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Computational models of analogy have assumed that the strength of an inductive inference about the
target is based directly on similarity of the analogs and in particular on shared higher order relations. In
contrast, work in philosophy of science suggests that analogical inference is also guided by causal models
of the source and target. In 3 experiments, the authors explored the possibility that people may use causal
models to assess the strength of analogical inferences. Experiments 1–2 showed that reducing analogical
overlap by eliminating a shared causal relation (a preventive cause present in the source) from the target
increased inductive strength even though it decreased similarity of the analogs. These findings were
extended in Experiment 3 to cross-domain analogical inferences based on correspondences between
higher order causal relations. Analogical inference appears to be mediated by building and then running
a causal model. The implications of the present findings for theories of both analogy and causal inference
are discussed.
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In everyday life, people often face uncertainty, which permeates
such diverse situations as meeting a new person, solving a novel
math problem, or resolving a foreign policy crisis. To reduce
uncertainty about a novel target situation, people frequently make
analogical inferences on the basis of similar source situations they
experienced in the past. When a source includes properties that the
unfamiliar target initially lacks, any of these missing properties in
the target can become a candidate for analogical inference. Yet
people do not draw all possible inferences. For example, consider
the earth as a source analog for inferring properties of the moon.
It seems more likely the resulting analogy will lead to the inference
that the moon may contain iron deposits than that the moon has a
system of freeways, even though the earth contains iron deposits
and also has freeways. In general, inductive inferences seem to be
guided by certain general constraints that allow people to make
analogical inferences selectively (Holland, Holyoak, Nisbett, &
Thagard, 1986). However, the precise nature of these constraints
remains to be determined.

Similarity and Structure as Inductive Constraints

There is strong evidence that people are more likely to draw
confident inferences when they perceive a source and a target to be

similar. According to the contrast model of similarity (Tversky,
1977), common properties tend to increase perceived similarity of
two concepts whereas differences tend to reduce the perceived
similarity. Many studies of category-based induction have inves-
tigated the role of similarity in analogical inference, and most of
them have especially focused on similarity between premise and
conclusion categories. Several studies have shown that high sim-
ilarity between premise and conclusion categories promotes infer-
ence (Osherson, Smith, Wilkie, López, & Shafir, 1990; Rips, 1975;
Sloman, 1993). For example, if one is told that cats have a novel
biological property, this property is more likely to be ascribed to
dogs than to whales. Carey (1985) showed that premise–
conclusion similarity also influences inductions made by children.

Analogical inference differs from category-based induction in
that analogy is generally based on single tokens (i.e., individuals)
rather than categorical types. Nonetheless, similarity also plays an
important role in promoting analogical transfer. By manipulating
the number of shared properties of the source and target, Lassaline
(1996) demonstrated that both similarity and inductive strength of
analogical inferences increased with addition of shared properties.
Lassaline had people either make inductive strength judgments or
rate similarity on the basis of descriptions of two imaginary
animals, referred to simply as Animal A and Animal B. The number
of shared attributes and the number of shared relations between
Animal A and Animal B were manipulated. A shared relation was
defined as one possessed by both objects (source and target) but
that does not connect to the attribute to be inferred in the target. An
example is the following:

Animal A has X, Y, and Z.

Animal B has X, Y, and W.

For both animals, X causes Y.

Therefore, Animal B also has Z.

In this example, Animal A and Animal B have two shared
attributes, X and Y, and one shared relation, X causes Y. However,

Hee Seung Lee and Keith J. Holyoak, Department of Psychology,
University of California, Los Angeles.

Preparation of this article was supported by ONR Grant
N000140810186 to Keith Holyoak. Preliminary reports of portions of this
work were presented at the 29th (Nashville, TN, August 2007) and 30th
(Washington, DC, July 2008) Annual Conferences of the Cognitive Sci-
ence Society. We thank Paul Bartha and Patricia Cheng for helpful dis-
cussions. Miriam Bassok and Kevin Dunbar provided valuable comments
on a draft.

Correspondence concerning this article should be addressed to Hee
Seung Lee, Department of Psychology, University of California, Los
Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1563. E-mail:
heeseung@ucla.edu

Journal of Experimental Psychology: Copyright 2008 by the American Psychological Association
Learning, Memory, and Cognition
2008, Vol. 34, No. 5, 1111–1122

0278-7393/08/$12.00 DOI: 10.1037/a0012581

1111



Attribute X is not causally connected to the target property to be
inferred, Attribute Z.

The results showed that the more attributes were shared between
two animals, the stronger were inductive judgments as well as the
higher similarity was perceived to be. However, the number of
shared relations such as X causes Y (i.e., causal links that did not
relate to the target property) influenced only similarity ratings:
Similarity ratings increased with the addition of such a shared
relation whereas inductive strength judgments did not increase.
Lassaline’s (1996) findings thus demonstrated that similarity in-
fluences but does not solely determine the strength of analogical
inferences. (For evidence from studies of category-based induction
supporting a similar conclusion, see Rips, 1989; Smith & Sloman,
1994.)

