Metaphor comprehension: An individual-differences approach

Dušan Stamenkovića, Nicholas Ichienb, Keith J. Holyoakb

a Faculty of Philosophy & Center for Cognitive Sciences, University of Niš, Serbia
b Department of Psychology, University of California, Los Angeles, United States

ABSTRACT

The nature of the mental processes involved in metaphor comprehension has been the focus of debate, with controversy focusing on the relative role of general analogical reasoning versus language-specific conceptual combination. In the present set of studies, we take an individual-differences approach to examine the comprehension of a variety of metaphors, some taken from literary sources, using several types of comprehension tests. In a series of metaphor-comprehension studies with college students, we measured both fluid intelligence (using the nonverbal Raven’s Progressive Matrices test) and crystallized verbal intelligence (using a new Semantic Similarities Test as well as the Vocabulary subscale of the Wechsler Adult Intelligence Scale). Previous work has shown that measures of fluid intelligence are closely linked to individual differences in analogical reasoning, whereas measures of crystallized verbal intelligence are linked to language-specific abilities. We found that each measure had a dissociable predictive relationship to metaphor comprehension. The pattern of individual differences indicated that crystallized intelligence influences metaphor comprehension across a broad range of metaphor types, whereas individual differences in fluid intelligence mainly impact comprehension of more cognitively complex metaphors, such as those that arise in literary sources.

Introduction

Metaphor is the use of language to describe one thing in terms of something else that is conceptually very different, as in the poet Theodore Roethke’s lament, “my memory, my prison.” Metaphor and related cognitive processes have been linked to creative thinking, not only in poetry (Holyoak, 1982, 2019), but also in many scientific fields (e.g., Dunbar & Klahr, 2012). In artificial intelligence, the goal of automatically detecting and comprehending metaphors encountered in text corpora represents a current frontier (e.g., Gagliano, Paul, Booten, & Hearst, 2016). Given its evident importance in human thinking and language, an important goal for cognitive science is to understand how people grasp metaphors.

Potential mechanisms underlying metaphor comprehension

Psychologists, linguists, and philosophers have advanced many alternative theories of metaphor comprehension (e.g., Bowdle & Gentner, 2005; Gentner & Clement, 1988; Glucksberg & Keysar, 1990; Lakoff & Johnson, 1980; Ortony, 1979). Two general accounts have been especially influential. One proposal is that metaphor comprehension requires analogical reasoning to relate the target to the source. The idea that metaphor is based on analogy originated with Aristotle and was advanced in modern times by Black (1962). In psychology, this hypothesis was developed further by Tourangeau and Sternberg (1981, 1982), Trick and Katz (1986), and Gentner and Clement (1988). Although computational models of analogical reasoning differ in important ways (e.g., Falkenhainer, Forbus & Gentner, 1989; Hummel & Holyoak, 1997, 2003), the general view is that the source and target are each represented as complex propositional structures, and that a process of mapping identifies systematic correspondences between elements of the two structures. Thus to comprehend Roethke’s metaphor, a person might represent memory in terms of propositions such as “mental space in which information is stored for later retrieval”, and prison as “secure building in which prisoners are confined against their will for long periods of time.” A mapping process might then link “mental space” to “secure building” and “information” to “prisoner”, etc. Because the mapping process depends on active manipulation of complex multi-component structures, and consideration of multiple alternative hypotheses, this sort of explicit analogical reasoning places a high load on working memory and executive functions such as attentional control (e.g., Cho, Holyoak, & Cannon, 2007; Waltz, Lau, Grewal, & Holyoak, 2000).

ARTICLE INFO

Keywords:
Metaphor
Analogy
Conceptual combination
Individual differences
Fluid intelligence
Crystallized intelligence

https://doi.org/10.1016/j.jml.2018.12.003
Received 17 February 2018; Received in revised form 4 December 2018
0749-596X/ © 2018 Elsevier Inc. All rights reserved.
An alternative account, proposed by Glucksberg and Keysar (1990), and advanced by several other authors (e.g., Gernsbacher, Keysar, Robertson & Werner, 2001; McGlone & Manfredi, 2001; Jones & Estes, 2005), claims that metaphors (at least those in the nominal format, <noun 1> is <noun 2>;) are interpreted as categorization statements. On this view, when Roethke claims that his memory is a prison, the target (memory) is stated to be a member of a category specified by the source (prison), where the latter takes on an abstract meaning like “location of extended confinement,” rather than its more specific meaning of a building that houses prisoners.

The distinction between the analogy and categorization views can be interpreted more broadly as a distinction between analogy and conceptual combination (Holyoak & Stamenković, 2018). In general, sentence meanings (whether literal or metaphorical) are understood as systematic combinations of the meanings of constituent words. A great deal of evidence indicates that when people try to make sense of novel noun-noun combinations (e.g., “robin hawk”), they often interpret the modifier noun much like an adjective, extracting some salient property from it, which is then applied to the head noun (e.g., Wisniewski, 1997; Wisniewski & Love, 1998). Thus a robin hawk might be a kind of hawk with a red breast similar to that of a robin. Estes and Glucksberg (2000; also Gagné, 2002) argued that the categorization view of metaphor can be interpreted as a type of conceptual combination, in which the head concept provides relevant dimensions and the modifier concept provides candidate features for attribution.

Analogy and conceptual combination both rely on decomposing the source and target into elements, which are then compared and somehow integrated so as to create coherence. However, it has been argued that conceptual combination cannot be reduced to analogy (Keane & Costello, 2001). Whereas analogical reasoning is typically considered to be a domain-general process that operates on complex propositional structures held in working memory (Holyoak, 2012), conceptual combination is viewed as a simpler process based on spreading activation that operates at the level of lexical concepts (Kintsch, 2000, 2003; Kintsch & Bowles, 2002).

