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A fundamental issue for theories of human induction is to specify constraints on potential inferences. For
inferences based on shared category membership, an analogy, and/or a relational schema, it appears that
the basic goal of induction is to make accurate and goal-relevant inferences that are sensitive to
uncertainty. People can use source information at various levels of abstraction (including both specific
instances and more general categories), coupled with prior causal knowledge, to build a causal model for
a target situation, which in turn constrains inferences about the target. We propose a computational theory
in the framework of Bayesian inference and test its predictions (parameter-free for the cases we consider)
in a series of experiments in which people were asked to assess the probabilities of various causal
predictions and attributions about a target on the basis of source knowledge about generative and
preventive causes. The theory proved successful in accounting for systematic patterns of judgments about
interrelated types of causal inferences, including evidence that analogical inferences are partially
dissociable from overall mapping quality.
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Inductive reasoning, which has been characterized as encom-
passing “all inferential processes that expand knowledge in the
face of uncertainty” (Holland, Holyoak, Nisbett, & Thagard, 1986,
p. 1), is fundamental to human cognition. The great puzzle of
induction has been to understand how humans often manage to
make plausible and useful inferences based on what would seem to
be a bewildering array of data. The philosopher Charles Peirce
(1932) argued that the key must be that people are guided by “special
aptitudes for guessing right” (p. 476). Similarly, psychologists have
argued that inductive reasoning must depend on some basic con-
straints that serve to generate preferences for those inferences that are
more likely to serve the goals of the reasoner (Holland et al., 1986;
Rips, 1990). But what might these constraints actually be?

Inductive reasoning is often guided by some combination of
prior knowledge about categories and more specific cases. Very
crudely, inductive inference is based on the assumption that if two
situations are alike in some respects, they may be alike in others.
The problem with this characterization is that it has proved diffi-
cult to pin down what similarities between two situations are
important for establishing particular inferences (Goodman, 1955;
Medin, Goldstone, & Gentner, 1993). With respect to category-
based inferences, a long-standing position is that induction is
guided not simply by overall similarity but by people’s informal
theories concerning the causal processes that give rise to the
properties that category members share (Murphy & Medin, 1985;
also Carey, 1985; Keil, 1989; for a review see Medin & Rips,
2005). For example, people believe that biological species such as
raccoons tend to inherit the properties of their parents, whereas
manufactured objects such as chairs are generally constructed to
fulfill certain functions important to their human creators.

Scientific hypotheses are often formed and evaluated on the
basis of causal knowledge about categories or schemas for types of
phenomena and/or on the basis of specific analogs that are better
understood than is the target domain (Dunbar & Fugelsang, 2005;
Holyoak & Thagard, 1995). When the source includes a relatively
specific example, inductive reasoning is based on analogy. In some
areas of science in which experimental research is impossible, such
as historical ethnography, analogy may provide the only viable
mechanism for evaluating hypotheses. Talalay (1987) gave the
example of interpreting the function of strange clay fragments
discovered in Neolithic Greek sites: individual female legs, appar-
ently never attached to torsos, that had been manufactured in pairs
and later broken apart. The best clues to their function have come
from other cultures in which similar tokens are known to have
served to seal contracts and provide special evidence of the iden-
tity of the bearer (in feudal China, for example, a valuable piece of
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jade would be broken in two to mark a contract between a master
and his vassal, with each keeping one piece so they could later be
matched). Here the known function in a source domain has a
causal connection to the form of relevant artifacts, and the ethnog-
rapher makes the analogical inference that a similar cause may
have operated in the target domain (see Bartha, 2010).

Causal Models and Category-Based Inferences

The basic idea that causal knowledge underlies inductive infer-
ence has been formalized in terms of graphical representations
termed causal models. A causal model is a representation of
cause–effect relations, expressing such information as the direc-
tion of the causal arrow, the polarity of causal links (generative
causes make things happen, preventive causes stop things from
happening), the strength of individual causal links, and the manner
in which the influences of multiple causes combine to determine
their joint influence on an effect. Graphical representations of
causal structures were first introduced in philosophy (Reichen-
bach, 1956; Salmon, 1984). In artificial intelligence, Pearl (1988)
developed a detailed graphical formalism termed causal Bayes

nets (also see Spirtes, Glymour, & Scheines, 2000). Inspired by
Pearl’s work, Waldmann and Holyoak (1992; Waldmann, Hol-
yoak, & Fratianne, 1995) introduced graphical causal models as a
psychological account of human causal learning. Cheng (1997)
proposed the power theory of the probabilistic contrast model, or
power PC theory, which provides a quantitative account of (a) how
the strengths of individual links within a causal model can be
estimated from noncausal contingency data and (b) how multiple
causal links are combined to make inferences. Griffiths and Ten-
enbaum (2005) integrated causal graphs with Bayesian inference,
thereby providing an explicit account of how uncertainty about causal
knowledge can be represented. More recently, Lu, Yuille, Liljeholm,
Cheng, and Holyoak (2008) formalized and tested multiple Bayesian
models of causal learning and inference with simple graph structures,
including Bayesian variants of the power PC theory.

Empirical evidence indicates that both initial formation of cat-
egories (Kemp, Goodman, & Tenenbaum, 2007; Lien & Cheng,
2000; Waldmann et al., 1995) and inferences based on learned
categories (Ahn, 1999; Heit, 1998; Rehder, 2006, 2007, 2009;
Rehder & Burnett, 2005; Rehder & Kim, 2006; Tenenbaum,
Kemp, & Shafto, 2007) are guided by causal models (for a recent
review see Lagnado, Waldmann, Hagmayer, & Sloman, 2007). For
example, Rehder (2006) taught participants the causal relations
that influenced the distribution of features associated with novel
categories and showed that inferences about properties of category
members are then guided by these causal relations, which can
override the influence of overall similarity. Rehder (2009) ex-
tended the power PC theory (Cheng, 1997) to develop a formal
model of category-based inferences within the framework of
causal-based generalization (CBG). Rehder applied his CBG
model to predict various inductive inferences that depend on
integrating knowledge about the distributions of category proper-
ties and causal relations that influence (or are influenced by) these
properties. The model accounted for observed influences of the
frequency distribution of category properties, the direction of
causal relations (cause to effect vs. effect to cause), and quantita-
tive variations in the power of a cause to produce its effect.

The Role of Causal Relations in Inductive Inference
Across Varieties of Knowledge Representations

The present article aims to explain how causal knowledge can
be used to guide inductive inference given a broad range of
potential sources of knowledge. To place this goal in the context of
related research, Figure 1 schematizes two major dimensions along
which knowledge representations appear to vary and which in turn
influence the role played by causal knowledge. The x-axis repre-
sents variation in degree of abstraction of the knowledge repre-
sentations (specific to general), and the y-axis represents variation in
what we term relational richness (low to high). Abstraction ranges
from the low end, at which reasoning depends heavily on specific
cases, to the high end, at which it depends primarily on generaliza-
tions. Relational richness ranges from the low end, at which the
representations are primarily based on simple features or properties of
objects, to the high end, at which representations include many
complex relations potentially instantiated with dissimilar objects.

Each corner of the quadrant in Figure 1 is labeled with a
“prototypical” psychological concept related to inductive infer-
ence. The lower left corner represents inferences based on feature-
defined instances. Given that causal knowledge is inherently rela-
tional and hence goes beyond simple features, its role is minimal
in this quadrant, in which inferences are primarily based on fea-
tural similarity. The lower right corner corresponds to relatively
simple categories based on distributions of properties over their
instances, potentially accompanied by causal generalizations. This
is the type of knowledge typically used in paradigms associated
with category-based induction.

The top left corner focuses on relationally complex instances,
the main focus of work on analogical reasoning (Gentner, 1983).
Insofar as these relations include some that are causal, causal
knowledge will often play an important role in analogical infer-
ence. In the absence of a well-established schema, even a single
example can function as a source that supports novel inferences
about a less-well-understood target situation (Gentner & Holyoak,
1997; Holyoak, 2005), especially if it is coupled with some degree
of abstraction (Ahn, Brewer, & Mooney, 1992; Kemp & Jern,
2009; Mitchell, Keller, & Kedar-Cabelli, 1986). Of course, anal-
ogies may be formally complex without necessarily involving
causal knowledge about the world (e.g., letter-string analogies of

Figure 1. Schematic relationships among types of knowledge represen-
tations related to causal inference.
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the sort studied by Hofstadter & Mitchell, 1994); however, in the
present article we focus on inferences about empirical phenomena,
for which causal knowledge is central.1 Finally, the upper right
corner focuses on abstract relational categories, often referred to as
schemas. Comparison of multiple analogs can lead to the devel-
opment of a schema representing a category of situations (Gentner,
Lowenstein, & Thompson, 2003; Gick & Holyoak, 1983), and the
computational processes involved in deriving inferences based on
individual analogs and on generalized schemas appear to be sim-
ilar (Hummel & Holyoak, 2003). Scientific hypotheses based on
causal relations are especially likely to take a form consistent with
the schema corner of the quadrant.

We should emphasize that the distinctions between knowledge
representations depicted in Figure 1 are best viewed as fuzzy
continua rather than well-defined subtypes. In actual inductive
reasoning, multiple sources of knowledge at varying levels of
abstraction and relational richness may be used together. In the
present article, we often refer to “analogical” reasoning when in
fact we mean reasoning based on some mixture of a specific
relational instance and more schematic causal generalizations.

Our aim in the present article is to show in some detail how
causal knowledge, represented as causal models, can be integrated
with these varied types of knowledge to yield inductive inferences.
The theory proposed here has much in common with previous
models specifically focused on the role of causal models in making
category-based inferences, notably the CBG model of Rehder
(2009). However, the present theory is more general than previous
models of this sort in that it can be applied to situations involving
high uncertainty about causal powers (including cases in which
only one or even zero specific cases are available to guide infer-
ence) and to situations involving high relational richness. We
illustrate in this article how the general theory can be applied not
only to category-based inferences but also to analogical and
schema-based inferences, which pose the challenge of integrating
causal models with more complex relational reasoning.

The Role of Causal Knowledge in Analogical Transfer

Early work in psychology on transfer of problem solutions by
analogy demonstrated the close connection between causal under-
standing and analogical inference (Brown, 1989; Gick & Holyoak,
1980, 1983; Holyoak, Junn, & Billman, 1984; see Holyoak, 1985).
Analogical transfer has been viewed as a multistate process that
includes retrieval of a source analog, identifying the correspondences
between the two analogs, transferring information from source to
target, and evaluating the resulting inferences (e.g., Falkenhainer,
Forbus, & Gentner, 1989; Holyoak, Novick, & Melz, 1994). It has
been argued that all of these subprocesses of analogy are influenced by
pragmatic constraints that make use of causal information
(Holyoak, 1985; Holyoak & Thagard, 1995: Spellman & Holyoak,
1996).

However, the causal-model framework, which has been highly
influential in the area of category-based inference, had only re-
cently been explicitly connected to analogical transfer. Our aim in
the present article is to begin to integrate analogical inference with
causal models, providing a more unified account of the influence
of causal knowledge on the subprocesses involved in analogical
transfer. Because analogy typically involves a small number of
examples (often one) as well as high relational richness, current

models of category-based induction are inapplicable to the types of
reasoning involved in the upper left quadrant of Figure 1. Because
extending the causal-model framework to this quadrant is a key
aim of the present article, we focus much of our attention on the
integration of causal models with analogical transfer.

Models of analogical transfer have generally treated inference as
a direct product of mapping—the process of determining a set of
systematic correspondences between elements of the source and
target. The domain-general algorithm adopted by all extant models
(e.g., Falkenhainer et al., 1989; Holyoak & Thagard, 1989; Hum-
mel & Holyoak, 2003) has been termed copy with substitution and

generation, or CWSG (Holyoak et al., 1994). If proposition P

consisting of relation r and objects a and b, notated P: r(a, b),
exists in the source but does not map to any proposition in the
target, then a corresponding proposition in the target may be
inferred by substituting mapped elements. Specifically, given the
correspondences r 3 r!, a 3 a!, and b 3 b!, then the inferred
target proposition would be P!: r!(a!, b!). If any source element in
P lacks a corresponding element in the target, then such a corre-
sponding element may be postulated.

In order to be psychologically realistic, CWSG clearly needs to be
constrained (Markman, 1997). Otherwise, for any unmapped propo-
sition P in any possible source analog, the corresponding proposition
P! could be inferred for any target, regardless of the credibility of the
overall mapping between the source and target (and even if none of
the elements of P map to known target elements). Algorithmic models
have all hypothesized that some measure of mapping quality deter-
mines the acceptability of inferences that might be postulated on the
basis of CWSG. Different models have adopted various combinations
of constraints postulated to govern mapping and hence to indirectly
constrain inferences generated by CWSG.

The structure-mapping theory2 of Gentner (1983; Falkenhainer
et al., 1989) emphasizes structural constraints on mapping. In
particular, mappings based on structurally defined “higher order”

1 More generally, analogical inferences can apparently be guided by various
types of functional dependencies in the source analog (e.g., logical and math-
ematical relations) that determine which aspects of the source need to be
preserved in the target in order to justify analogical inferences (Bartha, 2010).
In the present article we focus on causal relations because they appear to be the
major type of functional dependency underlying everyday understanding of
the world and are central to scientific explanations.

2 All theories of analogical inference that assume explicit representations
of relational structure are based in part on finding a mapping between the
structures of the source and target. The structure-mapping theory provides
one account of how representational structures may be mapped to one
another. It should be noted that our aim of integrating theories of analogy
with theories of causal inference leads to an unfortunate collision between
two distinct though interrelated theoretical uses of the term structure. In the
field of analogy, structure refers to the systematic pattern of relations that
comprise a knowledge representation, where both causal and noncausal
relations may contribute to structure. In the field of causal inference, causal

structure refers to the existence of a causal link between two variables, in
contrast to causal strength, a continuous variable indicating the power of
a cause to produce or prevent its effect. (If no causal relation holds between
two variables, then there is no causal structure to which a strength value
can be assigned.) In the present article we necessarily use structure in both
senses, particularly in Experiment 4, in which we demonstrate that a
preventive causal relation can play a dual role in guiding both structure
mapping and causal inference.
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relations (those that take one or more propositions as their argu-
ments) are preferred over mappings based on first-order relations
(which take only objects as arguments) or on simpler attributes of
individual objects. Relations based on the predicate cause are
treated as important examples of a general preference for system-
atic mappings that include higher order relations. For example, in
mapping the structure of the solar system onto that of an atom, a
key higher order relation might involve a complex proposition
stating that the cause of a planet revolving around the sun is the
fact that the sun is more massive than the planet it attracts.
Expressed in a predicate-calculus-style formalism, this fact might
be represented as:

cause {and [more-massive (sun, planet), attracts (sun, planet)],
revolve-around (planet, sun)}.

