormal conditions come to be dignified as the cause of an
event because they are the necessary conditions for the occurrence of a
target event that contrast with the conditions obtained in a comparison
case where the target event did not occur” (p. 77). In the case of the
train derailment, the faulty rail is abnormal, because train rails typically
are not faulty. In contrast, the speed of the train, for example, is presum-
ably normal.

In applying the notion of abnormality to configurational stimuli,
however, Hilton and Slugoski (1986) made a subtle, but important,
change in what it means for something to be abnormal. They suggested,
for example, that high distinctiveness information (the target person
hardly ever exhibits the target behavior in response to other stimuli)
serves to “throw the target stimulus into focus as abnormal” (p. 77).
Unlike the fauity rail, which was abnormal in the sense of occurring
with low probability, the target stimulus is nof abnormal in that it per
se occurs with lower probability than other conditions (the target person
and the target occasion). Rather, it is abnormal in the sense of being
associated with an abnormal target effect, which is what occurs with
low probability. Nevertheless, this new sense of the contrastive criterion
could serve as a model of causal induction if the notion of association
with an abnormal effect were clearly defined. Unfortunately, no explicit
definition of the concept was provided. From the particular predictions
of the ACF model, however, it seems reasonable to us to infer that a
factor is associated with an abnormal target effect if that effect occurs
often in its presence and rarely in its absence. This interpretation im-
plies that despite Hilton and Slugoski’s treatment of their model as an
alternative to covariation, it is, in fact, a special case of covariation—
the case in which the target effect is abnormal.

Our predictions for the ACF model listed in Table 2 are based on the
above interpretation of Hilton and Slugoski’s (1986) model. We applied
our interpretation of “association with an abnormal effect” to each po-
tential causal factor for each of our problems.® For Problems 1, 4, 7,
and 10-15, the effect to be explained is abnormal. For four of these

problems (Nos. 1, 4, 7, and 10), the predictions we derived correspond
to those explicitly specified by the ACF model for nonscripted problems
with the corresponding configurational information. (Our other prob-
lems specified patterns of information for which Hilton and Slugoski
did not make any explicit predictions.) Problems 2-3, 5-6, and 8-9
provide an interesting test of the ACF model. For these six problems,
the effect to be explained is normal (see Figures 4b and 4c for the two
patterns of information for these problems). More formally, if we let the
number of values on each of the three dimensions in these problems be
n, then the effect occurs in [n(n — 1) + 1]/n? of the cells, whereas it fails
to occur in only (n — 1)/n? of the cells (i.e., the effect occurs approxi-
mately n times as often as it fails to occur). According to the ACF model,
only abnormal factors or factors associated with abnormal effects are
dignified as causes. It therefore predicts no possible attribution for these
six problems (see Cheng & Novick, 1989b, for a more detailed exposi-
tion of this point). Note that although the ACF model makes the same
prediction for these problems as does the deterministic covariation
principle, it does so for a very different reason.

% Additional assumptions are required for our interpretation of ““asso-
ciation with an abnormal effect” to apply sensibly to the conjunction of
causal factors, for the following reason. If a causal factor is associated
with an abnormal effect, then conjunctions of this factor with some
other potential factors are necessarily also associated with the effect. In
visual terms, if the effect occurs with higher frequency for a face of the
cube (relative to the rest of it), it also occurs with higher frequency rela-
tive to the rest of the cube for at least some rows and columns of that
face (corresponding to conjunctions of two factors) and for at least some
cells of that face (corresponding to conjunctions of three factors). That
is, when directly applied to the conjunction of causal factors, our inter-
pretation of association makes the undesirable prediction that an attri-
bution to a simple factor is always accompanied by attributions to some
conjunctions of that factor with other factors.
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Probabilistic contrast model. Finally, the predictions of our probabi-
listic contrast model are listed in the last column of Table 2. Note that
in contrast to all previous models, our model predicts a different set of
causal attributions for each problem because of the problems’ differing
patterns of information over the entire cube. Also note that the HLH
configuration, previously assumed to lead to person and stimulus attri-
butions or to no attributions at all (e.g., Jaspars et al., 1983; Orvisetaal.,
1975), can, indeed, lead to any main-effect or interaction attribution,
given the appropriate pattern of information over the entire cube.

We derive the predictions of our model in Appendix B for five prob-
lems, each representing one of the five distinct patterns of information:
LLH Problems 1-3 (see Figures 4a—-4c, respectively) and HLH Prob-
lems 12 and 15 (see Figures 5¢ and 6c¢, respectively). Predictions for the
remaining problems can be obtained simply by switching the axis la-
bels. All predictions were derived algebraically, assuming that there are
n values on each of the three dimensions.

We illustrate here the application of our model to Problem 12, for
which it predicts two facilitatory main-effect causes and an inhibitory
interaction cause. As Figure 5c shows, the effect occurs in the left (Stim-
ulus 1) and front (Occasion 1) planes of the cube, but not elsewhere,
Clearly, the proportion of cells in which the effect occurs is higher on
Occasion | (Ploccasion-1] = 1) than on other occasions (P|~ occasion-
1] = 1/n). Likewise, it is higher for Stimulus 1 than for other stimuli,
However, it is no higher for Person 1 (the top plane) than for other people
(the rest of the cube). Our model therefore predicts stimulus and occa-
sion (but not person) as alternative causes. Now consider the Stimulus
1 X Occasion 1 interaction contrast. When Stimulus 1 is present (the
left plane), there is no difference in the proportion of cells in which the
effect occurs for Occasion 1 (P{stimulus-1, occasion-1] = 1) as opposed
to other occasions (Pistimulus-1, ~occasion-1] = 1). In contrast, when
Stimulus 1 is absent (all areas of the cube except the left plane), there is
a large positive difference in the proportion of cells in which the effect
occurs for Occasion 1 (P[~stimulus-1, occasion-1] = 1) versus other
occasions (P[~stimulus-1, ~occasion-1] = 0). Therefore, the interac-
tion contrast, being in this case the difference between *“no difference”
(the contrast involving Occasion 1 and other occasions in the presence
of Stimulus 1) and a large “positive difference” (the contrast involving
Occasion 1 and other occasions in the absence of Stimulus 1), is a large
negative difference. Thus, the interaction is inhibitory, Applying the
model similarly to the other interaction contrasts will reveal that both
are zero.

Presentation

To ensure that subjects’ responses reflected inferences based on the
experimental materials rather than on knowledge retrieved from mem-
ory, we constructed problems that involved fictional or unfamiliar
events. To reduce possible conflict with prior knowledge, subjects were
told that all problems concerned events in an imaginary land, where
customs and preferences often differ substantially from ours. Because
each problem specifies a large amount of novel information, which is
not typical in everyday situations, the extra memory load imposed is
likely to lower performance. Therefore, our results are likely to underes-
timate performance in everyday inference.