Despite decades of research addressing the question of whether metaphor comprehension depends on analogy, conceptual combination, or some mix of both (e.g., Bowdle & Gentner, 2005), no firm answer has emerged (for recent reviews see Kertész, Rákosi & Csatár, 2012; Patterson, 2016; Holyoak & Stamenković, 2018). Psychological studies have largely focused on simple nominal metaphors (e.g., “The lawyer is a shark”). In general, such metaphors appear to be processed relatively easily, whereas analogical reasoning (at least when performed explicitly) tends to place a heavy burden on working memory and executive processes (Holyoak, 2012). Kintsch and Bowles (2002) argued that for cases in which metaphor comprehension appears to be relatively easy, complex analogical reasoning is not a viable mechanism. At the same time, even proponents of the conceptual combination view have cautioned that this process is not sufficient for comprehension of metaphors of high cognitive complexity: cases in which the source and target are more semantically distant, the syntax is relatively complex, and the interpretation depends on correspondence between multiple elements of the two concepts (Glucksberg & Haught, 2006; Kintsch, 2000).

Neural evidence may be useful in discriminating between analogical reasoning and conceptual combination. Neuropsychological (e.g., Waltz et al., 1999; Morrison et al., 2004) and neuroimaging studies (e.g., Bunge, Helskog, & Wendelken, 2009; Cho et al., 2010) have established that complex analogical reasoning involves broad regions of the frontal and parietal cortices that form a frontoparietal network (Duncan, 2010). In particular, numerous studies (e.g., Bunge et al., 2009) have shown that complex analogical reasoning (including reasoning about verbal analogies that cross semantic domains, as metaphor does; Green et al., 2010, 2012) is almost invariably accompanied by activation of the left rostrolateral prefrontal cortex (RLPFC). Meta-analyses of neuroimaging studies reported by Vartanian (2012) and by Hobelka et al. (2016) support this conclusion. In contrast, conceptual combination (as applied to literal word meanings) primarily activates the left anterior temporal lobe (Baron & Osherson, 2011; Baron, Thompson-Schill, Weber, & Osherson, 2010), a region viewed as a “semantic hub” (Hoffman, McClelland, & Lambon Ralph, 2018).

Most neuroimaging evidence indicates that simple metaphors can generally be comprehended without involvement of the brain area most closely linked to complex analogical reasoning, rostrolateral prefrontal cortex (see meta-analyses by Bohm, Altmann & Jacobs, 2012; Rapp, Mutschler, & Erb, 2012; Vartanian, 2012), even when the metaphor is novel (Cardillo et al., 2012). However, at least one study found evidence that neural correlates of metaphor comprehension largely overlap with those for analogical reasoning, including (in limited conditions) the rostrolateral prefrontal cortex (Prat, Mason & Just, 2012).

Individual-differences approach

Rather than assuming metaphor comprehension to be a unitary process that is constant across individuals, in the present study we adopted an individual-differences approach. Classical theories of intelligence (Cattell, 1971) distinguish fluid and crystallized intelligence as separable factors (although they tend to be moderately correlated with one another). Fluid intelligence involves reasoning (often nonverbal) about novel problems detached from prior knowledge, and crystallized intelligence involves reasoning (typically verbal) that draws upon prior knowledge. Metaphor comprehension seems likely to tap both of these basic forms of intelligence. Fluid intelligence is closely linked to analogical reasoning (Holyoak, 2012), whereas verbal crystallized intelligence is likely to impact conceptual combination (which is postulated to depend on lexical semantics). In order to measure crystallized verbal intelligence as it may relate to metaphor comprehension, we developed a new Semantic Similarities Test (SST).

A relatively small number of previous studies have investigated individual differences in cognitive factors that might impact processing of metaphors. Oikonomi, Ranta, and Kaakinen (2016) assessed individual differences in the processing of metaphor and sarcasm using eye-tracking methods. These investigators found that individual differences in working-memory capacity and in cognitive style (Need for Cognition scale) were related to metaphor processing. Different eye-tracking patterns were observed for reading metaphors versus sarcasm, suggesting that these two forms of figurative language are processed in different ways. However, no assessment of crystallized intelligence was administered.

Trick and Katz (1986) found positive correlations between people’s scores on a test of analogical reasoning and ratings of the comprehensibility of metaphors, especially when the source and target were drawn from dissimilar categories. A measure of vocabulary knowledge (which would be expected to reflect crystallized intelligence) did not add any predictive power. Nippold and Sullivan (1987) reported that within a sample of children, perceptual analogical reasoning was related to verbal analogical reasoning, as well as to comprehension of proportional metaphors (albeit weakly). A measure of verbal analogical reasoning did not independently contribute to prediction of metaphor comprehension. Thus neither of these studies provided support for a role of crystallized verbal intelligence in metaphor comprehension.

Kazmerski, Blasko, and Dessalgen (2003) had their participants complete IQ and working-memory tests and then rate and interpret a set of metaphors. The IQ measure included both fluid and crystallized components. They found that low-IQ participants produced poorer-quality interpretations relative to high-IQ individuals. A vocabulary subtest predicted interpretation quality (in apparent contrast to the null finding reported by Trick & Katz, 1986). However, a measure of spatial working-memory did not correlate with verbal IQ and did not predict quality of metaphor interpretations (a finding apparently contrary to that reported by Nippold & Sullivan, 1987). Thus although overall IQ predicted quality of metaphor interpretations, Kazmerski et al.’s
findings did not clearly distinguish the impact of fluid and crystallized intelligence.

