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Abstract

■ The ability to generate and process semantic relations is
central to many aspects of human cognition. Theorists have long
debated whether such relations are coarsely coded as links in a
semantic network or finely coded as distributed patterns over
some core set of abstract relations. The form and content of
the conceptual and neural representations of semantic relations
are yet to be empirically established. Using sequential presenta-
tion of verbal analogies, we compared neural activities in making
analogy judgments with predictions derived from alternative

computational models of relational dissimilarity to adjudicate
among rival accounts of how semantic relations are coded and
compared in the brain. We found that a frontoparietal network
encodes the three relation types included in the design. A
computational model based on semantic relations coded as
distributed representations over a pool of abstract relations pre-
dicted neural activities for individual relations within the left
superior parietal cortex and for second-order comparisons of
relations within a broader left-lateralized network. ■

INTRODUCTION

The poet Samuel Taylor Coleridge claimed that the crea-
tive mind needs to become “accustomed to contemplate
not things only,… but likewise and chiefly the relations of
things…” (Coleridge, 1810/1969, p. 451). Because rela-
tions provide basic building blocks for language and
thought, they are central for a range of cognitive tasks. A
prime example is the critical role of relation representa-
tions in analogical reasoning (Holyoak, 2012), a mental
process that impacts human activities as diverse as meta-
phor comprehension (Holyoak, 2019), mathematics edu-
cation (Richland, Zur, & Holyoak, 2007), scientific
discovery (Dunbar & Klahr, 2012), and engineering design
(Chan & Schunn, 2015). However, although the impor-
tance of relations is widely recognized, no consensus has
emerged regarding the form of relation representations in
the mind and brain.
For the past half century, cognitive scientists exploring

human semantic memory have sought to identify the na-
ture of the code for the first-order relations between two
concepts (for reviews, see Jones, Willits, & Dennis, 2015;
Holyoak, 2008). Two longstanding views, mainly based on
data from speeded verification of category–membership
relations (e.g., deciding as rapidly as possible whether a
rose is a flower), continue to be influential. One approach,
originating in computer science (Collins &Quillian, 1969),
treats relations as being coarsely coded, with labeled uni-
tary links between localist nodes representing concepts
(e.g., an “is a” link connecting rose to flower). Relation

verification is viewed as an all-or-none process of retriev-
ing the relevant link. For example, the word pair rich–poor
might trigger retrieval of the relation type “opposite” to
form the symbolic representation “opposite” (rich, poor).
Current computational models of analogy based on tradi-
tional symbolic knowledge representations (Forbus,
Ferguson, Lovett, & Gentner, 2017) continue to assume
relations are coded as localist links.

In contrast, an alternative view hypothesizes that the
meanings of relations are more finely coded by means of
operations performed on featural representations of enti-
ties (Smith, Shoben, & Rips, 1974; Meyer, 1970). In sup-
port of the latter view, analyses of verification time based
on speed–accuracy decomposition have revealed that re-
lation information accrues continuously over time, rather
than being retrieved in an all-or-none fashion (Kounios,
Montgomery, & Smith, 1994). Moreover, much like object
categories (Rosch, 1975), examples of semantic relations
exhibit a typicality gradient (e.g., hot–cold is considered
a better example of “opposite” than is warm–cool;
Jurgens, Turney, Mohammad, & Holyoak, 2012). There
is continuing debate as to whether the relation between
a pair of concepts is coarsely coded as a general relation
type or whether the relation is more finely coded based
on the features of the concepts it links (Popov, Hristova,
& Anders, 2017).

Not only can word pairs instantiate a particular relation
to different degrees, as suggested by previous research on
relation typicality, but many word pairs seem to instantiate
multiple relations to some degree. For example, the con-
cepts hill–mountain primarily instantiate the relation of
“similar” (both are types of high geological formations),University of California, Los Angeles
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but they also, to some degree, instantiate “contrast” (dif-
fering in height). These systematic and graded variations
pose challenges for the second-order relation compari-
sons required to solve analogy problems, suggesting that
analogical validity may itself be a matter of degree, varying
with some measure of relation dissimilarity.

Previous work has identified regions within a left-
lateralized frontoparietal network that support compo-
nent processes involved in analogical reasoning. In particular,
subareas of parietal cortex appear to support the encoding
of individual relations (Wendelken, 2015), whereas
the rostrolateral pFC (RLPFC) appears critical in second-
order relational comparisons (Hobeika, Diard-Detoeuf,
Garcin, Levy, & Volle, 2016; Green, Kraemer, Fugelsang,
Gray, & Dunbar, 2010; Bunge, Helskog, & Wendelken,
2009; Wendelken, Bunge, & Carter, 2008; Bunge,
Wendelken, Badre, & Wagner, 2005; for a review, see
Holyoak & Monti, this issue). However, it remains unclear
what content of relation representations is encoded in the
brain and compared during analogical reasoning. To
address questions about the specific nature and content
of relation representations in the brain, it is important to
obtain neural evidence based on item-level analyses. Such
detailed evidence has the potential to identify properties
of relation representation that yield graded variations in
the representations of individual relations and in second-
order relational comparisons. By performing item-level
analyses, we can compare neural activities with predic-
tions derived from alternative computational models to
adjudicate among rival accounts of how semantic relations
are coded and compared in the brain. To test the pro-
posed computational code for semantic relations and their
comparison, various models were used to predict degrees
of relation dissimilarity between word pairs. Model predic-
tions were correlated with patterns of neural dissimilarity
across word pairs andwere used to predict neural activities
in making an analogy judgment.