From the perspective of structure-mapping theory, the impact of
cause on mapping and inference is based solely on its structural
role in the static representation of each analog. It has long been
recognized that this extreme structural view is implausible
(Holyoak, 1985). As Rips (1990) pointed out, in the example just
given one could simply replace the predicate cause with the
operator and, which also can fill the syntactically defined role of
a higher order relation, yielding the following:

and {and [more-massive (sun, planet), attracts (sun, planet)], revolve-

around (planet, sun)}.

The syntactic form of the complex proposition is unchanged; but
intuitively, without the semantics associated with the relation
cause, the basis for a credible analogical inference about the
behavior of atomic particles is greatly diminished. It should be
acknowledged, however, that virtually all the empirical studies
supporting the importance of causal relations (not only in analog-
ical but also in category-based inference) have used only one type
of relation—a generative cause. Thus an alternative interpretation
of most empirical findings is that both category-based and analog-
ical inferences are guided by syntactically defined higher order
relations, of which cause is simply one example. However, a study
by Lassaline (1996) provides an important exception, because it
demonstrated that a causal relation in fact provides stronger sup-
port for inferences than does a noncausal relation of the same
syntactic form.

Other evidence indicates that causal relations exert a dynamic
influence on mapping and inference. Using complex stories, Spell-
man and Holyoak (1996) showed that when the source–target
mapping was ambiguous by structural criteria, those relations
causally relevant to the reasoner’s goal determined the preferred
mapping, as well as guiding inferences about the target. Such
evidence suggests that causal relations are perceived as especially
important and hence receive greater attention during analogical
reasoning (Holyoak & Thagard, 1989; Hummel & Holyoak, 1997,
2003; Winston, 1980). But regardless of whether the influence of
causal relations on analogical reasoning has been treated as solely
structural or also attention-based, it is the case that all algorithmic
models have assumed that causal relations guide analogical infer-
ence only by influencing the preferred mapping between source
and target and hence the output of the CWSG algorithm. In other
words, all models have predicted that the support for analogical
inferences increases monotonically with some measure of mapping
quality.

In contrast, the model we propose postulates that although
both structure mapping and the CWSG algorithm are necessary
for transferring relational structure (including a causal model)
from source to target, they are not sufficient to provide a
complete account of analogical transfer. Rather, a full account
requires that these processes be integrated with an explanation
of how a causal model can initially be acquired for the source
domain and subsequently “run” to make inferences about the
target domain.

Empirical Evidence That Analogical Inference
Depends on More Than Mapping Alone

A series of experiments reported by Lee and Holyoak (2008)
demonstrated how causal knowledge guides analogical infer-
ence and that analogical inference is not determined solely by
quality of the overall mapping between source and target. Using
a common-effect structure (Waldmann & Holyoak, 1992), Lee
and Holyoak manipulated structural correspondences between
the source and the target as well as the causal polarity (gener-
ative or preventive) of multiple causes present in the target. In
Figure 2, Panels A, B, and C show examples of causal structures
used in their experiments. In the source A, three causes (two
generative, G1 and G2, and one preventive, P) are simulta-
neously present, and when the influences of these three causes
are combined, the effect occurs. The target analog B shares all
three causal factors with the source, whereas target C shares

Figure 2. The use of causal models in analogical inference. G, P, and
E represent generative causes, a preventive cause, and an effect, respec-
tively; " and – indicate generative and preventive causes, respectively.
Dotted elements are initially missing from the target and must be inferred
on the basis of the source.
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only the two generative factors with the source, not the preven-
tive one. Accordingly, target B has greater semantic and struc-
tural overlap with the source than does target C. All previous
computational models of analogy, which predict that the plau-
sibility of target inferences increases monotonically with some
measure of the quality of the overall mapping between the
source and target analogs, therefore predict that target B is more
likely to have the effect E than is target C.

If analogical inference is guided by causal models, however, the
prediction reverses, because dropping a preventive cause, as in
target C relative to target B, yields a causal model of the target in
which the probability that the effect occurs will increase. Lee and
Holyoak (2008) found that people in fact rated target C as more
likely to exhibit the effect than target B, even though participants
rated C as less similar than B to the source analog A. These
findings (since replicated by Colhoun & Gentner, 2009, Study 1)
suggest that understanding human use of analogy to make infer-
ences requires deeper consideration of how causal knowledge is
integrated with structural mapping.

Bayesian Theory of Inference Guided
by Causal Models

In the present article we propose and test a formal model of
the role of causal knowledge in making inductive inferences
based on knowledge represented by categories, analogies,
and/or schemas (see Figure 1). We describe a computational
theory of inference that is tightly coupled with the framework
provided by causal models (Cheng, 1997; Griffiths & Tenen-
baum, 2005; Lu et al., 2008; Waldmann & Holyoak, 1992;
Waldmann & Martignon, 1998). In order to definitively differ-
entiate the meaning of causal relations from their syntactic
form, we consider not only generative causes (those that make
their effect happen) but also preventive causes (those that stop
their effect from happening). Moreover, we consider both in-
ferences from cause to effect (causal prediction) and reverse
inferences from effect to cause (causal attribution; Kelley,
1973). Previous studies of category-based inferences have sel-
dom considered inferences based on preventive causes; simi-
larly, studies of causal attribution have never considered the
impact of preventive causes. The model presented here predicts
that when preventive causes are introduced, causal prediction
and causal attribution will each yield a distinct inference pat-
tern. In neither case is the predicted pattern a monotonic func-
tion of any measure of overall similarity or mapping quality.

The present theory is formalized for simple common-effect
models in which one effect has multiple possible causes (Wald-
mann & Holyoak, 1992) and the factors are binary (each cause
and its effect are present or else absent). These are the cases for
which the Bayesian power PC theory of causal learning and
inference (Cheng, 1997; Lu et al., 2008) has been most firmly
established. Space precludes a full review of proposed models
of causal judgments. By a recent count, over 40 algorithmic
models of causal learning have been proposed in the literature
(Hattori & Oaksford, 2007), almost all of which are nonnorma-
tive heuristics. Perales and Shanks (2007) compiled a meta-
analysis of data from 114 conditions, taken from 17 experi-
ments from 10 studies conducted in multiple labs, varying a
variety of quantitative and qualitative parameters related to

causal learning. Lu et al. (2008) showed that the parameter-free

Bayesian power PC model provides the best quantitative fit of

any model that has been applied to the data in this meta-analysis

(r # .96). Critically for our present purposes, the Bayesian

version of the power PC theory goes beyond the “classic”

version (Cheng, 1997) in that it can account for the influence of

sample size on estimates of causal strength and more generally

is able to represent uncertainty about causal strengths. The

Bayesian extension is essential for modeling analogical infer-

ence, which is often based on a single source example. In

contrast, non-Bayesian models of category-based inference,

even those based on the power PC theory (Rehder, 2009), are

not applicable to situations in which causal powers are highly

uncertain. We elaborate on this point in the General Discussion.

Causal Prediction and Causal Attribution

We focus on two general types of causal inferences in the target

analog. A canonical predictive causal inference involves using a

known cause to predict an effect (e.g., observing a fire being

started, we may infer that smoke will be produced). However,

people can also reason from effects to causes (e.g., observing

smoke, we can infer that a fire may have occurred and caused the

smoke). The latter type of inference is a causal attribution (closely

related to abduction, diagnosis, and causal explanation). Causal

attribution is more complex than predictive causal inference, as

attribution requires considering possible combinations of alterna-

tive causes that may have been present, whereas prediction is

based on one particular combination of observed causes (Bindra,

Clarke, & Schultz, 1980; Fenker, Waldmann, & Holyoak, 2005).

Causal attribution gives rise to causal discounting, whereby the

presence of one generative cause reduces the estimated probability

that some other generative cause was active (Kelley, 1973). For

example, if you find wet grass in the morning, you might be

tempted to suspect it rained overnight. But if you find that there

was a sprinkler on, you might attribute the wet grass to the

sprinkler and discount the probability that the wet grass was

caused by rain (Pearl, 1988). Pearl (1988) showed that causal

discounting is a normative consequence of reasoning with causal

models (see also Novick & Cheng, 2004).

Previous work on causal attribution has not considered the

impact of combining preventive and generative causes. It has been

established that dropping a preventive cause from the target in-

creases the strength of the predictive inference that the effect will

occur (Lee & Holyoak, 2008). But intuitively, it seems that the

impact of a preventive cause may reverse for causal attribution. If

we again take the situation shown in Figure 2A as the source, then

in target E attribution of factor G1 as the cause of effect E will be

discounted due to the presence of generative cause G2. But in

target D, the continued presence of preventive cause P seems to

make it more likely that G1 as well as G2 played a causal role of

producing E despite the countervailing influence of P. We will

show that a mathematical extension of the Bayesian power PC

theory to causal attribution in fact predicts that a preventive cause

will decrease causal discounting and hence increase the strength of

a causal attribution.
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Overview of the Theoretical Framework

The two networks shown in Figure 3 schematize causal models

for a source (left) and target (right) analog. The nodes represent

variable causes (C) and effects (E). The superscripts (S, T) indicate

the source and the target, respectively. The links represent the

causal structure (only linked nodes have direct causal connec-

tions). The vectors wi represent the causal polarity (generative or

preventive) and the causal strength for links.

A key assumption is that inductive inference (including analog-

ical transfer) uses causal knowledge of the source to develop a

causal model of the target, which can in turn be used to derive a

variety of inferences about the values of variables in the target.

Unlike other formalisms that have been adopted by analogy mod-

els (e.g., predicate calculus), causal relations in Bayesian causal

models can carry information about the existence of causal links

(e.g., causal structure) and distributions of causal strength, as well

as about the generating function by which multiple causes combine

to influence effects. In the present theory, the first step in analog-

ical inference is to learn a causal model of the source. The source

model is then mapped to the initial (typically impoverished) rep-

resentation of the target. Based on the mapping, the causal struc-

ture and strengths associated with the source are transferred to the

target, creating or extending the causal model of the latter. The

model of the target can then be “run,” using causal reasoning to

derive inferences about the values of endogenous variables in the

target. Accordingly, as summarized in Figure 3, the four basic

components in analogical inference are the learning of a causal

model for a source (Step 1); the assessment of the analogical

mapping between the source and a target (Step 2); the transfer of

causal knowledge from the source to the target on the basis of the

analogical mapping to construct the causal model of the target

(Step 3); and inference based on the causal model of the target

(Step 4).

Computational Theory

We now describe a model of transfer based on Bayesian infer-

ence, deriving predictions that can be qualitatively compared with

the pattern of inference ratings obtained from human reasoners.

The Bayesian model derives the probabilities of potential infer-

ences about the target from the four computational components

shown in Figure 3.

Figure 4 schematizes simple analogy problems of the sort used

in the experiments reported later. Here, the source (see Panel A)

has one background cause (BS, assumed to be generative and

constantly present in the context), two generative causes (G1
S and

G2
S), one preventive cause (P1

S), and an effect (ES). The target has

one background cause (BT), two additional generative causes (G1
T

and G2
T), and one preventive cause (P1

T). All node variables are

binary, with value 0 (absent) or 1 (present). In the predictive

inference case (as shown in Figure 4B), the task is to predict

the probability of the effect occurring in the target, whereas in the

causal attribution case (as shown in Figure 4C), the task is to

predict the probability that the cause G1
T was present (value of 1)

and produced the effect in the target.

A causal model includes both causal structure and strength.

Causal structure is represented by directed arrows between

nodes to indicate cause– effect relations, as shown in Figure 4.

The causal strength associated with the link between each cause

node and its effect node is denoted by w
S for the source and w

T

for the target. Both w
S and w

T are vectors and convey two kinds

of information: polarity of the causal power (generative or

preventive) and absolute causal strength of the link. Polarity is

coded as “"” when the cause is generative and “$” when the

cause is preventive. Causal strength is represented as a random

variable, in which higher values imply that the cause has higher

power to generate an effect or else to prevent the effect from

occurring.

Figure 3. Framework for analogical transfer based on causal models. G, P, and E represent generative causes,
a preventive cause, and an effect, respectively; w1

S, w2
S, w1

T, and w2
T each represent a distribution over causal

strength for causal links in the source (S) and in the target (T), respectively. Dotted lines indicate knowledge
transferred from source to target (see text).
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In Figure 4, the status of the effect in the target is to be inferred
(predictive inference). For the first step, the model learns the
causal structure of the source and estimates the strength of each
causal factor. In the Bayesian framework, the inductive strength of
an inference depends on two factors, priors and likelihoods of the
data. Priors capture knowledge that people have about causal
structure or causal strengths before they observe new data. Like-
lihoods of the data can be calculated by applying the power PC
theory (Cheng, 1997) to assess how likely the observed data can be
generated from a causal model. The probability of an effect oc-
curring is given by a noisy-OR function when candidate causes are
generative and by a noisy-AND-NOT function when a candidate
cause is preventive.