Computational models of analogy have placed major emphasis
on the role of structural parallels between relations in the source
and target. The importance of formal structure provided the basis
for Gentner’s (1983) structure mapping theory, which has been
implemented in the structure mapping engine (SME; Falkenhainer,
Forbus, & Gentner, 1989). Gentner distinguished between first-
order relations, which take objects as arguments (e.g., “The dog is
bigger than the cat”) and higher order relations, which include
propositions as arguments (e.g., “Because the dog is bigger than
the cat, the cat ran away from the dog”). Gentner argued that
higher order relations (which notably include cause as a special
case) are more important for analogical inference than are first-
order relations. The priority of higher order relations is due to what
she termed the systematicity principle, which hypothesizes a pref-
erence for inferences based on predicates having many mutually
interconnecting relationships. In SME, a structurally consistent set
of potential mappings and candidate inferences (termed a Gmap)
receives a structural evaluation score, which increases with the
number of matching higher order relations. Those candidate infer-
ences associated with the Gmap receiving the highest evaluation
score are transferred to the target analog. SME thus predicts that
analogical inferences will be stronger when supported by a greater
number of matches between higher order relations.

In addition to SME, other computational models of analogical
inference, such as the analogical constraint mapping engine
(ACME; Holyoak & Thagard, 1989) and learning and inference
with schemas and analogies (LISA; Hummel & Holyoak, 1997,
2003) incorporate similar relation-based constraints. Like SME,
these models generate candidate inferences using variants of a
procedure termed copy with substitution and generation (CWSG;
Holyoak, Novick, & Melz, 1994), in which inferences about the
target are constructed directly from the mapping between source
and target relations by enforcing structural consistency. In all of
these models, matching higher order relations (including cause)
increase the evidence for analogical correspondences and hence
indirectly support inferences.

Causal Knowledge as a Basic Constraint on
Analogical Inference

A central issue in understanding constraints on analogical infer-
ence is whether causal relations have some special status by virtue
of the fact that causes actually produce (or sometimes prevent)
their effects or whether causal relations simply operate as special
cases of higher order relations, defined by the formal properties of

predicate-argument structures. At one extreme, the systematicity
principle explicitly eschews any role for the meaning of relations
in guiding analogical reasoning: “The processing mechanism that
selects the initial candidate set of predicates to map attends only to
the structure of the knowledge representations for the two analogs,
and not to the content” (Gentner, 1983, p. 165). As noted above, in
SME, the structural evaluation scores for Gmaps are based on
mappings that include potential inferences computed by a CWSG
algorithm; thus inferences about the target, as well as mappings
between preexisting information about the two analogs, are di-
rectly determined by the systematicity principle.

In contrast, some theorists in philosophy of science (Hesse,
1966; Bartha, in press), artificial intelligence (Winston, 1980), and
psychology (Holyoak, 1985) have argued that analogical inference
is specifically constrained by causal understanding of the source
and target. Holyoak (1985) emphasized that causal knowledge is
the basis for pragmatic constraints on analogical inference rather
than simply structural constraints. He noted that in the case of
problem solving by analogy, “the goal is a reason for the solution
plan; the resources enable it; the constraints prevent alternative
plans; and the outcome is the result of executing the solution plan”
(Holyoak, 1985, p. 70). Once it is recognized that the ultimate goal
of analogical inference is to predict the presence or absence of
some outcome in the target, it is clear that a critical consideration
in analogical inference is how each factor influences the outcome
in the source domain. Causal relations play a central role in making
these determinations.

A number of studies have provided evidence for an important
role of causal relations in category-based induction. For example,
Sloman (1994, 1997) demonstrated that people are more willing to
accept an inductive conclusion when the premise and conclusion
categories share a causal explanation. He manipulated the presence
versus absence of shared causal explanations between premises
and conclusions using realistic materials such as the following:

1. Many ex-cons are hired as bodyguards.

Therefore, many war veterans are hired as bodyguards.

2. Many ex-cons are unemployed.

Therefore, many war veterans are unemployed.

The premise and conclusion in Situation 1 share a common
causal explanation (both ex-cons and war veterans are experienced
fighters), whereas those in Situation 2 do not share any obvious
causal explanation. Sloman found that people were more confident
of the conclusion for arguments such as Situation 1 than for those
such as Situation 2.

In another study of category-based generalizations, Rehder
(2006) showed that such generalizations are preferentially guided
by causal relations, such that standard effects of typicality, diver-
sity, and similarity itself are eliminated when a causal relation is
present. However, in Rehder’s experiments, the single causal re-
lation, when present, was also the sole higher order relation. Given
this inherent confounding, Rehder’s findings (as well as similar
results reported by Read, 1984) can be interpreted as evidence for
the importance of higher order relations rather than of causal
relations per se and hence are broadly consistent with Gentner’s
(1983) systematicity principle. However, other experimental evi-
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dence supports the general claim that category-based inductive
inferences are based on causal models (e.g., Ahn, 1999; Lien &
Cheng, 2000; Rehder & Burnett, 2005; see Rehder, 2007). In
addition, recent theoretical work on category-based generalization
has focused on the importance of causal knowledge (Tenenbaum,
Kemp, & Shafto, 2007).