Subjects were asked to explain what caused a target event. The target
event, which was printed in italics, was the first sentence in each prob-
lem. The rest of the problem contained two to four sentences, which
were numbered and printed in normal font. For example, Problem 6
(HHH configuration) was as follows:

Beth said the morning prayer on this occasion.

i. In fact, everyone said the morning prayer on this occasion.
2. But nobody said any other prayer on this occasion.

3. On all other occasions, everyone said all the prayers.®

Subjects were told that the information presented after the italicized

event would help them determine its cause. Following the numbered
sentences was a list of seven responses. Subjects were told to check “one
or more” responses and to check “the minimum number of responses
that still give a complete explanation” of the italicized event. The first
three responses corresponded to main-effect contrasts of person, stimu-
lus, and occasion, for example, “There is something special about this
occasion in general.” The next three responses corresponded to interac-
tion contrasts involving two of the three dimensions, for example,
“There is something special about the combination of Beth and the
morning prayer (only when they are together).” The final response cor-
responded to an interaction contrast involving all three dimensions, for
example, “There is something special about the combination of Beth
and the morning prayer and this occasion (only when they are to-
gether).” The format for these responses was adapted slightly from that
used by Hilton and Slugoski (1986).

To avoid introducing any spurious biases due to variations in word-
ings across problems, all structurally equivalent problems had similar
wordings (see Appendix A). For seven of the problems, the event to be
explained was “positive” (e.g., Beth said a particular prayer on this occa-
sion). For the remaining eight problems, the target event was “negative”
(e.g., Wendy did not like a particular drink on this occasion). Hilton and
Jaspars (1987) explicitly compared positive and negative target events,
finding essentially the same attributions in both cases. A different con-
tent domain was used for each problem. (To better equate the problems
within a configuration, we held the content domain constant across
problems sharing a configuration in a subsequent replication, which we
report in a later section.)

The 15 problems were distributed among four booklets of four prob-
lems each. The first problem in each booklet was one of the three prob-
lems for which there is general agreement that the correct attribution is
a single main-effect contrast (Problems 1 [LLH}, 4 [HHH], and 7
[HLLY]). These were expected to be the easiest problems. For each book-
let, these three problems appeared approximately equally often as the
first page. The remaining three problems for each booklet were fixed.
Their order, however, was counterbalanced across subjects using a Lat-
in-square design. These problems were assigned to booklets so as to
maximize the diversity of predicted responses within each booklet. The
four booklets contained Problems (a) 2, 12, and 15; (b) 3, 6, and 14; (c)
5,11, and 13;and (d) 8, 9, and 10. The booklets were randomly assigned
to subjects.

Results
Scoring the Data

For each problem, subjects could check as many causal attri-
butions as they thought were appropriate. One way to analyze
the data would be to compute for each problem the percentage
of subjects choosing each attribution. This scheme seems ap-
propriate for addressing the issue of whether subjects have a bias
to make certain attributions more than others, regardless of our
predictions. We will therefore present our data using this scor-
ing method for the purpose of examining biases.

With the above method, however, the percentage of subjects
who chose a predicted attribution includes subjects who also

¢ Asillustrated in this example, the factors in our materials that yield
strong facilitatory contrasts are sufficient to produce the target effect.
Such patterns of information were chosen in order to focus on clear-cut
contrasts for which the criterion of a noticeable difference is not an
issue. Note that except for Problems 1, 4, and 7, these factors were not
necessary to produce the effect. Qur model requires neither sufficiency
nor necessity.
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chose unpredicted attributions. A stricter scoring criterion
would be to count the number of subjects who chose the pre-
dicted attributions and no unpredicted attributions. We will
adopt this more conservative scheme to test the differential pre-
dictions of our model across problems sharing a configuration.
To restrict our analyses to clear-cut contrasts for which the crite-
rion of a noticeable difference is not an issue, we focused on
strong contrasts (with values of 1 or approximately 1), which
we predict should be included as causes, versus contrasts with
value zero, which we predict should be excluded as causes.

For our materials, the interpretation of two types of attribu-
tions—those corresponding to weak and inhibitory contrasts—
is ambiguous. As can be seen in Appendix B, our problems
yield contrasts with absolute values of 1 or approximately 1,
1/n or approximately 1/n, and 0, where » is the assumed num-
ber of values on each dimension. It seems debatable whether or
not weak contrasts with values of approximately 1/7 should be
included as causes. The answer depends on the adopted crite-
rion of a noticeable difference and the assumed value of n, both
of which are likely to vary from subject to subject. We therefore
treat the inclusion of attributions corresponding to such con-
trasts as optional in our scoring. For a different reason, the inter-
pretation of the selection of inhibitory factors is also ambigu-
ous. Although inhibitory factors (e.g., the presence of a vaccine
in one’s body) cannot be considered explanations for why an
event occurred (e.g., the person contracts the disease), inhibi-
tory as well as facilitatory contrasts are consistent with our re-
sponse format (“There is something special about . . .").
Therefore, we also treat the inclusion of attributions corre-
sponding to inhibitory contrasts as optional.

In sum, for each problem we considered the following pattern
of responses as providing evidence for the probabilistic contrast
model: one or more attributions corresponding to strong facili-
tatory main-effect or interaction contrasts (because each is a
cause) and no responses corresponding to contrasts of zero. At-
tributions corresponding to weak or inhibitory causes (as pre-
dicted by the respective contrasts) were regarded as optional.
Note that subjects who chose only inhibitory or weak factors,
without at least one strong facilitatory factor, were not counted
as providing evidence for our model.

Evaluating the Probabilistic Contrast Model

Whereas previous models often predict a single response pat-
tern for all problems sharing a configuration, our probabilistic
contrast model predicts a different response pattern for each
problem because of the problems’ differing patterns of informa-
tion over the entire cube. In this section, we examine the prob-
lems sharing each configuration for evidence of the differential
attributions predicted by our model.

The LLH, HHH, and HLL Configurations

As indicated in Table 2, our model predicts a single main-
effect contrast for Problems ! (LLH), 4 (HHH), and 7 (HLL).
For each of the remaining two problems for each configuration,
our model predicts a different strong facilitatory interaction
contrast. It also predicts a strong inhibitory main-effect con-
trast and a weak facilitatory main-effect contrast.