Computational Models of Relation Representation
and Comparison in Analogy

Here, we test alternative computational models of relation
representation, combining recent advances in machine
learning and cognitive science with neuroimaging. Following
Coleridge, to represent relations between things, it is first
necessary to have representations of those “things”—
in the case of semantic relations, we first need semantic
representations of individual words. To represent word
meanings, we adopt word embeddings produced by a
recent machine-learning model, Word2vec (Mikolov,
Sutskever, Chen, Corrado, & Dean, 2013). This model
applies a predictive learning algorithm to a large text corpus
(e.g., Google News) to create high-dimensional semantic
vectors for individual words. Vectors generated by Word2vec
and similar models have been shown to accurately capture
human judgments of semantic similarities among words
(Zhila, Yih, Meek, Zweig, & Mikolov, 2013) and have also

been used to create a neural decoder to predict patterns of
brain activity produced in response to sentences (Pereira
et al., 2018).
Although major computational models of analogical

reasoning, such as SME (Forbus et al., 2017) and LISA
(Hummel & Holyoak, 2005), critically depend on assump-
tions about relation representations, most such models
do not specify a mechanism by which relations could be
learned from nonrelational inputs. The DORA model
(Doumas, Hummel, & Sandhofer, 2008) does address
relation learning but has not been applied to semantic
vectors as inputs. In the present article, we assessed three
computational models based on semantic vectors.
Two of these models derive dissimilarity predictions di-

rectly fromWord2vec vectors for the individual words in a
pair. These two models differ in their assumptions about
how (or whether) the relation between the two words is
represented. Under Word2vec-concat, the meaning of
the words within a pair is a simple aggregate of the seman-
tic vectors of the two individual words. The dissimilarity
between any two word pairs is computed by the cosine
distance between the two concatenated vectors. This
model is nonrelational, instead capturing semantic dissim-
ilarity across pairs based solely on the meanings of the in-
dividual words. Word2vec-concat serves to identify
patterns of dissimilarity based on lexical semantics, sepa-
rate from any representation of the relation between the
two words within each pair.1

Under Word2vec-diff, the first-order relation between
two words is defined in a generic fashion as the difference
between the semantic vectors of each word within a pair;
second-order dissimilarity of relations is assessed by the
cosine distance between the two difference vectors that
form the analogy. This model, which has been directly
applied to analogy problems in work on machine learning
(Zhila et al., 2013), codes relations only implicitly (i.e., as a
difference vector computed from individual words).
Word2vec-diff is able to solve some verbal analogy prob-
lems based on relatively specific relations (e.g., king:
queen::man:woman), although its success is limited
(Linzen, 2016). To the best of our knowledge, the model
has not been tested with analogies based on abstract
semantic relations of the sort used in this study.
The third computational model, Bayesian Analogy with

Relational Transformations (BART; Lu, Wu, & Holyoak,
2019; Lu, Chen, & Holyoak, 2012), assumes that specific
semantic relations between words are coded as distributed
representations over a set of abstract relations, specified
in a taxonomy founded on linguistic and psychological
evidence (Bejar, Chaffin, & Embretson, 1991). This taxon-
omy includes 10 general types of relations (e.g., similar,
contrast, cause–purpose), each of which has several sub-
types, resulting in 79 semantic relations. BART is trained
with a small number of word pairs (∼20 pairs) as positive
examples of each specific relation in the taxonomy (Jurgens
et al., 2012). After learning the set of 79 abstract relations
from example word pairs coded as semantic vectors
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derived from Word2vec, for any word pair, BART can
estimate the probability that the word pair instantiates
each learned relation, which constitutes a distributed
representation of the specific relation between the two
words. BART’s relation vectors enable computations of
second-order relational dissimilarity between word pairs,
providing a direct basis for solving verbal analogies in
the form A:B::C:D (e.g., old:young::hot:cold). Behavioral
evidence indicates that BART can solve a set of simple
verbal analogies with a degree of accuracy comparable to
humans (Lu et al., 2019).
We employed a sequential event-related fMRI design

(DeWolf, Chiang, Bassok, Holyoak, & Monti, 2016), in
which participants judged the validity of A:B::C:D analo-
gies involving three types of abstract relations (similar,
contrast, and cause–purpose). This design aimed to sep-
arate the construction of first-order relations (i.e., rela-
tions between words in a pair) from the second-order
assessment of dissimilarity between relations (i.e., the de-
gree of analogical match between A:B and C:D relations).
To test the neural plausibility of the three computa-

tional models, we analyze the A:B and C:D phases of each
analogy with a (dis)similarity analysis assessing the de-
gree to which each computational model matches the
observed neural representations of first-order relations
(i.e., A:B) and the observed neural responses to
second-order relational distance (i.e., A:B vs. C:D). The
A:B phase provides a relatively pure measure of neural
activity involved in coding the individual A and B words
and the A:B relation. To arbitrate between the three alter-
native models (as well as a baseline model based on re-
lation types alone), we probe the representation of this
relation using first a multivariate decoding analysis,
followed by a multivariate representational similarity anal-
ysis (RSA). The C:D phase includes the neural computa-
tion required to compare the two relations (as well as
neural activity required to maintain the A:B relation and
to represent the C:D relation). We examine this represen-
tation using a voxelwise correlation analysis, assessing the
degree to which hypothesized second-order relational
distance resembles neural activity. If semantic relations
have distributed representations based on the taxonomy
of abstract relations, we should find brain regions in
which BART is the best predictor of neural similarity. In
contrast, if relations are coded as atomic units, then sim-
ilarity of two word pairs will only depend on whether
they instantiate the same or different relation types.