Experimental evidence also suggests that causal relations guide
analogical transfer. Using complex stories, Spellman and Holyoak
(1996) showed that when the source–target mapping was ambig-
uous by structural criteria, those relations causally relevant to the
reasoner’s goal determined the preferred mapping and inferences
about the target. Using the imaginary-animal materials described
above, Lassaline (1996) demonstrated that when a causal relation
in the source is unmapped and the causal property is shared by the
source and target, then people are likely to infer the corresponding
effect in the target. For example:

Animal A has properties X, W, and Z.

For Animal A, X causes Z.

Animal B has X, W, and Y.

Therefore, Animal B also has Z.

Here Property X is the causal property shared by Animal A and
Animal B, leading to the inference that Effect Z found in Animal
A will also be present in the target, Animal B.

Moreover, Lassaline (1996) also demonstrated that people make
stronger inferences on the basis of the higher order relation,
“cause,” than on the basis of a noncausal relation, “temporally
prior to,” which appears to have the same formal structure. Thus
the same syntactic order of relations does not always yield the
same degree of inductive strength about the target property to be
inferred. Lassaline’s findings have been simulated using the LISA
model (Hummel & Holyoak, 2003), which assigns greater atten-
tional resources to causal relations during its sequential mapping
process.

Causal Models as Inference Engines

Although some computational models of analogical inference
postulate a special role for causal relations in guiding analogical
processing (Hummel & Holyoak, 1997, 2003), models of analogy
have not been closely connected to models of human causal
reasoning. In the present article, we explore the possibility that
people may use causal models to guide analogical inference.
Graphical representations of causal links have been used exten-
sively in work on causal reasoning in philosophy (Reichenbach,
1956; Salmon, 1984), artificial intelligence (Pearl, 1988), and
psychology (Cheng, 1997; Griffiths & Tenenbaum, 2005; Wald-
mann & Holyoak, 1992). Causal models postulate that causes can
be either generative (making the effect happen) or preventive
(stopping the effect from happening; see Cheng, 1997; Lu, Yuille,
Liljeholm, Cheng, & Holyoak, 2006, in press). A generative cause
increases the probability of an outcome whereas a preventive cause
decreases the probability of the outcome. Because generative and
preventive causes exert their power in opposite directions, the
distinction between generative and preventive causes is crucial in
predicting the outcome.

In philosophy of science, Bartha (in press) has recently extended
Hesse’s (1966) work on the role of causal models in analogy.

Bartha distinguished between contributing causes (generative) and
counteracting causes (preventive) in assessing the normative
strength of arguments by analogy. He pointed out that the absence
of a correspondence in the target for a counteracting cause present
in the source might actually strengthen an argument from analogy.
For example, iron deposits are still present on earth despite the fact
that humans have been extracting iron ore in mining operations for
centuries. Taking the earth as a source analog for the moon, the
fact that no mining operations have so far been conducted on the
moon (a mismatch with a property of the source) seems to
strengthen the analogical inference that iron deposits remain to be
found on the moon.

Figure 1 shows how people might reach different inductive
conclusions about the probability of a possible target property on
the basis of the presence or absence of a preventive cause in the
target. The source has four properties: G1, G2, P1, and E. Properties
G1 and G2 are generative causes that increase the probability of
Outcome E occurring, whereas Property P1 is a preventive cause
that decreases the probability of Outcome E occurring. Outcome E
thus occurs in the source despite the countervailing influence of P1.
Target 1 has three properties, G1, G2, and P1, all shared with the
source, whereas Target 2 has only two properties, G1 and G2 (i.e.,
the preventive property P1 is absent in Target 2). Given the same
source, which of Target 1 and Target 2 will yield a stronger
analogical inference about the presence of Outcome E?

All extant computational models of analogical inference, includ-
ing SME (Falkenhainer et al., 1989), ACME (Holyoak & Thagard,
1989), and LISA (Hummel & Holyoak, 2003), predict that people
will draw a stronger analogical inference about Target 1 than
Target 2, because Target 1 shares more properties with the source
than does Target 2. In particular, if one assumes that the causal
connections represented by arrows constitute higher order rela-
tions, Target 1 shares three higher order relations with the source,
whereas Target 2 shares only two higher order relations. Because
both similarity and structural constraints on mapping solely con-
cern correspondences of properties and relations between the
source and target, models based on only these constraints predict
that Target 1, which has more correspondences between the source

Figure 1. Example of use of causal models in analogical inference. G, P,
and E represent a generative cause, a preventive cause, and an effect,
respectively.
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and target, will yield a stronger analogical inference than Target 2,
which has fewer.

