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Abstract

Over the past decade, an active line of research within the field of human
causal learning and inference has converged on a general representa-
tional framework: causal models integrated with Bayesian probabilistic
inference. We describe this new synthesis, which views causal learning
and inference as a fundamentally rational process, and review a sample
of the empirical findings that support the causal framework over asso-
ciative alternatives. Causal events, like all events in the distal world as
opposed to our proximal perceptual input, are inherently unobservable.
A central assumption of the causal approach is that humans (and poten-
tially nonhuman animals) have been designed in such a way as to infer
the most invariant causal relations for achieving their goals based on ob-
served events. In contrast, the associative approach assumes that learners
only acquire associations among important observed events, omitting
the representation of the distal relations. By incorporating Bayesian in-
ference over distributions of causal strength and causal structures, along
with noisy-logical (i.e., causal) functions for integrating the influences
of multiple causes on a single effect, human judgments about causal
strength and structure can be predicted accurately for relatively sim-
ple causal structures. Dynamic models of learning based on the causal
framework can explain patterns of acquisition observed with serial pre-
sentation of contingency data and are consistent with available neu-
roimaging data. The approach has been extended to a diverse range of
inductive tasks, including category-based and analogical inferences.
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INTRODUCTION

The ability to learn and reason about the causal
structure of the world has obvious adaptive sig-
nificance for bringing about desired outcomes.
Humans have learned how to diagnose and treat
diseases, build machines that fly, and predict the
hypothetical consequences of mounting carbon
emissions. These and many other cognitive
achievements, including scientific reasoning

(Dunbar & Fugelsang 2005), depend on the
ability to learn and reason about cause-effect
relations. Yet 25 years ago, work on thinking
and reasoning within the field of cognitive
psychology paid almost no attention to causal
induction (i.e., the acquisition of causal
knowledge from empirical observations). This
situation has changed dramatically, and in the
years since the turn of the millennium (the
period on which we focus in this review), new
developments have made causal induction a
central focus of current research in cognitive
science. A sense of the recent pace of change is
given by an informal inspection of the tables of
contents for two sets of Proceedings of the Con-
ference of the Cognitive Science Society (Gleitman
& Joshi 2000, Taatgen & van Rijn 2009), sep-
arated by about a decade. Our rough count of
the number of presentations related to causality
yields just 4 in the former set but 25 in the
latter.

Our capability for causal induction poses a
key question: Given that causal events, like all
events in the distal world, are inherently un-
observable, what minimal set of processes and
assumptions must an intelligent cognitive sys-
tem be endowed with so that it would be able to
infer causal relations based on observed events
and bring about desired outcomes, as humans
do? This is the central question we address in
the present review. Our aim is not to survey the
full range of recent work on causal cognition,
but rather to examine one major strand of
empirical and theoretical development related
to the rationality, and hence adaptiveness, of
causal inference. A major “sea change” in the
field over the past decade has been the emer-
gence of a general framework for understanding
human representations of causal knowledge.
Earlier work on causal inference had primarily
adopted either a heuristic approach related
to Tversky & Kahneman’s (1973, Kahneman
et al. 1982) work on decision making (e.g.,
Schustack & Sternberg 1981, White 1998) or an
associative approach inspired by David Hume
(1739/1987) that reflects the predominant
use of associative statistics by scientists (e.g.,
Dickinson et al. 1984, Shanks & Dickinson
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1987). Both of these approaches forego rational
causal inference as a feasible goal.

Three recent developments, however, have
converged to show that the human causal
process is surprisingly rational, in terms of
accuracy, flexibility, and coherence (i.e., logical
consistency and simplicity). The first is the de-
velopment of rational Bayesian network models
(Pearl 1988, 2000; Spirtes et al. 1993/2000).
The second is the introduction of a Kantian
a priori causal framework (Kant 1781/1965)
that builds on but goes beyond Hume’s legacy
(e.g., Cheng 1997, Novick & Cheng 2004,
Waldmann & Holyoak 1992; for a nontechni-
cal exposition, see Sloman 2005). And the third
is the introduction of probabilistic Bayesian
mathematics as a modeling tool (Griffiths &
Tenenbaum 2005, 2009; Kemp & Tenenbaum
2009; Lu et al. 2008b; Tenenbaum & Griffiths
2001), bringing greater power to the analysis of
rationality and providing a language that allows
more precise formulations of issues regarding
the representation of causal knowledge.

This causal framework represents a new syn-
thesis to which many investigators have con-
tributed. We hasten to add that a synthesis does
not imply a consensus; this active research area
continues to be enlivened by vigorous debates.
Indeed, it might prove challenging to find two
researchers in the area who are in full agreement
about the nature of causal models used by hu-
man (and perhaps nonhuman) reasoners! In this
review, we discuss a number of the issues that
continue to be discussed, offering our own per-
spective on the interpretation of the available
evidence while acknowledging alternative per-
spectives. Our focus is on adult human causal
induction (for a recent review covering causal
cognition in nonhuman animals, see Penn &
Povinelli 2007; for a review of evidence show-
ing that even young children are rational causal
reasoners, see Gopnik 2009; also see Gopnik &
Schulz 2007).

In reviewing the emergence of the causal ap-
proach, we discuss the evidence that supports
this framework over associationist accounts of
causal induction. As an example to illustrate the
alternative views, an associative account would

treat learning facts such as that cigarette smok-
ing, or having yellow fingers, covaries with cer-
tain forms of cancer—based on the proximal
contingency data available to the learner—as
the core goal of inductive learning. The causal
framework, by contrast, assumes that people
use such proximal data as evidence concern-
ing distal causal relations in the real world—
thereby potentially inferring that smoking, but
not having yellow fingers, is a cause of cancer.
Although someone who has been a smoker, or
someone who has yellow fingers, is more likely
than someone who does not have either charac-
teristic to have cancer, only an intervention to
reduce the prevalence of smoking may reduce
the cancer rate—an intervention to reduce yel-
low fingers (e.g., by wearing gloves while smok-
ing) will not (Spirtes et al. 1993/2000).

THE EMERGENCE OF THE
CAUSAL APPROACH

We begin with some background. In the
early- and mid-twentieth century, interest in
the psychology of causal understanding was
almost exclusively confined to developmental
psychologists working in the Piagetian tradi-
tion (Piaget 1930) and to social psychologists
guided by attribution theory (Kelley 1967),
which dealt specifically with inferences about
the causes of behavior by participants in social
interactions. About two decades ago, however,
the nature and mechanisms of domain-general
causal learning began to attract the attention
of researchers in cognitive psychology. In an
ironic twist, modern work on the topic was
initially stimulated by researchers working in
the associationist tradition then dominant in
the field of animal learning and conditioning
(Dickinson et al. 1984, Shanks & Dickinson
1987). Working in the empiricist tradition
of David Hume (1739/1987), their goal was
not to elucidate the cognitive representations
underlying causal understanding, but rather to
reduce human causal learning to the acquisi-
tion of associative links of the sort that might
underlie conditioning in nonhuman animals.
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In the first flush of enthusiasm for con-
nectionist models based on parallel distributed
processing (Rumelhart et al. 1986), various
proposals emerged to account for human
causal learning using variants of Rescorla
& Wagner’s (1972) learning rule for clas-
sical conditioning (e.g., Gluck & Bower
1988, Shanks 1991); these efforts continued
into the current decade (e.g., McClelland
& Thompson 2007, Stout & Miller 2007).
Although the Rescorla-Wagner model pre-
dated modern connectionism, it readily lent
itself to connectionist implementations. The
general notion was that cause-effect relations
can be represented as if they were simply cue-
outcome associations, where cause and effect
factors correspond to neuron-like units, and
the “strength” of a cause-effect relation cor-
responds to a numerical weight on a synapse-
like link between the input and output units.
The magnitude of the learned weight controls

Figure 1
An example of a causal model, including both generative (solid lines) and
preventive (dashed lines) causal links.

the degree to which presentation of the cause
evokes its associated effect.

Networks of Causal Relations

An alternative to this associationist view was
that human causal knowledge is not reducible
to associative links that exist only in the mind,
but rather is based on mental representations
of cause-effect relations assumed to be in the
external world (Gallistel 1990, Waldmann &
Holyoak 1992). Networks of cause-effect re-
lations lend themselves to graphical represen-
tations, which were introduced earlier in phi-
losophy (Reichenbach 1956, Salmon 1984).
In artificial intelligence, Pearl (1988, 2000)
and Spirtes et al. (1993/2000) developed a
rich graphical formalism termed “Bayes nets.”
Although Bayes nets have primarily been devel-
oped as a practical tool for automated inference
and data mining (e.g., Pourret et al. 2008), many
of the principles that underlie computational
Bayes nets have guided psychological work on
causal models.