METHODS

Participants

Sixteen participants (eight female) were recruited at the
University of California, Los Angeles (UCLA) through a
flyer distributed in the Psychology Department.
Participants signed informed consent before the experi-
mental session and were paid $50 for their participation

in the 1-hr study, in compliance with the procedures
accepted by the local institutional review board. The study
was approved, including informed consent procedures,
by the UCLA Office of the Human Research Protection
Program.

Stimuli and Design

The stimuli were a set of analogy problems constructed
from word pairs taken from a normed set of examples of
abstract relations (Jurgens et al., 2012). The full norms
include examples of word pairs instantiating 10 general
types of relations, each including 5–10 more specific re-
lations, for a total of 79 distinct relations. For this study,
we focused on three general relation types (chosen as es-
pecially familiar) with three specific relations drawn from
each, for a total of nine relations: similar (synonym, attri-
bute similarity, change), contrast (contrary, directional,
pseudoantonym), and cause–purpose (cause:effect,
cause:compensatory action, activity:goal).

For each relation, we selected 16 word pairs high in
typicality as assessed by human judgments ( Jurgens
et al., 2012), yielding 48 word pairs per relation type
and 144 pairs in total. Examples of the word pairs used
are shown in Table 1. In selecting word pairs to construct
analogy problems, we avoided duplicate pairs that were
simple reversals (e.g., happy–sad and sad–happy),
choosing in such cases the pair with the higher typicality
rating. Pairs that included conspicuously long or low-
frequency words were also excluded. Because, for some
subcategories, it proved difficult to identify 16 pairs that
passed our selection criteria, we also included some pairs
that had been used as “seed” examples to elicit word

Table 1. Examples of Word Pairs Used to Generate Analogy
Problems, Organized by General Relation Type and Subtype

Similar

Synonym Attribute Similarity Change

big:large book:magazine acceleration:speed

boat:ship chair:sofa darken:color

Contrast

Contrary Directional Pseudoantonym

accept:reject ahead:behind bright:dull

big:small below:above day:evening

Cause–purpose

Cause:effect Cause:compensatory
action

Activity:goal

accident:damage anger:yell advertise:promote

bath:cleanliness coldness:shiver bathe:clean
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pairs from humans ( Jurgens et al., 2012). These were
considered excellent examples.

Using the 144 (16 examples × 9 specific relations) dis-
tinct word pairs selected as described above, we formed
pairs of pairs to create verbal analogy problems in the form
A:B::C:D (valid) or else A:B::C 0:D0 (invalid), where all pairs
were drawn from the pool of 144. For the invalid pairs,
the C 0:D0 pair was drawn from a different relation type than
was A:B. We avoided creating invalid items using different
specific relationswithin the samegeneral relation type (e.g.,
specific relations “contrary” and “pseudoantonym,” both
subtypes of “contrast”) because pilot work suggested that
such “near-miss” problems would lead to excessive errors.
At the same time, C 0:D0 pairs always instantiated a natural
semantic relation (rather than being semantically anoma-
lous), forcing participants to consider the paired relations
carefully in judging validity of the analogies.

Counterbalancing was used to create four complete
sets of analogy problems. To form an individual set of
72 analogy problems, for each of the nine specific rela-
tions, 8 of the 16 pairs were assigned to the A:B role
and four were assigned to the C:D role. The remaining
four pairs were assigned to the C0:D0 role associated with
A:B pairs for four of the six specific relations representing
the two remaining general relation types. Assignments to
the C:D role were random, subject to the above restric-
tion. Subject to all of the above restrictions, specific four-
term analogy problems were created by random pairing
of word pairs. For each specific relation, four problems
were valid and four were invalid. Within a set of 72 anal-
ogy problems, each of the 144 word pairs occurred twice
in the A:B role and once in each of the C:D and C 0:D0

roles. Across four sets of problems, each of the 144 word
pairs appeared in each role with the same proportions
(i.e., twice as often as A:B than as C:D or C 0D0).

The four sets, with a total of 288 problems (4 sets × 72
problems each), were treated as four blocks administered
to each participant. The procedure for problem generation
ensured that any individual analogy problem occurred only
once in the set of 288 problems. The order of problemswas
randomized within each block, and the order of the four
blockswas counterbalanced across participants. The overall
aim of this procedure for problem creation was to ensure
that data analyses could be based on neural patterns asso-
ciated with each of the 16 word pairs representing each of
the nine specific relations (144 pairs in total), in each of the
three possible roles (A:B, C:D, C 0:D0), while avoiding any
confounding between specific pairs and roles. Finally, each
of these four sets was further split into two sets of 36 for
presentation convenience.