However, if people use causal models in analogical inference,
then Target 2 will actually yield greater inductive strength than
Target 1. Although Target 1 is more similar to the source than is
Target 2, Target 1 includes the preventive cause, P1, and this
preventive cause will decrease the probability of Outcome E. In
contrast, even though Target 2 is less similar to the source than is
Target 1, because it includes only generative causes, G1 and G2,
and not the preventive cause, P1, the probability of Outcome E will
be increased. Under the causal-model view, a CWSG algorithm
may propose Outcome E; however, the strength of the inference
will be determined not simply by CWSG alone but also by running
the resulting causal model of the target to assess the probability
that the causal factors would generate (or prevent) the proposed
outcome. We performed three experiments to test these competing
predictions.

Experiment 1

In Experiment 1, we investigated the effect of a preventive
causal relation on analogical inference, using a paradigm adapted
from that of Lassaline (1996).

Method

Participants. Sixty undergraduates at the University of Cali-
fornia, Los Angeles (UCLA), received course credit for participat-
ing in the experiment. Half of the participants provided inductive
strength judgments, and the other half provided similarity ratings.

Design and materials. Participants read a description of two
imaginary animals referred to as Animal A and Animal B, and then
they evaluated either the inductive strength of an analogical infer-
ence or the similarity of the two animals. The source analog
(Animal A) always had three causal properties related to one effect
property, E, consistent with a common-effect model (Waldmann &
Holyoak, 1992). Across the arguments, the number of shared
properties and the presence or absence of a preventive relation
connecting one shared property to a nonshared property were
manipulated. There were two independent variables. The first
independent variable was the presence versus absence of the
preventive property. In the generative-only condition, the source
did not have the preventive property but instead had three gener-
ative properties. In the generative � preventive condition, the
source had two generative properties and one preventive property.
Each generative property tended to produce E whereas the preven-
tive property tended to prevent E. People appear to have prior
beliefs that genuine causes have high strength (Lu et al., 2006, in
press) and by default may interpret causes as deterministic. How-
ever, in general, causes can be probabilistic (Cheng, 1997). Ac-
cordingly, the phrase “tends to” was included in each causal
premise to make it clear that all causes were probabilistic.1

The second independent variable was argument type. The gen-
erative � preventive condition included three argument types:
G1G2P, G1G2, and G1P, where G and P represent a generative
cause and a preventive cause, respectively. In the generative-only
condition, because there was no preventive property, only two
argument types were possible: G1G2G3 and G1G2 (counterbal-
anced with G1G3). An example of argument type G1G2P is the
following:

Animal A has dry flaky skin, muscular forearms, a weak immune
system, and blocked oil glands.

For Animal A, dry flaky skin tends to PRODUCE blocked oil glands;
muscular forearms tend to PRODUCE blocked oil glands; a weak
immune system tends to PREVENT blocked oil glands.

Animal B has dry flaky skin, muscular forearms, and a weak immune
system.

Therefore, Animal B also has blocked oil glands.

For similarity ratings, the same argument lists were used, but
each argument included only the premises without the conclusion
sentence.

A causal-model analysis predicts that in the generative-only
condition, similarity ratings and inductive strength judgments will
follow the same pattern: The G1G2G3 argument will have higher
perceived similarity and higher inductive strength than the G1G2

argument. However, in the generative � preventive condition,
similarity ratings and inductive strength judgments will follow
different patterns. The G1G2P argument will have higher perceived
similarity than the G1G2 and G1P arguments, but the G1G2 argu-
ment will have higher inductive strength than the G1G2P or G1P
arguments. In addition, the G1G2P argument will have higher
inductive strength than the G1P argument. In contrast, all extant
computational models of analogy predict that similarity and induc-
tive strength will be positively correlated regardless of the content
of the causal relations.

Six property lists were created and six sets were constructed by
counterbalancing which property list was assigned to each condi-
tion and argument type. Each participant (in both inference and
similarity-rating conditions) was given a booklet consisting of six
descriptions of animal pairs, referred to as Animal A and Animal B.
Three of the six items were G1G2G3, G1G2, and G1G3 arguments
(generative-only condition), and the other three items were G1G2P,
G1G2, and G1P arguments (generative � preventive condition).
Within each set, the order of items was randomized for each
participant.

Procedure. Participants were tested individually in a small
testing room. Instructions and experimental trials were self-paced
and there was no time limit. Both groups of participants (similarity
rating and inductive strength judgment groups) were given a
booklet that included instructions and six arguments. Participants
were instructed that they were to assume all of the information given
in the descriptions was true. Each participant judged either how likely
a conclusion would be true or how similar the pairs of animals were
on the basis of the information given in the description.

For the group making inductive strength judgments, the task
after reading descriptions of Animal A and Animal B (the premise
statements) was to judge how likely it was that Animal B has a
certain property (the conclusion statement). These judgments were
solicited using a counterfactual frequency-based scale adapted
from the measure of causal strength introduced by Buehner,
Cheng, and Clifford (2003). In making their judgments, partici-
pants were asked to imagine there were 100 examples of Animal
B and to estimate how many out of these 100 cases would have the

1 Results similar to those observed in the present Experiment 1 were
obtained in an experiment in which the phrase “tends to” was omitted (Lee
& Holyoak, 2007, Experiment 1).
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property stated as the conclusion, assigning a number between 0
and 100 for each item.