In a study by Chiappe and Chiappe (2007), individuals who scored high on a working-memory test generated higher-quality interpretations of metaphors more quickly. In addition (i.e., statistically separable from the impact of the working-memory measure), measures of inhibitory control (based on Stroop interference and intrusion errors on a memory test) also predicted metaphor processing (also see Pierce & Chiappe, 2008). Both working memory and inhibitory control are executive functions closely linked to fluid intelligence (Ackerman, Beier & Boyle, 2005). In a production task, Chiappe and Chiappe found that measures of vocabulary knowledge and exposure to print (linked to crystallized intelligence) also predicted metaphor quality. Indeed, the measures of crystallized intelligence yielded somewhat higher correlations with metaphor than did the measures of working memory. Thus although findings have been mixed, at least the study by Chiappe and Chiappe (2007) suggests that both fluid and crystallized intelligence have an impact on metaphor processing.

Overview of present study

The present study sought additional evidence of potential individual differences in metaphor comprehension. In three studies, we assessed college students’ ability to comprehend a variety of metaphors, relating their performance to measures of both fluid and crystallized intelligence. In all studies fluid intelligence was measured using a version of the Raven’s Progressive Matrices test (RPM; Raven, 1938), which is highly correlated with performance in tests of analogical reasoning (Snow, Kyllonen, & Marshalek, 1984). In order to measure crystallized verbal intelligence as it may relate to metaphor comprehension, we developed a new Semantic Similarities Test (SST) (see Appendix), which was used in all studies. In Study 3 we also administered a standard test of verbal crystallized intelligence, the Vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS-III).

Given the frequent claims that analogical reasoning (and hence fluid intelligence) is more likely to play a role in comprehending metaphors that are in some way conceptually complex (e.g., Kintsch, 2000; see Holyoak & Stamenković, 2018), we examined a range of metaphors selected to vary in complexity, or more generally in difficulty. We also examined a range of syntactic forms for single-sentence metaphors, including proportional metaphors based on nouns (e.g., *the violent image rattled in her head*), which may be more likely to elicit analogical reasoning (and hence place greater demands on fluid intelligence). To provide a different manipulation of metaphor difficulty, Study 3 varied the familiarity of metaphors within a nonliterary set.

Study 1

Study 1 had two aims. First, we wished to compare the predictive power of the RPM (a measure of fluid intelligence) with that of a test designed to assess crystallized verbal intelligence. Second, we wished to examine comprehension of a wide range of metaphors, including a set derived from literary sources.

Method

Participants

A total of 76 UCLA undergraduates at the University of California, Los Angeles (UCLA) (female = 50, male = 25, undeclared = 1; mean age = 21.1) participated in the study for course credit. The great majority (91%) were native speakers of English, with a minority of bilinguals who spoke English fluently (self-assessed). The session generally took about 20–30 min to complete. Data from an additional five participants were dropped from analyses based on criteria indicative of carelessness or inattention on the verbal tasks: score of 12 or lower on the Semantic Similarities Test (max = 40), or 5 or lower (max = 20) on each set of metaphors, or extremely short overall response time (under 15 min for the entire set of tasks).

Overview of present study

The present study sought additional evidence of potential individual differences in metaphor comprehension. In three studies, we assessed college students’ ability to comprehend a variety of metaphors, relating their performance to measures of both fluid and crystallized intelligence. In all studies fluid intelligence was measured using a version of the Raven’s Progressive Matrices test (RPM; Raven, 1938), which is highly correlated with performance in tests of analogical reasoning (Snow, Kyllonen, & Marshalek, 1984). In order to measure crystallized verbal intelligence as it may relate to metaphor comprehension, we developed a new Semantic Similarities Test (SST) (see Appendix), which was used in all studies. In Study 3 we also administered a standard test of verbal crystallized intelligence, the Vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS-III).

Given the frequent claims that analogical reasoning (and hence fluid intelligence) is more likely to play a role in comprehending metaphors that are in some way conceptually complex (e.g., Kintsch, 2000; see Holyoak & Stamenković, 2018), we examined a range of metaphors selected to vary in complexity, or more generally in difficulty. We also examined a range of syntactic forms for single-sentence metaphors, including proportional metaphors based on nouns (e.g., *The violent image rattled in her head*).

Most psychological studies of metaphor comprehension have focused on metaphors constructed by researchers, rather than those found in poetry and other literary writing (but see Tourangeau & Rips, 1991). In Studies 1–2 we compared comprehension of metaphors drawn from the impact of the working-memory measure), measures of inhibitory control (based on Stroop interference and intrusion errors on a memory test) also predicted metaphor processing (also see Pierce & Chiappe, 2008). Both working memory and inhibitory control are executive functions closely linked to fluid intelligence (Ackerman, Beier & Boyle, 2005). In a production task, Chiappe and Chiappe found that measures of vocabulary knowledge and exposure to print (linked to crystallized intelligence) also predicted metaphor quality. Indeed, the measures of crystallized intelligence yielded somewhat higher correlations with metaphor than did the measures of working memory. Thus although findings have been mixed, at least the study by Chiappe and Chiappe (2007) suggests that both fluid and crystallized intelligence have an impact on metaphor processing.

Overview of present study

The present study sought additional evidence of potential individual differences in metaphor comprehension. In three studies, we assessed college students’ ability to comprehend a variety of metaphors, relating their performance to measures of both fluid and crystallized intelligence. In all studies fluid intelligence was measured using a version of the Raven’s Progressive Matrices test (RPM; Raven, 1938), which is highly correlated with performance in tests of analogical reasoning (Snow, Kyllonen, & Marshalek, 1984). In order to measure crystallized verbal intelligence as it may relate to metaphor comprehension, we developed a new Semantic Similarities Test (SST) (see Appendix), which was used in all studies. In Study 3 we also administered a standard test of verbal crystallized intelligence, the Vocabulary subtest of the Wechsler Adult Intelligence Scale (WAIS-III).