In the present article we focus on situations in which it can be
safely assumed that people do not have any prior preference about
the values of causal strength in the source; hence, priors are
assumed to be uniformly distributed causal strength over the range
[0, 1]. Although alternative priors could be considered (Lu et al.,
2008), uniform priors allow us to keep the model parameter-free.3

The basic theory can readily be extended to situations in which the
reasoner begins with specific priors about the source or target. We
do not offer a theory of mapping in the present article, but the
experiments we report involve situations in which the correspon-
dences between the source and target elements are uncontroversial.
In paradigms that involve category-based inference, if a new
instance is stated to belong to Category A, it will presumably be
transparent that it corresponds to previous instances of Category A.
(The situation would be considerably more complex if there were
uncertainty about the category membership of a new instance; see

Murphy & Ross, 2010; Ross & Murphy, 1996.) Even with richer

representations for which the correspondences must be established by

structure mapping, the output will be determinate as long as the

information provided about the source and target is sufficient to

determine a specific “correct” mapping for individual causal vari-

ables. Several formal models of structure mapping are able to predict

human mapping judgments for a broad range of inputs. These include

the Structure Mapping Engine (SME; Falkenhainer et al., 1989), the

Analogical Constraint Mapping Engine (ACME; Holyoak & Tha-

gard, 1989), and Learning and Inference with Schemas and Analogies

(LISA; Hummel & Holyoak, 1997, 2003). In the studies reported

here, we took the tack of constructing experimental materials for

which all three of these mapping models would yield the same set of

(highly intuitive) correspondences. However, our theory is in fact

sufficiently general to derive predictions even when alternative map-

pings are possible, as we illustrate in Experiments 3 and 4.

Derivation of predictive inferences. Figure 4 illustrates the

computation for predictive inference. In Equation 1, which fol-

lows, C
S denotes the information that the source (see Panel A in

Figure 4) has a background generative cause, BS, and three addi-

3 Lu et al. (2008) presented evidence favoring a variant of the Bayesian
power PC theory that includes a generic prior indicating that causes will be
relatively few in number and individually of high strength (“sparse and
strong”). For analogical inferences in the experimental designs we con-
sider, adding such a prior would not alter the qualitative predictions of the
Bayesian theory; hence, we assumed uniform priors to obviate the need to
introduce a free parameter.

Figure 4. Causal graphs for a source (Panel A), a target requiring a predictive inference (Panel B), and a target
requiring a causal attribution (Panel C). Variables B, G, P, and E represent a background cause, a generative
cause, a preventive cause, and an effect, respectively. All nodes are binary variables. The vectors w

S and w
T

represent the causal polarity and distribution over causal strength for causal links in the source (S) and in the
target (T), respectively. Dotted elements are initially missing from the target and must be inferred on the basis
of the source.
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tional causal factors, G1
S, G2

S, and P1
S, that is, C

S # (BS, G1
S, G2

S,
P1

S). (Vectors are indicated by bold font.) C
T provides analogous

information about possible causes in the target (see Panel B). In
predictive inference, the model estimates the probability of an
effect occurring in the target, ET # 1, on the basis of initial
information about the source (CS, ES) and the target (CT). The
unknown causal strength of the target is represented by w

T. The
basic equation for predictive inference is

P%ET ! C
T, ES, C

S& ! "
wT

P%ET, w
T ! C

T, ES, C
S&

! "
wT

P%ET ! w
T, C

T&

" "
wS

'P%w
T ! w

S, ES, C
S, C

T&

" P%w
S ! C

S, ES&(, (1)

where the rightmost term on the right side of the equation,
P(wS ! C

S, ES), captures the learning of a source model from
observed contingency data (see Step 1 in Figure 3). Recent com-
putational studies have developed detailed models that estimate
probability distributions of causal strength by combining priors
and observations (Griffiths & Tenenbaum, 2005; Lu et al., 2008).

The middle term, P(wT ! w
S, ES, C

S, C
T), quantifies knowledge

transfer based upon analogical mapping (see Steps 2 and 3 in
Figure 3). The correspondence between variables in the source and
target is denoted by an assignment matrix M in which element Mij

equals 1 if the ith variable in the source maps to the jth variable in
the target and Mij # 0 otherwise. These assignment variables
specify the transfer of causal structure and strength as

P%w
T ! w

S, ES, C
S, C

T& ! "
M

P%w
T ! w

S, M&P%M ! ES, C
S, C

T&.

(2)

The first term on the right-hand side of Equation 2, P(wT ! w
S,

M), determines to what extent causal knowledge will be trans-
ferred if particular source variables match particular target vari-
ables. If an assignment variable is 1, then causal strength in the
target is assumed to follow a Gaussian distribution centered at the
causal strength of the matched variable in the source, with variance
). This term can therefore be expressed as

P%w
T ! w

S, M& !

exp##"
i,j

Mij%wj
T

# wi
S&2$2)2%

#&2*)%¥i,j Mij

. (3)

The second term on the right-hand side of Equation 2, P(M ! ES,
C

S, C
T), assesses the probability of possible mappings (i.e., how

well variables in the source match to variables in the target). Note
that the general expression in Equation 2 does not require that
there be a perfect structural match between the source and target or
that the match of variables between the source and target be
established with probability equal to 1. Equation 2 simply specifies
that the transfer of causal knowledge (including the causal link and
its strength) is weighted by the probability that source variables
play the same causal role as do target variables. People may well

leave some parts of the source and target unmapped, especially if
they are not considered causally relevant (Holyoak, 1985).

One special case concerns applying a deterministic mapping
rule (such as “copy with substitution and generation”), which
implies that the variance specified in Equation 2 is zero. Accord-
ingly, in this special case the Dirac delta distribution was em-
ployed to model the probability of transfer as

'P%wj
T

! wi
S& ! 1,

if the jth target variable
matches the ith source variable and

P%wj
T

! wi
S& ! 0, otherwise.

(4)

We thus treat the matching of cause variables as a binary
decision. When matching fails, Equation 4 implies that the causal
model for the target will be left unchanged (i.e., neither causal
structure nor causal strengths will be transferred from the source,
which is simply viewed as irrelevant).

The leftmost term on the right side of Equation 1, P(ET ! w
T, C

T), uses
knowledge from analogical transfer and observations about the presence
of causal factors in the target to estimate the probability of the effect in the
target (see Step 4 in Figure 3). This probability can be directly computed
with the Bayesian extension of the power PC theory (Cheng, 1997;
Griffiths & Tenenbaum, 2005; Lu et al., 2008). Additional mathematical
details are presented in Appendix A.

Figure 5 summarizes the conceptual decomposition of the com-
putation in Equation 1. In summary, Equation 1 implies that the
probability of an effect is computed by considering all possible
values of causal strengths and structures in the target (not just a
single point value, such as causal power), weighted by the prob-
ability of these values, as determined by the causal knowledge
transferred from the source. The model specified by Equation 1 is
thus sensitive to transferred information about causal strength, causal
structure, and the uncertainty associated with this information.

Derivation of causal attributions. Several distinct queries
involving causal attribution (Cheng & Novick, 2005, pp. 700–701)
or diagnosis (Waldmann, Cheng, Hagmayer, & Blaisdell, 2008,
pp. 464–466) can be distinguished. In the present experiments we
focus on an attribution query of this form: “Given that certain
causal factors are known to have occurred, and that the effect E has
occurred, what is the probability that cause C (not known to have
occurred) in fact occurred and produced E?” In general, such a
causal attribution question requires apportioning the observed
probability of an effect, P(E"), among causes of E. On the basis of

Figure 5. Major conceptual components of the computational model of
predictive inference (Equation 1). C

S denotes causal information in the source;
C

T provides analogous information about possible causes in the target. ES and
ET denote the presence of the effect in the source and the target, respec-
tively; w

S and w
T represent the unknown causal strengths associated with

the source and the target, respectively.
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the assumptions of the power PC theory, Cheng and Novick (2005,
Equation 3, p. 700) derived the predicted probability that C is the
cause of E when E occurs, namely,

P%C"
3E" ! E"& ! P%C")qC /P%E"&, (5)

where C"
3 E" denotes “C is the cause of E’s occurrence”

(corresponding to an unobservable state in a causal model; Cheng,
1997) and qC denotes the generative power of C (see Lu et al.,
2008, p. 978). Equation 5 yields a point estimate of causal attri-
bution judgments. As in the case of predictive causal inference, the
Bayesian extension of the power PC model derives a probability
distribution for causal attribution. Here we lay out the general frame-
work used in the present article. In Appendix B we derive predictions
for two cases of causal attribution: (1) when multiple causes may be
present, all generative, and (2) when a preventive cause is also
present. (See Meder, Mayrhofer, & Waldmann, 2009, for a Bayesian
analysis of diagnostic inference with a single generative cause.)

As shown in Figure 4, the input of the model includes the initial
information in the source (see Panel A) and the target (see Panel C), (CS,
ES, C

T, ET), in which C
T denotes the known causal factors, that is, C

T #
(BT, G2

T, P1
T) and does not include the unknown causal factor G1

T. The
goal of the model is to predict the probability that the cause G1

T was
present and produced the effect in the target.

P%G1
T

! 1, G1
T
3 ET ! ET, C

T, ES, C
S&

!
P%G1

T
! 1, G1

T
3 ET, ET ! C

T, ES, C
S&

P%ET ! C
T, ES, C

S&

!
P%G1

T
! 1 ! C

T, ES, C
S&P%G1

T
3 ET, ET ! G1

T
! 1, C

T, ES, C
S&

P%ET ! C
T, ES, C

S&
.

(6)

The first term in the numerator, P(G1
T # 1 ! C

T, ES, C
S), is the

base rate of the cause in the target. This base rate can be estimated
on the basis of the standard counting probability, using the bino-
mial distribution. The basic computation can be described in
relation to the following situation. Suppose there are two bags of
marbles, and assume the probability of a marble being red is equal
for the two bags. If four marbles (with replacement) are chosen
from the first bag and all four are red, and then similarly three
marbles are chosen from the second bag and all three are red, then
one can estimate the probability of getting a red marble in the
fourth draw from the second bag. Appendix B elaborates how
these probabilities are estimated in different situations. The esti-
mated base rate of the cause is determined by the number of causal
factors observed in the source and the target. The qualitative result
is that, after observing four causal factors to occur in the source,
the probability of G1

T occurring increases with the number of other
causal factors observed to occur in the target.

The second term in the numerator, P(G1
T
3 ET, ET ! G1

T #
C

T, ES, C
S), serves to quantify the probability of a predictive

inference (i.e., how likely the effect in the target can be produced
by G1

T given the information in the source). The principle in
computing this probability is the same as described in the previous
section. The denominator, P(ET ! C

T, ES, C
S), is calculated by the

weighted sum of the probability of the effect occurring in the
presence and the absence of the cause G1

T. The weights are deter-
mined by the estimate of the base rate of this cause.

P%ET ! C
T, ES, C

S& ! P%ET ! G1
T

! 1, C
T, ES, C

S&

" P%G1
T

! 1 ! C
T, ES, C

S& $ P%ET ! G1
T

! 0, C
T, ES, C

S&

" P%G1
T

! 0 ! C
T, ES, C

S&. (7)

The mathematical derivation (see Appendix B) makes it clear that
causal attribution judgments are more complex than causal predic-
tions are (because attributions require summing over all possible
combinations of unknown causal factors). In deriving predictions for
the experimental conditions of concern in the present article, the
Bayesian theory provides analytic solutions for both causal pre-
diction and causal attribution.

Experiment 1

In Experiment 1 we investigated the impact of causal structure
and strength in the source on predictive inferences about the target.
The source consisted of an instance from the same category as the
target accompanied by general information about relevant causal
structure. The materials thus lie toward the low end of the contin-
uum of relational richness (see Figure 1); the paradigm is best
described as involving category-based inference coupled with a
single source analog. The causal structures were similar to those
used by Lee and Holyoak (2008).

The goal of Experiment 1 was to test the basic hypothesis that
analogical inference is controlled in part by what has been learned
about the source. Accordingly, we varied whether the effect E did
or did not occur in the source analog. As we will show, the
Bayesian model predicts that whether the effect occurred given the
same set of causes in the source will lead to different estimations
of causal strength distribution for each of the causal links. If E

occurs, the distribution of the generative causal strength will be
biased toward relatively strong causal power; whereas if E does
not occur, then their strength distributions will be biased toward
weak generative power relative to the preventive cause. In turn,
these different estimates of causal strength for each causal link will
influence inferences about a new target instance.

Method

Participants. Forty undergraduate students at the University
of California, Los Angeles (UCLA), participated in the experiment
for course credit. Twenty participants were randomly assigned to
each of two conditions.

Design. A 2 + 3 mixed design was employed. The first
independent variable was source outcome, positive or negative. In
the positive condition, the effect was said to occur in the source,
whereas in the negative condition the effect was said not to occur.
Regardless of the source outcome, the source always included
three causal relations (two generative causes and one preventive
cause), as shown in Figure 2A. The type of source outcome was a
between-subjects factor.

The second independent variable (a within-subjects factor) was
argument type, defined by the presence or absence of various
causes in the stated target analog. There were three possibilities:
The three causes could be stated to all be present in the target
(no-drop condition: G1G2P), the preventive cause could be stated
to be absent (P-drop: G1G2), and a generative cause could be stated
to be absent (G-drop: G2P).
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Materials and procedures. Participants read descriptions of
pairs of fictional animals. Two sets of materials were employed, each
using a different animal name. For our examples, we will refer to
animals called “trovids.” This fictional animal was described as hav-
ing an abnormal characteristic (dry flaky skin) and three different
gene mutations (Mutations A, B, and C). The mutations were de-
scribed as tending to either produce or prevent the abnormal charac-
teristic. It was stated that each of these gene mutations occurred
randomly for unknown reasons, so any individual might have 0, 1, 2,
or 3 distinct mutations. A source analog was simply referred to as
“Trovid #1,” and a target analog was referred to as “Trovid #2.” The
source analog always had three causal properties (i.e., three muta-
tions) that were causally connected to the effect property (i.e., the
abnormal characteristic). As in the Lee and Holyoak (2008) study,
the phrase “tends to” was included for each causal statement to
emphasize that causes might be probabilistic (Cheng, 1997). Depend-
ing on the source outcome type, the source exhibited the effect
property or not. An example of the positive condition is the following:

For Trovid #1, it happens that all three mutations have occurred.

For Trovid #1, Mutation A tends to PRODUCE dry flaky skin;
Mutation B tends to PRODUCE dry flaky skin; Mutation C tends to
PREVENT dry flaky skin.

Trovid #1 has dry flaky skin.

For the negative condition, in the last statement, has was simply
replaced with does NOT have.