Procedure

The experiment was administered using PsychoPy2 (Peirce,
2009). On each trial (see Figure 1), participants were first
shown the A:B word pair for 2 sec and then the C:D pair
for 2 sec (with an average 0.5-sec jitter in between). The

words “yes” or “no” then appeared on the left and right of
the screen, indicating the assignment of two response but-
tons used to indicate whether or not the two pairs repre-
sented the same relation. Critically, the assignment of
“yes” and “no” buttons was randomly varied, ensuring that
participants could not begin planning a motor response
during the earlier phases of the trial. Participants were in-
structed that all word pairs represented a meaningful rela-
tion but were not made aware of the structure of the
relations. The A:B phase provided a measure of neural ac-
tivity involved in coding the individual A and B words and
theA:B relation. TheC:D phase included the neural compu-
tation required to compare the two relations (as well as neu-
ral activity required to maintain the A:B relation and to
represent the C:D relation).

fMRI Data Acquisition

Data were acquired on a 3-T Siemens PRISMA MRI scanner
at the OneMind Staglin IMHRO Center for Cognitive
Neuroscience at UCLA. Structural data were acquired using
a T1-weighted sequence (magnetization prepared rapid
gradient echo, repetition time = 1900 msec, echo time =
2.26 msec, voxel size = 1 mm3 isovoxel). BOLD data were
acquired with a T2*-weighted gradient recall echo
sequence (repetition time = 1000 msec, echo time =
37 msec, 60 interleaved slices [2-mm gap], voxel size = 2 ×
2 × 2 mm, 6× multiband acceleration).

fMRI Preprocessing

Data preprocessing was carried out using FMRIB Software
Library (FSL; Jenkinson, Beckmann, Behrens, Woolrich, &
Smith, 2012). Preprocessing steps included motion
correction, slice-timing correction (using Fourier-space

Figure 1. Timing of events on each trial. In a rapid event-related fMRI
design, healthy young adults were asked to evaluate two pairs of
semantic concepts. Participants were shown two word pairs, first an A:B
pair for 2 sec and then a C:D pair for 2 sec after a jitter, and finally a cue
to make a yes/no decision about the validity of the analogy. Participants
responded by pressing a button box, where the location of “yes” and
“no” buttons varied from trial to trial, making it impossible to plan a
specific motor response until the first two phases had been completed.
The A:B phase provides a relatively pure measure of neural activity
involved in coding the A:B relation. The C:D phase includes the neural
computation required to compare the two relations (as well as neural
activity required to maintain the A:B relation and to represent the
C:D relation).
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time-series phase shifting), spatial smoothing using a
Gaussian kernel of 5-mm FWHM, and high-pass temporal
filtering (Gaussian-weighted least-squares straight line
fitting, with σ= 50.0 sec). Spatial smoothing was omitted
from the above preprocessing steps for all analyses (RSA and
voxelwise correlation) to preserve spatial heterogeneities.
Beta-series (Rissman, Gazzaley, & D’Esposito, 2004)

parameter estimates were derived using the least-squares
separate approach (Mumford, Turner, Ashby, & Poldrack,
2012). The least-squares separate algorithm iteratively es-
timates parameters for an event using a general linear
model (GLM) including a regressor for that event as well
as another regressor for all other events. This procedure
was used to estimate beta parameters for all A:B and C:D
word pairs, which were used as features in the dissimilarity
and voxelwise correlation analyses.

Dissimilarity Analyses

RSA (Nili et al., 2014; Kriegeskorte & Kievit, 2013;
Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte,
Goebel, & Bandettini, 2006) was used to characterize the
similarities of neural responses across pairs during the
A:B phase. RSA characterizes the representation in a brain
region by a representational dissimilaritymatrix (RDM) and
compares this empirical matrix with a theoretical model.
An RDM is a square symmetric matrix, with each entry
referring to the dissimilarity between the activity patterns
associatedwith two trials (e.g., entry [1, 2] would represent
the dissimilarity between activity patterns on Trial 1
andTrial 2). Procedurally, each element of the RDM is
calculated as 1 minus the Pearson correlation between the

beta series for each pair of trials (Carota, Kriegeskorte, Nili,
& Pulvermüller, 2017; Nili et al., 2014).

Hypothesis models were manually generated to reflect
idealized RDMs expected given a theoretical representa-
tional space. We generated theoretical RDMs from each
of the three computational models (see Figure 2 for in-
tercorrelations among RDMs). Each model uses a differ-
ent calculation to yield a feature vector characterizing a
word pair; however, the RDM was calculated in the same
way for all models, as the cosine distance between word-
pair representations.

RDMs and hypothesis models were compared by calcu-
lating a “second-order similarity” (Nili et al., 2014), defined
as the Spearman correlation coefficient between the two
matrices. Resulting correlation values were registered to
the Montreal Neurological Institute template for group
analysis, and statistical significance of positive values was
assessed using FSL randomise (Winkler, Ridgway,
Webster, Smith, & Nichols, 2014; Smith & Nichols, 2009).
All analyses were carried out using Python, making exten-
sive use of the machine learning packages Scikit-learn
(Pedregosa et al., 2011) and NiLearn (Abraham et al., 2014).