Given the frequent claims that analogical reasoning (and hence fluid intelligence) is more likely to play a role in comprehending metaphors that are in some way conceptually complex (e.g., Kintsch, 2000; see Holyoak & Stamenković, 2018), we examined a range of metaphors selected to vary in complexity, or more generally in difficulty. We also examined a range of syntactic forms for single-sentence metaphors, including proportional metaphors based on nouns (e.g., *The violent image rattled in her head*).
Thus complement each other as relatively pure measures of fluid and crystallized verbal intelligence, respectively. We would, however, expect scores on the two tests to be correlated, as both should load on the g factor (general intelligence; see Ackerman et al., 2005; Spearman, 1927).

Metaphor comprehension. The final task in this study consisted of 40 metaphor comprehension items, 20 from literary sources and 20 non-literary. The literary metaphorical statements were selected from a list of literary metaphors drawn from poetry anthologies by Katz et al. (1988). The metaphors we chose were rated high on a goodness scale in the Katz et al. study (e.g., The tongue is a bayonet). Their syntactic forms included nominal (X is Y), nominal with an adjective modifier, and nominal with a prepositional phrase. (For detailed analyses of the properties of this metaphor set, see Jacobs & Kinder, 2017, 2018).

The nonliterary metaphors included 20 items, some of them adapted from word pairs generated by Green et al. (2010, 2012) to make proportional verbal analogy problems in the form A:B::C:D (e.g., roof:house = hat:man). By dropping the D term, we converted some of these items into proportional metaphors in the form A is the C of B (e.g., A roof is the hat of a house). We augmented the set with similar items that we created following the same pattern. The literary and nonliterary items were intermixed and presented in a randomized order.

Comprehension was assessed by a task requiring selection of the best interpretation. For each metaphorical statement, three potential interpretations were provided, and the participants were asked to select the correct one. In this and subsequent studies, the multiple-choice items (including those labelled as correct options) were selected after discussion among authors and with the help of several independent raters. As literary metaphors may have several interpretations, the responses we identified as correct were options agreed upon as being one plausible interpretation. In selecting the remaining three response options (which were either literal or implausible), we ensured that the agreed interpretation would be the best among the alternatives offered. Examples of the interpretation task, for both literary and nonliterary metaphors, are shown in Table 3.

The stimuli for all three tasks were presented on a computer screen and participant responses were recorded. Instructions for each task were given immediately preceding that task. There was no time limit on any task, but participants were instructed to complete each task as quickly as possible.

Results and discussion

Performance on each task is summarized in Table 2. Correlation and regression analyses were performed to assess the interrelationships among the RPM, SST and metaphor comprehension. RPM and SST scores were moderately correlated with each other (r (76) = .31, p = .006). As summarized in Table 3, each individual-difference measure was correlated with accuracy on the comprehension test for both literary and nonliterary metaphors (individual correlations ranging from .37 to .49, p < .01 in all cases). Multiple regression
analyses revealed that for both types of metaphors, RPM and SST scores each predicted separable variance in comprehension accuracy, with partial correlations ranging from .26 (RPM for nonliterary metaphors, \(p < .05 \)) to .42 (SST with nonliterary metaphors, \(p < .001 \)). This pattern suggests that while both measures have an impact on metaphor comprehension, RPM (fluid intelligence) may be somewhat less important than SST (crystallized intelligence) for the simpler, nonliterary metaphors.\(^2\)

Study 2A

Study 2 was designed to extend the findings of Study 1 by using multiple types of tasks to assess metaphor comprehension. In addition to the interpretation task used in Study 1 (select the best interpretation from a set of options), we also used a completion task (select the best word to complete a metaphor from a set of options). To avoid repeating items with different tasks, the \(2 \times 2 \) design (literary/nonliterary metaphors \(\times \) interpretation/completion task) was decomposed into two pairs of conditions, which were run and analyzed separately. Table 4 shows examples of each type of metaphor with each comprehension task. The multiple-choice items were selected based on a discussion among authors and with the help of independent raters. Study 2A examined literary metaphors with the completion task and nonliterary metaphors with the comprehension task; Study 2B examined literary metaphors with the interpretation task and nonliterary metaphors with the completion task. We will introduce all four conditions as we describe Study 2A.

Method

Participants

A total of 101 undergraduate UCLA students (female = 77, male = 23, undeclared = 1; mean age = 20.1) participated in the study for course credit. The great majority (92%) were native speakers of English, with a minority of bilinguals who spoke English fluently (self-assessed). The session generally took about 20–30 min to complete.

\(^2\)Because scores on the RPM and SST were skewed, we also ran correlational analyses after performing a log transform on the two predictive tests. The basic pattern of correlations was unchanged by this transformation.

Data from an additional 11 participants were dropped from analyses based on criteria indicative of carelessness or inattention on the verbal tasks: score of 12 or lower on the SST (max = 40), or 4 or lower (max = 15) on each set of metaphors, or extremely short overall response time (under 15 min for the entire set of tasks).

Design, materials, and procedure

As in Study 1, all participants completed the RPM, SST, and metaphor comprehension tasks, in that order. The metaphors used in Studies 2A and 2B (15 literary and 15 nonliterary) were generally selected from among those used in Study 1, with a few revisions. We also revised some of the options, aiming to make them more challenging. Table 4 presents some examples.

In Study 2A, the comprehension task consisted of two conditions, administered in a fixed order. The first condition used literary metaphors with a completion task, in which each metaphor was presented with a blank (e.g., \textit{Sunlight is a golden} —) for which a completion was to be chosen. Three options were presented underneath, one of which (scored as correct) was from the original metaphor (for this example, \textit{dust}).

The second condition used 15 nonliterary metaphors with the task of choosing the best interpretation, as in Study 1. Within all metaphor-comprehension tasks, the items were displayed in a randomized order for each participant.