Waldmann & Holyoak (1992; Waldmann
et al. 1995), influenced by the work of Pearl
(1988), hypothesized that human causal learn-
ing results in explicit cause-effect (rather than
merely associative) representations organized
into causal models—networks of intercon-
nected relationships. At their most basic
level, causal models represent the direction of
the causal arrow, the polarity of causal links
(generative causes make things happen, pre-
ventive causes stop things from happening), the
strength of individual causal links, and the man-
ner in which the influences of multiple causes
combine to determine their joint influence on
an effect. Figure 1 schematizes a simple causal
model of a fragment of medical knowledge.
The key assumption is that people preferen-
tially acquire knowledge about asymmetrical
causal links, each directed from a variable
representing a causal factor to a variable
representing an effect. In many situations, the
variables are assumed to be binary (the factor
is either present or absent). As we will see, this
type of variable is particularly informative in
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distinguishing between the causal and associa-
tive approaches.

A causal model provides a compact repre-
sentation of the statistical associations among
the factors. Rather than requiring an explicit
representation of the joint distribution of all
variables (the size of which scales exponentially
with the number of nodes in the network), only
direct causal connections, those that cannot be
further decomposed into finer-grained causal
relations, are explicitly represented. Based on
this core knowledge, other relationships among
factors can be derived. Fundamental types of
questions that can be answered based on a
causal approach include, “What will happen if
a cause is either observed or made to occur?”
(e.g., if viral influenza is present, what is the
probability of getting a fever?), “Why did this
effect occur?” (e.g., given that fever is present,
what is the probability that viral influenza was
present and caused it?), and “What should I do
to influence an effect?” (e.g., if the goal is to
prevent a headache, what intervention might
succeed?). As these questions illustrate, not only
is a causal representation compact, but it also
effectively supports predictions about the con-
sequences of actions (Spirtes et al. 1993/2000).

The “cause” and “effect” roles are funda-
mentally asymmetric: causes produce (or pre-
vent) their effects, but not vice versa. Because a
cause must be present in order to act, it follows
that a cause is understood to occur temporally
prior to its effect (even for situations in which
there is no perceptible temporal gap between
the occurrence of the cause and of the effect).
Fenker and colleagues (2005) found that college
students are faster to verify the existence of a
causal relation between two lexically expressed
concepts when the words are presented in the
temporal order corresponding to cause-effect
order (e.g., spark prior to fire) rather than in the
reverse temporal order ( fire prior to spark). No
such asymmetry was observed when partici-
pants were asked to verify whether the two con-
cepts were “associated.” The greater psycho-
logical naturalness of the cause-effect temporal
order supports the basic assumption that causal
models preferentially encode links directed

Figure 2
Three basic causal structures: (a) common effect,
(b) common cause, and (c) chain. Letters are
arbitrary labels for variables.

from cause to effect (cf. Tversky & Kahneman
1982).

Early work pitting causal-model theory
against associative accounts of human causal
learning made use of paradigms adapted from
work in animal learning. These paradigms in-
volve situations in which multiple cues may co-
occur. The general approach was to hold cue-
outcome contingencies constant while using
different cover stories to vary the causal model
that learners would use to guide their learning.
For example, Waldmann (2000) presented
two groups of participants with cover stories
that specified either a common-effect model
(Figure 2a) or a common-cause model
(Figure 2b). In Phase 1, participants in both
groups learned that a cue predicts an outcome
(P+). In Phase 2, this cue was constantly
paired with a second, redundant light (i.e.,
PR+) followed by the outcome. As shown
in Figure 3, for participants presented with
the common-effect model, the R cue showed
a strong “blocking” effect (i.e., lower mean
“predictiveness” rating relative to the P cue;
cf. Kamin 1969). In contrast, for participants
presented with the common-cause model, no
blocking was observed—cues P and R were
judged to be equally predictive. In the past
few years, many studies have yielded similar
asymmetries in contingency learning (Booth &
Buehner 2007, López et al. 2005, Waldmann
2001). Such demonstrations that the psycho-
logical representation of cause-effect relations
can be dissociated from the overt temporal
order of presented cues and their outcomes
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Figure 3
Mean predictiveness ratings for diagnostic (common cause) and predictive (common effect) conditions in
phases 1 and 2 of experiment 3a for the predictive cue (P cue) and redundant cue (R cue). Text describes
unambiguous cues; ambiguous cues provide a control. (From Waldmann 2000, reprinted by permission.)

support the position that human causal learning
makes use of causal representations.

The Origin of Causal Knowledge

To achieve or avoid an outcome, one may want
to predict with what probability an effect will
occur given that a certain cause of the effect oc-
curs. Such probabilities might be acquired by
direct instruction. But the issue remains of how
such knowledge is initially formed. In order to
acquire a causal model that can yield an accurate
answer to such questions, there must be some
process that takes as its input noncausal empir-
ical observations of cues and outcomes and that
yields as its output values of causal “strength”
associated with the individual links in a causal
model. Since causes of an effect other than the
target potential cause may well be unobserved
or unknown, it is impossible to rule out their
occurrence. The absence of the effect in the ab-
sence of the target cause need not imply that no
alternative causes occurred, as it is possible for

background causes to be preventive. A theory
of strength learning therefore necessitates as-
sumptions about alternative causes of the effect.
These assumptions imply the form of the in-
tegration function1 that specifies how multiple
causes jointly determine the effect. For exam-
ple, if we know that smoking causes cancer with
some probability less than 1, and so does expo-
sure to asbestos, what would we predict to be
the probability of cancer occurring in a smoker
exposed to asbestos?

Researchers in the associative tradition pro-
posed various learning rules (the Rescorla-
Wagner model and several variants of it) that
update cue-outcome strength values based on
contingency data (for a recent review, see López
& Shanks 2008). The classic “statistical” mea-
sure of the strength of a contingency has been

1In Bayesian models, the integration function is commonly
referred to as the “generating function.” The same basic con-
cept has also been termed the “parameterization” for com-
bining multiple link strengths (Griffiths & Tenenbaum 2005)
and the “functional form” (Griffiths & Tenenbaum 2009).
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termed �P ( Jenkins & Ward 1965), which in
causal terms is simply the difference between
the probability of the effect e in the presence
versus absence of the candidate cause c, i.e.,

�P = P (e+ | c +) − P (e+ | c −). (1)

where e and care binary variables, and +/− in-
dicate the value of a binary variable to be 1
(present) versus 0 (absent). Under certain com-
mon conditions, the asymptotic strength com-
puted by the Rescorla-Wagner model is equiv-
alent to �P (Danks 2003). For both �P and
the Rescorla-Wagner model, the integration
function according to which the influences of
multiple causes combine to influence the prob-
ability of the effect is additive, with a correction
to bound the predicted probability of the effect
between 0 and 1 (see Griffiths & Tenenbaum
2005).

However, in some situations in which multi-
ple causal factors co-occur, studies of both hu-
man causal judgments and of animal condition-
ing have identified systematic deviations from
the predictions of the Rescorla-Wagner model
and the �P rule (see Cheng & Holyoak 1995),
suggesting that the integration function is not
always additive and that an alternative approach
to causal induction is required. A natural in-
terpretation of the strength of a causal link is
that it represents the power of the cause op-
erating in the external world to produce (or
prevent) the corresponding effect. Generative
causal power, for example, would correspond
to the probability that the target cause, if it
were to act alone (i.e., in the absence of other
causal factors), would produce the effect. Cheng
(1997) proposed a normative theory of how a
reasoner could estimate causal power from non-
causal contingency data by adopting a set of a
priori causal assumptions (cf. Kant 1781/1965).
This theory gives a causal explanation of the
earlier probabilistic contrast model (Cheng &
Novick 1992) and hence was termed the power
PC theory (causal power theory of the proba-
bilistic contrast model).

We can state the key psychological claims of
the power PC theory in relation to the simple
common-effect model in Figure 2a. The model

represents the partitioning of all causes of an ef-
fect E into candidate cause C and the rest of the
causes, represented by B, an amalgam of ob-
served and unobserved background causes and
enabling conditions that occur with unknown
frequencies that may vary from situation to sit-
uation. C, B, and E are binary variables with
a “present” and an “absent” value. The model
is a general default structure that maps onto all
learning situations. Causal power is represented
by the weights on each causal link. The focus is
typically on w1, a random variable representing
the strength of the candidate cause C to influ-
ence effect E.

The power PC theory postulates that peo-
ple approach causal learning with four general
prior beliefs:

1) B and C influence effect E independently,
2) B could produce E but not prevent it,
3) causal powers are independent of the fre-

quency of occurrences of the causes (e.g.,
the causal power of C is independent of
the frequency of occurrence of C), and

4) E does not occur unless it is caused.

Assumptions 1 and 2 serve as default hy-
potheses for the reasoner, adopted unless ev-
idence discredits them (in which case alterna-
tive models apply, see Novick & Cheng 2004;
for implications of the relaxation of these as-
sumptions, see Cheng 2000). Assumptions 3
and 4 are viewed as essential to causal inference.
Assumption 4 is supported by research show-
ing that adults (Kushnir et al. 2003), preschool
children (Gelman & Kremer 1991, Schulz &
Sommerville 2006), and even infants (Saxe et al.
2005) interpret events as having causes, even
when the causes are unobservable.