After reading the description of the source analog, partici-
pants were given three different judgment tasks, one for each
argument type. Before making judgments, they were informed
that the questions were not related to each other and that they
should think about each question separately. The presence of
the effect property was unknown, and the presence or absence
of each of the three mutations was listed. Each target analog had
two or three mutations, depending on the argument type (no-
drop: G1G2P; P-drop: G1G2; and G-drop: G2P). For example, in
the no-drop (G1G2P) condition, all three mutations were present
in the target. When a causal factor was dropped, that mutation
was explicitly described as absent. In making judgments, par-
ticipants were asked to suppose there were 100 animals “just
like” the target animal described and to estimate how many of
these 100 would have the effect property, choosing a number
between 0 and 100. This procedure for eliciting causal strength
ratings was introduced by Buehner, Cheng, and Clifford (2003).

Two different sets of materials were constructed (the other set
based on fictitious animals called “falderols”); each participant re-
ceived both sets and thus provided two judgment scores for each
argument type. The order of these two sets was counterbalanced, and
within each set the order of argument type was randomized for each
participant.

Results and Discussion

Mean causal ratings for the two predictive conditions are shown
in Figures 6A and 6B. A 2 + 3 mixed-design analysis of variance
(ANOVA) was performed, in which source outcome (positive vs.
negative) was a between-subjects variable and argument type
(no-drop vs. G-drop vs. P-drop) was a within-subjects variable. A
significant interaction between source outcome and argument type

was obtained, F(2, 76) # 16.12, MSE # 473.62, p , .001,
confirming that source outcome (whether the effect occurred in the
source) influenced analogical inference in the target.

To examine how predictive ratings for each argument type were
affected by source outcome, a separate within-subjects ANOVA
was performed for each source-outcome condition (for data see
Panels A and B of Figure 6). In the source-positive condition (see
Figure 6A), the mean inference ratings for G1G2P, G1G2, and G2P

argument types were 73.6, 95.2, and 28.5, respectively. An
ANOVA revealed a significant effect of argument type, F(2, 38) #
43.61, MSE # 530.64, p , .001. The argument G1G2 was rated as
having higher inference strength than either the argument G1G2P,
t(19) # 3.41, p # .003, or the argument G2P, t(19) # 10.20, p ,
.001. The argument G1G2P was also rated as having higher infer-
ence strength than the argument G2P, t(19) # 5.16, p , .001.

These results replicate the previous findings of Lee and Holyoak
(2008), in that dropping a preventive cause from the target in-
creased inductive strength whereas dropping a generative cause
decreased inductive strength. When people made predictive infer-
ences in the source-negative condition (see Figure 6B), the mean

Figure 6. Mean predictive inference ratings (Experiment 1) when source
outcome was positive (Panel A) or negative (Panel B) and mean causal
attribution ratings (Experiment 2) for each argument type (Panel C). G, P,
and E represent generative causes, a preventive cause, and an effect,
respectively. Error bars represent 1 standard error of the mean. Predictions
derived from the Bayesian model are shown in the right panel of each
graph.

711ANALOGY AND CAUSAL MODELS



ratings for G1G2P, G1G2, and G2P argument types were 19.2, 92.1,
and 17.8, respectively. An ANOVA revealed a significant mean
difference between the argument types, F(2, 38) # 86.74, MSE #
416.61, p , .001. The argument G1G2 was rated as having sig-
nificantly higher inference strength than either the argument
G1G2P, t(19) # 9.91, p , .001, or the argument G2P, t(19) # 9.53,
p , .001; however, the G1G2P and G2P types did not differ,
t(19) # 0.47, p # .65.

The main difference in the pattern of ratings was that in the
negative condition, participants appeared to estimate the strength
of the preventive cause to be greater than the strengths of the
generative causes, so that if P was present the effect was not
expected to occur, regardless of whether one or both generative
causes were present. The differences between the analogical in-
ferences resulting from the two source-outcome conditions thus
demonstrate that analogical transfer is sensitive to causal strength
as well as structure (cf. Lu et al., 2008). Estimated probability
distribution of causal strength appeared to differ depending on
whether the effect occurred in the source, and these estimated
strength distributions in turn were used in forming and running a
causal model for a target. We report the fit of our Bayesian model
to these data after presenting Experiment 2, which examined
judgments of causal attribution.

Experiment 2

People can make inferences either from a cause to its effect
(prediction) or from an effect to its cause (attribution). In Exper-
iment 2, we investigated how people form and run a causal model
when making a causal attribution. Previous work on causal attri-
bution has considered the impact of multiple generative causes.
The aim of Experiment 2 was to examine the impact of combining
preventive with generative causes in causal attribution. The pres-
ence of a preventive cause (in contrast to a generative cause) is
predicted to decrease causal discounting and hence increase the
strength of a causal attribution.

Method

Twenty UCLA undergraduate students participated in the experi-
ment for course credit. The materials and procedure were similar to
those of Experiment 1. The source analog always exhibited the
effect (as in the source-positive condition of Experiment 1). In the
target analog, the presence of one of the mutations was described
as unknown, and the presence or absence of each of the other
mutations was explicitly stated. The target analog always had the
effect property and one or two mutations, depending on the argu-
ment type (no-drop: G2PE; P-drop: G2E; and G-drop: PE). For
example, in the no-drop (G2PE) condition, two mutations and the
effect property were present in the target. In making judgments,
participants were to suppose there were 100 animals just like the
target animal and to estimate in how many the unknown mutation
(G1) had occurred and produced the effect property, assigning a
number between 0 and 100.

Results and Discussion

A different pattern was obtained in the causal attribution task
(see Figure 6C) compared with predictive inference (Experi-

ment 1; see Figures 6A and 6B). Mean causal attribution ratings
for G2PE, G2E, and PE argument types were 74.4, 45.4, and
80.1, respectively. These means were significantly different,
F(2, 38) # 5.61, MSE # 1,237.55, p # .007. The argument G2E

was rated lower than either G2PE, t(19) # 2.49, p # .02, or PE,
t(19) # 2.55, p # .02. The mean difference between the latter
two argument types was not reliable, t(19) # 0.81, p # .43. In
sharp contrast to the pattern observed for the corresponding
predictive inference (i.e., predictive/positive condition; see Fig-
ure 6A), dropping a preventive cause decreased the rated prob-
ability of an inference about a potential generative cause. In
accord with causal discounting, in the G2E condition, because
the target lacks the preventive cause and is known to have a
generative cause, an additional generative cause is not as likely.

All extant models of analogical mapping would predict that
mapping quality will be higher for the G2PE condition (three
factors matching between source and target) than for either the
G2E or PE conditions (two factors matching). Thus, the observed
rank order of the three conditions (PE - G2PE . G2E) demon-
strates that when a known preventive cause is involved, causal
attribution yields a dissociation between mapping quality and
support for an analogical inference. Moreover, this new dissocia-
tion follows a different pattern from that observed for the previous
dissociation we found in the case of causal prediction.

Comparison of Human Performance
to Model Predictions

Fits to Data From Experiments 1 and 2

We tested our Bayesian model of analogical inference by com-
paring its predictions with human performance on judgments of
both causal prediction (Experiment 1) and causal attribution (Ex-
periment 2). In Figure 6, the right side of each graph shows the
model’s predictions for each argument type. To allow a direct
comparison with the human data, we converted the theoretical
predictions for estimated probability to a 0–100 scale. Our focus is
on the qualitative performance of the model. The fit of the
parameter-free Bayesian model to human data across all conditions
(both predictive and attribution judgments) was quite good, r(7) #
.93, p , .001. Qualitatively, the model captures the fact that for
predictive inferences, dropping a preventive cause from the target
increases inductive strength (i.e., G1G2 yielded higher ratings than
did G1G2P) and that the preventive cause is viewed as stronger
(hence decreasing the probability of E more) in the source-
negative than in the source-positive condition. For causal attribu-
tion, the model accounts for the fact that dropping a preventive
cause increases causal discounting and hence reduces the esti-
mated probability of the unknown cause (i.e., lower ratings for the
G2E condition than for the two conditions in which P is present).
The Bayesian model thus accounts for both of the dissociations
between analogical inference and overall mapping quality that we
have demonstrated in Experiment 1 (causal prediction) and Exper-
iment 2 (causal attribution).

Fits to Data From Colhoun and Gentner (2009)

Colhoun and Gentner (2009, Study 2) reported an experiment
that investigated how the presence or absence of causal relations in
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either the source or target analog affects the analogical transfer of
causal relations. Their study also examined the impact of leaving
the status of the effect in the source analog unknown, providing
another source of empirical evidence that can be used to assess the
predictions of our Bayesian model. Using materials similar to
those employed by Lee and Holyoak (2008), Colhoun and Gentner
compared four different conditions, which differed in whether
causal relations were stated in the source or in the target. Partici-
pants read a description of a pair of imaginary animals represent-
ing a source and target analog, with each animal referred to simply
by a letter (e.g., animal R). Simple blank properties (e.g., “blocked
oil glands”) were used as causal factors and the effects. Depending
on the condition, the source animal might include two causal
factors (one generative cause and one preventive cause), and/or
causal relations might be stated (i.e., that each causal factor tended
to cause or prevent the effect), and/or the effect might be stated as
present. In Condition 1 (no source), people were not given a source
analog, but causal relations were stated in the target. In Condition
2 (noninformative source), a source was provided with the causal
factors only (no information about presence of effect), and causal
relations were stated in the target as in Condition 1. In Condition
3 (schematic source), the source stated both the presence of causal
factors and also the causal relations; but like in Condition 2, no
information was provided about the status of the effect (i.e., the
source did not constitute a fully specified instance). Finally, in
Condition 4 (specific source), the source stated the presence of
causal factors and the causal relations and in addition explicitly
stated that the effect was present.4

For each of the four conditions, three different argument types
were tested: GGP, GP, and GPP. In the argument type GP, two
causal factors (G and P) were shared between the source and
target. In the argument types GGP and GPP, one additional cause
(generative in GGP, preventive in GPP) that had not appeared in
the source was added to the target (in addition to the two causal
factors shared by the source and target). Each participant received
all of these three argument types for one of the four conditions. For
each argument type, participants judged the likelihood that the
effect would occur in the target animal by choosing a number
between 0 and 100.

The mean ratings obtained by Colhoun and Gentner (2009) are
shown in Figure 7, along with the predictions derived from the
Bayesian model, on the basis of the same assumptions as used to
fit data from the present Experiments 1 and 2. The human rating
data can be interpreted at most as an interval scale. We did not
adjust the model’s predictions to match the absolute magnitudes of
the human rating data, because we were only concerned with
fitting the qualitative pattern of the data; hence the model’s pre-
dictions are parameter-free (as was the case for the fits of data
from Experiments 1 and 2). The human data reveal that people’s
judgments about predictive causal inferences were not influenced
by whether causal relations were explicitly stated in the source or
in the target (i.e., the pattern of judgments was statistically iden-
tical across Conditions 1, 2, and 3).

In modeling the findings of Colhoun and Gentner (2009), Con-
ditions 1 and 2 (in which the causal structure is directly specified
for the target) do not involve transfer of causal knowledge from the
source; consequently, our model reduces to a standard Bayesian
model of causal learning for the target situation (Lu et al., 2008),
using the noisy-OR and noisy-AND-NOT integration rules for

likelihood and a uniform prior on causal strength in the target. In
Condition 3, the schematic causal structure is specified for the
source; however, in the absence of information about the effect, it
is not possible to update strength distributions. Given the assump-
tion of perfect transfer from source to target (see Equation 4), the
same causal model will be constructed for the target in Condition
3 as that specified directly in Conditions 1 and 2. Accordingly, the
model makes identical predictions for Conditions 1–3.

Condition 4 (specific source), on the other hand, provides in-
formation in the source about the presence of causal factors and
also the effect, thereby providing a specific instance that can be
used to update strength distributions prior to transfer of causal
knowledge to the target. Because the effect is stated to be present,
the model will revise the expected strength values upward for the
generative cause in the source and downward for the preventive
cause. Accordingly, the effect will be more likely to be inferred in
the target for all argument types, as was indeed observed in
Colhoun and Gentner’s (2009) experiment. In addition to making
accurate ordinal predictions, the general fit of the model to human
data across all 12 conditions (4 conditions + 3 argument types)
was good, r(10) # .92, p , .001.

Experiment 3

Lee and Holyoak (2008, Experiment 3) demonstrated that causal
models also guide predictive inferences on the basis of a cross-
domain analogy in which each causal factor is itself a relation
(materials that approximate the upper right quadrant in Figure 1).
Experiment 3 was designed to investigate causal attribution judg-
ments in the context of a similar cross-domain analogy, in which
causal relations were structurally defined as higher-order rather
than first-order relations. Attributional inferences (which require
reasoning backward from an observed effect to alternative unob-
served possible causes) are known to be more difficult than pre-
dictive causal judgments (Bindra et al., 1980; Fenker et al., 2005;
see Appendix B); furthermore, cross-domain analogies are more
difficult to process than within-domain analogies (e.g., Holyoak &
Koh, 1987; Keane, 1988; see Hummel & Holyoak, 1997). Accord-
ingly, it is possible that combining these two sources of difficulty
in reasoning will interfere with people’s ability to draw causal
attributions.

Method

Participants. Thirty-two UCLA undergraduate students par-
ticipated in the experiment for course credit.

Design, materials, and procedure. The design of Experiment
3—a within-subjects design with three argument types as condi-
tions—was identical to that of Experiment 2. The argument types
differed in whether the target analog included all three factors
present in the source (no-drop: G2PE), lacked a preventive cause
(P-drop: G2E), or lacked a generative cause (G-drop: PE). The
source and target analogs were two stories from different domains

4 The labels of conditions in this study have been changed to make their
meanings more transparent. The corresponding condition labels used by
Colhoun and Gentner (2009) were as follows: Condition 1: No Analogy;
Condition 2: AN-TargetRels; Condition 3: AN-BaseRels; Condition 4:
AN-BaseRels " E.
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(fictitious descriptions related to chemistry and astronomy, respec-
tively), adapted from materials developed by Lee and Holyoak
(2008, Experiment 3; see description of materials on p. 1118). The
source story was based on a chemist’s observations about three
different liquid substances, and the target story was based on an
astronomer’s observations about three stars. Participants first re-
ceived the source story, which described how three different liquid
substances could change into a solid material when they are mixed,
depending on three causal factors, each based on a different
semantic relation involving the three liquids. Each relation in-
volved a comparison between two liquids with respect to one of
three different characteristics: temperature, turbulence, and vol-
ume (e.g., “Denitrogel is colder than Oreor”). Two of the three
relations were described as tending to produce the effect (i.e.,
changing the mixed liquids into a solid), and one was described as
tending to prevent the effect.