For all tasks, stimuli were displayed on a computer screen and participant responses were recorded. Participants received the instructions for each task separately, just before the relevant task. There was no time limit for any task, but participants were instructed to complete the task as quickly as possible.

Results and discussion

Performance on each task is summarized in Table 5A. As in Study 1, correlation and regression analyses were performed to assess the interrelationships among the RPM, SST and metaphor comprehension. RPM and SST scores were again reliably correlated with each other \((r(101) = .32, p = .001)\). As summarized in Table 6A, both individual-difference measures were correlated with accuracy on the completion task with literary metaphors. Partial correlations revealed that each of the two individual-difference measures contributed separately to predicting performance for this condition. However, for the simpler nonliterary metaphors used in the interpretation task, only SST scores were...
To assess whether the predictive power of the SST is solely attributable to

\[p(103) = .31, \]

\[r \] and SST scores were again reliably correlated with each other (Results and discussion same criteria as in Study 2A. Additional nine participants were dropped from analyses based on the session generally took about 20–30 min to complete. Data from an minority of bilinguals who spoke English fluently (self-assessed). The great majority (94%) were native speakers of English, with a male = 33; mean age = 20.3) participated in the study for course credit. The metaphor task consisted of the interpretation condition with nonliterary metaphors, followed by the completion condition with literary metaphors. Partial correlations revealed that each of the two individual-difference measures contributed separately to predicting performance for this condition. For the simpler nonliterary metaphors used in the completion task, only SST yielded a significant raw correlation with metaphor performance, and also a reliable partial correlation. The partial correlation obtained for the RPM was .08, \(p = .45 \).

Study 2B

Method

Study 2B was identical to Study 2A, except that the metaphor task consisted of the interpretation condition with nonliterary metaphors, followed by the completion condition with literary metaphors. A total of 103 undergraduate UCLA students (female = 70, male = 33; mean age = 20.3) participated in the study for course credit. The great majority (94%) were native speakers of English, with a minority of bilinguals who spoke English fluently (self-assessed). The session generally took about 20–30 min to complete. Data from an additional nine participants were dropped from analyses based on the same criteria as in Study 2A.

Results and discussion

Performance on each task is summarized in Table 5B. Correlation and regression analyses were again performed to assess the interrelationships among the RPM, SST and metaphor comprehension. RPM and SST scores were again reliably correlated with each other (\(r (103) = .31, p = .001 \)). As summarized in Table 6B, both individual-difference measures were correlated with accuracy on the interpretation task with literary metaphors. Partial correlations revealed that each of the two individual-difference measures contributed separately to predicting performance for this condition. For the simpler nonliterary metaphors used in the completion task, only SST yielded a significant raw correlation with metaphor performance, and also a reliable partial correlation. The partial correlation obtained for the RPM was .08, \(p = .45 \).

Study 3

The metaphors used in Studies 1–2 were based on nouns. Given that some of the items in the SST were derived from nominal metaphors, it could be argued that the SST proved to be a good predictor of metaphor comprehension in part because it was based on similar noun-to-noun comparisons.\(^3\) In order to extend the generality of the findings from Studies 1–2, Study 3 examined comprehension of predicate metaphors in which the key word that takes on a metaphorical interpretation is a verb, rather than a noun. If the SST continues to predict comprehension even for predicate metaphors, this would imply that the test is measuring a more general ability than simply facility in comparing semantically dissimilar nouns.

A related concern is that because the SST is a novel test, we have yet to establish that it is a valid measure of crystalized intelligence (although the test has clear face validity as a measure of verbal semantic knowledge, being very similar in format to the Similarities subtest of the WAIS). To provide an explicit assessment of the SST as a measure of crystalized intelligence, in Study 3 we administered not only the RPM and SST, but also the Vocabulary subtest of the WAIS, which is a standard measure of verbal crystallized intelligence.

Finally, Study 3 used only nonliterary metaphors, but introduced a different factor expected to influence comprehension difficulty: familiarity. If any source of difficulty that impacts metaphor comprehension evokes analogical reasoning (and hence reliance on fluid intelligence), then the RPM would be expected to predict performance at least for less familiar metaphors. On the other hand, if the special sources of cognitive complexity associated with literary metaphors (Jacobs & Kinder, 2018) are key triggers for analogical reasoning, then the RPM may be a weak predictor of metaphor comprehension for the nonliterary metaphors used in Study 3, even for those that are relatively unfamiliar and hence difficult.

Method

Participants

A total of 85 undergraduate UCLA students (female = 58, male = 27, mean age = 19.1) participated in the study for course credit. The majority (79%) were native speakers of English, with a minority of bilinguals who spoke English fluently (self-assessed).\(^4\) The session generally took about 20–35 min to complete. Data from an additional 6 participants were dropped from analyses based on criteria indicative of carelessness or inattention on the verbal tasks: score of 12 or lower on the SST (max = 40), or 3 or lower (max = 12) on each subset of metaphors, or extremely short overall response time (under 15 min for the entire set of tasks).

Design, materials, and procedure

As in the previous studies, participants first completed a short form...
of the RPM, followed by the SST. This was followed by the Vocabulary subtest of the third version of the Wechsler Adult Intelligence Scale (WAIS-III), a standardized measure of crystallized intelligence consisting of 33 vocabulary items. As in the case of the RPM, we adapted this test for computer administration using SuperLab software. Responses were assessed using the official scoring manual (Wechsler, 1997).