This set of assumptions, which is stronger
than that assumed in standard Bayes nets, re-
quires less processing capacity. It allows causal
relations to be learned one at a time, when
there is information on only two variables, a
single candidate cause and an effect. Without
these assumptions, it is impossible to distin-
guish between causation and mere association
in this simple situation. These assumptions
of the power PC theory imply a specific
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integration function for contingency data
(Cheng 1997, Glymour 2001), different from
the additive function assumed by associative
models. For the situation in which a potentially
generative candidate cause C occurs inde-
pendently of other causes, the probability of
observing the effect E is given by a noisy-OR
function,

P (e+ | b, c ; w0, w1) = w0b + w1c − w0w1bc ,
(2)

where b, c ∈ {0, 1} denotes the absence and the
presence of the causes B and C. Variables w0

and w1 are causal strengths of the background
cause B and the candidate cause C, respectively.
In the preventive case, the same assumptions
are made except that C is potentially preventive.
The resulting noisy-AND-NOT integration
function for preventive causes is

P (e+ | b, c ; w0, w1) = w0b(1 − w1c ). (3)

Using these “noisy-logical” integration func-
tions (terminology from Yuille & Lu 2008),
Cheng (1997) derived normative quantitative
predictions for judgments of causal strength
(Equations 4 and 5). Causal power, q, is a
maximum likelihood point estimate of w1,
the causal power of the candidate cause (see
Griffiths & Tenenbaum 2005). The causal
power for a generative cause c with respect to
effect e is estimated by

qG = �P
1 − P (e+ | c −)

, (4)

and the power for a preventive cause c is
estimated by

qP = −�P
P (e+ | c −)

, (5)

where �P is the difference between the prob-
ability of the effect e in the presence versus
absence of the candidate cause c (Equation 1).

The term P (e+ | c −) in the denominator
of Equations 4 and 5 is often termed the “base
rate of the effect,” as it gives the prevalence
of e in the absence of c. A key qualitative
implication of these equations is that learning
of generative and preventive causes will be

asymmetrical with respect to the base rate of
the effect. Holding �P constant, Equation 4
implies that generative power increases with
the base rate of the effect, whereas Equation
5 implies that preventive power decreases with
the base rate. In contrast, the additive function
underlying associative models predicts no such
asymmetry due to causal polarity. Numerous
studies have shown that the impact of the
base rate on human judgments of the causal
strength of generative versus preventive factors
is in fact asymmetrical, as the power PC theory
predicts (Buehner et al. 2003, Novick & Cheng
2004, Wu & Cheng 1999; see meta-analysis
reported by Perales & Shanks 2007). To take
an extreme case, Equation 4 predicts that when
the base rate is 1 (e always occurs in absence
of c), the values of the generative power of
the candidate will be indeterminate. This
situation corresponds to the familiar concept of
a “ceiling effect” in experimental design, which
makes it impossible to assess whether an inde-
pendent variable increases the probability of an
outcome. Conversely, Equation 5 predicts that
when the base rate is 0 (e never occurs in absence
of c, which is the preventive analog of a ceiling
effect), the values of the preventive power of
the candidate will be indeterminate. Note that
in both these extreme situations in which the
power PC theory predicts asymmetrical uncer-
tainty, the value of �P is precisely 0; hence this
measure, and associative models in general,
predict anomalously that when a ceiling effect
(or its preventive analog) arises, people will be
certain that the candidate is noncausal.

INTEGRATING CAUSAL
REPRESENTATION WITH
BAYESIAN INFERENCE

Representing Uncertainty

The most important methodological advance
in the past decade in psychological work on
causal learning has been the introduction of
Bayesian inference to causal inference. This be-
gan with the work of Griffiths & Tenenbaum
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(2005, 2009; Tenenbaum & Griffiths 2001; see
also Waldmann & Martignon 1998). Although
the power PC theory (Cheng 1997) had been
proposed as a rational model of causal induc-
tion, as initially formulated it did not provide
any general account of how uncertainty im-
pacts causal judgments. In particular, just like
the �P rule, the point estimate of causal power
(Equations 4 and 5) is insensitive to sample
size. For example, if the base rate of the ef-
fect is 0, then both power and �P will have
the value 0.5 regardless of whether the effect
occurs in the presence of the candidate cause
in 1 out of 2 cases or in 50 out of 100 cases.
But intuitively, the learner’s degree of uncer-
tainty should be lower in the latter situation,
when the sample size is large (as reflected in
standard statistical measures of independence,
such as the χ2 statistic). The lack of an account
of uncertainty in early models of human causal
learning played a role in prolonging the debate
between proponents of associationist treat-
ments and of the power PC theory. For some
data sets (e.g., Lober & Shanks 2000), hu-
man causal judgments for some conditions were
found to lie intermediate between the val-
ues predicted by causal power versus �P, per-
haps reflecting uncertainty outside the scope of
either model.

Even though it had been argued that causal
induction is fundamentally rational (Cheng
1997), and causal models had been formalized
as “causal Bayes nets,” until recently causal in-
duction had not been treated as Bayesian infer-
ence. In fact, as we will see, adopting Bayesian
inference is entirely orthogonal to the long-
standing debate between causal and association-
ist approaches. Bayesian inference can be either
causal or associative, depending on whether
causal assumptions (e.g., those in the power PC
theory) are made, leading to different causal-
judgment predictions. The term “Bayes net”
was initially introduced by Pearl (1988) to high-
light the role of Bayesian inference in deriving
rational inferences from a known causal net-
work. However, work on learning within Bayes
nets (e.g., Spirtes et al. 1993/2000) generally
emphasized non-Bayesian algorithms.

The heart of Bayesian inference is Bayes
rule,

P (H | D) = P (D | H )P (H )
P (D)

, (6)

where H denotes a hypothesized state of the
world, and D denotes observed data. Concep-
tually, Bayes rule provides a mathematical tool
to calculate the posterior probability of a hy-
pothesis, P (H | D), from prior belief about
the probability of the hypothesis, P (H ), cou-
pled with the likelihood of the new data in view
of the hypothesis, P (D | H ). Assuming the hy-
pothesis is causal (i.e., it can be represented as a
link in a directed graph of the sort shown in
Figure 1), developing a Bayesian model of
causal learning further requires specification of
relevant prior beliefs and of the function linking
causal hypotheses to data.

Causal Support Model

Griffiths & Tenenbaum (2005) introduced the
Bayesian analysis of causal learning in the con-
text of what they termed the “causal support
model.” This model focused on a different
causal query than the “strength” judgments that
had been emphasized in most empirical studies.
We first discuss the particular model proposed
by Griffiths and Tenenbaum and then consider
its limitations.

A strength judgment concerns the weight
on a causal link, which in essence aims to an-
swer the query, “What is the probability with
which a cause produces (alternatively, prevents)
an effect?” (e.g., for Graph 1 in Figure 4, this
probability is the weight w1 on the link from
C to effect E; note that Graph 1 carries no
implication that w1 must be greater than 0).
Within a Bayesian framework, strength judg-
ments pose a problem of parameter estimation.
Griffiths & Tenenbaum (2005) focused on a dif-
ferent causal query, termed a “structure” judg-
ment, which aims to answer, “How likely is it
that a causal link exists between these two vari-
ables?” Within a Bayesian framework, structure
judgments pose a problem of model selection
(see Mackay 2003). The causal support model
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 B  C
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w0 w1

Graph 1

 B  C
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Graph 0

w0

Figure 4
Graphs contrasting hypotheses that the candidate
cause, C, causes the effect, E (Graph 1) or does not
(Graph 0). B, C, and E respectively denote the
background cause, the candidate cause and the
effect. B, C, and E are binary variables that represent
the absence and presence of the cause and the effect.
Weights w0 and w1 indicate causal strength of the
background cause (B) and the candidate cause
(C), respectively.
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Figure 5
Marginal posterior distributions on w1 and values of causal support for three
different sets of contingencies. Each contingency is expressed in terms of two
fractions, respectively: The relative frequency with which the effect e occurs in
the presence of the candidate cause c (e.g., “2/4,” denoting that e occurs in two
out of four trials in which c is present) and that with which e occurs in the
absence of c (e.g., “0/4”). (From Griffiths & Tenenbaum 2005; reprinted with
permission.)

aims to account for judgments as to whether
a set of observations (D) was generated by a
causal graphical structure in which a link may
exist between candidate cause C and effect E
(Graph 1 in Figure 4) or by a causal struc-
ture in which no link exists between C and E
(Graph 0).

Griffiths & Tenenbaum (2005) defined
“causal support” as

support = log
P (D | Graph1)
P (D | Graph0)

. (7)

Griffiths & Tenenbaum (2009) define a vari-
ant of causal support in terms of P(Graph1
| D), the posterior probability of Graph 1.
The likelihoods on graphs are computed by
averaging over the unknown parameter val-
ues, causal strengths w0 and w1, which lie in
the range [0, 1] and are associated with causes
B and C, respectively. Stated formally, P (D |
w0, w1, Graph1) and P (D | w0, Graph0) are the
likelihoods of the observed data given specified
causal strengths and structures, and P (w0, w1 |
Graph1) and P (w0 | Graph0) are prior probabil-
ity distributions that model the learner’s beliefs
about the distributions of causal strengths given
a specific causal structure (assumed to be uni-
form, reflecting complete ignorance about the
parameter values).