Table 3
Percentage of Subjects Choosing Various Causal Attributions
forthe LLH, HHH, and HLL Problems

Response categories
PX0O+ PXxSzx
Configuration Problem n P O/P S/P Other
LLH 1 28 S0 11 18 21
LLH 2 23 9 3 0 57
LLH 3 25 12 0 80 8
PXS+ SxO0+
S P/S 0/S Other
HHH 4 30 67 0 10 23
HHH 5 21 10 76 0 14
HHH 6 25 0 0 84 16
SXx0+x PxO=zx
(6] S/0 P/O Other
HLL 7 33 45 27 0 27
HLL 8 22 36 45 0 18
HLL 9 22 14 0 64 23
Note. Incolumns 5-6, / represents and/or, X links multiple necessary

causes, and + means with or without; X has priority over / and +, and /
has priority over +. For example, P X O + O/P means subjects chose
the person by occasion interaction attribution; in addition, they may
also have chosen the occasion and/or person attributions (but they need
not have chosen those attributions). Entries in cells predicted by the
probabilistic contrast model are in boldface. The three letters in the
first column refer, respectively, to high (H) versus low (L) consensus,
distinctiveness, and consistency.

Table 3 lists the percentages of subjects choosing various
causal attributions for the sets of problems with the LLH,
HHH, and HLL configurations. The number of subjects who
received each problem is provided in the column labeled n. The
response categories in the table indicate the percentages of sub-
jects who made only attributions predicted for each problem,
as defined by the stricter scoring scheme discussed earlier. For
each configuration, the four response columns, respectively, list
the percentage of subjects who chose only (a) the strong main-
effect contrast predicted for the first problem in the set; (b) the
strong interaction contrast predicted for the second problem in
the set, with or without the appropriate weak and/or inhibitory
factors; (c) the strong interaction contrast predicted for the final
problem in the set, with or without the appropriate weak and/
or inhibitory factors; and (d) all other response patterns. (The
category of other responses includes subjects who chose (a) the
predicted strong facilitatory attribution plus one or more attri-
butions corresponding to contrasts of zero or (b) the inhibitory
and/or weak facilitatory factors but not any strong facilitatory
factors.) Percentages sum to 100 for each row.

The data for each configuration were analyzed separately by
comparing the three problems in terms of the frequency of re-
sponses falling into each of the three predicted categories.” As

" We excluded “other” responses from all of the statistical analyses
testing the ability of our model to discriminate attributions across prob-
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is evident from Table 3, responses to problems sharing a con-
figuration varied systematically depending on the pattern of co-
variation in the entire cube: x*(4, N = 55) = 47.9, p < .001, for
the LLH problems; x%(4, N = 62) = 87.8, p < .001, for the HHH
problems; and x%(4, N = 59) = 47.9, p < .001, for the HLL
problems. This strong support for our model is not due to the
inclusion of subjects who chose an inhibitory factor (accompa-
nied by the predicted facilitatory factor), as the pattern of re-
sults remains the same if those responses are excluded, with
x*(4, N = 47) = 36.8, p < .001, for the weakest comparison. For
each response category listed in Table 3, the problem for which
that response pattern was predicted showed a higher percentage
of responses than did the other two problems with the same
configuration for which it was not predicted. Each of the nine
(three response categories for each of three problem sets) fol-
low-up x*(1) analyses of response patterns (predicted or not) by
problems (whether or not the problem was the one for which
the pattern was predicted) was significant at least at the .02 level.
Clearly, responses to problems with the same configuration var-
ied systematically depending on the pattern of covariation over
the entire cube.

Across the three problems with the LLH, HHH, and HLL
configurations, an average of 55%, 76%, and 52% of the subjects,
respectively, chose only attributions predicted by our model,
with an overall average of 61% across configurations. As men-
tioned earlier, our measure for evaluating our model 1s quite
stringent. An indication of the conservativeness of our measure
may be obtained by comparing the more stringent and more
lenient scoring criteria for the three problems (1, 4, and 7) for
which there is general consensus across models in predicting a
single main-effect attribution (these are problems for which a
single factor is both necessary and sufficient to produce the
effect). For these problems, an average of 54% of the subjects
chose the predicted main-effect attribution but not any attribu-
tions corresponding to contrasts of zero (see Table 3), whereas
an average of 80% of the subjects chose the predicted attribu-
tions but also included one or more other responses (see Table 6).

The HLH Configuration

For our analyses, the problems sharing the high consensus,
low distinctiveness, high consistency configuration were divided
into two subsets: (a) Problems 10-12 and (b) Problems 13-15.
The three patterns of information represented by the problems
within each subset were structurally equivalent rotations of
each other.

The results for Problems 1012 are presented in Table 4. For
these problems, our model predicts two strong facilitatory
main-effect contrasts and a strong inhibitory interaction con-
trast (see Table 2). In consecutive sets of three response col-

lems. None of the models predict any changes across problems within
a configuration set for any of the responses in this category. Moreover, to
the extent that the percentage of unpredicted attributions differs across
problems, inclusion of those responses in the analyses would spuriously
increase the observed attributional difference among the problems.
There was little if any systematicity in the attributions relegated to the
“other” column for any of the 15 problems (see Table 6).

umns, the table lists the percentages of subjects who chose only
(a) one main-effect contrast, (b) two main-effect contrasts, and
(c) one or both main-effect contrasts together with the corre-
sponding inhibitory interaction contrast. The final column in-
dicates the percentage of all other responses for each problem
(e.g., subjects who chose only an interaction attribution). In ac-
cord with our scoring scheme explained above, for each prob-
lem we considered the following pattern of responses as provid-
ing evidence for the probabilistic contrast model: either or both
of the strong facilitatory main-effect factors, with or without the
inhibitory interaction factor, and no responses corresponding
to contrasts of zero. Entries in the predicted cells in Table 4 are
in boldface.

As is evident from examining the table, responses for the
three problems varied systematically as predicted by our
model. To show this statistically, we performed three frequency
analyses on the data. Each analysis compared a particular prob-
lem to the other two problems combined on the frequency of
responses predicted for the particular problem versus the re-
sponses not predicted for that problem. For example, one anal-
ysis compared Problem 10 versus the other two problems com-
bined on the frequencies of responses that fit the pattern pre-
dicted for Problem 10 (response columns P, S, P & S, and P/S
& P X S) versus those that fit the patterns predicted for the other
two problems (response columns 3, 5, 6, 8, and 9). The analyses
focusing on Problems 10, 11, and 12 were highly significant,
yielding, respectively, the following results: x*%(1, N = 50) =
18.5, p < .001; x*(1, N = 50) = 15.2, p < .001; and x*(1, N =
50) = 26.1, p < .001. Again, this strong support for our model
is not due to the inclusion of inhibitory factors (when accompa-
nied by predicted facilitatory factors), with x*(1, N = 41) =
12.6, p < .001, for the weakest of the three comparisons if those
responses are excluded.