Predicate-metaphor comprehension. The metaphors used in Study 3 were all in a predicate format (e.g., The violent image rattled in her head), where the verb (rattled) was the focus of the metaphorical interpretation. All items were drawn from a nonliterary set created and normed by Cardillo et al. (2010). To systematically vary item difficulty, we selected metaphors that varied in familiarity according to the norms provided by Cardillo et al. To closely match metaphors in cognitive complexity across levels of familiarity, we chose all items from among a subset in which the verb was auditory in nature. To ensure that all metaphors were high in goodness, we restricted selection to those with a figurativeness rating of at least 4.5 (comparable to the goodness ratings used to select items from the norms of Katz et al., 1988, in Studies 1–2). Among the candidate items that satisfied the above requirements, we selected the 12 metaphors rated highest and the 12 rated lowest in familiarity, as normed by Cardillo et al.

Metaphor comprehension was assessed using a multiple-choice test that required selection of the best metaphorical interpretation from among three options. Options were developed by discussion among authors and with the help of independent raters. Examples of familiar and unfamiliar predicate metaphors and choice options are provided in Table 7.

For each task, stimuli were displayed on a computer screen and participant responses were recorded. Participants were given instructions for each task separately, immediately prior to the task itself. In the first three tasks (RPM, SST and WAIS-III Vocabulary) there was no time limit, but participants were instructed to complete the task as quickly as they could. For the metaphor comprehension task, the 24 metaphors were presented in a randomized order. Pilot work revealed that participants were close to ceiling in accuracy when allowed unrestricted time to select the correct option. Based on additional pilot testing, a deadline of 11 s to choose an option was imposed. Participants were informed of the time limit, and a warning beep sounded two seconds prior to the deadline. Response time to select an option was recorded.

Results and discussion

On the metaphor comprehension task, participants rarely failed to respond prior to the 11-s deadline (2% of trials for familiar metaphors, 4% for unfamiliar). A paired-samples t-test was conducted to compare comprehension scores (i.e., accuracy in selecting the metaphorical interpretation) for familiar versus unfamiliar predicate metaphors. Effect sizes for pairwise comparisons are reported using Cohen’s d. Comprehension scores were reliably higher for the familiar (M = 10.55, SD = 1.47) than the unfamiliar metaphors (M = 9.47, SD = 1.77); t (84) = 5.67, p < .001, d = .61. Response times on correct trials also revealed an advantage for the familiar (M = 5679 ms, SD = 978 ms) relative to the unfamiliar metaphors (M = 6778 ms, SD = 1044 ms); t (84) = 15.11, p < .001, d = 1.64. These results confirm that lesser familiarity yielded greater difficulty in comprehending predicate metaphors.

Performance on each individual-difference measure, as well as comprehension scores for each metaphor type, are summarized in Table 8. As in Studies 1 and 2, correlation and regression analyses were performed to assess the interrelationships among the RPM, SST, WAIS-III Vocabulary subtest, and metaphor comprehension scores (see Table 9A). RPM and SST scores were again reliably correlated with each other, r (85) = .39, p < .001. As expected, SST scores were more strongly correlated with WAIS-III Vocabulary scores, r (85) = .67, p < .001, supporting the interpretation of the SST as a measure of verbal crystallized intelligence. RPM and WAIS-III Vocabulary scores were also reliably correlated, though less strongly, r (85) = .42, p < .001.

Given that both the SST and WAIS-III Vocabulary appear to measure verbal crystallized intelligence, we standardized scores on all three individual-difference tests (RPM, SST, and WAIS-III Vocabulary), and used the mean of the SST and WAIS-III Vocabulary scores to form a composite measure of crystallized intelligence. As summarized in Table 9B, this composite crystallized score yielded significant raw and partial correlations with comprehension scores for both familiar and unfamiliar metaphors. In contrast, the RPM was not reliably correlated with comprehension for either metaphor type. For familiar metaphors the partial correlation obtained for the RPM was .01, p = .93; for unfamiliar metaphors it was .03, p = .78. A parallel analysis using response times as the dependent measure yielded the same pattern. The failure of the RPM to predict comprehension scores or response times, even for unfamiliar metaphors (which were demonstrably more difficult), suggests that sheer difficulty is not sufficient to trigger increased reliance on fluid intelligence to comprehend metaphors.

Table 7

Examples of familiar and unfamiliar predicate metaphors and their interpretations used in Study 3.

<table>
<thead>
<tr>
<th>Familiar predicate metaphors</th>
<th>Unfamiliar predicate metaphors</th>
</tr>
</thead>
<tbody>
<tr>
<td>The expression The violent image rattled in her head means:</td>
<td>The expression The flowers purred in the sunlight means:</td>
</tr>
<tr>
<td>(1) The violent image made a strong and persistent impression on her.</td>
<td>(1) The flowers seemed to be enjoying the sunlight.</td>
</tr>
<tr>
<td>(2) In her opinion the violent image was a masterpiece.</td>
<td>(2) There was a cat sitting among the flowers.</td>
</tr>
<tr>
<td>(3) She thought the violent image looked like a rattle being shaken.</td>
<td>(3) Some flowers emit cat-like sounds in sunlight.</td>
</tr>
<tr>
<td>The expression The dinner fizzled after the first course means:</td>
<td>The expression The overhead bin snorted at the large suitcase means:</td>
</tr>
<tr>
<td>(1) The first course was the worst dish of the dinner.</td>
<td>(1) The large suitcase fell out of the overhead bin.</td>
</tr>
<tr>
<td>(2) Starting from the second course, the dinner did not go well.</td>
<td>(2) The door of the overhead bin made a snorting sound.</td>
</tr>
<tr>
<td>(3) After the first course the dinner ended abruptly.</td>
<td>(3) The large suitcase would not fit easily into the overhead bin.</td>
</tr>
<tr>
<td>The expression His brain whirred in his skull means:</td>
<td>The expression The suede jacket yelped in the rain means:</td>
</tr>
<tr>
<td>(1) He had to undergo brain surgery.</td>
<td>(1) Whoever wore the suede jacket enjoyed the rain.</td>
</tr>
<tr>
<td>(2) Something was bothering him.</td>
<td>(2) The rain was likely to damage the suede jacket.</td>
</tr>
<tr>
<td>(3) He was absent-minded.</td>
<td>(3) The suede jacket was made to be worn in the rain.</td>
</tr>
</tbody>
</table>