One way of viewing the relation-
ship between causal support (Griffiths &
Tenenbaum 2005) and causal power (Cheng
1997) is that the latter provides the basis
(Equations 4 and 5) for calculating the like-
lihoods used in computing causal support.
From here on, unless the linear generating
function is specified, the causal (rather than
associative) variant of the causal support model
is assumed. Griffiths & Tenenbaum (2005)
noted that, “Speaking loosely, causal support
is the Bayesian hypothesis test for which causal
power is an effect size measure: it evaluates
whether causal power is significantly different
from zero” (p. 359). They are answers to differ-
ent questions. As illustrated on the left side of
Figure 5, the Bayesian analysis yields a
posterior distribution of causal strength
(w1), in terms of which causal power is the
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point estimate corresponding to the maxi-
mum likelihood (i.e., the peak value of the
marginal posterior distribution). The top three
contingencies in Figure 5 illustrate conditions
that yield different posterior distributions of
values of w1 and different values of causal
support, but the distributions have the same
peak, corresponding to both �P and causal
power. The second set of three contingencies
illustrates that an increase in sample size can
result in a slight decrease in causal support,
indicating greater certainty that w1 is zero. The
third set of three contingencies illustrates how
causal support can change in a nonmonotonic
fashion while the peak of the distribution over
w1 decreases.

As noted above, a Bayesian analysis can be
applied to both strength and structure judg-
ments (along with other interrelated types of
queries, such as causal attribution). For strength
judgments, a natural Bayesian extension of the
power PC theory would base predictions on
some function of the posterior distribution of
w1 (e.g., its mean). As is apparent from the
example distributions shown on the left in
Figure 5, the posterior distribution is sensitive
to sample size, and its mean can differ from its
peak.

Rather than testing a direct Bayesian mea-
sure of causal strength judgments, Griffiths &
Tenenbaum (2005) argued that people may of-
ten make support judgments when nominally
asked to make strength judgments. However,
since these investigators did not elicit both
strength and structure judgments from par-
ticipants, their study provided no evidence to
support the assumption that people are un-
able to distinguish the two queries. Griffiths
and Tenenbaum supported their argument with
data from Buehner et al.’s (2003) experiment
1, in which subjects were presented with an
ambiguous question intended to elicit strength
judgments. However, in Buehner et al.’s exper-
iment 2, subjects were presented with a less am-
biguous strength question, and the resulting es-
timates of causal strength were in close accord
with causal power, contradicting Griffiths and
Tenenbaum’s argument. Griffiths and Tenen-

baum did report three experiments designed to
elicit structure judgments; however, the struc-
ture question posed to the participants was am-
biguous (see discussion in Buehner et al. 2003),
and sample size was not systematically manipu-
lated. More recently, some experimental results
have revealed ordinal violations of the support
model as an account of human judgments about
causal structure (Lu et al. 2008b). Relative to
the support model, human reasoners appear to
place greater emphasis on power and the base
rate of the effect, and less emphasis on sample
size. In addition, some contingency conditions
yield specific differences due to causal polar-
ity (generative versus preventive), which are not
captured by the support model.

Bayesian Extensions of the Power
PC Theory

Lu et al. (2008b) developed and compared sev-
eral variants of Bayesian models as accounts
of human judgments about both strength and
structure. As Griffiths & Tenenbaum (2005)
had noted, a Bayesian model can incorporate
either the noisy-logical integration functions
derived from the power PC theory or the lin-
ear function underlying the Rescorla-Wagner
model and the �P rule, resulting in a causal
and an associative variant, respectively. In ad-
dition to directly comparing predictions based
on these alternatives, Lu et al. (2008b) con-
sidered two different sets of priors on causal
strength. One possible prior is simply a uniform
distribution, as assumed in the causal support
model. Since the power PC theory makes no as-
sumptions about priors, a uniform distribution
is its natural default. The alternative “generic”
(i.e., domain-general) prior tested by Lu et al.
(2008b) is based on the assumption that people
prefer simple causal models (Chater & Vitányi
2003, Lombrozo 2007, Novick & Cheng 2004).
Sparse and strong (SS) priors imply that people
prefer causal models that minimize the num-
ber of causes of a particular polarity (generative
or preventive) while maximizing the strength of
each individual cause that is in fact potent (i.e.,
of nonzero strength).
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Lu et al. (2008b) performed an experi-
ment to assess the predictive power of the
four Bayesian models defined by the factorial
combination of the two types of integration
functions (noisy-logical or additive) and the two
priors (uniform or SS). The design, in which
the single candidate cause could be either po-
tentially generative or preventive, included a
range of contingencies and sample sizes. In
order to minimize memory issues and other
possible performance limitations, their study
employed a procedure developed by Buehner
et al. (2003; also Liljeholm & Cheng 2009),
in which individual trials are presented simul-
taneously in a single organized display. Such
presentations provide a vivid display of individ-
ual cases, making salient the frequencies of the
various types of cases while minimizing mem-
ory demands. To clearly assess causal strength
rather than causal structure, participants were
asked to make a judgment of the frequency (out
of 100) with which cases with the cause would
be expected to show the effect, when none of
the 100 showed the effect without the cause.

For all four Bayesian models, Lu et al.
(2008b) compared the average observed human
strength rating for a given contingency condi-
tion with the mean of w1 computed using the
posterior distribution. In contrast to the causal
support model, which explicitly compares the
probabilities of two graphs, the Bayesian mod-
els tested by Lu et al. (2008b) assume that only
a single graph structure (Graph 1 in Figure 4)
is required to make basic strength judgments.
Model fits revealed that the two causal variants
based on the noisy-logical integration function
were much more successful overall than the as-
sociative variants. The assumption of SS pri-
ors was able to explain subtle asymmetries in
causal judgments across generative versus pre-
ventive causes, primarily attributable to condi-
tions with extreme base rates of the effect (base
rates near 1 for generative causes, near 0 for pre-
ventive causes), for which preventive strength
was judged as exceeding generative strength
for matched contingencies. In addition, and
without any further parameter-fitting, the two
causal Bayesian variants proved very successful

in fitting datasets from a meta-analysis based
on 17 experiments selected from 10 studies in
the literature (Perales & Shanks 2007; see also
Hattori & Oaksford 2007), achieving an overall
correlation as high as r = 0.96. (See Griffiths &
Tenenbaum 2009 for a similar fit to this set of
data using a related Bayesian model.) Indeed,
the causal Bayesian models (with one or zero
free parameters) performed at least as well as the
most successful nonnormative model of causal
learning (with four free parameters) and much
better than the Rescorla-Wagner model. Thus,
although both causal and associative approaches
can be given a Bayesian formulation, empiri-
cal tests of human causal learning reported by
Lu et al. (2008b) favor the integration of the
causal approach with Bayesian inference, pro-
viding further evidence for the rationality of hu-
man causal inference. As their results illustrate,
Bayesian models, like all other models, are only
as rational as their assumptions (see Liljeholm
& Cheng 2007).

Lu et al. (2008b) also evaluated structure
analogs of the two causal variants of Bayesian
strength models to account for observed struc-
ture judgments from additional experiments
in which participants were explicitly asked to
judge whether or not the candidate was indeed
a cause. One analog, assuming uniform priors,
was simply Griffiths & Tenenbaum’s (2005)
causal support model. The alternative model
was based on the assumption that the priors
should support Graph 1 only if C is a strong
cause, thereby justifying its addition to the set
of accepted causes of E. Lu et al. (2008b) there-
fore assumed that structure judgments reflect
an additional preference that C (in Graph 1) be
a strong cause of E. For two experiments, the
latter Bayesian extension of the power PC the-
ory provided a better quantitative account of
human structure judgments than did the sup-
port model. Figure 6 shows the model fits
for one experiment (Lu et al. 2008b, experi-
ment 4). This design (for generative conditions
only) compared judgments for two contingen-
cies close to the generative peak favored by pri-
ors for a strong cause but with a small sam-
ple size (8) to two contingencies far from the
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Figure 6
Confidence in a causal link (Lu et al. 2008b, experiment 4). (A) Mean human confidence judgments (error
bars indicate one standard error), (B) predictions of Bayesian model with priors favoring a strong cause,
(C) predictions of the causal variant of the causal support model with uniform (Unif ) priors, and (D)
predictions of χ2 statistic. (From Lu et al. 2008b; reprinted with permission.)

favored peak but with a substantially larger
sample size (64; see Figure 6A). The
model incorporating priors for a strong cause
(Figure 6B) yielded a high positive correlation
across the four conditions, whereas the corre-
lations were actually in the wrong direction for
both the causal support model (Figure 6C) and
χ2 (Figure 6D).