Three different versions of the source story were constructed to
counterbalance which semantic relation was used as the preventive
factor. After listing the three relations, a schematic diagram was
provided to help participants understand the causal structure of the
source. This diagram resembled causal graphs of the sort com-
monly used in theoretical work on causal reasoning (e.g., Griffiths
& Tenenbaum, 2005; Pearl, 1988; Waldmann & Holyoak, 1992).
In the diagram, each causal factor was depicted as a rectangle
shape, whereas the effect was depicted as an oval shape. Each
rectangle shape (i.e., causal factor) was connected to the oval
shape (i.e., effect) by a directed arrow. The two generative causal
factors were connected to the effect by a solid line, and the
preventive factor was connected by a dashed line.

After studying the source story, participants were given three
different targets, each based on an astronomer’s findings about
three stars. In each target, participants were given exactly the same
cover story except that the doctor’s name and the names of the
three stars were unique to each target. An example is the follow-
ing:

Recently an astronomer, Dr. Sternberg, has discovered that three stars,
Acruxia, Errailel and Castoriff, located in a distant galaxy, have fused
to form a superstar. He reads about the chemist’s findings and thinks
that this case of stellar fusion may be explained by a process similar
to that identified by the chemist. The astronomer thinks the three stars
may behave in a way similar to the three liquids. The theory is that
gravitational attraction among all three stars could make two of the
stars move closer together, so that these three stars finally fuse to form
a superstar. The three stars are close to each other and no other stars
have been found in that region of the galaxy.

The story went on to describe how the astronomer had identified
three possible relations between the three stars that were analogous
to the relations between the three liquids. Three relations involving
the stars were created to have a structural mapping with the
chemist’s findings. To aid participants in finding the mapping, we
also created semantic similarities in the corresponding relations
between the chemistry and astronomy stories. The temperature
relation in the source, “colder than,” corresponded to “had a lower
temperature than” in the target; the turbulence relation, “stirred
vigorously,” corresponded to “subject to more violent solar
storms”; and the volume relation, “greater than,” corresponded to
a diameter relation, “wider than.”

After the three relations that might have effects on stellar fusion
were listed, participants were given a diagram completion task.
This task involved deciding whether each of the relations between
the three stars tended to produce or prevent the formation of the
superstar on the basis of the analogical correspondences between
the three stars and the three liquids. As in the case of the causal
graph diagram provided with the source, each possible causal
factor in the target (i.e., relation between the stars) was depicted as
a rectangle shape, and the effect (i.e., formation of the superstar)
was depicted as an oval shape. However, causal factors and the
effect were not connected by directed arrows. Instead, participants
were asked to draw lines between each of the relations and “for-
mation of the superstar,” just as with the chemist’s diagram shown

Figure 7. Mean ratings for predictive causal inferences produced by participants (“Human Data”) in an
experiment by Colhoun and Gentner (2009, Study 2) and predictions of the Bayesian model (“Model”). G and
P represent generative causes and preventive causes, respectively. In argument type GP, two causal factors (G
and P) were shared between the source and target. In the argument types GGP and GPP, one additional cause
(generative in GGP, preventive in GPP) that had not appeared in the source was added to the target (in addition
to the two causal factors shared by the source and target).
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earlier. This diagram completion task was included to check
whether participants were able to correctly determine the analog-
ical mapping between the source and target analogs. To prevent
them from blindly copying the causal arrows on the basis of the
simple presentation order of causal factors in the source and target
diagrams, we randomized the presentation order of causal factors
in the target diagram.

Because the basic task was causal attribution, the initial cover story
made it clear that the effect (i.e., formation of the superstar) had in fact
occurred. After completing the diagram completion task, the partici-
pant read the astronomer’s “examination report,” a table that stated
whether each of the three causally relevant relations had actually
occurred prior to the formation of the superstar. The presence or
absence of one generative cause was always stated to be unknown
(denoted by a question mark); this factor was the focus of the
subsequent causal attribution judgment. The pattern of the other
causal factors stated to be present or absent created the manipu-
lation of argument type. In the no-drop condition (G2PE), two
relations (one generative factor, G2, and one preventive factor, P)
were stated to be present. In the P-drop condition (G2E), one
generative factor, G2, was stated to be present, and the preventive
factor, P, was stated to be absent. In the G-drop condition (PE),
one generative factor, G2, was stated to be absent, and the preven-
tive factor, P, was stated to be present.

Finally, participants completed the causal attribution task. To
explain why the superstar had been formed, participants had to
carefully study which of the relations did or did not occur before
the formation of the superstar, using the reports in the table, and
then judge how likely it was that before the formation of the
superstar, a specific relation (the generative cause described as
unknown in the report table) was in fact present and had made the
three stars fuse to form a superstar. Because it might seem odd to
imagine 100 cases of apparently unusual astronomical systems,
participants were simply asked to circle a number on a scale
ranging from 0 (certain false) to 100 (certain true). Each partici-
pant was presented with all three conditions, and the order of the
conditions was counterbalanced with three different versions. This
variation in order of conditions was crossed with three versions of
the source story, yielding a total of nine different counterbalancing
conditions. Each counterbalancing condition was assigned ran-
domly to different participants.

Results and Discussion

Human data. One of the participants failed to complete the
diagram completion task correctly; her data were removed from
analyses of causal attribution judgments. The mean causal attribu-
tion ratings for the G2PE, G2E, and PE conditions were 69.0, 61.9,
and 70.3, respectively. This overall pattern of causal attribution
ratings across the conditions was consistent with the findings of
Experiment 2, in that dropping a preventive cause appeared to
yield lower ratings for the unobserved generative cause; however,
the differences between the three means were not reliable, F(2,
60) # 1.19, MSE # 532.26, p # .31.

Closer inspection of the data suggested that the overall pattern
of means might be masking important individual differences in
task performance. To examine whether the overall rating pattern
was manifested by most participants or whether it resulted from
averaging over qualitatively different response patterns, we per-

formed a cluster analysis. The method of dividing participants into
subgroups on the basis of their response profiles has been used in
several previous studies of causal induction (e.g., Buehner et al.,
2003; Rehder, 2006, 2009). Because we were interested in relative
rather than absolute strengths of causal attribution judgments
across the three argument types, Z scores were calculated for each
participant on the basis of the mean rating across all three condi-
tions for that participant. The three Z scores for each participant
were entered into K-means cluster analysis using SPSS statistical
software. The optimal number of clusters, which proved to be two,
is that which yields the lowest value of the Schwarz Bayesian
information criterion (BIC). The BIC for the two-cluster decom-
position relative to the single-cluster solution decreased by 6.65
points; the BIC for the two-cluster decomposition relative to the
three-cluster decomposition decreased by 9.58 points. Moreover,
both the highest ratio of BIC changes and the highest ratio of
distance measures were obtained for the two-cluster solution,
strongly confirming the presence of two distinctive subgroups.

These two subgroups showed qualitatively different response
patterns across the three argument types. In fact, as shown in
Figures 8A and 8B, these two subgroups showed completely
opposite response patterns. Separate within-subjects ANOVAs
were performed for each subgroup. For the first subgroup (n # 17;
see Figure 8A), the mean causal attribution ratings for G2PE, G2E,
and PE conditions were 72.4, 52.4, and 89.4, respectively. These

Figure 8. Mean causal attribution ratings for each subgroup in Experi-
ment 3. Panel A shows the means for Subgroup 1 (n # 17); Panel B shows
the means for Subgroup 2 (n # 14). G, P, and E represent generative
causes, a preventive cause, and an effect, respectively. Error bars represent
1 standard error of the mean. Predictions derived from the Bayesian model
are shown at the right of each panel.
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means were reliably different, F(2, 32) # 32.45, MSE # 180.27,
p , .001. Causal attribution ratings for argument type G2PE were
higher than those for argument type G2E, which dropped the
preventive factor, t(16) # 3.78, p # .002, but lower than for
argument type PE, which dropped the generative factor, t(16) #
4.17, p # .001. This pattern is qualitatively similar to that observed
in Experiment 2.

For the second subgroup (n # 14; see Figure 8B), the mean
causal attribution ratings for G2PE, G2E, and PE conditions were
65.0, 73.6, and 47.1, respectively, a pattern opposite to that ob-
tained for the first subgroup. These means were also significantly
different, F(2, 26) # 6.22, MSE # 409.34, p # .006. Causal
attribution ratings for G2PE tended to be lower than those for G2E,
although the difference was not significant, t(13) # 1.39, p # .189,
and were reliably higher than those for PE, t(13) # 2.31, p # .038.

The cluster analysis thus revealed one subgroup (consisting of
over half the participants in Experiment 3) that, when making
causal attribution judgments based on a cross-domain analogy,
showed the same basic pattern as we observed in Experiment 2:
The absence of a preventive cause decreased causal attribution
ratings for an unobserved generative cause, whereas the absence of
a different generative cause increased causal attribution ratings for
the unobserved generative cause. The second subgroup, in con-
trast, showed the opposite response pattern.

Application of Bayesian model. These distinct response pro-
files strongly suggest that the participants in the two subgroups
reasoned very differently about this cross-domain attribution prob-
lem. The first subgroup appears to have answered the attribution
question on the basis of the “correct” correspondences between the
source and target, just as did the participants in Experiment 2 who
made simpler category-based inferences. We derived predictions
for Subgroup 1 across these three conditions using our Bayesian
model. The source provided information about the existence of
causal links (i.e., causal structure) but not about whether the effect
occurred given a specific combination of causal factors (essentially
the same situation as that in the schematic source condition tested
by Colhoun & Gentner, 2009). Accordingly, the theoretical deri-
vation simply assumed uniform strength distributions, without
updating. Because there are only three data points and hence the
correlation between human data and model predictions had just
one degree of freedom, the fit of the model, r(1) # .92, is simply
descriptive. Nonetheless, it is apparent that the inference pattern
observed for Subgroup 1 is in qualitative agreement with the
predictions of our Bayesian model (see Figure 8A).

As we noted earlier, causal attribution is clearly more complex
than causal prediction, and its difficulty may well be amplified
when the source and target are far analogs, as was the case in
Experiment 3. One explanation for the pattern of judgments pro-
duced by Subgroup 2 is that these participants in essence converted
the stated attribution question into one that could be answered by
causal prediction. This conversion could be accomplished by as-
suming that the queried cause in the target actually corresponds to
the effect in the source, leading to a reversal of the causal arrow
linking G1 to E. In fact, in a debriefing session after the experi-
ment, some participants in the second subgroup explicitly reported
that the presence of a generative cause would have a positive
power and the presence of a preventive cause would have a
negative power with respect to the likelihood of the missing
generative cause being present. Such verbal reports are consistent

with the hypothesis that some participants treated the queried
cause as an effect of the other factors.

The Bayesian model, when applied to the target structure with
reversed causal arrows, is consistent with the qualitative pattern of
differences across the three conditions for Subgroup 2, r(1) # .82
(see Figure 8B). For the G2PE case, for example, the presence of
the preventive causal factor would be viewed as directly decreas-
ing the likelihood of the unknown generative cause. For the G2E

case, by contrast, the presence of one generative causal factor
coupled with the absence of the preventive causal factor would
increase the probability that the unknown generative causal factor
had occurred.

Experiment 4

In Experiment 4 we extend our Bayesian theory to a more
complex situation in which multiple source analogs are available,
so that inferences about the target depend in part on which source
analog is selected as the basis for analogical transfer. According to
our integrated theory, a causal relation in the target potentially
plays a dual role: It first may guide structure mapping between one
or more source analogs and the target; then once a source is
selected, the causal relation will also guide causal inference on the
basis of the resulting causal model of the target. In the present
study we examined analogical transfer when the structure mapping
involved in selecting the relevant source was sometimes ambigu-
ous (cf. Spellman & Holyoak, 1996).

More specifically, we examined how presence or absence of a
particular causal relation (a preventive cause) in the target might
increase or decrease inductive strength depending on whether the
structural mapping is clear or ambiguous. The source analog
included a preventive cause, which might or might not be also
included in the target. When the mapping is clear, the expected
effect of inclusion of the preventive cause will be to decrease
inductive strength in the target, as shown in previous studies (e.g.,
Lee & Holyoak, 2008). However, when the mapping is ambiguous,
and if the preventive cause is able to resolve the mapping ambi-
guity, the expected result will be reversed.

The materials in Experiment 4 were designed so that when the
mapping was ambiguous, the inclusion of a preventive cause in
the target provided sufficient structural information to resolve the
ambiguity and hence select a particular source as the basis for
transfer of causal structure to the target. Conversely, when this
preventive cause was omitted from the target, the structural am-
biguity would be left unresolved, thereby impairing transfer of a
causal model from source to target. In such situations, our Bayes-
ian model predicts that including the preventive cause in the target
can actually increase inductive support for the occurrence of the
effect that it tends to prevent. No other model of analogical transfer
appears to yield such a prediction. Experiment 4 was performed to
investigate this type of interactive impact of causal and structural
constraints on analogical transfer.

Method

Participants. Forty-five UCLA undergraduates participated
in the experiment to fulfill a course requirement. Each participant
was randomly assigned to one of eight different sets of materials
generated for counterbalancing purposes.
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Design and materials. The source story described a biochem-
ist’s findings about an imaginary liver disease called “tibulosis,”
found in rats. The disease had two different subtypes, Type A and
Type B, described as being caused by different factors and exhib-
iting quite different symptoms. The scientist had identified several
factors that determine whether rats might develop either Type A or
Type B tibulosis. For each type, certain hormones, enzymes, and
antibodies were involved. Participants were asked to carefully
study the biochemist’s findings using a verbal description and
diagram presented in the booklet in order to determine what
characteristics are likely to produce or prevent the development of
each type of the disease. Participants were then given descriptions
of human patients with a liver disease and asked to apply what they
had learned about tibulosis in rats to judge the probability that the
human patients had tibulosis Type A or Type B.