* indicates the response scored as correct.
In three studies reported here we took an individual-differences approach to examine the cognitive factors that impact comprehension of metaphors. In particular, we sought to identify separable contributions of fluid intelligence (assessed by the Raven’s Progressive Matrices) and verbal crystallized intelligence (assessed by a new Semantic Similarities Test, and in Study 3 by the WAIS-III Vocabulary subtest). Based on prior work on the cognitive and neural mechanisms underlying analogical reasoning and conceptual combination, the former process appears to be more closely linked to fluid intelligence and the latter to crystallized intelligence. Thus, the observed pattern of individual differences may shed light on the longstanding question of whether metaphor comprehension is more dependent on analogical reasoning or on conceptual combination, as well as whether the preferred strategy varies across different types of metaphors.

Studies 1 and 2 examined comprehension of metaphors presented in a proportional format, in which nouns undergo metaphorical meaning shifts. We compared metaphors derived from literary sources, taken from a set collected and normed by Kaz et al. (1988), with metaphors in similar syntactic forms derived from nonliterary sources (i.e., constructed by metaphor researchers). Based on extensive quantitative analyses (Jacobs & Kinder, 2017, 2018), literary metaphors rated high in goodness (the type we selected for our studies) have a number of qualities, such as high surprisal and low source-target similarity, which contribute to their greater cognitive complexity. Both fluid intelligence (assessed by the RPM) and crystallized intelligence (assessed by the SST) yielded reliable and separable correlations with comprehension of literary metaphors. The SST also had a robust correlation with comprehension, for which the predictive power of the RPM was weak (Study 1) or unreliable (Study 2).

The weak correlation observed for the RPM in Study 1 for nonliterary predicate metaphors (where the focal word is a verb rather than a noun) that varied in familiarity, while holding cognitive complexity constant (by selecting familiar and unfamiliar metaphors using semantically-similar verbs related to audition). In addition to the RPM and SST, we administered the WAIS-III Vocabulary subtest, an established measure of crystallized intelligence. The latter two tests were highly correlated with one another, and hence their scores were combined to create a composite crystallized intelligence score. This measure reliably predicted metaphor comprehension (as well as response times) for both familiar and unfamiliar predicate metaphors. In contrast, the RPM was not a reliable predictor for either type.

Implications for models of metaphor comprehension

Given the strong association between the RPM and measures of analogical reasoning (Snow et al., 1984), the relative weakness of the connection between RPM scores and comprehension of simple metaphors casts further doubt on the hypothesis that complex analogical reasoning is necessary to understand such metaphors (Holyoak & Stamenković, 2018). Moreover, the finding in Study 3 that the RPM does not predict ease of comprehension even for unfamiliar (and more difficult) metaphors runs counter to the hypothesis that analogical reasoning is necessary to comprehend novel metaphors (Bowdle & Gentner, 2005). Similarly, in a neuroimaging study of the effect of novelty, Cardillo et al. (2012) were unable to detect greater involvement of brain areas related to analogy on the first encounter with a novel metaphor.

Our results are in accord with those of Chiappe and Chiappe (2007), who found evidence that both fluid and crystallized intelligence affect metaphor comprehension, with crystallized intelligence being the more potent factor (at least for simpler metaphors). In the present study, the factor that seemed to distinguish metaphors with a stronger link to analogical reasoning (i.e., a stronger correlation with RPM scores) was not novelty (as proposed by Bowdle & Gentner, 2005), but rather high cognitive complexity. Analogical reasoning may be required to comprehend more complex literary metaphors (consistent with the suggestions of Glucksberg & Haught, 2006, and Kintsch, 2000).

The joint influence of fluid and crystallized intelligence in comprehending metaphors, particularly those that are cognitively demanding, suggests that people may integrate multiple reasoning processes when dealing with metaphors. Processing strategies may change over the course of cognitive development and with the growth and refinement of lexical semantic representations. For example, Carriedo et al. (2016) found that the dependency of metaphor comprehension on executive functions declined between adolescents and young adults. Similarly, in a neuroimaging study, Prat et al. (2012) found that for adults, reading experience (likely to be linked to vocabulary growth and crystallized intelligence) was more strongly related to neural efficiency of metaphor comprehension than was working-memory capacity. To the extent that reading experience causes metaphor comprehension to become relatively more dependent on crystallized than on fluid intelligence, we would expect metaphor comprehension to become less susceptible to age-related declines in fluid intelligence. Indeed, whereas older adults exhibit deficits in solving formal analogy problems (Viskontas et al., 2004), at least some aspects of metaphor processing appear to be preserved in older individuals (Newcombe & Glucksberg, 2002).

Directions for future research

Metaphor theorists have typically viewed analogy and conceptual combination as rival accounts. However, an intriguing possibility that warrants further investigation is that analogical reasoning and conceptual combination may operate together in processing more complex metaphors. Conceptual combination operates on featural representations of a pair of individual words, merging them in a constrained fashion to create a new representation (Kintsch, 2000, 2001). If
analogical mapping is performed on a complex metaphor, the process will output paired source-target concepts (often corresponding to lexicalized word meanings). Each individual mapping will establish what has more generally been termed a coupling between words (Levin, 1962)—links based on extrasyntactic cues (which can also include phonological cues such as alliteration or rhyme). These mapped elements could then be fed through a process of conceptual combination to create a context-specific semantic representation. This kind of integrated comprehension process has been termed analogical resonance (Holyoak & Stamenković, 2018). The couplings created by analogy invite comparisons, which cause word meanings to “resonate” and modify each other. Analogical resonance could underlie poetic effects such as personification (e.g., “The sky weeps” suggests that nature can express a human emotion). This type of subtle meaning adjustment based on the active integration of semantic knowledge is consistent with the longstanding view that metaphor involves the “interanimation of words” (Richards, 1936).