The causal support model provides an im-
portant demonstration of how Bayesian anal-
ysis can be applied to causal learning; how-
ever, in its original formulation it has turned
out to be empirically inadequate as an ac-
count of human causal judgments. When ques-
tions are clearly worded, human reasoners can
evaluate either causal strength or causal struc-
ture, providing distinct patterns of responses to
each type of query. Moreover, both types of
judgments (but especially judgments of causal
structure) are guided by generic priors that
favor strong causes. Nonetheless, Griffiths &

Tenenbaum’s (2005) contribution in integrat-
ing the Bayesian framework with causal repre-
sentation has proven to be extremely fruitful
(see Chater et al. 2006, Goodman et al. 2007,
Griffiths et al. 2008, Griffiths & Tenenbaum
2009, Kemp & Tenenbaum 2009).

The work we have described focuses on pre-
dictive inferences, from knowledge of causes to
the status of an effect. However, one of the
strengths of the causal approach is that it al-
lows the derivation of many different types of
inferences (Cheng & Novick 2005). Other ma-
jor types of inference include causal attribu-
tion (given that an effect has occurred, infer-
ring the probability that some particular factor
caused it) and diagnostic inference (Waldmann
et al. 2008) (given that an effect occurred, infer-
ring the probability that some other factor was
present). Recent studies suggest that at least for
fairly simple causal networks, people are able to
reason from effects to possible causes in accord
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with the pattern predicted by Bayesian exten-
sions of the power PC theory (Holyoak et al.
2010, Meder et al. 2009).

Integrating Prior Causal Knowledge
with Current Data

Once some knowledge about distal causal
relations has been acquired, the issue arises:
How does one make use of this prior knowl-
edge and new observations to make further
causal inference? This question invites a
natural answer based on Bayesian inference.
Previous work has demonstrated the important
influence of prior abstract causal knowledge
in everyday causal inference (e.g., Ahn &
Kalish 2000, Ahn et al. 1995). Griffiths &
Tenenbaum (2009) presented a formalization
of this influence in terms of a hierarchical
Bayesian model. The model represents three
key aspects of prior abstract causal knowledge:
(a) an ontology that organizes a domain in
terms of entities, their properties, and relations
between their properties, (b) the plausibility
of specific causal relations in the domain,
and (c) the functional form defining how the
causal influences of different entities combine.
Following standard Bayesian methods, the
model enumerates, or randomly samples from,
the set of all plausible causal structures given
the ontology, assigns prior probabilities to the
alternative structures as well as to the values of
the strength of causal relations, and computes
answers to various questions by applying Bayes
theorem. The hierarchical nature of the model
enables simultaneous learning at multiple
levels of abstraction. An interesting illustration
is the application of the hierarchical model to
Gopnik et al.’s (2001, experiment 1) “two-
causes” condition. The model can learn that a
machine operated probabilistically rather than
deterministically at the same time that it learns
which entity activates the machine and which
does not (see also Kemp & Tenenbaum 2009).
This recent work illustrates that Bayesian
mathematics provides a powerful tool for
representing the role of prior knowledge across
diverse domains.

DYNAMIC MODELS OF
SEQUENTIAL CAUSAL
LEARNING

Models such as the power PC theory and the
�P rule address causal induction at the com-
putational level. Because they focus on asymp-
totic knowledge, computational-level models
of this sort do not address phenomena related
to factors such as sample size, trial order, and
forgetting, all of which clearly impact human
causal learning. We have seen that by inte-
grating Bayesian inference with the power PC
theory, the influence of sample size can be
addressed (Griffiths & Tenenbaum 2005, Lu
et al. 2008b). However, many issues remain in
developing a learning model that can operate
when the observations from which causal re-
lations might be induced are distributed over
time rather than presented in summary form.
Clearly, much causal learning by humans (and
perhaps all causal learning by nonhuman an-
imals) depends on sequential accumulation of
evidence. An attraction of the Rescorla-Wagner
model and similar associative accounts of causal
learning has been that they are inherently se-
quential in nature and hence can potentially ac-
count for a broader range of acquisition phe-
nomena. But as reviewed above, these models
incorrectly predict that the asymptotic value of
causal strength will approach �P (due to the as-
sumption of an additive integration function),
whereas in fact it approaches the value of causal
power (Buehner et al. 2003, Lu et al. 2008b).
Other approaches to sequential learning are re-
quired, which can incorporate alternative inte-
gration functions as well as updating of distri-
butions of causal strength rather than simply of
point estimates.

Computational Models
of Sequential Learning

Recent years have in fact seen a surge of devel-
opments related to dynamic models of causal
learning, most of which involve various tech-
niques for making use of Bayesian inference.
As Danks and colleagues (2003) observed, any
model of causal learning from summary data
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can be applied to sequential learning simply
by keeping a running tally of the observations
required to assess contingencies, applying the
model after accumulating n observations, and
repeating as n increases. These investigators
were the first to develop a sequential model
incorporating the noisy-logical integration
function.

This type of “rational” model of sequential
learning suffices to account not only for the
basic negatively accelerating acquisition curve,
but also for a phenomenon involving zero con-
tingencies that had previously been viewed as
nonrational. When the probability of the effect
is the same regardless of whether the candidate
cause occurs, the asymptotic causal rating ap-
proaches zero; however, after a limited num-
ber of trials, it has often been observed that a
zero contingency with a higher effect probabil-
ity initially receives more positive strength rat-
ings than does a zero contingency with a lower
effect probability (e.g., Allan & Jenkins 1983,
Shanks 1987, White 2004). For example, if the
effect occurs with probability 0.75 in both the
presence and absence of the candidate cause,
after a few trials the cause will be judged to
be moderately generative; if instead the effect
occurs with probability 0.25 in both the pres-
ence and absence of the cause, it will initially
be judged to be weaker. As the number of ob-
servations increases, the judged strength of the
candidate cause in all such noncontingent con-
ditions will approach 0.

It turns out that this acquisition phe-
nomenon can be explained by the inher-
ent asymmetry between the noisy-OR inte-
gration function for generative causes and
the noisy-AND-NOT function for preventive
causes when applied to stochastic observations
(Buehner et al. 2003). The net result will be an
initial bias toward more positive strength esti-
mates when the effect probability is relatively
high.

Ultimately, a full treatment of sequential
learning requires moving beyond models that
assume complete memory for all observations.
Phenomena involving trial order imply that
causal learning depends not simply on what

observations have been encountered, but also
on their temporal order. One class of such
phenomena involves retrospective reevaluation
of causal relations. For example, “blocking”
(Kamin 1969) involves pairing a redundant cue
(R) with another cue (P) that has been shown to
be individually predictive. In standard forward
blocking, the P cue is first presented alone with
the effect, followed by the paired presentations
of P and R (i.e., P+, PR+). Cue R is said to be
blocked by P because it is subsequently rated as
less predictive of the effect.

It turns out blocking is also observed, but re-
duced in magnitude, when the order of presen-
tation is reversed (i.e., PR+, P+) (e.g., Beckers
& de Houwer 2005). In backward blocking, it
is as if learners retroactively downgrade their
assessment of the causal strength of R after
learning that P alone has high strength. Such
retrospective effects are problematic for models
such as Rescorla-Wagner, which provide no
mechanism for revising the strengths of absent
cues (but see Dickinson & Burke 1996, Stout &
Miller 2007, and Van Hamme & Wasserman
1994 for alternative associationist models that
can account for retrospective reevaluation). In
contrast, Bayesian models based on strength
distributions have no problem explaining
the existence of backward as well as forward
blocking; however, models that lack some way
of responding differentially depending on trial
order fail to explain why backward blocking
(and similar retrospective effects) are typically
weaker than their forward counterparts.

A number of dynamic models have been
developed that can account both for the fact
that backward blocking is obtained (as are sim-
ilar types of retrospective reevaluation) and the
equally important fact that its magnitude is re-
duced relative to forward blocking (Daw et al.
2007, Kruschke 2006, Lu et al. 2008a). All of
these models introduce the basic assumption
that the learner uses each successive observa-
tion to update strength distributions and then
discards each individual observation after it has
been so used. Bayesian revision of strength
distributions has the effect of revising causal
knowledge about cues that are absent on a given
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trial, as well as cues that are present, yielding
retrospective reevaluation. Because uncertainty
associated with strength distributions tends to
decrease with the number of observations, ob-
servations presented early in the sequence gen-
erally have greater impact than do those later
in the sequence; hence trial order matters, and
retrospective effects are typically weaker than
their forward counterparts.

Although they have important common-
alities, the recent dynamic models also differ
in important ways, especially in regard to
their assumptions about integration functions.
The model developed by Daw et al. (2007)
is essentially a Bayesian extension of the
Rescorla-Wagner model. Its additive integra-
tion function, although likely appropriate for
some situations involving continuous variables,
is unsuitable for causal learning with binary
variables, as we have seen. Kruschke (2006)
developed a model that assumes learning is
based on a sequence of component modules,
each equivalent to a layer in a neural network.
Parameter updating within each layer is treated
as locally Bayesian, although the behavior of
the system as a whole is not globally Bayesian.
The approach is implemented as an associative
learning model that maps inputs filtered
by attention to outputs. The model can be
specified using either an additive integration
function or the causal noisy-logical function.
The Bayesian updating allows the model to
exhibit retrospective revaluation effects such as
backward blocking and unovershadowing.