In sum, subjects almost never chose attributions that were
consistent with the contrasts predicted for another problem in
the set but that were not consistent with the contrasts predicted
for the problem under consideration. Across the three prob-
lems, an average of 73% of the subjects chose only attributions
that were consistent with our probabilistic contrast model.

We now turn to the second set of HLH problems (13-15).
For these problems (which were particularly difficult), each fac-
tor and combination of two factors covaries, at least weakly.
with the effect (see Table 2). We clearly cannot use the scoring
scheme we have been using for the rest of our problems, because
the predicted response categories for the three problems would
be highly overlapping (e.g., a response of P and P X O could be
placed in the predicted category for either Problem 13 or 14).
To avoid overlapping response categories, we used the criterion
of choosing only the strong facilitatory factor(s) predicted for a
problem.

For each problem, our model predicts a strong facilitatory
main-effect contrast and a strong facilitatory interaction con-
trast involving the other two dimensions. The percentages of
subjects choosing one or both of these attributions (and no
other attributions) are presented in Table 5. For example, the
column labeled P/S X O indicates the percentage of subjects for
each problem whose attributions matched the predictions for
Problem 13: Subjects in this column chose only the person attri-
bution and/or the stimulus by occasion interaction attribution
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Table 4
Percentage of Subjects Choosing Various Causal Attributions
Jor the First Set of HLH Problems

Response categories

P/S& P/O& S/O0&
Configuration Problem »n P S O P& P& S&0 PXS PXO S§XO Other

HLH 10 22 23 14 0 36 0 0 5 0 5 18
HLH 11 21 24 0 14 0 10 0 0 10 5 38
HLH 12 23 0 22 26 0 0 17 0 0 17 17

Note. In columns 7-12 (beginning with the column labeled P&S), & represents and, / represents and/or,
and X links multiple necessary causes; X has priority over / and &, and / has priority over &. For example,
P/S & P X S means that subjects chose the person (P) attribution and/or the stimulus (S) attribution, and
they also chose the Person X Stimulus interaction attribution. Entries in cells predicted by the probabilistic
contrast model are in boldface. O = occasion; HLH = high consensus, low distinctiveness, and high consis-
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tency.

(each has a high contrast). The next two columns similarly indi-
cate attributions corresponding to strong facilitatory contrasts
for Problems 14 and 15, respectively. Entries in the cells pre-
dicted by the probabilistic contrast model are in boldface.

As predicted, responses to Problems 13-15 varied systemati-
cally depending on the pattern of covariation in the entire cube,
x%(4, N = 27) = 21.6, p < .001. As for the first subset of HLH
problems, for each of the sets of attributions that was predicted
for a particular problem, the problem for which those attribu-
tions were predicted showed a higher percentage of responses
than did the two problems (combined) for which they were not
predicted: All three x*(1) analyses were significant at least at the
.03 level.

Notice that the boldface entries in Table 5 do not reflect the
percentage of subjects who were consistent with our model, as
defined earlier, because the “other” category includes many
who chose attributions corresponding to the predicted strong
facilitatory contrast(s), together with attributions correspond-
ing to weak or inhibitory contrasts, which have been regarded
as optional. Applying the criterion used in our other problems,
the percentages of subjects who chose the predicted strong faci-
litatory contrast(s), with or without a weak and/or inhibitory
contrast, and no other responses were 57%, 76%, and 74%, re-
spectively, for Problems 13, 14, and 15.

Table 5
Percentage of Subjects Choosing Various Causal Attributions
Jor the Second Set of HLH Problems

Response categories

Configuration Problem »n P/SXO S/PXO O/PXS Other

HLH 13 21 29 5 14 52
HLH 14 25 0 28 0 72
HLH 15 23 13 4 26 57

Note. Incolumns4-6, / represents and/or, and X links multiple neces-
sary causes; X has priority over /. For example, P/S X O means that
subjects chose the person (P) attribution and/or the Stimulus (S) X Oc-
casion (O) interaction attribution (and no other attributions). Entries
in cells predicted by the probabilistic contrast model are in boldface.
HLH = high consensus, low distinctiveness, and high consistency.

In sum, for every configuration we tested, the various prob-
lems sharing a configuration differed significantly in the causal
attributions they elicited. Moreoever, the problem for which a
particular pattern was predicted by our probabilistic contrast
model showed a significantly higher percentage of responses
consistent with that pattern than did problems with the same
configuration for which that pattern was not predicted. These
results provide strong support for the use of covariation as mea-
sured by probabilistic contrasts in determining causal infer-
ences.

Comparing the Probabilistic Contrast Model
With Competing Models

In this section, we specifically compare our probabilistic con-
trast model with each of the models whose predictions are listed
in Table 2: the template model (Orvis et al., 1975), the deter-
ministic covariation principle that underlies the models of
Jaspars et al. (1983; Hewstone & Jaspars, 1987) and Forsterling
(1989), and the abnormal conditions focus model (Hilton &
Slugoski, 1986).

Template model. Because the template model predicts a sin-
gle response or set of responses across problems sharing a con-
figuration, it clearly fails to account for the systematic shifts in
responses for such problems for every configuration reported
above.

Deterministic covariation principle. The deterministic co-
variation principle also fails to account for the shifts in re-
sponses across problems sharing a configuration. For the six
problems with the HLH configuration, this principle predicts
no possible attribution throughout. For two of the three prob-
lems with the other three configurations, this principle likewise
predicts no possible attribution. Subjects’ responses systemati-
cally shifted across the above 12 problems, as predicted by our
probabilistic contrast model.

Readers may have noticed that we did not include the alterna-
tive of ““no cause” in our response forms. One might assume
that if subjects felt that no causal attribution was possible, they
would respond randomly in the absence of this response alter-
native. Under this assumption, our data clearly disconfirm the
deterministic principle. Responses to the problems for which
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that model predicts no possible attribution were far from ran-
dom, as already reported. Nevertheless, we would have even
stronger evidence against that principle if we could show that
subjects failed to choose the “no cause” alternative when it was
presented as an option,

We therefore conducted a replication experiment on 72
UCLA summer students, who were paid $5 for their participa-
tion. Half of the subjects received the previous response forms
and half received revised forms that added the “no cause” alter-
native (e.g., “There is nothing special about Wendy, the sun-
shine prayer, or this occasion, or any combination of the
three”). Information patterns for problems 1-12 were used, giv-
ing us three problems for each of the four configurations. Each
subject received one problem from each configuration, with
problem order counterbalanced across subjects. To better
equate the problems within a configuration, we held the content
domain constant across problems sharing a configuration. Also,
all problems involved positive events.