For the C:D phase (second-order relation comparison),
a univariate dissimilarity analysis was performed. All the
models of analogical comparison considered in this article
make the general prediction that the conceptual difficulty
of deciding the validity of an analogy will be related to the
relation-based dissimilarity of the A:B and C:D word pairs,
with greater dissimilarity making the decision more diffi-
cult. In this analysis, only trials consisting of valid analogies
(i.e., A:B::C:D) were included so that the relation repre-
sentations during theC:D phasewould not be confounded

Figure 2. Correlations among
different theoretical RDMs.
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by additional cognitive operations associated with pro-
cessing a relation inconsistent with A:B. To derive a specific
prediction from each of the three candidate models in
the article, for every valid analogy of word pairs, A:B::C:D,
a relational dissimilarity measure was calculated by taking
the cosine distance between the representations of A:B
and of C:D specified by the model (i.e., higher cosine dis-
tance implies greater dissimilarity between the two pairs).
Thesemodel-derived relational dissimilarity scores for each
trial were then correlated (using Spearman’s rho) with
voxel activity to identify brain regions that track relational
dissimilarity according to the predictions from each of the
alternative models. The resulting p values were adjusted
for multiple comparisons by controlling the false discovery
rate at q = 0.05.

Data and Code Availability

Raw and preprocessed NIFTI files, as well as experiment
timing files, will be uploaded to a repository (openfmri.
org) and are available from the first author upon request.
Code for the BART model can be downloaded from cvl.
psych.ucla.edu/BART2code.zip. Code for the experiment
and all custom analyses can be found at github.com/
njchiang/analogy-fmri.

RESULTS

Behavioral Results

Mean proportion correct in solving analogy problems was
0.82 (SD = 0.07) across all conditions, an accuracy level
well above chance ( p < .001). A repeated-measures
ANOVA was conducted on performance accuracy across
the three abstract relation types for A:B. Problems using
the “contrast” relation yielded the highest accuracy (M =
0.87, SD = 0.08), followed by “cause–purpose” (M = 0.82,
SD=0.07) and “similar” (M=0.78, SD=0.09). Bonferroni-
corrected t tests indicated that “contrast” problems were
more accurate than either of the other relation types
( p < .005).

RT was calculated as the time from the appearance of
the response cue (i.e., “yes” and “no” indicators after the
C:D phase) to the button press. Only RTs for accurate trials
were analyzed. Mean RT was 913 msec (SD = 255 msec)
across all relation types. No reliable RT differences were
found among the three types.

To examine how well the different models can account
for human behavioral performance, we derived predictions
of accuracy on the analogy task for each of the three
models. For BART (which is based on vectors of probability
values), we applied a nonlinear cubic power transformation
to down-weigh contributions to the decision stage from the
large number of dimensions with low probabilities. As the
human task involved yes/no judgments, a decision module
is required to derive such judgments from the vectors pro-
duced by each model. We used the same decision module

for all three models. For eachmodel, relational dissimilarity
between the A:B andC:Dword pairs in an experimental trial
was calculated using cosine distance between the vectors.
Each model’s yes/no response was determined by whether
the cosine distance was less/greater than a decision thresh-
old. This threshold was selected by a search to maximize
each model’s accuracy.
The BART model yielded mean accuracy of 0.823, very

similar to human-level performance (0.822). Both the
Word2vec-diff and Word2vec-concat models yielded accu-
racy levels near chance (0.576 and 0.583, respectively),
substantially lower than human performance. At the level
of individual relation types, the BART model yielded a pro-
portion correct of 0.802 for “similar,” 0.896 for “contrast,”
and 0.708 for “cause–purpose.” BART’s accuracy was close
to the human level for the former two relations but less
accurate than human performance for the “cause–purpose”
relation, suggesting that humansmay benefit from a deeper
understanding of causal relations (e.g., knowledge of how
causality is related to interventions; Waldmann, 2017).

Univariate Analyses of A:B and C:D Phases

We first performed univariate analyses to identify the brain
regions active during the A:B and C:D phases of each trial
(including both valid and invalid trials). The general rela-
tion type was coded separately for each phase. A univariate
analysis using theGLM approachwas performed to identify
regions engaged in representing semantic relations. The
response phase of each trial was included as a condition
of noninterest, as well as motion parameters. The GLM
analysis was carried out using FSL FEAT (Jenkinson et al.,
2012; Smith et al., 2004). Before univariate analysis, data
underwent preprocessing steps including motion correc-
tion, slice-timing correction (using Fourier-space time-
series phase shifting), spatial smoothing using a Gaussian
kernel of 5-mm FWHM, and high-pass temporal filtering
(Gaussian-weighted least-squares straight line fitting, with
σ = 50.0 sec). Data from individual runs were aggregated
employing a mixed effects model (i.e., employing both
within- and between-participant variance) and using auto-
matic outlier detection. Statistical significance for univari-
ate analyses was assessed using FSL randomise with
threshold-free cluster enhancement (TFCE) cluster correc-
tion (Winkler et al., 2014; Smith & Nichols, 2009).
In the A:B stage, related word pairs elicited mostly left-

lateralized frontal and temporal activity, bilateral parietal
activity, and activity in the occipital lobe (see Figure 3A).
The C:D stage, compared to simple fixation, recruited many
of the same regions as did the A:B stage (likely involved in
processing each word of the C:D pair and encoding their
semantic relation), as well as unique activations likely
involved in second-order relation assessment for relation
comparison. Specifically, the A:B and C:D phases shared
activations in the inferior lateral occipital cortex (BA 19),
fusiform gyrus (BA 37), and left frontal regions spanning
the RLPFC (BAs 10 and 47). In addition, processing C:D
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word pairs uniquely led to a greater BOLD response in the
left inferior frontal gyrus (pars triangularis, pars opercularis;
BAs 44 and 45) as well as bilateral superior parietal cortex
(inBA 7).
As shown in Figure 3B, the univariate comparison of

C:D minus A:B revealed a frontoparietal network, mainly
left lateralized. Specifically, the contrast uncovered signif-
icant clusters in the left RLPFC (BAs 10 and 47), replicating
prior results implicating this region in complex relational
comparisons (Bunge et al., 2009; Christoff et al., 2001), as
well as in the left inferior frontal gyrus (BAs 44 and 45) and
bilateral posterior parietal (BA 7) and occipital (BA 19)
cortices.