Lu et al. (2008a) developed a dynamic
Bayesian learning model that incorporates mul-
tiple integration functions and then uses model
selection to choose the particular function most
appropriate for a given set of observations.
They applied their model to an intriguing set
of findings reported by Beckers & de Houwer
(2005). These investigators first trained partic-
ipants with certain cue-outcome pairs, such as
bacon (cue G) and eggs (cue H), each paired
with a moderate allergic reaction. The com-
bination of the two cues, bacon and eggs (cue
GH) was paired with either a moderate or a
strong allergic reaction. The participants were

then transferred to a classic forward blocking
paradigm with unrelated cues, such as cheese
(cue A) paired with moderate reaction, and
cheese and nuts (cue AX) also paired with mod-
erate reaction. Finally, participants were tested
on how likely nuts alone (cue X) was to cause
allergy. Human participants provided different
ratings on the transfer test for cue X depend-
ing on whether cue combination GH had been
paired with moderate or strong allergic reac-
tion during the pretraining. In particular, less
blocking was observed for cue X if the com-
pound GH had been paired with a moderate
reaction (suggesting that the joint influence of
the two cues was subadditive) than if GH had
been paired with a strong reaction (suggesting
that the two cues in combination had a greater
impact than either cue alone).

None of the models we have reviewed so far
learn about the background cause. Luhmann
& Ahn (2007) proposed a sequential learn-
ing algorithm for learning the strength of the
background cause. Their BUCKLE (bidirec-
tional unobserved cause learning) model, which
adopts the noisy-OR and noisy-AND-NOT in-
tegration functions, iteratively (a) estimates the
probability that the background cause occurs
based on the status of the observed variables
(namely, the candidate cause and the effect), and
(b) updates the estimates of causal strength for
both the candidate and background causes.

In summary, recent theoretical work is
opening up prospects for developing more de-
tailed, algorithmic accounts of dynamic learn-
ing within causal models. This line of research
can incorporate all the core insights concern-
ing integration functions and the role of prior
knowledge that have been generated by previ-
ous work as well as show how causal learning
can take place while operating under realistic
processing limitations, even when observations
are noisy, distributed over time, and subject to
forgetting.

Causal Reasoning in the Brain

Another development over the past decade,
closely related to dynamic causal processing,
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has been the exploration of the neural basis
for causal learning and inference. A number
of investigators have used functional magnetic
resonance imaging (fMRI) to detect brain areas
that appear sensitive to causal processing (for a
review, see Fugelsang & Dunbar 2009). Some
studies have adapted the paradigm introduced
by Fenker et al. (2005), which involves se-
mantic judgments of whether or not verbally
presented concepts (e.g., virus and epidemic) are
causally related (Fenker et al. 2010, Satpute
et al. 2005). Others studies have investigated
causal learning using standard paradigms based
on sequential presentation of possible causes
and their associated outcomes (Corlett et al.
2004, Fletcher et al. 2001, Turner et al. 2004).
Although the brain areas related to causal tasks
have differed across experiments using different
materials and paradigms, the general pattern of
findings implicates a broad network including
frontal areas related to working memory and
reasoning, as well as areas related to prediction
and error detection, such as the striatum and
substantia nigra.

Imaging studies of causal learning have not
directly attempted to distinguish among al-
ternative integration functions; however, some
findings involving retrospective reevaluation
favor the causal noisy-logical function over the
additive function posited by associative theo-
ries. Corlett et al. (2004) first presented pairs of
foods coupled with an allergic reaction (AB+).
In a subsequent phase, one of the foods pre-
sented alone led to the allergy (A+, which yields
backward blocking of cue B) or else did not lead
to the allergy (A-, which yields unovershadow-
ing of cue B). Finally, the remaining food from
the original pair (B) was presented. Backward
blocking is known to result in reduced expecta-
tion of the allergy given B, whereas unovershad-
owing will result in increased expectation of the
allergy given B. The Rescorla-Wagner model
is unable to explain such retrospective reeval-
uation effects. Van Hamme & Wasserman’s
(1994) modification of the Rescorla-Wagner
model predicts that the two conditions will
have symmetrical effects on expectations about
cue B. The power PC theory predicts that the

effects will be asymmetrical, as backward un-
blocking will leave the causal power of B uncer-
tain, whereas unovershadowing implies B is a
strong generative cause. The findings concern-
ing surprise reported by Corlett et al. (2004)
supported the prediction of the power PC the-
ory: Absence of the allergy given B was more
surprising in the unovershadowing condition
than was presence of the allergy given B in
the backward blocking condition. Dickinson &
Burke’s (1996) modified SOP model is also able
to account for the findings.

LEARNING AND INFERENCE
WITH DIFFERENT TYPES OF
CUES AND CAUSAL
STRUCTURES

The research we have reviewed above has gen-
erally employed fairly simple common-effect
structures, with a small number of potential
causes, where both causes and their effect are
binary variables. Of course, causal relations in
the world often form much more diverse and
complex networks. Here we review recent work
that has addressed some of the issues that arise
in attempting to generalize the causal approach
to a broader range of structures.

Covariation and Beyond: Alternative
Cues to Causal Structure

In the studies reviewed above, learners were
typically informed about the direction of pos-
sible causal links (i.e., which factors might be
causes and which the effect). In an unfamiliar
domain in which uncertainty may exist even
about the direction of the causal arrow, what
cues might help in inducing causal structure?
Beginning with the work of the philosopher
Hume (1739/1987), several basic cues have
been proposed as input to the causal induction
process. An excellent summary of recent work
on this topic has been provided by Lagnado
et al. (2007). These researchers highlight four
types of potential cues: statistical relations (i.e.,
patterns of covariation among events), tempo-
ral order (i.e., the order of occurrence of events
in the world), intervention (i.e., observing the
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consequences of one’s own actions), and prior
knowledge. Unlike Hume, these cognitive sci-
entists are concerned with causal learning in ev-
eryday life rather than with epistemology.

Covariation is of course a basic cue to causal
relationships, but in the absence of temporal
cues (an effect never occurs prior to its causes)
or prior knowledge, covariation between two
variables alone does not determine causal direc-
tion. Note, however, that the issue of when and
how people make use of previously acquired
causal knowledge should not be confused with
the issue of when and how such knowledge
is acquired by bottom-up mechanisms. No
proponent of bottom-up processes would claim
that people do not use prior causal knowledge;
in fact, the assumed goal of such processes is to
acquire causal knowledge that can be applied,
for example, to guide subsequent inference and
learning. Bottom-up models and models that
assume prior knowledge address different issues
and are complementary rather than competing.

Researchers in statistics and artificial intel-
ligence have developed constraint-based (CB)
algorithms to extract causal structures formal-
ized as Bayes nets solely from covariational data
(Pearl 2000, Spirtes et al. 1993/2000; also see
Sloman, 2005). CB algorithms operate on Bayes
nets but (despite the terminological confusion)
do not employ Bayesian inference; rather, they
rely on current-data-driven hypothesis testing.
The basic CB algorithm involves generating
conditional dependency and independence re-
lations associated with every potential causal
network for a given set of variables based on
certain formal assumptions, notably the causal
Markov condition, and performing a search
through the space of potential causal networks
to identify which set of networks is consistent
with the pattern of observed independence re-
lations. The causal Markov condition states that
any variable is independent of all variables that
are not its (direct or indirect) effects, condi-
tional on knowing its direct causes. For ex-
ample, people in southern California often set
their lawn sprinklers to go on automatically,
regardless of whether it rains (a rare occur-
rence). In this situation, the sprinkler going on

and rain occurring represent statistically inde-
pendent events. However, if the lawn is found
to be wet one morning (a common effect that
might be produced by either rain or sprinklers),
then the two alternative causes become neg-
atively correlated (corresponding to the phe-
nomenon of causal discounting; Kelley 1973).