For the group making similarity ratings, participants were given
only premise statements with descriptions of the two animals, not
a conclusion statement. They evaluated how similar Animal A and
Animal B were on the basis of the descriptions they read. For each
description of two animals, a similarity rating scale from 0 to 10
was provided. Under the numbers 0 and 10, the words totally
different and identical were written, respectively. Participants were
asked to try to use the entire scale but to feel free to use any
number as often as they felt it was appropriate.

Results and Discussion

Similarity ratings and inductive strength judgments were ana-
lyzed separately. For the generative-only condition, the G1G2 and
G1G3 argument types were literally the same (differing only by
counterbalancing), so these data were collapsed together for both
similarity ratings and inductive strength judgments. The results of
similarity ratings are shown in Figure 2 (top). In the generative-
only condition, the mean similarity ratings for analogies based on
the G1G2G3 and G1G2 argument types were 8.17 and 6.62, respec-
tively. These mean similarity ratings for G1G2G3 and G1G2 argu-
ments were reliably different, t(29) � 4.44, p � .001, such that

perceived similarity increased by 1.55 points from two shared
attributes to three shared attributes.

In the generative � preventive condition, the mean similarity
ratings showed a pattern similar to that observed in the generative-
only condition. The mean similarity ratings for G1G2P, G1G2, and
G1P argument types were 7.87, 5.73, and 3.90, respectively. A
one-way analysis of variance (ANOVA) was performed to exam-
ine the differences among the three argument types, G1G2P, G1G2,
and G1P. This ANOVA revealed a significant effect of argument
type, F(2, 58) � 29.79, MSE � 3.97, p � .001, such that perceived
similarity ratings increased from two shared properties to three
shared properties. Also, even though G1G2 and G1P arguments
have the same number of shared properties (two), G1G2 arguments
were rated as having higher similarity than G1P arguments, t(29) �
3.92, p � .001.

The results for inductive strength judgments are shown in Fig-
ure 2 (bottom). For inductive strength judgments, the generative-
only condition and the generative � preventive condition showed
different patterns. In the generative-only condition, the mean in-
ductive strength judgments for G1G2G3 and G1G2 arguments dif-
fered, t(29) � 3.29, p � .01, such that inductive strength increased
by 12 points from two shared attributes to three shared attributes.
The mean inductive strength judgments of G1G2G3 and G1G2

arguments were 90.27 and 78.25, respectively.
However, in the generative � preventive condition, the results

for inductive strength judgments showed a different pattern. The
mean inductive strength judgments for G1G2P, G1G2, and G1P
arguments were 69.4, 86.6, and 42.5, respectively. A one-way
ANOVA was performed to examine the differences among the
three argument types, G1G2P, G1G2, and G1P. This analysis re-
vealed a significant effect of argument type, F(2, 58) � 37.03,
MSE � 400.35, p � .001. Unlike the pattern for similarity ratings,
Argument G1G2 was rated as having higher inductive strength than
either Argument G1G2P, t(29) � 4.87, p � .001, or Argument G1P,
t(29) � 8.13, p � .001. Also, Argument G1G2P was rated as having
higher inductive strength than Argument G1P, t(29) � 3.84, p � .01.

To summarize, in Experiment 1, similarity ratings generally
increased with the number of shared properties, but inductive
strength judgments were reduced by the presence of a shared
preventive property. Similarity ratings increased with the addition
of shared attributes between the source and target in both the
generative-only and the generative � preventive conditions. In the
generative � preventive condition, however, analogies based on
argument type G1G2 were rated as having higher similarity than
were those based on argument type G1P, even though the number
of shared attributes was the same. One possible explanation of this
difference is that people may have sometimes made use of a causal
model in making similarity comparisons. In Argument G1G2,
because there are only generative factors, people may have con-
sidered Effect E to be probable and therefore inferred that the
target would actually share three properties with the source: G1,
G2, and inferred outcome E. In contrast, because Argument G1P
includes a preventive property, people may have considered the
probability of Effect E to be low, thus inferring that the target
would have only two shared attributes: G1 and P.

The results for inductive strength judgments showed a different
pattern from those of similarity ratings only in the generative �
preventive condition, not in the generative-only condition. In the
generative-only condition, Argument G1G2G3 had higher induc-

Figure 2. Mean similarity ratings (top) and mean inductive strength
judgments (bottom) for each argument type in the generative-only and
generative � preventive conditions of Experiment 1. Error bars represent
1 standard error of the mean.
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tive strength than did Argument G1G2, the same pattern as for
similarity ratings. This result confirms that people consider the
number of generative causes when inferring the presence of the
outcome in the target. However, in the generative � preventive
condition, Argument G1G2P had lower inductive strength than
Argument G1G2. If people just focused on the number of corre-
spondences between the source and the target, as the similarity and
structural views assume, Argument G1G2P should have yielded
higher inductive strength than Argument G1G2. Finally (and not
surprisingly), Argument G1G2P had higher inductive strength than
Argument G1P. Thus even when a preventive cause is present,
people also consider the number of generative causes.