The two disease subtypes for rats constituted two alternative
source analogs for the human disease. The descriptions of the
subtypes were designed to create a potential structural ambiguity.
The two types had identical causal structures except for the names
of causal elements but with one critical structural difference in-
volving a preventive cause. Each source disease included two
generative causes, one preventive cause, and an effect (consistent
with a common-effect model; Waldmann & Holyoak, 1992). The
two generative causes were certain types of hormones and en-
zymes, and the preventive cause was a certain type of antibody. In
each case the preventive cause was narrow in scope (Carroll &
Cheng, 2009), in that it served to stop the causal impact of one of
the two generative causes but not the other. The description of the
causal structure for Type A tibulosis was as follows:

Hormone A tends to stimulate the production of enzyme A, and vice
versa.

Hormone A tends to PRODUCE Type A tibulosis.

Enzyme A also tends to PRODUCE Type A tibulosis.

The immune system sometimes PRODUCES antibody A in response
to enzyme A, but never in response to hormone A.

Antibody A tends to PREVENT enzyme A from producing Type A
tibulosis. However, antibody A provides no protection against the
direct effect of hormone A on Type A tibulosis.

To aid comprehension of the causal structure, we provided a
schematic diagram right below the description. Figure 9 depicts the

causal structure for Type A tibulosis (left), as just described, and
also for Type B tibulosis (right). For Type A, hormone A and
enzyme A are two generative causes that both tend to produce the
effect, Type A tibulosis. Antibody A is a preventive cause with a
narrow scope that prevents enzyme A (but not hormone A).

The B subtype (see Figure 9, right) was very similar to the A
subtype just described, except that the effect was Type B tibulosis
(rather than Type A) and the names of the hormone, enzyme, and
antibody included a B rather than an A. The critical structural
difference between the two sources was that in the B version, the
immune system was described as producing antibody B in re-
sponse to hormone B but never in response to enzyme B (opposite
to the situation in the A version); furthermore, antibody B tended
to prevent the effect of hormone B (not enzyme B).

In the target story, participants read reports about human pa-
tients who might have a human form of Type A or Type B
tibulosis. Examination reports for seven patients were constructed.
Each examination report included information about a hormone, an
enzyme, and (in some versions) an antibody found in each patient.
A 2 + 2 within-subjects design was employed, resulting in four
basic versions of the target descriptions. The first independent
variable was whether the target description was specific or generic.
In the specific condition, specific names of the hormone, enzyme,
and antibody (e.g., hormone A, enzyme A, antibody A) were
explicitly stated in the description of the patient report provided in
the target. Given that these names matched those for one of the two
source subtypes, the mapping of the human case to Type A (or B)
tibulosis was accordingly transparent.

In contrast, in the generic condition, specific names of the
hormone, enzyme, and antibody were not provided. Instead, each
was simply described by its general categorical description (i.e.,
hormone, enzyme, and antibody). Thus, in the absence of addi-
tional structural information, there was no basis for preferentially
mapping the description of the factors observed in the human
patient onto those related to Type A versus Type B tibulosis in rats.

This manipulation of the target description was crossed with a
second independent variable: presence or absence of the preven-
tive cause (antibody) in the description of the human patient. As
previously explained, the critical structural difference between
Type A and Type B tibulosis was that for Type A, the enzyme

produced the antibody, which then acted to block the enzyme’s

Figure 9. Example of causal structure for the two disease subtypes used as source analogs in Experiment 4.
Left: Type A tibulosis; right: Type B tibulosis.
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impact; whereas for Type B, it was the hormone that produced the
antibody, which then acted to block the hormone’s impact. In
the P-present condition (in which P represents a preventive cause),
the target description included analogous information about the
human case. For example, in the specific, P-present condition, the
description might state the following:

Hormone A and enzyme A are present, and each stimulates production
of the other.

The immune system produced antibody A in response to the enzyme
(but not the hormone).

More critically, in the generic, P-present condition, the description
stated this:

A hormone and an enzyme are present, and each stimulates production
of the other.

The immune system produced an antibody in response to the enzyme
(but not the hormone).

Note that even though no specific names are provided, this
generic, P-present description (on the basis of the second statement
in the description) provides structural information sufficient to
disambiguate the mapping between the human case in the target
and the two disease descriptions for rats. That is, only Type A
tibulosis involves an antibody produced in response to an enzyme,
which then blocked the enzyme’s effect. Any of the major models
of structure mapping (e.g., Falkenhainer et al., 1989; Holyoak &
Thagard, 1989; Hummel & Holyoak, 1997) would be able to use
the structural information provided in the generic, P-present con-
dition to resolve the potential ambiguity and identify a determinate
mapping between the disease described in the target and one of the
two sources in the description of disease subtypes found in rats.

In the P-absent versions (both specific and generic), the second
statement in the relevant description was simply replaced with “no
antibody is present.” Critically, in the generic, P-absent condition,
no information was provided that could possibly serve to resolve
the structural ambiguity inherent in the mapping; hence, the target
case could be mapped to either Type A or Type B tibulosis as the
source. If a preventive cause plays a dual role in analogical
transfer, as the integrated theory postulates, then in this experiment
its inclusion will have a paradoxical influence on the judged
probability of an effect in the target. Specifically, given a specific
description of the target, inclusion of the preventive cause will
decrease the judged probability of the effect (by acting as a
preventer within the causal model of the target); but given a
generic description of the target, its presence will increase the
judged probability of the same effect (by serving to disambiguate
the mapping so that a particular source is selected and hence the
corresponding causal model of the target can in fact be con-
structed).

For each condition except the generic, P-absent condition, two
patient reports were constructed, resulting in seven patient reports
in total. For each of the first three conditions, one of the two
patient reports supported mapping to Type A, and the other sup-
ported mapping to Type B. Because the generic, P-absent condi-
tion did not support mapping to one type over the other, only one
version of this patient report could be constructed. Two different
sets of materials were constructed by counterbalancing whether the
hormone or the enzyme produced an antibody in Type A and in

Type B. Within each set, four different orders of targets were
constructed, resulting in eight versions of materials in total.

Procedure. Participants were given a booklet that included
the story about the two alternative source diseases, the target story,
and a series of inference tasks. First, participants read the story
about a biochemist’s findings about a new liver disease found in
rats and studied what factors were likely to produce or prevent the
development of two types of the disease on the basis of the verbal
descriptions and diagrams. After reading the descriptions of the
two types of the disease, participants were asked to briefly describe
a major difference between the two types of tibulosis. This task
was intended to call attention to structural information that might
later serve to disambiguate the mapping of the target to one of the
two alternative sources.

In the generic conditions (but not in the specific conditions), a
mapping task was included before the inference task to check
whether the potential mapping ambiguity was resolved. This task
required identifying the generic hormone as “hormone A,” “hor-
mone B,” or “can’t tell.” The analogous question was also asked
about the generic enzyme. Regardless of the answers the partici-
pants gave on this mapping task, they then completed the task of
analogical inference.

For the analogical inference task, participants were given the
examination reports for seven different patients. For each patient,
participants were asked to judge how likely it was that the patient
had each type of the disease. To answer each question, they were
to imagine there were 100 cases with the same known character-
istics as for the specific case and judge how many of these 100
cases would be expected to have each type of the disease. A
number between 0 and 100 was elicited for each type of the
disease.

Results and Discussion

Human data. On the mapping task, 33 of the 45 participants
reported the structurally justified mappings for the hormone and
enzyme in the generic, P-present condition. The other 12 partici-
pants gave a variety of responses in this critical condition. Some of
them chose “can’t tell” for both mapping questions, some chose
the correct mapping for one question but “can’t tell” for the other,
and some gave structurally incorrect mappings. In reporting the
results for the analogical inference task, we first report the results
based on data from all of the participants (N # 45) and then the
results for those who gave completely correct mappings in the
generic, P-present condition (n # 33). In the generic, P-absent
condition, in which structural information to resolve the ambiguity
was lacking, all but one participant chose “can’t tell” for both
mapping questions. (The single exception was one of those who
also gave a structurally incorrect response in the generic, P-present
condition.)

For each patient case, participants estimated both the probability
that the patient had Type A of the disease and the probability that
the patient had Type B. The format encouraged participants to treat
the two types as mutually exclusive, and assignments of Type A
versus Type B were fully counterbalanced across conditions. To
code the responses on the inference task, we defined the “correct”
disease type as that supported by the preferred mapping in the
three unambiguous conditions (specific, P-present; specific, P-
absent; and generic, P-present). For comparison, this same disease
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type (either A or B) was defined as “correct” in the matched
generic, P-absent condition (in which the selection of a source was
structurally ambiguous).

The mean rated probability of the correct effect for each of the
four conditions is shown in Figure 10. These data were analyzed
with a 2 + 2 ANOVA in which both target description (specific vs.
generic) and presence of the preventive cause (P-present vs.
P-absent) were within-subjects variables. A significant main effect
of specificity of the target description was obtained, F(1, 44) #
123.09, MSE # 302.52, p , .001, in that inference strength was
significantly higher when the description was specific (M # 83.0,
SD # 16.09) than when it was generic (M # 54.3, SD # 17.70).
The main effect of presence of the preventive cause was not
significant (F , 1). Most importantly, a significant interaction was
obtained between target specificity and presence of preventive
cause, F(1, 44) # 79.7, MSE # 281.49, p , .001, implying that the
presence of a preventive cause had a different impact on analogical
inference depending on the specificity of the target description.
When the description of the target was specific so that the mapping
to one of the disease types in the source was transparent, partici-
pants gave significantly higher estimates of the probability of the
correct effect in the P-absent condition (M # 92.4, SD # 13.99)
than in the P-present condition (M # 73.6, SD # 28.52), t(44) #
4.02, p # .001. This result replicates the present Experiment 1 and
previous findings (Lee & Holyoak, 2008), in that dropping a
preventive cause from the target increased the strength of a pre-
dictive inference. In contrast, when the target description was
generic, the effect of including the preventive cause was reversed.
The estimated probability of the correct effect was now higher in
the P-present condition (M # 67.2, SD # 29.6), in which the
preventive cause served to disambiguate the source selection, than
in the P-absent condition (M # 41.3, SD # 23.89), in which the
selection of a source was structurally indeterminate, t(44) # 4.28,
p , .001.

As mentioned earlier, 12 participants failed to solve the mapping
task correctly in the generic, P-present condition. Because the
inference task critically depended on the mapping, incorrect map-
pings might lead to an erroneous prediction about the target. We

therefore performed a second set of analyses using only the data
from the 33 participants who solved the mapping task correctly. A
significant main effect of specificity of the target description was
obtained, F(1, 32) # 101.28, MSE # 185.56, p , .001, with higher
ratings of the correct effect when the target description was spe-
cific (M # 81.8, SD # 16.46) than when it was generic (M # 57.9,
SD # 16.93). The main effect of presence of a preventive cause
was not reliable (F , 1). A significant interaction between target
description specificity and presence of a preventive cause was
obtained, F(1, 32) # 129.67, MSE # 168.45, p , .001. When the
description was specific, participants gave significantly higher
inference ratings in the P-absent condition (M # 92.5, SD #
13.57) than in the P-present condition (M # 71.1, SD # 29.58),
t(32) # 3.83, p # .001. In contrast, when the description was
generic, the P-present condition (M # 72.9, SD # 28.77) yielded
significantly higher inference strength than did the P-absent con-
dition (M # 42.9, SD # 22.01), t(32) # 4.49, p , .001. The
pattern for the subgroup of participants that fully solved the
mapping task was thus statistically identical to that found for
the entire set of participants.

Application of the Bayesian model. Our Bayesian model can
be extended to deal with the situation created by the design of
Experiment 4, in which any one of a set of alternative source
analogs might provide a basis for analogical inference about a
target. As shown in Equation 8, the probability that an effect
occurs in the target is the sum of its probabilities based on each
possible source, weighted by the probability of the mapping be-
tween the target and each source. That is,

P%ET ! C
T& ! "

S

P%ET ! C
T, ES, C

S&P%ES, C
S ! C

T& (8)

where S denotes a set of possible sources, each consisting of a
causal model with variables (ES, CS). In calculating the first term,
we assumed that participants had no prior knowledge about causal
structure or strength of the source (as in the derivations used in
modeling the previous experiments); hence, the stated causal re-
lations were assigned a uniform strength distribution ranging be-
tween 0 and 1. As was the case for the design used in Experiment
3, because no further information about causal strengths was
provided in the source, these distributions remained uniform (no
updating on the basis of examples); thus, in effect only causal
structure (not strength) was available to be transferred to the target.
On the basis of Equation 4, causal links with uniform strength
distributions were directly transferred from the source to the target
analog when the mapping was determinate. In the derivations, the
functional form of the preventive cause (a noisy-AND-NOT func-
tion) was applied in a manner that reflected the appropriate narrow
scope of the preventer (Carroll & Cheng, 2009). The influences of
the causes were integrated sequentially. After applying a noisy-
AND-NOT function to integrate the influence of the preventer
with that of its related generative cause, a noisy-OR function was
applied to combine this intermediate result with the influence of
the other generative cause and an assumed background cause.

The second term in Equation 8 assesses how likely the target can
map to a specific source. In Experiment 4, this probability was
either 1 or 0 for the three unambiguous conditions (specific,
P-present; specific, P-absent; and generic, P-present), so the causal
model for the correct effect was always transferred to the target.
However, in the ambiguous condition (generic, P-absent), this

Figure 10. Mean probability of the correct effect in each condition of
Experiment 4. In the P-present condition the preventive cause P was
present in the target; in the P-absent condition this preventive cause was
absent. Left: human data; right: predictions derived from the Bayesian
model. Error bars represent 1 standard error of the mean. Note that the
selection of the source analog is ambiguous for the generic, P-absent
condition.
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mapping probability was equal (.50) for the two sources due to the
structural ambiguity.