In knowledge-engineering applications,
Bayes nets using CB algorithms offer valuable
supplements to human observers. But despite
some recent claims (Glymour 2001, Gopnik
et al. 2004), there is no evidence that these
data-intensive algorithms, which require
considerable processing capacity, are used in
human causal induction (see critical discussions
by Griffiths & Tenenbaum 2009, Lu et al.
2008b). Human learners often make inferences
that appear to violate the causal Markov
condition (Mayrhofer et al. 2008, Rehder
& Burnett 2005, Walsh & Sloman, 2008).
Rather than treating their causal knowledge
as fixed, humans may sometimes interpret
the nonoccurrence of an expected event as a
trigger to revise their causal model (falsifying
the assumption under which the causal Markov
condition should hold), thereby altering their
expectations about other effects. Moreover,
people have great difficulty extracting cause-
effect relations in the absence of critical cues
provided by perceived temporal order and their
own interventions (Lagnado & Sloman 2004,
2006; Steyvers et al. 2003; see Lagnado et al.
2007), reflecting their processing-capacity
limitations. It has also been noted that when
such additional cues and/or prior knowledge
are made available, human learners (even
young children) acquire causal knowledge
from much smaller data sets than is possible for
Bayes nets using CB algorithms (Gopnik et al.
2001, Sobel & Kirkham 2007) (for Bayesian
models of causal learning based on sparse data,
see Griffiths & Tenenbaum 2007, 2009; Lu
et al. 2008b). There is no conceptual mystery as
to why learning based on sparse data is possible
(previously collected information is added to
the database); the appropriate application of
Bayes’ theorem for this purpose nonetheless
closes a gap in modeling.
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Other work has confirmed that human
causal learning is heavily influenced by other
cues besides “raw” covariation. Temporal or-
der is important (as the associative and causal
approaches agree), as it reduces the search space
of candidate causes. People expect causes to
precede (or at least occur simultaneously with)
their effects (Buehner & May 2003; Greville
& Buehner 2007; Lagnado & Sloman 2004,
2006; Waldmann & Hagmayer 2005). A sur-
prising finding is that people’s perception of
time can be warped by their experience of
causality (Buehner & Humphreys 2009). In
a stimulus-anticipation task, participants’ re-
sponse (a key press) reflected a shortened expe-
rience of time when the participants’ response
caused a target stimulus than when it did not
cause it. The received view dating from David
Hume is that temporal information, which is
observable, serves as input to the causal learning
process. Buehner & Humphrey’s (2009) find-
ing suggests that temporal information needs
to be differentiated by stage: Early sensory in-
formation serves as input to the causal infer-
ence process, and later (probably perceptual)
information may be influenced by top-down
knowledge.

People are also sensitive to the fact that
their own actions are often causal. In general,
knowledge acquired through active interven-
tion is a more reliable guide to causal relations
than is sheer observation (Hagmayer et al. 2007,
Sloman & Lagnado 2005, Steyvers et al. 2003).
People are able to reason suppositionally or
counterfactually about what would be expected
to happen if some intervention were made.

Although there is general agreement that
interventions are a powerful source of causal
knowledge, there has been some argument as
to whether they actually have some special psy-
chological status beyond their effectiveness in
controlling for confounding variables. What
scientists and laypeople call interventions, or
experimental manipulations, differ from inter-
ventions as defined in Bayes nets. In artificial
intelligence, Pearl (2000) posited a formal op-
eration on causal Bayes nets called “do,” which
has the effect of setting the value of a vari-

able directly and hence cutting it off from its
usual causal influences (“graph surgery”). Pearl
showed that various causal inferences can be
derived by applying the “do” operator. Some
psychologists have argued that human reason-
ing about the causal impact of actual actions in
the world can be modeled by the “do” opera-
tor in a Bayes net (Sloman & Lagnado 2005).
Others (Waldmann et al. 2008) have noted that
actions (in their typical everyday and scientific
sense) may be especially informative for a more
general reason, as they constitute one basic way
to control for possible alternative causes (the
justification for scientific experimentation). In
addition, intervention ordinarily conveys infor-
mation about temporal order of events, which
is itself a critical cue to causality (Lagnado &
Sloman 2006). But real actions, unlike the
formal “do” in Bayes nets, may sometimes
prove misleading due to unanticipated or un-
intended co-occurrences (e.g., an educational
intervention may enhance learning not because
of its substantive content, but because the in-
tervention attracts attention, which increases
the learners’ motivation). The placebo effect
captures this well-known caveat: Interventions
do not necessarily warrant causal conclusions.
Under the latter view, one’s own actions are
often especially informative cues to causal rela-
tions, but intervention is not an infallible guide.
(For a discussion of models of realistic interven-
tions, see Meder et al. 2010.) Moreover, even
for interventions as defined in Bayes nets, it
has been argued that when the intervention in-
volves a probabilistic causal relation, a success-
ful intervention does not result in graph surgery
(Waldmann et al. 2008).

Finally, it is clear that once causal knowl-
edge at various degrees of generality is acquired,
it influences the acquisition of representations
of higher-order causal relations (Griffiths &
Tenenbaum 2009, Waldmann 1996). Lien &
Cheng (2000) argued that people use informa-
tion at higher levels of generality to distinguish
genuine from spurious causal relations at a more
specific level. The rooster may invariably crow
before the sun rises, but people believe that the
actions of small terrestrial animals are simply
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not the kind of thing that can move astronom-
ical bodies. Lien & Cheng (2000) showed ex-
perimentally that people acquire general causal
knowledge about types of entities that cause
types of effects and then apply this knowledge
to help decide whether novel covariations at a
more specific level are in fact causal. They found
that the level of generality of the “cause” cate-
gories acquired by their subjects depended on
how accurately candidate causes at various lev-
els of generality predicted the effect, support-
ing the view that category formation and causal
learning serve the same goal: to represent the
world in such a way as to best predict the con-
sequences of actions. Empirical categories are
what obey causal laws (Lewis 1929).

Bayes nets designed to use CB algorithms
(Pearl 1988, 2000; Spirtes et al. 1993/2000) lack
the representational power to acquire knowl-
edge about causes at multiple levels of abstrac-
tion (see Schulz et al. 2008). However, ap-
proaches to causal learning based on Bayesian
inference are able to incorporate hierarchical
priors that can capture the influence of known
causal regularities at a general level on the ac-
quisition of a novel specific regularity (Kemp
et al. 2007). This approach also allows explicit
specification of the role of prior causal theo-
ries in the acquisition of novel causal relations
(Griffiths & Tenenbaum 2009) and allows a nat-
ural solution to learning at multiple levels of
abstraction at the same time. It provides a lan-
guage for representing prior knowledge (causal
or otherwise), enabling psychological models to
better capture the power and flexibility of hu-
man causal inference.

Causal Interactions and Alternative
Integration Functions

Though the causal relations in the world may
be subtle and complex, there is reason to sup-
pose that humans have a strong preference for
simplicity, both in evaluating causal explana-
tions (Lombrozo 2007) and in learning systems
of causal relations (Lu et al. 2008b). One aspect
of causal simplicity, emphasized in the power
PC theory (Cheng 1997), is that people operate

under the default assumption that multiple
causes exert independent influences on their
common effect. That is, the impact of each in-
dividual cause on the effect is the same when
other causes are also present as it would have
been if other causes had been absent. The no-
tion of independent causal influence in fact pro-
vides the basis for deriving the noisy-OR and
noisy-AND-NOT integration functions for
binary variables.

Importantly, however, the assumption of in-
dependent causal influence can be overturned
by evidence. In many experimental designs
analogous to those employed in classical con-
ditioning, combinations of causal cues influ-
ence the effect in ways that deviate from what
would be expected given the independence as-
sumption. In “negative patterning,” for exam-
ple, cues A and B are each followed by the effect
when presented separately, but the AB com-
pound is never followed by the effect. Both rats
and humans are capable of learning to respond
appropriately to such apparent causal interac-
tions. Novick & Cheng (2004) showed how
such interactions can be understood in terms
of conjunctive causes (unitized representations
of a cue combination) that follow the same in-
tegration function, as do simple causes. The
assumption of independent causal influence is
in fact critical for learning about causal inter-
actions. By definition, two causes interact (to
produce an effect or to prevent it) in the man-
ner and to the extent that their joint impact
deviates from what would be predicted by the
independence assumption (Novick & Cheng
2004).

Moreover, the assumption of independent
causal influence also guides inferences about
whether or not a causal model should be revised.
Liljeholm & Cheng (2007) showed college
students an initial set of contingency data that
established both the background and a single
specific cue A as generative causes. In one con-
dition, the data shown in Phase 1 established the
power of cue A as 0.75 (assuming the noisy-OR
integration function), whereas normative asso-
ciative measures show an associative strength of
0.25. In Phase 2, additional events were shown
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that occurred in a new background context. The
new background had a different causal power;
moreover, cues A and B were always paired.
Under the assumption of independent causal
influence, the pattern in Phase 2 was consis-
tent with the causal power of cue A remaining
at 0.75 (even though associative strength had
increased from 0.25 to 0.75). The participants
were then asked to give their “best bet” regard-
ing whether cue B was causal. The majority in-
dicated that cue B was not causal, as would be
expected if people have a default preference to
maintain a simpler causal network (with fewer
causes), indicating that causal rather than as-
sociative strength is what defines “sameness of
change” due to a cause.