Across the 12 problems, only 7.6% of the subjects who re-
ceived the response form with the “nothing special” alternative
chose that response (and no other responses). The deterministic
covariation principle underlying the models of Forsterling
(1989) and Jaspars (Hewstone & Jaspars, 1987; Jaspars et al.,,
1983) predicts that no attribution is possible for 9 of the 12
problems (all problems except 1, 4, and 7). The low overall per-
centage of such responses does not support the principle. A
more critical question, though, is whether subjects were more
likely to give this response for the nine problems for which the
deterministic covariation principle predicts no possible attri-
bution than for the three problems for which the principle pre-
dicts a causal attribution. The answer is a resounding “no”":
7.4% of the subjects chose the “nothing special” response (and
no other responses) for the problems for which it was predicted,
and a similar 8.3% of the subjects chose (only) that response for
the problems for which it was not predicted. These data thus
replicate those of the original experiment in disconfirming the
deterministic covariation principle.

The inclusion of the “no cause™ alternative had no effect on
the relative frequencies of other responses for any of the prob-
lems. All configurations were analyzed as described above for
the original experiment, and the results replicated those re-
ported earlier.

Abnormal conditions focus model. For all of the problems
for which the ACF model and our model make no overlapping
attributional predictions, the ACF model predicts no possible
attribution. This is the same prediction as that made by the de-
terministic covariation principle for these problems. Our refu-
tation of that model, just described, applies identically to the
ACF model.

The Issue of Bias

We addressed the issue of bias to some extent in the section
on evaluating the probabilistic contrast model. By obtaining at-
tributions that were not predicted by other models but that have
been found in previous research, we demonstrated that these
apparent deviations from the predictions of previous models
can, in fact, be explained by a normative covariational model.

These deviations include interaction attributions, which have
not previously been explained.

‘We now consider the person bias. For the three problems for
which a single factor is both necessary and sufficient to produce
the effect (Problems 1, 4, and 7), there is no evidence for a bias
toward making a person attribution as opposed to a stimulus or
occasion attribution: 75%, 80%, and 85% of the subjects chose
these respective attributions for these problems (see Table 6).
More generally, Table 6 shows, for each problem, the percentage
of subjects choosing each of the three main-effect attributions
and each of the three interaction attributions, regardless of
what other attributions, if any, they chose. The final line reports
the average percentage of subjects making each attribution
across the 15 problems. Person, stimulus, and occasion attribu-
tions were made by 31%, 27%, and 38% of the subjects, respec-
tively. Consistent with our hypothesis of no biases in the infer-
ence process, a repeated-measures ANOVA with problems as the
replications variable and the three attributions as a within-
problem variable indicated no difference in the prevalence of
the three attributions, F(2, 28) < 1. We did not conduct the
comparable statistical analysis for the interaction attributions
because of the bimodal distribution of percentages for the P X
S and P X O attributions. However, the results show no obvious
biases (see Table 6).

On the basis of the smaller percentage of variance in her data
accounted for by consensus information compared with dis-
tinctiveness and consistency information, McArthur (1972)
concluded that there is a bias against using consensus informa-
tion. To compare our results with hers, we similarly computed
the percentages of variance accounted for by consensus, distinc-
tiveness, and consistency in our data, with the important
difference that we redefined these variables in terms of contrasts
to capture response variation over the entire cube rather than
over only the configuration. For example, consensus was rede-
fined in terms of whether or not there were differences in the
target behavior between the person in question and other people
on most stimuli across most occasions (rather than in terms
of whether or not there were differences across people about a
particular stimulus on a particular occasion). Distinctiveness
and consistency were redefined similarly. In other words, each
of these variables was defined with respect to the same set of
events, events in the entire cube. They differed only in the way
the cube was sliced. For each (redefined) information variable,
we coded three levels of covariation: no covariation, weak facili-
tatory covariation, and strong facilitatory covariation.

With our redefinitions of consensus, distinctiveness, and con-
sistency, these information variables should be able to predict
main-effect attributions. We thus analyzed each of the three de-
pendent variables of person, stimulus, and occasion attributions
(regardless of what other attributions, if any, were chosen) in
a separate stepwise regression using the redefined information
variables as independent variables. (Three equally spaced val-
ues were used to code no, weak, and strong covariation.) We
excluded from these analyses the six problems for which our
model predicts strong inhibitory main-effect contrasts (Prob-
lems 2, 3, 5, 6, 8, and 9). Although the patterns of information
for these problems indicate high covariation (i.e., low consen-
sus, high distinctiveness, or low consistency for the redefined
variables) along a dimension (persons, stimuli, or occasions),
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Table 6

Percentage of Subjects Choosing Each of the Three Single-Factor Attributions and Each of the
Three Conjunctive-Factor Attributions for Each Problem

Attribution

Problem Configuration n P S (0] PXxS PXO SxXO0

1 LLH 28 75 0 14 18 i1 7

2 LLH 23 43 0 48 4 39 22

3 LLH 25 56 20 0 84 0 0

4 HHH 30 3 80 10 0 7 13

5 HHH 21 19 43 0 86 0 5

6 HHH 25 0 36 52 4 8 88

7 HLL 33 3 0 85 0 3 33

8 HLL 22 5 36 77 9 0 45

9 HLL 22 9 0 50 0 77 0

10 HLH 22 64 55 0 18 0 9

11 HLH 21 57 10 38 5 29 29

12 HLH 23 0 57 61 0 0 35

13 HLH 21 48 14 48 10 0 24

14 HLH 25 36 4 32 4 60 16

15 HLH 23 48 4 52 61 4 35

M 31 27 38 20 16 24
Note. Numbers in boldface indicate the percentages of subjects who chose the strong facilitatory attribu-

tions predicted by the probabilistic contrast model. Numbers in italics indicate the percentages of subjects
who chose the weak facilitatory or (strong or weak) inhibitory attributions predicted by the probabilistic
contrast model. The three letters refer, respectively, to high (H) versus low (L) consensus, distinctiveness,

and consistency.

the covariation is negative (indicating inhibitory causes). Sub-
Jjects would therefore be quite justified in not checking the cor-
responding dependent variable as a response. Thus, each regres-
sion considered responses to nine problems (1, 4, 7, and 10~
15), with each subject’s response to a particular problem as a
separate data point in the analysis.

These analyses showed that consensus accounted for 31% of
the variance in person attributions, distinctiveness accounted
for 33% of the variance in stimulus attributions, and consis-
tency accounted for 24% of the variance in occasion attribu-
tions. The only independent variable that was significant in
each analysis was the one predicted by covariation: F(1, 224) =
98.9, p < .001, for consensus predicting person attributions;
F(1, 224) = 110, p < .001, for distinctiveness predicting stimu-
lus attributions; and F(1, 224) = 68.7, p < .001, for consistency
predicting occasion attributions.