Decoding Neural Activity Patterns to Classify
Relation Types

To characterize the representations of abstract semantic
relations in the brain, we conducted a multivariate pattern
analysis (MVPA; e.g., Haxby et al., 2001) using a search-
light method (Kriegeskorte et al., 2006). Classifiers were
trained to distinguish between the three general relation
types (similar, contrast, and cause–purpose) and were
evaluated using a leave-one-run-out cross-validation
approach (see Etzel & Braver, 2013). For each participant,
two such classifications were run: one on the A:B phase
and one on the C:D phase (including both valid and inva-
lid trials). We used a 5-mm-radius sphere and a linear SVM
(Abraham et al., 2014; Pedregosa et al., 2011).
This MVPA revealed left-lateralized areas of the brain

capable of distinguishing different types of abstract rela-
tions on the basis of activation patterns across both the
A:B and C:D phases. In addition, during the second-order
comparison (i.e., the C:D phase), the three abstract rela-
tions could also be distinguished in the left rostrolateral
and right frontotemporal cortices.2 As shown in Figure 4,
distributed areas of the brain are involved in decoding

semantic relation types (similar, contrast, and cause–
purpose). Areas in color achieved above-chance classifica-
tion performance ( p < .01), as assessed by a Wilcoxon
signed-rank test with TFCE cluster correction (Smith &
Nichols, 2009).

During the A:B phase, the active regions for relation
classification include frontal and temporal cortices (most
pronounced in the left hemisphere) as well as bilateral
parietal cortices. During the C:D phase, the three relation
types can also be distinguished inmany of the same regions
and also in additional regions in the right hemisphere
(particularly across frontal and temporal cortices). Overall,
the overlap in regions capable of distinguishing the three
semantic relations across both the A:B and C:D phases
(areas in yellow in Figure 4) includes areas previously
proposed to underlie the semantic representation system
for individual words (Carota et al., 2017; de Heer, Huth,

Figure 3. Univariate analysis results. (A) Main effects of the A:B and C:D phases of trials. Clusters were obtained by contrasting each phase (i.e., A:B
and C:D) to simple fixation. (B) C:D − A:B univariate contrast. Regions in which activity while reading the C:D word pair was greater than when
reading the A:B word pair. Depicted group-level activations were obtained with a nonparametric permutation approach (FSL randomise); significance
was set at p = .05 FWER, cluster-corrected with TFCE (Smith & Nichols, 2009).

Figure 4. MVPA searchlight results. Regions in which the three general
semantic relations could be discriminated above chance during
different phases of the analogy task (corrected p < .01, assessed using
FSL randomise with TFCE cluster correction for multiple comparisons).
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Griffiths, Gallant, & Theunissen, 2017; Huth, de Heer,
Griffiths, Theunissen, & Gallant, 2016; Binder, Desai,
Graves, & Conant, 2009). The MVPA also highlights the im-
portant role of parietal regions associated more specifically
with relational reasoning (Wendelken, 2015).

First-order Relations (A:B Phase)

The MVPA reported above involved training classifiers to use
neural activity to distinguish among relation types, making
use of any and all properties of individual words and/or
relations that may reliably influence brain signals, without
any guidance from computational models. We then moved
on to perform analyses that use computational models
to predict neural activity, with a particular focus on alternative

representations of relations per se. To assess and contrast the
neural plausibility of the first-order relational representa-
tions specified by each of the three models (Word2vec-diff,
Word2vec-concat, and BART), we performed an RSA
(Kriegeskorte et al., 2008). Specifically, we compared the
matrix of trial-by-trial dissimilarity across word pairs
derived from the BOLD signal during the A:B phase (i.e.,
the empirical RDM) to that predicted by each of the three
computational models (see Figure 5). We also included in
the analysis a fourth relation-type model (i.e., the design
matrix) to serve as a simple baseline model distinguishing
the three general relation types (i.e., similar, contrast, and
cause–purpose; see Figure 6).
We performed RSAs using a whole-brain searchlight

approach. Among the four models that were tested, only

Figure 5. RSA approach to
discovering neural signatures of
specific relations. For any two
word pairs shown during the
A:B phase (e.g., rich:poor, hot:
cold ), three alternative models
are used to predict dissimilarity
based on the cosine distance
between the representations
of each individual word pair,
using 300-dimensional
Word2vec vectors as inputs
(left). Word2vec-concat
(nonrelational) concatenates
the vectors for individual words
in a pair, Word-2vec-diff
(generic relation) defines the
relation as the difference vector,
and BART (specific relations)
creates a new relational vector
for each pair based on
previously learned relations. The neural response to each word pair (right) is obtained, allowing a calculation of dissimilarity between patterns of
voxels. Neural dissimilarities are compared with computational predictions to arbitrate between alternative models.