In a second condition, by contrast, the
apparent causal power of cue A changed from
Phase 1 to Phase 2. If reasoners are sensitive
to independent causal influence, they would
tacitly “explain” the apparent change in Phase
2 by assuming that cue B was also causal,
rather than that cue A’s causal power had
actually changed. And indeed, the majority of
participants agreed that cue B was in fact causal.
These findings confirm that people’s readiness
to accept a more complex causal network (in the
sense of adding an additional cause) depends
on whether or not they detect an apparent
violation of independent causal influence in a
simpler network. The associative measure, �P
(to which the asymptotic value computed by
the Rescorla-Wagner rule is equivalent), could
not explain the observed pattern of judgments
about the causal power of B in the Liljeholm
& Cheng (2007) study and, more generally,
does not provide a coherent (i.e., logically
consistent) definition of independent causal
influence. Thus, coherence appears to be an
a priori assumption, as might be expected
because past experiences would be useless oth-
erwise. Anything would follow from anything
else if logical consistency is not required.

Recent work has begun to explore ad-
ditional integration functions that may be
evoked by different content. The noisy-OR
and noisy-AND-NOT functions apply in
the case of binary variables; other integration

functions may be evoked when the cause and/or
effect variables are viewed as continuous in
magnitude (Lu et al. 2008a). Waldmann (2007)
demonstrated that people apply radically differ-
ent integration functions for alternative types
of variables. In particular, causes that involve
intensive quantities (e.g., taste) or preferences
(e.g., liking) bias people toward averaging the
causal influences, whereas extensive quantities
(e.g., strength of a drug) lead to a tendency to
add. However, the knowledge underlying these
processes is often fallible and unstable. People
are easily influenced by additional task-related
cues, including the way data are presented, the
difficulty of the inference task, and transfer
from previous tasks. Understanding the nature
of the integration functions that define inde-
pendent causal influence will be essential in
extending the causal approach to more com-
plex and diverse situations (Lucas & Griffiths
2010).

Causal Inference Based on Categories
and Analogies

Causal knowledge plays an important role in
learning and reasoning based on both general
categories (Kemp et al. 2007, Lien & Cheng
2000, Marsh & Ahn 2009, Waldmann &
Hagmayer 2006) and on small numbers of spe-
cific examples that lend themselves to reasoning
by analogy (Lee & Holyoak 2008). Numerous
studies suggest that the strength of inferences
depends on causal models of the interconnec-
tions between members of various categories.
For example, if salmon are known to have a
disease, it may then seem more likely that bears
will have it, presumably because people believe
diseases can sometimes be transmitted from
prey to predator; in contrast, knowing that
bears have a disease would constitute weaker ev-
idence that salmon will have it (e.g., Bailenson
et al. 2002, Medin et al. 2003, Shafto & Coley
2003). Rehder (2006) found that similarity-
based influences on inferences were almost
entirely eliminated when a generalization could
be based on causal relations instead. Causal
knowledge appears to play a major role in expert
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reasoning about complex categories such as
those involved in clinical diagnosis (Ahn et al.
2009).

The precise manner in which causal
knowledge impacts category inferences has
been debated (see discussion in Waldmann &
Hagmayer 2010). Some investigators have
claimed that causes (especially those earlier in a
causal chain) are inherently more central than
effects in supporting inferences (Ahn et al. 2000;
see also Hadjichristidis et al. 2004). Rehder and
his colleagues (Rehder 2009, Rehder & Burnett
2005, Rehder & Kim 2006) have argued that a
more general framework is required to under-
stand how people use knowledge of categories
to make causal-based generalizations (CBGs),
which can involve effects as well as causes. This
approach has been formalized in the CBG
model (Rehder 2009), which incorporates the
causal assumptions in the power PC theory.
The basic hypothesis is that people expect
exemplars of categories to be causally coherent,
in that an instance should exhibit the features
that would be expected based on a causal model
of the category. For example, the CBG model
predicts that, given the same set of observed
events, increasing the strength of a causal link
between a known feature associated with a
category and a new unobserved feature will in-
crease the judged prevalence of the new feature
when the latter is an effect, whereas decreasing
that causal strength will increase the judged
prevalence of the new feature when the latter is
a cause. The experiments reported by Rehder
(2009) provide support for this and other
predictions derived from the CBG model.

Causal models also play an important role in
guiding inferences based on specific examples
in combination with more general causal reg-
ularities. Lee & Holyoak (2008) demonstrated
how causal knowledge guides analogical infer-
ence, showing that analogical inference is not
solely determined by quality of the overall sim-
ilarity of the source and target analogs. Using
a common-effect structure, Lee and Holyoak
manipulated structural correspondences be-
tween an initial source analog and a novel target

analog, as well as the causal polarity (generative
or preventive) of multiple causes present in
the target. The source always showed that the
effect occurred given the combination of two
generative causes and one preventive cause.
Then if the target analog dropped the pre-
ventive cause, people rated the target as more
likely to exhibit the effect than if the preventive
cause was present, even though dropping the
preventer reduced overall similarity between
the analogs. Holyoak et al. (2010) identified
an additional dissociation between inference
strength and similarity of analogs using queries
that required causal attribution. These inves-
tigators showed that a Bayesian extension of
the power PC theory (Lu et al. 2008b) could
explain the impact of causal models on analog-
ical inference, even when causal knowledge is
based on a single example and hence is highly
uncertain.

CONCLUSIONS AND
CONTINUING CONTROVERSIES

Let us return to our key question: Given
that our understanding of the causal world
is entirely our mental reconstruction from
noncausal input, with the goal of identifying
invariant empirical relations that support
predictions regarding the consequences of
actions, what has the field learned about this
reconstruction process? After two decades of
vigorous debate and active empirical research,
recent developments have firmly established
that humans learn networks of explicit cause-
effect relations rather than associations, and use
the resulting causal models to predict future
effects and make attributions about past causes.
Perhaps the most significant conclusion from
the research of the past decade is that human
causal reasoning (for relatively simple situations
that do not exceed available working memory
resources) is both robust and rational. This
conclusion implies that, for binary variables,
people have the defeasible default assumption
that multiple causes of an effect influence it
independently, as reflected in noisy-logical
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integration functions. The domain-general
causal assumptions underlying the integration
functions bootstrap the rational process of
human causal learning. Different types of causal
variables evoke alternative default integration
functions, probably due to different definitions
of independence logically implied by the
variable type. Augmented by the machinery
of Bayesian inference to handle the inherent
uncertainty of induction and the inclusion
of prior causal knowledge, and adopting a
preference for the simplest explanation and an
assumption that the world is logically consis-
tent, the causal approach can explain a wealth
of data involving judgments of causal strength,
causal structure, attribution, and diagnosis.
A causal framework, logical consistency, and
simplicity are essential a priori assumptions
that enable the human causal-learning process
to reconstruct order underlying seeming chaos
for the purpose of achieving understanding
and planning actions.

Many important questions remain, and oth-
ers have been recently raised. One important
question follows from the rationality and suc-
cess of the causal approach. If humans have
evolved to approach causal learning with a set
of a priori causal assumptions, should scientists
(who at present predominantly use associative
statistics in their research) consider using a sim-
ilar set of assumptions if they test causal hy-
potheses? Another important question for fur-
ther research involves the role of the hypothesis
space for causal learning (an issue highlighted
by the Bayesian approach, in which the hypoth-
esis space is made explicit). Relative to the ob-
vious space of possible causal structures defined
on pre-existing variables (of the sort illustrated
in Figures 1, 2, and 4), do humans evaluate
possible states of the world that are not only
more fine-grained (e.g., distributions of causal
strength), but that emerge from a broader hy-
pothesis space (e.g., alternative definitions of
cause and effect categories, the variables linked
by causal relations)? If so, given that enumer-
ating and evaluating possibilities in a larger

hypothesis space must require greater process-
ing capacity, what are the criteria for hypothesis
revision (in particular, for enlarging one’s hy-
pothesis space)?

Much more work will be required to inves-
tigate how people learn and reason with more
complex causal networks that tax the limits of
their working memory capacity (Waldmann &
Walker 2005). In addition, further work on the
neural basis of causal learning and inference
may help to refine our understanding of the
nature of causal models. The limited available
evidence has not established whether causal
relations involve a distinct neural substrate or
whether they are processed using the same
neural machinery as other core conceptual
relations (e.g., category membership) that
enable predictions.

The findings over the past decade regarding
the use of a causal framework in humans have
raised another natural question: Do nonhuman
species also adopt a similar framework? Because
many comparative psychologists view the cog-
nitive capacities of humans as continuous with
those of nonhuman animals, the evidence that
humans use causal models has encouraged re-
search on whether nonhuman animals do so as
well (e.g., Blaisdell et al. 2006, Call 2004). Penn
& Povinelli (2007) agree that nonhuman causal
cognition is significantly more sophisticated
than can be accounted for by traditional as-
sociationist theories. In particular, nonhuman
animals do not simply learn about observable
contingencies; they appear to be sensitive to
the unobservable constraints specific to causal
inference. However, Penn & Povinelli (2007)
argue there is no compelling evidence that non-
human animals are capable of reasoning about
higher-order causal relations or abstract causal
principles (also Penn et al. 2008). What are
the similarities and differences between human
and nonhuman causal inference? Among other
possibilities, might the differences between
humans and nonhumans reflect differences
in the space of causal hypotheses available to
different types of reasoners?
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