Because the decision of whether to include weak facilitatory
contrasts in one’s response depends on where one sets the crite-
rion for a noticeable difference, we conducted a separate set of
regression analyses on the six problems (1, 4, 7, and 10-12) for
which our model predicts strong contrasts only. For this set of
problems, consensus accounted for 47% of the variance in per-
son attributions, distinctiveness accounted for 45% of the vari-
ance in stimulus attributions, and consistency accounted for
34% of the variance in occasion attributions. Only the predicted
independent variable was significant in the analyses of person
and stimulus attributions: F(1, 155) = 138, p < .001, for con-
sensus predicting person attributions; and F(1, 155) = 127,p <
.001, for distinctiveness predicting stimulus attributions. Con-
sistency accounted for the largest percentage of the variance in
occasion attributions, and it was the first independent variable

to enter the stepwise regression, F(1, 155) = 80.3, p < .001.
Although the other two independent variables were also signifi-
cant (F[2, 154] = 7.16, p < .005, for consensus, and F[3, 153] =
8.03, p < .001, for distinctiveness), the additional percentages of
variance accounted for were very small (3% for each variable).
Thus, in neither subset of problems was there any evidence for
a bias against using consensus information.

Discussion
The Probabilistic Contrast Model

We have proposed a model of causal induction that is a prob-
abilistic analogue of statistical contrasts. Rather than requiring
the complex quantitative computations underlying statistical
contrasts, our model only requires the comparison of propor-
tions. According to our model, causal inference is based on the
computation of contrasts between the proportion of times the
effect occurs for a particular value on a dimension versus other
values on that dimension. In particular, a factor will be desig-
nated a cause if the proportion of times the effect occurs when
that factor is present is greater (by some criterion) than the pro-
portion of times the effect occurs when the factor is absent. A
conjunction of factors (e.g., a particular person in combination
with a particular stimulus) will be designated a cause if there is
a noticeable difference between (a) the contrast for one of the
factors (e.g., the particular person) when the other factor (e.g.,
the particular stimulus) is present and (b) the contrast for that
same factor (the person) when the other factor (the stimulus) is
absent,

Like Kelley’s (1967, 1973) ANOVA model, the predictions of
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our model are based on covariation. Our model, however, is
more general than Kelley’s. First, covariation is specified by
probabilistic contrasts rather than by the information variables
of consensus, distinctiveness, and consistency. Probabilistic
contrasts can be computed for any dimension. Thus, although
we tested the predictions of our model by specifying informa-
tion over the entire Person X Stimulus X Occasion cube de-
scribed by Kelley, our model is not committed to those particu-
lar dimensions. For example, people may attribute effects to
countries, as when the presence of giant pandas in China alone
is attributed to something special about China, perhaps its cli-
mate and vegetation. Neither is our model committed to a cube.
The number of relevant dimensions may differ across problem
contexts as well as across people. For example, some people may
consider the presence or absence of other animals in China and
other countries (the stimulus dimension in Kelley’s cube) to be
irrelevant to the determination of the cause of the exclusive
presence of giant pandas in China. Our main thesis is simply
that causal inferences are based on the computation of probabi-
listic contrasts for a focal set—the set of events considered rele-
vant by the attributor.

Demonstrating the generality of our probabilistic contrast
model, we (Cheng & Novick, 1989b) have shown that this
model, when applied to the set of events and dimensions to
which attention is focused, as determined by the pragmatic con-
text (also see Cheng & Holyoak, 1985; Cheng, Holyoak, Nisbett,
& Oliver, 1986), can account for the intuitive distinction people
draw between causes and conditions that merely enable a cause
to realize its effect but are not themselves causes. For example,
people are unlikely to say that the presence of oxygen was the
cause of a forest fire. Rather, they are likely to reserve the title
“cause” for factors such as lightning, a dropped cigarette, or the
unusual dryness of the climate. This distinction between causes
(e.g., lightning) and conditions (e.g., 0xygen) is made despite the
knowledge that oxygen and lightning, for example, are individ-
ually necessary for a particular fire to occur, and are jointly
sufficient (along with other conditions such as the combustibil-
ity of wood) to produce the fire. In a series of experiments, we
(Cheng & Novick, 1989a, 1989b) (a) ruled out alternative
hypotheses, including the abnormality of the factors, their ob-
servability, and assumptions about the state of knowledge of
the inquirer; and (b) showed that previously proposed models
(Jaspars et al., 1983; Kelley, 1967, 1973; Schustack & Stern-
berg, 1981; Shaklee & Tucker, 1980; Suppes, 1970, 1984) can-
not account for the distinction.

Potential Criticisms of Our Methodology

The results of this experiment clearly support our model
against previous ones. Several criticisms, however, might be
raised against the validity of our methodology. We consider
some of them below.

Because our materials specified strong facilitatory contrasts
that were, in fact, sufficient, a question may be raised as to
whether sufficiency is a criterion that can indeed account for
our results. It clearly cannot. Consider, for example, the
Person X Stimulus contrast. The combination of Person 1 and
Stimulus 1 is sufficient to produce the effect for Problems 1-
6 and 10-15. Yet, whereas an average of 77% of our subjects

attributed the effect to that combination for Problems 3, 5, and
15, for which a strong facilitatory Person X Stimulus contrast
is predicted by our model, an average of a mere 7% made the
same attribution for the rest of these problems, for which that
contrast is not predicted. Moreover, much previous evidence
demonstrates that people do infer insufficient factors to be
causes (e.g., Jaspars, 1983; McArthur, 1972).

Despite our intent to create arbitrary materials, it is possible
that they may, in fact, have been nonarbitrary. If so, then two
alternative objections might be raised against our results. First,
if subjects’ real-life knowledge about a content domain agreed
with our specifications, their responses might have been based
on knowledge retrieval rather than on inference. Second, if their
knowledge conflicted with our specifications, it might be argued
that our methodology is rendered invalid.

We do not think the retrieval of prior knowledge can account
for our results. First, it is not at all obvious how our predictions
follow from real-life knowledge. For example, given one’s real-
life knowledge relevant to the statement *“Dave would not eat
rabbit meat on this occasion,” it is not clear that the conclusion
“There is something special about the occasion’ would follow.
Yet 85% of our subjects who received this problem chose the
occasion attribution (compared to 0% for the stimulus attribu-
tion and 3% for the person attribution), as predicted by the ap-
plication of our model to the pattern of covariation specified in
the problem. Moreover, in our replication, content domain was
kept constant across problems sharing a configuration. Yet sys-
tematic shifts in attributions predicted by probabilistic con-
trasts nonetheless occurred. Such shifts clearly cannot be ex-
plained by subjects’ prior knowledge about a particular do-
main.