Overall, the results of Experiment 1 suggest that people use
causal models to guide analogical inferences and do not base their
inferences purely on formal correspondences between the two
analogs. People appear to consider not only the sheer presence of
correspondences between the source and target but also whether
the shared causal relations are generative or preventive.

Experiment 2

Experiment 2 was designed to investigate whether people also
use causal models during analogical inference when the source
includes more complex systems of higher order relations. In Ex-
periment 1, one causal property was always connected to one
effect property attributed to the same entity. For example, Animal
A might have Properties X and Y, with X causing Y. In this type
of case, the causally related properties (X and Y) can be viewed as
features of a single entity (Animal A). Thus although causal
relations are often described as higher order relations, it could be
argued that the particular causal relations used in Experiment 1
held between simple attributes of a single entity rather than prop-
ositions and hence were actually first-order relations as defined by
Gentner (1983).

To ensure that our basic results continue to hold when the causal
relations in our inference task are clearly higher order, we devel-
oped a new set of materials in which cause–effect relations held
between relations connecting multiple objects. Schematically, the
form of the causal relations we used in Experiment 2 was [A is
greater than B] causes [E]. In this example, there are three objects,
A, B, and E. Objects A and B enter into a first-order relation (i.e.,
greater than). This first-order relation between Objects A and B is
causally connected to Effect E. This structure of the causal rela-
tions clearly meets Gentner’s (1983) definition of a higher order
relation, as the causal relation takes a proposition (e.g., A is greater
than B) as an argument. By investigating whether people still use
causal models in evaluating analogical inferences on the basis of
this more complex type of structure, it will be possible to verify the
general role of causal models as a major inductive constraint on
analogical inference.

Method

Participants. Sixty undergraduate UCLA students received
course credit for participating in the experiment. Half of the
participants provided inductive strength judgments, and the other
half provided similarity ratings.

Materials and procedure. Participants read a description of a
fanciful “newly discovered species of bird,” which specified three

causal relations between the relative amount of hormones, en-
zymes, and neurotransmitters (causes) and an abnormal character-
istic (effect) found in the bird. The relative amount of two sub-
stances of each of two types was described as tending to produce
the abnormal characteristic, and the relative amount of two sub-
stances of the third type was described as tending to prevent the
abnormal characteristic. An example description is the following:

[Hormone A � Hormone B] tends to PRODUCE blocked oil glands.

[Neurotransmitter X � Neurotransmitter Z] tends to PRODUCE
blocked oil glands.

[Enzyme P � Enzyme Q] tends to PREVENT blocked oil glands.

After reading the description of findings for the first described
bird, participants studied reports about the relative amounts of
hormones, neurotransmitters, and enzymes found in a second bird
of the same species. Four different types of arguments were
created: G1G2X, G1G2P, G1G2, and G1P. As in Experiment 1, G
and P represent generative and preventive causes, respectively.
The factor X was constructed by switching the order of objects in
the P relation; for example, in the above example, X was [Enzyme
Q � Enzyme P]. In Experiment 2, unlike Experiment 1, both G
and P represent first-order relations (greater than) between two
objects rather than properties of a single object.

Eight different descriptions of birds were created, and each
argument type was assigned to each description, creating 32 items
altogether. Of the total of 32 items available, 8 items were used to
create a booklet for each participant, 2 of each argument type
(G1G2X, G1G2P, G1G2, and G1P). This counterbalancing generated
four different sets of materials, thereby avoiding repeated use of the
same abnormal characteristic for an individual participant. Within
each set, the order of items was randomized for each participant.

The basic procedures were the same as in Experiment 1. For the
group making similarity judgments, the task was to rate how
similar the two birds are. For the group making inductive strength
judgments, the task was to judge how likely it was that a second
bird would have the abnormal characteristics described in the first
bird on the basis of the descriptions of the relative amounts of
hormones, neurotransmitters, and enzymes found in the two birds.
The scales used for each task were of the same basic form as those
used in Experiment 1.

Results and Discussion

The results for both similarity ratings and inductive strength
judgments are shown in Figure 3. Similarity ratings and inductive
strength judgments were analyzed separately. For each dependent
measure, a one-way ANOVA was performed with the four argument
types (G1G2X, G1G2P, G1G2, and G1P) as a within-subjects variable.

The mean similarity ratings of analogies based on G1G2X,
G1G2P, G1G2, and G1P arguments were 6.35, 8.73, 7.57, and 5.03,
respectively. These means were significantly different, F(3, 87) �
24.55, MSE � 3.09, p � .001. G1G2P arguments were rated as
having the highest similarity of the four argument types. G1G2P
arguments were rated as having higher similarity than those argu-
ments with fewer shared relations, either those excluding P (mean
of G1G2X and G1G2 arguments), t(29) � 3.91, p � .001, or those
excluding G (G1P arguments), t(29) � 8.50, p � .001. In addition,
G1G2 was rated as having higher similarity than G1G2X (where X
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was formed by reversing the relation P in the source), t(29) � 3.84,
p � .001.