Figure 10 depicts the parameter-free predictions of the Bayesian
model. The model captured the qualitative pattern of the human
data, r(2) # .93. When data from just those participants who
solved the mapping task correctly were modeled, the fit improved
slightly, r(2) # .94. The model captures the trade-off that arises in
the generic, P-present condition, in which the presence of the
preventer exerts a positive influence on analogical transfer by
guiding the mapping to one particular source but then reduces
transfer somewhat by acting to prevent the effect within the causal
model created for the target.

General Discussion

Summary

We have presented a Bayesian theory of inductive inference
using the framework provided by representations based on causal
models (Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al.,
2008; Pearl, 1988; Waldmann & Holyoak, 1992). In doing so, we
extended similar models that have addressed the role of causal
knowledge in making category-based inferences (e.g., Rehder,
2009) to situations involving very small numbers of specific cases
(one or even zero) and relatively high levels of relational richness.
Our Bayesian model of causal inference is integrated with struc-
ture mapping, making it possible to derive predictions regarding
transfer on the basis of relationally complex analogies and sche-
mas, including situations in which structure mapping and causal
inference interact (Experiment 4). By integrating analogical infer-
ence with causal models, we were able to provide a more unified
account of the influence of causal knowledge on the subprocesses
involved in analogical transfer, ranging from initial acquisition of
causal knowledge about the source to evaluation of potential
inferences about the target.

Our parameter-free Bayesian theory was able to account for a
range of human inductive inferences involving causal prediction
(cause to effect; Experiments 1 and 4) and causal attribution (effect
to cause; Experiments 2 and 3) when the situations involved a mix
of both generative and preventive causes. The theory accounts for
the dissociation between overall mapping quality and the strength
of a causal inference about the effect, which is obtained when a
generative causal factor in the source is omitted from the target.
This manipulation reduces mapping quality yet increases infer-
ences that the effect will occur in the target (Experiment 1; also
Colhoun & Gentner, 2009, Study 1a; Lee & Holyoak, 2008). In
addition, the theory accounts for the pattern of predictive causal
judgments created by varying causal knowledge about the source,
which depends on whether the effect occurs in the source, fails to
occur (Experiment 1), or is of unknown status (Experiments 3 and
4; Colhoun & Gentner, 2009, Study 2).

The present article is the first to address the impact of preventive
causes on causal attribution (see Appendix B). For causal attribu-
tion, the theory accounts for the reversal of the impact of dropping
a preventive causal factor (as derived in Appendix B and demon-
strated for the first time in the present Experiments 2 and 3). That
is, the same manipulation (dropping a preventive factor from the
target) decreases inferences that an unobserved generative cause
produced the observed effect (or to state the same phenomenon in

a different way, keeping a preventive cause in the target diminishes
causal discounting). The overall pattern across the three attribution
conditions tested in Experiments 2 and 3 thus showed a novel
dissociation between overall mapping quality and support for
inductive inferences (involving an inference about a generative
cause rather than an effect).

In addition, Experiment 3 revealed that when confronted with an
attribution question requiring cross-domain analogical transfer,
two subgroups of participants reasoned very differently. One sub-
group answered as would be expected given the apparent corre-
spondences between target and source. However, a second sub-
group appeared to convert the attribution question into a simpler
predictive question by assuming that the queried target variable
was an effect rather than a cause. If we assume the underlying
mapping differed in this manner, the Bayesian model is able to
account for the opposite pattern of judgments produced by the two
subgroups. Finally, the data from Experiment 4 confirmed another
novel prediction of our integrated theory of transfer: When mul-
tiple source analogs compete, including a preventive cause in the
target can either decrease or increase the estimated probability that
an effect will occur, depending on whether a structural ambiguity
influences the selection of a source analog. This interaction con-
firms that causal relations in the target can play a dual role in
transfer, influencing structure mapping between the source and
target as well as the operation of the causal model in the target.

Comparison to Previous Approaches

Our approach is broadly similar to Bayesian theories developed
to account for other varieties of inductive inference (e.g., Ander-
son, 1990; Griffiths & Tenenbaum, 2005; Hahn & Oaksford, 2007;
Kemp et al., 2007; Kemp & Jern, 2009; Kemp & Tenenbaum,
2009; Lu et al., 2008; Oaksford & Chater, 2007). The present
model differs from previous approaches to analogical inference in
several interrelated ways. First, the theory we propose integrates
analogical reasoning with probabilistic inference, which takes into
consideration the uncertainty inherent in analogical inferences.
Following Holyoak (1985) and Lee and Holyoak (2008), we argue
that the core computational goal in reasoning with analogies is to
arrive at accurate and useful inferences about the target. To do so,
the model incorporates an explicit theory of how causal knowledge
(including uncertainty) about the source is learned and represented.
A causal relation, rather than being viewed as a static relational
description, is represented as a probability distribution over values
of the causal factor’s power to dynamically influence the state of
the effect variable. Analogical transfer (defined as the generation
of new inferences about the target on the basis of knowledge of the
source) is explicitly decomposed into development of the target
model by transferring causal structure and strength, followed by
“running” it. Importantly, inferences about the values of variables
determined endogenously by the causal model of the target follow
from the final step rather than being imported directly from the
source.

The present proposal is closely related to approaches to
category-based inference that have adopted the framework of
causal models. Like the model developed by Rehder (2009), the
present model incorporates the basic assumptions of the power PC
theory (Cheng, 1997). The model presented here is based on a
Bayesian formulation (Griffiths & Tenenbaum, 2005; Lu et al.,
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2008). The Bayesian framework treats causal strength as a distri-
bution rather than a point estimate, which is critical for dealing
with the uncertainty inherent in strength estimates based on a
single source analog. The great advantage of a Bayesian formula-
tion of reasoning with causal models is that it makes it possible to
derive inferences when causal strengths are highly uncertain. In
particular, previous work has shown that the Bayesian version of
the power PC theory accounts for the impact of sample size on
patterns of causal judgments. In contrast, classical causal power as
defined by Cheng (1997) is independent of sample size and thus
fails to capture the difference in certainty provided by a large
sample relative to a single case.

The Bayesian power PC theory can readily account for data
concerning category-based inferences based on large samples or
when causal powers can be specified with certainty. The general
relationship between the Bayesian and classical formulations of
the power PC theory is that derivations based on the former
converge on derivations based on the latter as sample size grows
large (or more generally, as the power value is established with
high certainty). In particular, the present proposal subsumes Reh-
der’s (2009) CBG model for the class of situations in which both
are applicable (i.e., common-effect structures based on binary
variables).

This is illustrated by one experiment in a series reported by
Rehder (2009), in which he investigated how people generalize
new properties to an entire class of category members. The CBG
model predicts that increasing the strength of a causal link between
a known feature associated with a category and a new feature
increases the judged prevalence of a new feature when the latter is
an effect, whereas decreasing causal strength increases the judged
prevalence of the new feature when the latter is a cause. To test this
prediction of the CBG model, Rehder (in his Experiment 2) em-
ployed a 2 + 2 within-subjects design to assess the interaction
between causal strength and causal direction. Participants first
received summary information about the distribution of various
known features associated with a category. Each known feature
was described as occurring in 67% of category members (i.e., base
rate of a known feature was always .67).

After participants learned about the distribution of known fea-
tures, a causal law linking an existing feature with a new feature
was stated. In this causal law, two variables were manipulated.
First, causal strength was described as either low or high. In the
low-strength condition, participants were told that whenever a
category member had a certain feature, it would cause the member
to have another feature 67% of the time. In the high-strength
condition, 67% was replaced with 100%. Participants were also
told that there were no other causes of the effects (i.e., there was
no background cause), implying that generative causal power was
proportional to the stated frequency of the effect given the cause
(i.e., .67 or else 1). Second, causal directionality was manipulated,
with the new feature described as being either a cause or an effect
of a known feature. Finally, participants were asked to judge what
proportion of category members would have the new feature (by
positioning a slider on a scale from none to all).

The results supported the predictions of the CBG model. When
the new feature was described as an effect, it was judged to be
more prevalent when causal strength was high rather than low. In
contrast, when the new feature was described as a cause, the
pattern was reversed: The new feature was judged to be more

prevalent when causal strength was low rather than high. Qualita-
tively, this pattern is consistent with the basic prediction that
causes need to be more prevalent to generate the observed effect
when the causal link is weak than when it is strong. Quantitative
predictions can be derived using the assumptions of the power PC
theory.

In modeling the data from this experiment, our Bayesian theory
is essentially identical to the CBG model. Because Rehder (2009)
directly taught his participants that the causal power was a specific
point value, uncertainty associated with the strength distribution
would be minimal. A Bayesian model can learn a close approxi-
mation to a specified point value by being presented with a large
sample of “imaginary cases” that follow the appropriate contin-
gency table for occurrences of cause and effect. To derive predic-
tions for Rehder’s Experiment 2, the Bayesian model was first
presented with 200 cases that instantiated the appropriate contin-
gency table for the manipulation of causal power, which was either
.67 or 1. The resulting distributions of causal strength (sharply
peaked at the value of power) were then transferred to the target,
and the causal model for the target was used to infer the frequency
of the novel feature. When the new feature was described as an
effect, the standard equation for predictive causal inference was
used. When the new feature was described as a cause, the model
summed over the predicted probabilities of the new feature, given
presence versus absence of the effect. That is,

P%C ! 1& ! P%C ! 1 ! E ! 1&P%E ! 1&

$ P%C ! 1 ! E ! 0&P%E ! 0&, (9)

where C is the causal (new) feature and E is the effect (known)
feature, and the values 1 and 0 represent their presence versus
absence. Our parameter-free Bayesian model yields quantitative
predictions virtually identical to those based on the CBG model,
and the fit to the human data is excellent, r(2) # .996, p # .004.

Whereas the Bayesian theory can thus account for data from
category-based inference that supports the CBG model (the former
in essence subsuming the latter), the CBG model is simply inap-
plicable to the kinds of inference tasks on which we focused in the
present Experiments 1–4. As we noted in the introduction, the fact
that our Bayesian theory can cope with small numbers of examples
is critical to the success of its extension to analogical and schema-
based reasoning, in which the number of specific instances pro-
vided in the source is typically just one or even zero (when the
causal structure is conveyed without any specific case). The basic
limitation of the classical definition of causal power is that its
value (a point estimate rather than a distribution) is essentially
constant over sample size, thus failing to capture the empirical
form of learning curves. Of greater present concern (given the goal
of constructing a theory of analogical inference), assessing classi-
cal causal power requires computing the contrast between the
probability of the effect in the presence versus the absence of a
cause. This computation necessarily requires an absolute minimum
of two observed cases (at least one observation of what happens
when the cause is present and at least one observation of what
happens when it is absent). Thus, in a typical case of analogical
inference from a single instance in which various causes are
present and the effect occurs, classical causal power is left unde-
fined. Accordingly, models of category-based inference based on
classical causal power, such as the CGB model of Rehder (2009),
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are inherently inapplicable to typical paradigms involving analog-
ical inference.

Broader Implications of the Bayesian Framework for
Analogical Transfer

Our Bayesian theory clarifies what might be termed the “value
added” by a source analog. Although models of analogy typically
represent causal knowledge about a source analog by simply
stating cause relations as part of its predicate-calculus-style de-
scription, this is clearly an oversimplification. Causal relations will
seldom if ever be solely based on a single example; rather, they
reflect more general prior information derived from multiple ex-
amples and/or more direct instruction. In this sense, categorical
knowledge and analogical inference are closely interconnected, as
suggested by Figure 1.

A source analog can, however, provide additional information
beyond prior knowledge about individual causal links. In the
experiments on which we have focused in the present article, the
source (when it includes a specific instance) provides information
about the joint impact of a set of causal factors that do or do not
yield the effect, thus allowing revision of strength distributions to
reflect the relative strengths of generative and preventive causes.
More generally, the source may also provide information about (a)
a sequence of causal events that leads (or fails to lead) to goal
attainment or (b) side effects generated in the course of attaining a
goal. This type of detailed information about a specific pattern of
causal events will often go well beyond prior knowledge about
individual causal relations, enabling the source to provide critical
guidance in making inferences about a complex and poorly under-
stood target analog.

As a computational level theory, our proposal in no way denies
that multiple component mechanisms are involved in the process
of analogical inference. Indeed, recent neuroimaging studies have
linked relational integration (a reasoning process closely tied to
comparison of role-governed relations; Waltz et al., 1999) to a
specific brain region, the rostrolateral prefrontal cortex (Bunge,
Wendelken, Badre, & Wagner, 2005; Cho et al., 2010; Christoff et
al., 2001; Green, Kraemer, Fugelsang, Gray & Dunbar, 2010;
Kroger et al., 2002; for a review see Knowlton & Holyoak, 2009).
However, the fact that relational comparison is a key component of
analogical inference does not obviate the need for an integrated
theory. The predictive power of the present Bayesian theory of
analogical inference is evidenced by its initial success in providing
a unified account of how causal knowledge about the source is
acquired, how this knowledge is linked to the target, and how the
derived representation of the target is used to generate systematic
causal inferences.

Future Directions

The Bayesian theory of analogical inference we have presented
in the present article is best viewed as a promissory note for future
theoretical developments. Although the present theory can in prin-
ciple be extended to more complex causal structures, the initial
applications we have considered involve simple networks (a small
number of causal factors and a single effect). Much work remains
to account for inferences based on analogies involving complex
causal chains with intermediate nodes and multiple effects. We

conjecture that the role of analogy in guiding causal inference will in
fact increase dramatically as the size of the search space of potential
causal factors and effects in the target increases. A source analog with
a well-established causal model can serve to focus attention on por-
tions of a complex target in which analogous causal relations are
particularly likely to be found, obviating the need for unconstrained
search through a prohibitively large space of possibilities.