Neither do we believe that possible conflicts between subjects’
real-world knowledge and the information specified in our
problems render our methodology invalid. Almost certainly, we
were not completely successful in manipulating the informa-
tion used by the subject. Information overload, as we mentioned
earlier, and conflict with prior knowledge are both likely to have
interfered with our intent. These may, in fact, be important ex-
planations for the residual noise in our data. If we had been
more successful in manipulating subjects’ assumptions, their
attributions might have been even more consistent with the pre-
dictions of our model. The partial ineffectiveness of our meth-
odology, however, does not invalidate it. The systematic varia-
tion across problems that we found vindicates the effectiveness
of our manipulation. Failure to manipulate subjects’ assump-
tions could only explain the potential failure of experiments
such as ours—it cannot explain their actual success.

A further possible objection might be based on the possibility
that our materials were rather artificial. The artificiality of our
materials might have led subjects to devise artificial methods of
inference that they do not use when confronted with real-life
problems. It seems highly implausible to us, however, that arti-
ficial methods spontaneously devised by subjects should sys-
tematically support our model. One would expect such meth-
ods to be varied and therefore to lead to confusing data. It is
particularly unlikely that most subjects would happen to devise
a rule that coincides with our definition of interaction contrasts.

More important, as mentioned earlier, we (Cheng & Novick,
1989a, 1989b) have shown that the probabilistic contrast
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model, but not other models of causal induction, can account
for the intuitive distinction people draw between causes and en-
abling conditions. The materials used in those experiments in-
volved common physical and biological events such as fires and
plant growth. Thus, there is evidence that our model explains
an intuitive distinction based on nonartificial materials.

Could our subjects have successfully applied a set of trained
rules that is equivalent or similar to our model? According to a
questionnaire administered at the end of the experiment, 81%
of our subjects answered “no” when asked “Have you ever
taken any courses in high school or college that included a dis-
cussion of causation (i.e., how to determine what are possible
causes of events)?” and asked to list the relevant courses. Only
1% listed statistics. (Eight percent listed a psychology research
methods laboratory course, 8% listed a philosophy or logic
course, and 2% listed other courses.) Even those who have taken
a course that included a discussion of causation are unlikely to
have been trained on conjunctive causal factors. It is therefore
unlikely that our subjects were applying trained rules.

Reassessment of Biases

By specifying for the subject types of information that typi-
cally have been ignored in previous experiments on causal attri-
bution and by redefining the information variables of consen-
sus, distinctiveness, and consistency over the entire cube, we
found neither a bias for attributing an effect to a person nor a
bias against using consensus information. Moreover, by manip-
ulating information in the nonconfigurational part of the cube,
while keeping configurational information constant, we were
able to elicit various causal attributions, including ones that
have previously been regarded as deviations from normative co-
variation. Our results therefore show that such apparent devia-
tions may be explained by the pattern of the information over
which covariation is computed. Just as we were able to vary the
information given for the nonconfigurational part of the cube,
subjects in previous experiments (e.g., Forsterling, 1989; Hilton
& Slugoski, 1986; Jaspars et al., 1983; McArthur, 1972; Orvis
et al., 1975) might also have varied their assumptions regarding
the unspecified parts of the cube from situation to situation and
problem to problem, thus producing what appeared to be ca-
pricious biases.

Our results also show that the deterministic covariation prin-
ciple (Forsterling, 1989; Jaspars et al., 1983), even when applied
to information over the entire cube, does not describe the pro-
cess of causal induction. Contrary to this principle but in ac-
cord with our probabilistic contrast model, our subjects consis-
tently attributed effects to factors that were not necessary to
produce the effect but that corresponded to strong contrasts.
The large deviations from the deterministic covariation princi-
ple do not appear to represent irrational biases, because they
systematically follow from a less stringent but nonetheless unbi-
ased probabilistic model.

Because our experiment did not present subjects with the op-
portunity to spontaneously select dimensions out of a larger set,
our results tell us nothing about (a) whether the dimensions of
persons, stimuli, and occasions are the ones people spontane-
ously seek out, and, hence, (b} how prior knowledge affects the
selection. What our results do indicate, however, is that from the

set of selected dimensions, people compute covariation without
bias, and the computed pattern of covariation then determines
causal inferences.
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Appendix A

Causal Attribution Problems

Problem 1 (LLH):

Jane had fun washing dishes on this occasion.

1. In fact, Jane always has fun doing all chores.

2. But nobody else ever has fun doing any chores.

Problem 2 (LLH):

Cathy is not allergic to olive tree pollen on this occasion.

1. In fact, Cathy is not allergic to any other kind of tree pollen on this
occasion either.

2. But everyone else is allergic to all kinds of tree pollen on this occa-
sion.

3. On all other occasions, nobody has been allergic to any kind of tree
pollen.

Problem 3 (LLH):

Adam thinks that narcissus (a flower) smells nice on this occasion.
1. In fact, Adam has always thought that narcissus smells nice.

2. But nobody else has ever thought that narcissus smells nice.

3. Everyone has always thought that all other flowers smell nice.

Problem 4 (HHH):

Wendy does not like to drink Campari (a kind of liquor) on this occasion.

1. In fact, nobody has ever liked to drink Campari.

2. But everyone has always liked to drink all other kinds of alcoholic
drinks.

Problem 5 (HHH):

Sam is not afraid of John’s raccoon on this occasion.

1. In fact, Sam has never been afraid of John’s raccoon.
2. But Sam has always been afraid of all other raccoons.
3. Nobody else has ever been afraid of any raccoon.

Problem 6 (HHH):

Beth said the morning prayer on this occasion.

1. In fact, everyone said the morning prayer on this occasion,
2. But nobody said any other prayer on this occasion.

3. On all other occasions, everyone said all the prayers.

Problem 7 (HLL):

Dave would not eat rabbit meat on this occasion.

1. In fact, nobody would eat any kind of meat on this occasion.

2. But on all other occasions, everyone has eaten all kinds of meats.

Problem 8 (HLL):

Vicky is not wearing a gardenia (a flower) on her collar on this occasion.

1. In fact, nobody is wearing a gardenia on his or her collar on this
occasion.

2. But on all other occasions, everyone has worn a gardenia on his or
her collar.

3. Nobody has ever worn any other kind of flower on his or her collar.

Problem 9 (HLL):

Party enjoyed playing majong (a gambling game) on this occasion.

1. In fact, Patty enjoyed playing all kinds of gambling games on this
occasion.

2. But on all other occasions she did not enjoy playing any gambling
games.

3. Everyone else has always enjoyed playing all kinds of gambling
games.

Problem 10 (HLH):

Kim does not enjoy listening to the zither (a musical instrument) on this

occasion.