The mean inductive strength judgments for G1G2X, G1G2P,
G1G2, and G1P arguments were 87.40, 69.83, 87.47, and 43.70,
respectively. The mean inductive strength judgments differed
across argument types, F(3, 87) � 75.17, MSE � 170.53, p �
.001, but showed a pattern different from that obtained for simi-
larity ratings. G1G2P was evaluated as having lower inductive
strength than the arguments that dropped preventive relations
(mean of G1G2X and G1G2 arguments), t(29) � 5.78, p � .001, but
as having higher inductive strength than the arguments that dropped
generative relations (G1P arguments), t(29) � 8.12, p � .001. Unlike
the pattern for similarity ratings, inductive strength judgments did not
differ for G1G2X and G1G2 arguments, t(29) � .02, p � .98.

To summarize, the results of Experiment 2 replicated the basic
findings of Experiment 1 using more complex causal structures
that ensured the causal relations were higher order, as defined by
Gentner (1983). First, similarity ratings increased with the addition
of shared relations, regardless of whether the relation was gener-
ative or preventive. G1G2P arguments had three shared relations
between the source and target, and analogies based on these
arguments were evaluated as having higher similarity than those
based on arguments that had two shared relations (G1G2X, G1G2,
and G1P). It should be noted that Argument G1G2X was rated as
having lower similarity than Argument G1G2. Even though Argu-
ments G1G2X and G1G2 had the same number of shared relations
between the source and target (i.e., two shared relations, G1 and
G2), X was not present in the source, so this relation constituted a
difference between the source and target, reducing the perceived
similarity. This result is consistent with the contrast model of
similarity (Tversky, 1977), in that shared relations increased per-
ceived similarity whereas a different relation reduced the per-
ceived similarity of the two analogs.

Second, the results for inductive strength judgments showed a
different pattern than that observed for similarity ratings. The
G1G2P arguments had higher inductive strength than the G1P
arguments (the same pattern as for similarity ratings) but had lower
inductive strength than the G1G2X and G1G2 arguments (the
opposite pattern obtained for similarity ratings). These results are
consistent with the findings from Experiment 1, confirming that
whereas the presence of a shared generative relation increases

inductive strength, the absence of a preventive relation increases
inductive strength.

In addition, unlike the results for similarity ratings, the G1G2X
and G1G2 arguments were evaluated as having equally high in-
ductive strength. In the similarity ratings, X might have been
interpreted as a difference between the source and target, so that
the presence of X reduced the similarity. In the inductive strength
task, however, X was not related to the effect property, so when a
participant was inferring the presence of the effect in the target, X
might have been interpreted as a neutral property. Accordingly, the
G1G2X and G1G2 arguments were viewed as equally strong be-
cause they involved the same shared causal relations, G1 and G2.

The findings from Experiment 2 confirm that people do not
simply focus on the number of correspondences between a source
and target; rather, they consider the meaning of causal relations
and, in particular, whether causes are generative or preventive. By
using materials involving causal relations at a higher level of
formal complexity, Experiment 2 shows that people use causal
models during analogical inference even when the source involves
complex higher order relations among multiple objects.

Experiment 3

In the previous experiments, we demonstrated that an analogical
inference could be actually strengthened by omitting rather than
including in the target a higher order relation (a preventive cause)
that is present in the source. One interpretive issue concerns
whether our findings directly concern analogical reasoning or
might somehow be the indirect result of category-based induction.
The close relationship between analogical induction (from indi-
vidual instances) and category-based induction (from types of
instances) suggests caution is warranted. In Experiments 1–2, we
manipulated features of animals in a source and target and as-
sumed that participants used analogical reasoning to infer a certain
missing property in the target animal on the basis of the properties
of the source animal (i.e., analogical inference from one instance
to another). However, it is possible that when reasoning about new
instances of the well-known category of animals, people actually
reasoned at the level of categories, essentially assuming that all
individuals of the same animal species share the same basic
biological characteristics. Given information about the source an-

Figure 3. Mean similarity ratings (left) and mean inductive strength judgments (right) for each argument type
in Experiment 2. Error bars represent 1 standard error of the mean.
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imal, people may have naturally projected its properties to the
category of the novel species and then in turn applied this cate-
gorical knowledge to make inferences about the target animal of
the same species (i.e., reasoning from a category to an instance).
For example, given a source animal with the structure G1G2P,
people may infer that these causal relations hold for all animals of
that species, in effect setting up a causal model for the species as
a whole rather than directly modeling the causal structure of the
target individual on the basis of the source.

If our findings are interpreted in terms of category-based induc-
tion, then our basic claims still hold at the category level: Cate-
gorical inferences appear to be based on causal models and hence
are sensitive to the distinction between generative and preventive
causes (cf. Ahn, 1999; Lien & Cheng, 2000; Rehder, 2006).
Nonetheless, we wished to establish that our findings in fact hold
for clear cases of analogical inference, even when category-based
induction based on a familiar category is inapplicable.