The central principle that guides Bayesian analyses of percep-
tion and cognition for core inductive tasks—including categoriza-
tion, causal learning, and perhaps analogical inference—is that
these core processes serve the computational goal of yielding
accurate knowledge that will help achieve the reasoner’s goals
(Anderson, 1990). Nonetheless, actual human induction is clearly
also constrained by limitations in attention and working memory,
as more recent algorithmic models of analogy have stressed (Hal-
ford, Wilson, & Phillips, 1998; Hummel & Holyoak, 1997, 2003).
In extending the approach to more complex analogies, it will be
necessary to confront the processing limitations that constrain
human relational reasoning. We already found evidence of such
processing limitations in Experiment 3, in which a substantial minor-
ity of participants apparently evaded the task of drawing causal
attributions on the basis of a cross-domain analogy, instead assuming
the queried variable was actually an effect, not a cause, and then
reasoning forward from known factors to the one that was unob-
served. The joint demands of processing a cross-domain analogy and
making the “reverse” inferences required for causal attribution (rea-
soning from an observed effect to a possible unobserved cause) may
have exceeded the processing capacity of some participants.

Finally, we would like to emphasize that the integration of models
of analogical inference with models of causal learning and inference
can continue to be of mutual benefit. We have aimed in the present
article to illustrate how the past two decades of work on causal models
can be used to further the development of theories of analogical
inference. Future advances in understanding human causal reasoning
will thus have immediate implications for work on analogy.

Equally promising, however, is the potential for transfer across
these two research areas in the reverse direction. As Lien and
Cheng (2000, p. 98) noted, “New causal relations are sometimes
learned by analogy to a known causal relation.” We have already
mentioned the potential usefulness of a source analog in guiding
search for causal relations within a complex target. An even more
basic theoretical link involves the identification of relevant data for
making causal inferences. In the extensive literature on the acqui-
sition of causal knowledge from observations of empirical contin-
gency data, the issue of what observations count as the “same” has
generally been glossed over. For example, to decide whether a new
disease is communicable across people, it is typical to assume that
we can readily identify occasions on which a healthy person does
or does not come in contact with a person afflicted with the
disease, and then observe whether the previously healthy person
does or does not contract the disease. But suppose we now find that
a similar disease in pigs can spread from one animal to another. On
the face of it, observations of pigs cannot alter contingencies
related to human disease transmission. Yet intuitively, such knowl-
edge about a different domain in fact increases the estimated
probability that the human disease is also communicable. Why?
The answer, which calls for advances in the theoretical integration
of causal models with analogical inference, may provide a major
clue as to why the inductive power of human reasoning exceeds
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that of any other form of biological or artificial intelligence (Hol-
land et al., 1986; Penn, Holyoak, & Povinelli, 2008).
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Appendix A

Derivation of Bayesian Model for Predictive Inference

We use Figure 4 as an example to illustrate the computation for
predictive inference. C

S denotes the information that the source
(see Panel A) has a background generative cause, BS, and three
additional causal factors, G1

S, G2
S, and P1

S, that is: C
S # (BS, G1

S,
G2

S, P1
S). C

T provides analogous information about possible causes
in the target. Specific causal factors included in C

T change de-
pending on different experiment conditions. We will address each
condition separately.

As shown in Equation A1 (the same as Equation 1 in the main
article), in predictive inference, the model estimates the probability
of an effect occurring in the target, ET # 1, on the basis of initial
information about the source, (CS, ES), and the target, C

T. The
unknown causal strengths for the source and target are represented
by w

S and w
T, respectively. The basic equation for predictive

inference includes three basic components, as elaborated in the
following equation:

P%ET ! C
T, ES, C

S& ! "
wT

P%ET, w
T ! C

T, ES, C
S&

! "
wT

P%ET ! w
T, C

T&

" "
wS

'P%w
T ! w

S, ES, C
S, C

T&

" P%w
S ! C

S, ES&(. (A1)

1. P(wS ! C
S, ES) captures the learning of a source model from

observed contingency data (see Step 1 in Figure 3). Recent com-
putational studies have developed detailed models that estimate
distributions of causal strength by combining priors and observa-
tions (Griffiths & Tenenbaum, 2005; Lu et al., 2008). Using
Figure 4 as an example, this term can be computed by combining
likelihoods and priors using Bayes rule as follows:

P%w
S ! C

S, ES& !
P%ES ! C

S, w
S&P%w

S&

P%ES ! C
S&

. (A2)

We adopt the likelihood calculation based on noisy-OR and noisy-
AND-NOT functions as specified by the power PC theory (Cheng,
1997) as follows:

P%ES ! C
S, w

S& ! %1 # %1 # w0
S&%1 # w1

S&%1 # w2
S&&%1 # w3

S&,

(A3)

where w0 indicates the causal strength of background cause, w1

and w2 are the strengths associated with the two generative causes,
and w3 indicates the strength of the preventive cause. Equation A3
applies in the case in which the source analog consists of a single

instance. In the general case (Lu et al., 2008), where the source is
based on N independent instances, the right-hand side of Equation
A3 is raised to the power of N. The prior of P(wS) before observing
any data assumes a uniform distribution. The denominator is a
normalization term to ensure that the calculated probability is
bounded within the range of 0 and 1. This term is calculated by
summing over all possible values w

S for the numerator.
2. P(wT ! w

S, ES, C
S, C

T) quantifies knowledge transfer on the
basis of analogical mapping (see Steps 2 and 3 in Figure 3). As
described in the article, we model the probability of transfer as

'P%wj
T

! wi
S& ! 1,

if the jth target variable
matches the ith source variable and

P%wj
T

! wi
S& ! 0, otherwise.

(A4)

3. P(ET ! w
T, C

T) uses knowledge derived from analogical trans-
fer and observations about the presence of causal factors in the
target to estimate the probability of the effect in the target (see Step
4 in Figure 3). This term varies depending on the different infor-
mation about causal factors provided in the target, following the
basic principles of the Bayesian version of the power PC theory
(Cheng, 1997; Lu et al., 2008). Here we provide the derivation for
each of the three experimental conditions tested in Experiment 1.
All derivations are analytic, calculated using Matlab programs (Lu
et al., 2008).

3a. Case 1: Target G1G2P, depicted in Figure 4B. The proba-
bility of the effect in the target can be computed as

P%ET ! w
T, C

T& ! '1 # %1 # w0
T&%1 # w1

T&%1 # w2
T&(%1 # w3

T&.

(A5)

3b. Case 2: Target G1G2, which drops the preventer in the

target. Given that the background cause always occurs, the prob-
ability of the effect in the target is calculated as

P%ET ! w
T, C

T& ! 1 # %1 # w0
T&%1 # w1

T&%1 # w2
T&. (A6)

3c. Case 3: Target G2P, which drops a generative cause in the

target. We compute the effect probability as

P%ET ! w
T, C

T& ! '1 # %1 # w0
T&%1 # w2

T&(%1 # w3
T&.

(A7)

The probability of the effect in the target G1G2P can be esti-
mated by substituting Equations A3, A4, and A5 into Equation A1.
Similar calculations can be made to estimate the probability of the
effect in the target when it includes different information (e.g.,
targets G1G2 and G2P).

(Appendices continue)
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Appendix B

Derivation of Bayesian Model for Causal Attribution

Here we illustrate the derivation for causal attribution using the
problem shown in Figure 4 as an example. The input to the model
includes the initial information in the source (see Panel A) and the
target (see Panel C), (CS, ES, C

T, ET), in which C
T denotes the

known causal factors in the target, that is, C
T # (BT, G2

T, P1
T), and

does not include the unknown causal factor G1
T. The goal of the

model is to predict the probability that the cause G1
T was present

and produced the effect in the target, which is given by Equation
B1 (the same as Equation 6 in the main article):

P%G1
T

! 1, G1
T
3 ET ! ET, C

T, ES, C
S&

!
P%G1

T
! 1, G1

T
3 ET, ET ! C

T, ES, C
S&

P%ET ! C
T, ES, C

S&

!
P%G1

T
! 1 ! C

T, ES, C
S&P%G1

T
3 ET, ET ! G1

T
! 1, C

T, ES, C
S&

P%ET ! C
T, ES, C

S&
.

(B1)

We now provide a detailed explanation of the computation for
each term in the Equation B1. The attribution derivations are
analytic, calculated using Matlab programs.

1. The first term in the numerator, P%G1
T

! 1 ! C
T, ES, C

S&, is
the base rate of the causal factor in the target (i.e., an estimate of
the probability that the causal factor would occur in the target
environment). This base rate can be estimated on the basis of
standard counting probability, using the binomial distribution. The
qualitative result is that, after observing four causal factors to
occur in the source, the probability of G1

T occurring increases with
the number of other causal factors observed to occur in the target.
As a result, the estimated base rate of the cause is determined by
the number of causes observed in the source and the target.

We assume in the following equation that all the causes share an
equal probability for their occurrence but that this probability,
denoted as /, is unknown:

P%G1
T

! 1 ! C
T, ES, C

S& ! (P%G1
T

! 1 ! / &P%/ ! C
T, C

S&d/

! (P%G1
T

! 1 ! / &
P%C

T ! / &P%/ ! C
S&

Z
d/, (B2)

where P%G1
T

! 1 ! / & ! / and P%C
T ! / & ! /nT (nT indicates

the number of known causes in the target) following the binomial
distribution for a binary variable and with the occurrence of causes
assumed to be independent. P(/ ! C

S) is the learned base rate of the
causal factor based on information provided in the source. Using
the Bayes rule, this probability can be evaluated as P(/ ! C

S) #
(nS " 1)/nS by assuming a uniform distribution on / as the prior (ns

indicates the number of known causes in the source). Z is the
normalization constant to ensure the calculated probability is
bounded within 0 and 1.

Following the calculation just laid out, the estimated base rate of
the cause for the G2PE condition, in which there are three causes
(G1, G2, and P) in the source and two causes (G2, and P) in the
target, is 6/7. The base rate of the cause for both the G2E and PE

conditions is 5/7.
2. The second term in the numerator of Equation B1,

P%G1
T
3 ET, ET ! G1

T
! 1, C

T, ES, C
S&, serves to quantify the

probability of a predictive inference (i.e., how likely the effect in
the target can be produced by G1

T given the information in the
source). This is a predictive inference problem, so the principle
used to compute this probability is the same as described in
Appendix A, that is,

P%G1
T
3 ET, ET ! G1

T
! 1, C

T, ES, C
S&

! "
w1

T

P%ET ! w1
T, C1

T&"
w1

S

'P%w1
T ! w1

S, C1
S, C1

T&P%w1
S ! C

S, ES&(.

(B3)

3. The denominator in Equation B1, P(ET ! C
T, ES, C

S), is
calculated by the weighted sum of the probability of the effect
occurring in the presence and the absence of the cause G1

T. The
weights are determined by the estimate of the base rate of this
causal factor, as shown in Equation B2. Specifically,

P%ET ! C
T, ES, C

S& ! "
G1

T

P%ET, G1
T ! C

T, ES, C
S&

! P%ET ! G1
T

! 1, C
T, ES, C

S&P%G1
T

! 1 ! C
T, ES, C

S&

$ P%ET ! G1
T

! 0, C
T, ES, C

S&P%G1
T

! 0 ! C
T, ES, C

S&. (B4)

The calculation of this term makes it clear that causal attribution
judgments are more computationally demanding than are causal
predictions, because of the requirement to estimate the effect
probability in two alternative situations (i.e., the presence and the
absence of the unknown causal factor).

3a. Case 1: Generative causes only. This case includes the G2E

condition in Experiment 2. Case 1 yields causal discounting, as the
causal attribution to the unknown causal factor is diminished if
another generative causal factor is known to have occurred. The
calculation of the denominator term is straightforward. We can
follow Appendix A to estimate the probabilities of the target effect
in two situations, when (a) both G1 and G2 causes occur and (b)
only G2 occurs. Then we calculate the weighted sum of the two
predictive probabilities, weighted by the estimated base rate of the
target cause given by Equation B2.

(Appendices continue)
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3b. Case 2: Generative causes combined with a preventive

cause. This case includes the G2PE and PE conditions in Exper-
iment 2. Case 2 is essentially the same as Case 1, except that it is
necessary to take account of how the influence of a preventive
cause is combined with those of generative causes. Whereas the
noisy-OR operator for generative causes is invariant across the
order in which causes are combined (i.e., satisfies the property of
associativity), the noisy-AND-NOT operator for preventive causes
is not. The net outcome produced by a set of generative causes
accompanied by a preventive cause therefore depends on the order
in which causes are combined. Novick and Cheng (2004) distin-
guished between sequential and parallel integration in certain
situations involving interactive causes, arguing that sequential
integration is generally the default. By analogy, we derive causal
attribution for Case 2 under the assumption that integration of
causes is performed sequentially (Carroll & Cheng, 2009). Se-
quential processing was encouraged in our experiments by the
form of the question, which first stated that certain causal factors
(sometimes including a preventive factor) had occurred along with
the effect and then queried a further generative causal factor of
unknown status. We assume that, following the same sequential
order, the preventive noisy-AND-NOT operator is first applied to
the net generative influence of those causal factors stated to be
present; the net output resulting from this operation is then in turn
combined with the influence of the generative cause being queried.
This sequential procedure implies that the estimated impact of
known generative factors is diminished by the preventive cause,
whereas the estimated impact of the queried generative factor is
not. This asymmetry in the impact of the preventive cause will

diminish causal discounting. That is, given that one generative
cause is known to be present, causal attribution to a further
generative cause of unknown status will be greater if a preventive
cause is present than if it is not.

We use the PE condition as an example to illustrate the opera-
tion of this sequential procedure. The calculation of the numerator
in Equation B1 is the same as described earlier and is not affected
by the sequential procedure. However, the sequential procedure
will play a role in assessing the predictive probabilities of the
effect in the denominator of Equation B1. The model needs to
assess the probability of the effect in two situations: (a) when G1

and P occur together with the background cause and (b) when only
P occurs with the background cause. The sequential process affects
the calculation in the first case, because it determines the combi-
nation order. The noisy-AND-NOT function is used to integrate
the expected influence of the background cause B and preventer P,

after which this output is integrated with the influence of G1 using
the noisy-OR function to assess the probability of the effect in the
target on the basis of transferred causal knowledge (see Step 4 in
Figure 3), that is,

P%ET ! w
T, C

T& ! 1 # %1 # w0
T%1 # w3

T&&%1 # w1
T&. (B5)

The same principle applies for the G2PE condition and all other
situations involving causal attribution judgments about an un-
known generative cause in the presence of a known preventer.
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