Figure 6. Theoretical RDMs. The RDMs derived from the three computational models are of size 144 × 144 (i.e., based on individual word pairs).
Theoretical RDMs capturing the cosine distance between the vector representation for each word pair were correlated with empirical RDMs derived
from brain activity patterns.
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the RDMderived fromBART yielded significant correlations
with neural RDMs (Figure 7A). These correlations primarily
involved the left superior parietal lobe and left intraparietal
sulcus. In approximately the same regions, the correlation
for BART was significantly greater than those for either of
the other computational models (Figure 7B) or for the
relation-type baseline model (Figure 7C).

Second-order Relational Processing (C:D Phase)

To investigate second-order relational comparisons, we
performed a form of dissimilarity analysis in which we
contrasted the three models by calculating, for each, a
measure of relational dissimilarity between first-order rela-
tions. BART and the two Word2vec models make the gen-
eral prediction that the conceptual difficulty of identifying
a valid analogy is proportional to the (word or relation-
based) dissimilarity of the A:B and C:D word pairs, with
greater dissimilarity making the analogy harder to verify.
Specifically, for every valid A:B::C:D analogy (144 prob-
lems in total), we calculated the cosine distance between
the representations of A:B and C:D specified by each
model, with higher cosine distance implying greater dis-
similarity between the two pairs of words. For each indi-
vidual participant, the relational dissimilarity scores
derived from each model were then correlated (using
Spearman’s rho) with observed activity during the C:D
phase of each valid analogy. (The relation-type model
was inapplicable because valid analogies by definition have
the same relation for A:B andC:D.) ThisC:D-phase analysis
was conducted using a whole-brain approach. For each

voxel, we computed the rank correlation between voxel
activity and relational dissimilarity.

Only BART yielded significant correlations as assessed by
randomise with TFCE correction. Relational dissimilarity
measures as calculated by BART correlatedwith voxel activity
in left-lateralized frontal, temporal, and parietal sites (see
Figure 8). Specifically, BART correlated with voxel activity
within ventrolateral PFC including the pars opercularis, trian-
gularis, and orbitalis of the inferior frontal gyrus; dorsolateral
pFC spanning BAs 8, 9, and 46 in the middle frontal gyrus;
and RLPFC in the BA 10 portions of the inferior and middle
frontal gyri, as well as in lateral premotor cortex in BA 6, and
in the medial aspect of the superior frontal gyrus in BAs 6, 8,
and 9. In addition, significant correlations were also detected
in parietal areas in the intraparietal sulcus spanning BAs 40
and 7 and in temporal areas spanning BAs 21 and 22.

As a follow-up, a semipartial correlation analysis was per-
formed to test whether BART captured additional informa-
tion relative to the Word2vec-derived models. Relational
dissimilarity scores derived from Word2vec-concat and
Word2vec-diff were first regressed out of fMRI-based
dissimilarity scores, and the resulting residuals were then
correlated with relational dissimilarity predictions derived
from BART. The same procedure was performed with the
group-averaged trial-by-trial accuracy, to examine the
effect of task difficulty. Essentially, the same areas shown
in Figure 8 (left frontoparietal network as well as temporal
regions) exhibited statistically significant semipartial cor-
relations with BART as assessed by randomise with TFCE
correction. The reverse analysis was also performed. No
regions showed a significant impact of the Word2vec
models after controlling for variance predicted by BART.

Figure 7. Searchlight results
for RSAs testing alternative
models as predictors of neural
dissimilarity during the A:B
phase for 144 word pairs
instantiating abstract semantic
relations. (A) Lateral and
posterior views of areas in
which the BART model
based on distributed relation
representations was significantly
correlated with neural RDM.
None of the other three models
yielded areas with significant
correlations. (B) Posterior view
of areas in which correlation
of BART with neural RDM
was significantly greater than
correlation for each of the
alternative computational
models. (C) Posterior view of
areas in which correlation of
BART with neural RDM was
significantly greater than that
for the baseline model, which
assumes discrete codes for relations. Colored regions represent searchlight sphere centers that were significant as assessed by FSL randomise with
TFCE cluster correction for multiple comparisons (corrected p < .05).
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Finally, a similar semipartial correlation analysis was per-
formed controlling for trial-by-trial accuracy (mean accuracy
for each item across all participants), again for valid analo-
gies only. Rather than solely reflecting the conceptual diffi-
culty of identifying a valid analogy, mean accuracy is a
coarser measure of overall task difficulty, because errors
may arise at multiple processing stages (e.g., word identifi-
cation ormotor responses). After partialing out the variance
predicted by accuracy, the same areas shown in Figure 8
exhibited statistically significant semipartial correlations
with BART as assessed by randomise with TFCE correction.
The reverse analysis yielded no areas that were reliably
predicted by accuracy after controlling for the variance
predicted by BART.