1. In fact, Kim has never enjoyed listening to the zither.

2. Nobody else has ever enjoyed listening to the zither either.

3. But everyone else has always enjoyed listening to all other instru-
ments.

4. However, Kim has never enjoyed listening to any instrument.

Problem 11 (HLH):

Alice displayed sculptures made from clay in her home on this occasion.

1. In fact, Alice displayed sculptures made from all kinds of materials
on this occasion.

2. Alice has displayed sculptures made from all kinds of materials on
all other occasions too.

3. Buton all other occasions nobody else has displayed sculptures made
from any kind of material.

4. However, on this occasion everyone displayed sculptures made from
all kinds of materials.

Problem 12 (HLH):

Fred sang “Golden Slumbers” (a children’s song) on this occasion.

1. In fact, everyone sang “Golden Slumbers™ on this occasion.

2. Everyone also sang all other children’s songs on this occasion.

3. But nobody sang any other children’s songs on any other occasion.
4. However, everyone has always sung “Golden Slumbers.”

Problem 13 (HLH):

Eric did not like to dance the tango on this occasion.

1. In fact, Eric has never liked to dance any kind of dance.

2. But except for this occasion, everyone else has always liked to dance
all kinds of dances (including the tango).

3. On this occasion, nobody else liked to dance the tango (but like all
other occasions, they did like to dance all other dances).

Problem 14 (HLH):

Susan did not bow to the statue of fire on this occasion.

1. In fact, nobody has ever bowed to the statue of fire.

2. But except for this occasion, everyone (including Susan) has always
bowed to all other statues.

3. On this occasion, Susan did not bow to any other statue (but like all
other occasions, everyone else bowed to all other statues).

Problem 15 (HLH):

George likes collard greens (a leafy vegetable) on this occasion.

1. In fact, everyone likes all kinds of leafy vegetables on this occasion.

2. But except for George, on all other occasions nobody has liked any
kind of leafy vegetable (including collard greens). .

3. On all other occasions, George has always liked collard greens (but
like everyone else he hasn’t liked any other kind of leafy vegetable).

(Appendixes continue on next page)
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Appendix B

Predictions of the Probabilistic Contrast Model for Five Problems

We derive below the predictions of the probabilistic contrast model
for five problems, each representing one of the five structurally distinct
patterns. For each of the three main effects and each of the three two-
way interactions, contrasts are derived for each problem. Because our
problems do not specify the number of people, stimuli, and occasions,
and because our information patterns are symmetric across the three
dimensions, we make the simplifying assumption that there are an equal
number of values on every dimension, and let the variable »n represent
this number. Spatial labels for some of the columns refer to the Person X
Stimulus X Occasion cube as oriented in Figure 2. In the Predicted
attribution column, person, stimulus, and occasion attributions are de-
noted respectively by P, S, and O. Inhibitory contrasts are denoted by a

bar above the letter (e.g., S). No attribution corresponding to a contrast
is denoted by a dash (—).

According to the probabilistic contrast model, positive contrasts
predict facilitatory attributions and negative contrasts predict in-
hibitory attributions. Contrasts of zero predict no attribution. We
make no assumption regarding whether contrasts with an absolute
value of 1/n or approximately 1/n are above the criterion for a no-
ticeable difference. Attributions corresponding to contrasts of this
size are enclosed in parentheses. (These attributions are treated
as optional in our scoring.) Contrasts much greater than 1/n are as-
sumed to be above the threshold, and these predict corresponding attri-
butions.

Person Contrast (Pfi] — P{~il):

Relative frequency of target event for

Target person (i) Other people (~1) Predicted
Problem (top plane) (other planes) Contrast attribution
1 | 0 1 P
2 | (n—1)/n 1/n P)
3 1 (n—1)n I/n (P)
12 (2n - 1)/n? 2n - 1/n? 0 —
15 2n—1)/n? l/n (n— 1)/n? (P)
Stimulus Contrast (P{ j] — P[~j]):
Relative frequency of target event for
Target stimulus (j) Other stimuli (~J) Predicted
Problem (left plane) (other planes) Contrast attribution
i 1/n 1/n 0 —
2 [(n— 1Y%+ n)/n? [(n — 1* + nl/n® 0 —
3 \/n 1 —(n— 1)/n S
12 1 1/n (n—1)/n S
15 @n— 1)/n? 1/n (n— H/n? (S)
Occasion Contrast (Pfk] — Pf~K]):
Relative frequency of target event for
Target occasion (k) Other occasions (~k) Predicted
Problem (front plane) (other planes) Contrast attribution
1 I/n 1/n 0 —
2 In 1 —(n—1)/n O
3 [(n— 1? + nl/n? [(n = 1)? + n]/n? 0 —
12 1 i/n (n—1)/n (o)
15 1 1/n? (n?— 1)/n? o
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Appendix B (continued)
Person X Stimulus Contrast {(Pi, j] — Pfi, ~j]) — (P{~i, j] — P1~i, ~iD}:
Relative frequency of target event for
[i.jl- [~ij]- Predicted
Problem [1,3] [i, ~j} [~1,]] [~i, ~j] [i, ~j] [~i, ~j] Contrast attribution
{ 1 1 0 0 0 0 0 —
2 1 1 (n—1)/n (n—1)/n 0 0 0 —
3 1 1 0 I 0 -1 1 PXS
12 1 I/n 1 I/n (n—1)/n (n—1)/n 0 —_
15 \ 1/n 1/n 1/n (n—1)/n 0 (n—1)/n PXS$§
Person X Occasion Contrast {(Pfi, k] — Pfi, ~Kk]) — (P{~i, k] — P{~i, ~k]D}:
Relative frequency of target event for
[i, k]— [~1i, k)— Predicted
Problem [i, k] [i, ~K] [~1, k] [~1, ~k] [i, ~k] [~1i, ~Kk] Contrast attribution
1 1 1 0 0 0 0 0 —
2 1 1 0 1 0 -1 1 Px0O
3 ] I (n—1)/n (n—1)/n 0 0 0 —
12 1 I/n 1 1/n (n—1)/n (n—1)/n 0 _—
15 1 1/n 1 0 (n—1/n 1 —1/n (PXO0)
Stimulus X Occasion Contrast {(P{j, k] — P{j, ~k]) — (P{~}, k] — P[~j, ~kD)}:
Relative frequency of target event for
[J, k]- [~i. k}- Predicted
Problem [, k] [j, ~k] [~5. k] [~], ~k] i, ~k] [~1, ~k] Contract attribution
1 I/n 1/n I/n 1/n 0 0 0 —
2 l/n 1 I/n 1 —(n—1)/n —(n—1)/n 0 —
3 l/n 1/n 1 1 0 0 0 —
12 1 1 1 0 0 1 -1 $XO
15 | 1/n 1 0 (n—1)/n 1 —1/n (SX0)
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