Future research should delve deeper into the comprehension of literary metaphors. The complexities they pose (including emotional as well as strictly cognitive effects) will require integrating behavioral studies with neural and computational investigations (an approach dubbed neurocognitive poetics by Jacobs, 2015; see also Holyoak, 2019). Metaphors can be expressed using a wide range of syntactic forms (e.g., Brooke-Rose, 1958; Cardillo et al., 2010), and future studies should examine how the form of linguistic expressions impacts metaphor comprehension. In addition, more research is required to examine the impact on metaphor comprehension of providing a larger pragmatic or linguistic context (e.g., Gibbs & Gerrig, 1989; Ortony, Schallert, Reynolds, & Antos, 1978; Shinjo & Myers, 1987). Finally, more studies should investigate the production as well as comprehension of metaphors (e.g., Chiappe & Chiappe, 2007; Pierce & Chiappe, 2008). The importance of psychological work on metaphor can be expressed by one (adapted from a book title; Handl & Schmid, 2011): metaphor provides a window through which language reveals the human mind.

Acknowledgments

Preparation of this paper was supported by two grants to Dušan Stamenković: Fulbright Visiting Scholar Grant (PS00232724), and a project grant from the Ministry of Education, Science, and Technological Development of the Republic of Serbia (179013); and by NSF Grant BCS-1827374 to Keith Holyoak. A preliminary report of some of this work was presented at the 2018 conference of the Cognitive Science Society. We would like to thank our colleagues and research assistants who helped us in this venture: Airom Bleicher, Vladimir Figar, Lucia Harley, Alexa Hernandez, Kimberly Park, Anshu Patel, Mercan Petek Kuscu, Cristian Ramos, Jocelyn Margarita Reyes, Justin Shin, Angus Chung Hin Tse, Yasemin Yahni, and Jiawen Yu. We are also very grateful to Peter Gordon for guidance in selecting measures of crystalized intelligence, and to Eileen Cardillo for providing us with the full stimuli lists from Cardillo et al. (2010, 2017).

Appendix A

Semantic Similarities Test

For example: “How are a chair and a sofa similar to one another?”

(ANSWER: Both are types of furniture.)

or: “How are a turtle and a tank similar to one another?”

(ANSWER: Both have a form of armor.)

Semantic Similarities Test (scoring key)

(1) bird – airplane (2 pts = fly; 1 pt = both have wings, can be seen in the sky)
(2) sword – pistol (2 pts = weapons; 1 pt = dangerous, both have a handle, can do damage)
(3) orange – ball (2 pts = round, sphere; 1 pt = circle, endless, similar shape)
(4) sun – lightbulb (2 pts = emit/give/provide light, illuminate, source of light; 1 pt = bright, shiny)
(5) paper – leaf (2 pts = flat/thin sheet, plant/tree product; 1 pt = can be torn, can wrap things, light weight, fragile)
(6) peak – needle (2 pts = pointed tip, pointy/pointed, convex; 1 pt = sharp, stick-like, can poke)
(7) road – river (2 pts = transportation paths, pathways, can travel/ride on them; 1 pt = both flow, continuous, go for a long stretch, long and narrow, lead somewhere)
(8) love – drug (2 pts = addictive, affect brain/thinking, impair judgment; 1 pt = toxic, intoxicating, alter a person, affect actions, give adrenaline, make you do irrational things, provide pleasure)
(9) mountain – obstacle (2 pts = have to/difficult to overcome, impediments/barriers to progress, get in the way; 1 pt = take effort, difficult)
(10) circle – necklace (2 pts = round, closed loop, circular, round, ring-like, enclosed; 1 pt = similar shape, never ending, go around something, infinite, have an empty space in the middle)
(11) loneliness – desert (2 pts = emptiness, lack of people, desolate, isolation; 1 pt = barren, drive someone crazy, boring, vast, sad)
(12) riddle – labyrinth (2 pts = puzzle, hard to find path/solution, can be solved; 1 pt = complex, challenging, confusing, tricky, mysterious)
(13) time – river (2 pts = flow in one direction, always passing/moving towards/forward, flow (continuously), keep/constantly moving; 1 pt = continuous, cannot be stopped, never ending, running, run)

(14) corporation – tree (2 pts=hierarchical/bottom-up structure, hierarchy, branching; 1pt=both grow, have a strong base/foundation, start of)
(15) tavern – church (2 pts=public building, building where people gather/congregate/meet/convene; 1pt=building, structure, shelter, both offer solace/comfort/safety)
(16) theory – building (2 pts=organized structures, include framework, have solid foundations, have to be constructed; 1pt=encompass smaller parts, can be built upon, complex, it takes time to develop them, designed by humans, supported by other things, originate from an idea)
(17) diamond–snowflake (2pts=crystalline structure, multi-facetted, contain repeated geometric patterns; 1pt=sparkly, shiny, unique, complex, translucent, delicate, products of nature)
(18) memory – prison (2 pts=confining, difficult to escape, limiting, hold captive; 1pt=trap, both store/hold entities, lead to stress)
(19) key – answer (2 pts=achieve goals, open up new possibilities/discoveries; 1pt=both solve a problem, solutions, provide access/means to an end, unlocks)
(20) marriage – alloy (2 pts=blending/melding/bond/fusion/amalgamation/combination of two elements, two elements coming together, stable union; 1pt=combination (and alike w/o two things/elements), malleable, fuse, bonds)

B. Supplementary material

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.jml.2018.12.003.

References