DISCUSSION

This study combined computational modeling with neuro-
imaging to investigate the representation and comparison
of abstract semantic relations in the brain. We used a
sequential presentation of verbal analogies with clear tem-
poral phases to examine the neural activity associated with
(1) representing the individual words in a pair and the rela-
tion between them and (2) comparing two first-order rela-
tions (while also separating these high-level reasoning
processes from planning for a motor response). By testing
alternative computational models of relational dissimilarity,
we were able to distinguish between rival accounts of how
semantic relations are coded and compared in the brain.
The BART model, which postulates that semantic relations
between words are coded as a distributed representation
based on a taxonomy of abstract relations, was able to pre-
dict patterns of neural activity during analogical reasoning
that could not be explained by alternative models. During

the phase in which a single relation is being encoded (A:B
phase), the BARTmodel was themost effective predictor of
patterns of neural activity in the left superior parietal cortex,
a region previously associated with relation representation
(Wendelken, 2015; Wendelken et al., 2008). During the
phase in which relations are compared to verify whether
the analogy is valid (C:D phase), BART was the most effec-
tive predictor of neural activity in multiple prefrontal ROIs,
including areas in the left RLPFC previously linked to
higher-order relational comparisons (Green et al., 2010;
Bunge et al., 2005, 2009). Although the left RLPFC has re-
ceived themost attention in the literature, the present find-
ings are consistent with previous evidence that analogical
reasoning depends on a broader left frontoparietal network
(for a review, see Holyoak & Monti, this issue).
The present findings support three major conclusions.

First, analogical reasoning depends on fine coding of
semantic relations with distributed representations, pri-
marily supported by the left superior parietal cortex.
Second, the content of these distributed representations
can be learned from a small number of examples instanti-
ating abstract relations, as operationalized in a computa-
tional model, BART. This model not only accounts for
behavioral accuracy in solving verbal analogy problems
but also yields measures of item-level relation dissimilarity
that correlate with dissimilarity of neural responses in
frontoparietal regions. This evidence for distributed coding
of relations is inconsistent with models of analogical rea-
soning based on localist relation representations (e.g.,
Forbus et al., 2017). Third, during verification of an analogy,
neural activities in frontal areas (including the left RLPFC)
as well as parietal and temporal regions exhibit a graded
response to the degree of relational dissimilarity between
the two word pairs forming the analogy. The graded neural
responses in analogy-selective frontal regions can be

Figure 8. Correlation between
model-derived relational
dissimilarity betweenA:B andC:D
relations and trial parameter
estimates during the C:D phase.
Average Spearman correlation
between BART-derived relational
dissimilarity between A:B and
C:D relations and trial parameter
estimates during the C:D phase.
Only the relational dissimilarity
measure predicted by BART was
significantly correlated with trial
parameter estimates. Regions
significantly correlated with
BART also show significant
correlations after accounting for
variance accounted for by both
the Word2vec models and also
after accounting for trial
difficulty (estimated by mean
accuracy). Significance was
assessed using FSL randomise with TFCE cluster correction formultiple comparisons (corrected p< .05). Top row: lateral and dorsal views. Bottom row:
medial and anterior views.
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predicted by the BART model based on its distributed re-
lation representations.
The fact that dissimilarity measures derived from the

BARTmodel yielded stronger andmore reliable predictions
of relational processing—for both first- and second-order
relations—than did the Word2vec-diff model is consistent
with computational evidence favoring the former model
as an account of human relational judgments (Lu et al.,
2019). The relative success of the BARTmodel in predicting
patterns of neural activity is directly relevant to a debate as
to whether or not individual semantic relations have explic-
it representations (Popov et al., 2017). Whereas Word2vec-
diff provides only a generic and implicit representation of
relational dissimilarity (i.e., the difference vector between
semantic vectors for two words), BART learns representa-
tions of individual semantic relations, which in the context
of analogical reasoning collectively provide a distributed
representation of the relations(s) linking any word pair.
The neural evidence favoring BART as a model of relation
dissimilarity thus supports the hypothesis that the brain
encodes semantic relations between words as distributed
representations across abstract semantic relations, such
as the specific relations “synonym,” “antonym,” and
“cause–effect.” By coupling computational modeling with
analyses of dissimilarity in neural activity, it proved possible
to resolve a major theoretical issue concerning the repre-
sentation of semantic relations.
This study focused on abstract semantic relations. These

are particularly important because a pool of abstract rela-
tions may provide basic elements that can be used to rep-
resent more specific relations. However, further research
will be required to determine the extent towhich the neural
basis for relational reasoning may differ for more concrete
semantic and visuospatial relations (e.g., inferring that
grasping a hammer enables it to be lifted). More generally,
future studies may benefit from applying the overall strate-
gy of model-guided item-level analyses of neural patterns.
This approach has the potential to be used to analyze pat-
terns of neural activity underlying semantic representations
of information units more complex than individual words.
Careful task design (e.g., presenting a problem in sequential
phases) can be used to separate key component processes.
Alternative computational models can then be used to
generate item-level predictions of neural activity using both
RSA and other analytic techniques, such as neural encoding
analyses (Huth et al., 2016; Mitchell et al., 2008). This
research strategy shows promise in decoupling component
processes and in identifying specific representations under-
lying high-level reasoning. Future work should aim to
develop and test well-specified computational models of
how propositions and larger knowledge units are repre-
sented in the brain and used to reason.
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Notes

1. We also tested a similar model, Word2vec-sum (Pereira et al.,
2018; Mikolov et al., 2013), which aggregates a word pair via vector
addition rather than concatenation. All results obtained using
Word2vec-sum were virtually identical to those based on
Word2vec-concat; hence, we only report results for Word2vec-
concat.
2. Significant decoding abilitywas also observed in early visual cor-
tex. Although visual properties of the stimuli were not precisely
quantified in this experiment, we ran an RSA using number of char-
acters in word pairs as a proxy for perceptual differences. We ob-
served a significant correlation with this word length model in the
early visual cortex region.
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