The materials used in Experiments 1–2 all involved within-
domain analogical transfer from one animal to another animal of
the same species. In contrast, the core examples of analogical
reasoning discussed in the literature involve long-distance, cross-
domain transfer between situations based on highly dissimilar
entities that nonetheless share relations. Canonical examples in-
clude the Rutherford–Bohr model of the atom as an analog of the
solar system (Gentner, 1983), the wave theory of sound derived
from the behavior of water waves (Holyoak & Thagard, 1995), and
the solution to a problem involving radiation therapy based on a
military strategy (Gick & Holyoak, 1980). In such cases, it is
difficult to claim that any preexisting category is available to allow
category-based induction. Rather, the reasoner must directly trans-
fer knowledge from the source in one domain to a target in another.
Accordingly, Experiment 3 was designed to examine whether
dropping a higher order relation (a preventive cause) present in the
source can increase cross-domain analogical transfer.

Method

Participants. Fifty-two undergraduate UCLA students re-
ceived course credit for participating in the experiment. Partici-
pants were randomly assigned to one of two conditions, G1G2P or
G1G2. Twenty-seven participants were assigned to the G1G2P
condition and 25 participants were assigned to the G1G2 condition.

Materials, design, and procedure. Two stories were created,
one serving as a source story and the other as a target story, based

on two different domains, chemistry and astronomy. A chemist’s
observations about three liquids and an astronomer’s observations
about three stars served as the source and target stories, respec-
tively. To ensure that people could not use their prior knowledge
of liquids or stars to make inferences, we made all of the liquids
and stars novel and imaginary.

Participants first read the source story:

A research chemist has recently discovered that if three liquid sub-
stances, Denitrogel, Oreor, and Tetosium, are mixed together, then a
chemical change sometimes occurs so that the molecules of Denitro-
gel and Tetosium bond together. With molecules of Oreor serving as
a catalyst, the molecules of Denitrogel and Tetosium attract each other
and the mixed liquid becomes very adhesive, finally changing into a
solid material. Through repeated experiments, the scientist has also
identified three main factors that determine whether or not the mixed
liquids change into a solid.

Following this cover story, three relational observations about the
liquids were listed, as summarized in Table 1. Two of the relations
tended to cause the effect, changing mixed liquids into a solid, and
one of the observations tended to prevent this effect. For example, the
fact that “Denitrogel is colder than Oreor” tended to cause formation
of a solid, whereas the fact that “The volume of Tetosium is greater
than the volume of Denitrogel” tended to prevent formation of a
solid. As in the materials used in Experiment 2, the causal relations
used in Experiment 3 were formally higher order relations.

After reading the source story, participants read an astronomer’s
observations about three stars:

An astronomer who reads about the chemist’s findings thinks it may
be possible that three stars, Acruxia, Errailel, and Castoriff, located in
a distant galaxy, behave in a way similar to the three liquids. The
theory is that gravitational attraction among all three stars could make
two of the stars move closer together, so that two stars finally fuse to
form a super-star. The three stars are close to each other and no other
stars have been found in that region of the galaxy.

Following this description of the astronomer’s hypothesis, two
or three facts about these stars were listed (see Table 1). All of
these facts were structurally parallel with the chemist’s findings.
Table 1 shows the correspondences between the two stories. The
corresponding relations across the two stories had varying degrees
of semantic overlap. The semantic similarities between relations in
the two stories (e.g., “being more turbulent” and “being subject to
more violent solar storms”) were intended to facilitate the process

Table 1
Schematic Structure of Analogies Used in Experiment 3: Correspondences Between the Chemist’s Observations About Three Liquids
and the Astronomer’s Observations About Three Stars

Structural element Source Target

Cover story Chemist’s observations about three liquids Astronomer’s observations about three stars
Generative cause (G1) Denitrogel is colder than Oreor Acruxia has lower temperature than Errailel
Generative cause (G2) Oreor is stirred vigorously so it is more

turbulent than Tetosium
Errailel is subject to more violent solar

storms than is Castoriff
Preventive cause (P1) The volume of Tetosium is greater than the

volume of Denitrogel
The diameter of Castoriff is wider than the

diameter of Acruxia
Effect Changing into a solid Forming a super-star
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of mapping the two analogs and identifying their relational corre-
spondences.

The experimental design included just two conditions, G1G2P
and G1G2. As in the previous experiments, G and P represent a
generative cause and a preventive cause, respectively. In the
G1G2P condition, two of the facts in the target were semantically
and structurally consistent with the corresponding causes of the
effect in the source, and one of the target facts was semantically
and structurally consistent with the preventive relation in the
source. In the G1G2 condition, there was no match in the target to
the preventive cause in the source. To prevent a blind mapping
between the source and target based on the order of listed facts, we
randomized the order of the facts for each participant.

After reading the two stories, the chemist’s liquid story and the
astronomer’s star story, two tasks were administered to all partic-
ipants. We did not collect ratings of similarity in Experiment 3, as
it is transparent that the analogs are more similar in the G1G2P
condition (three shared relations) than in the G1G2 condition (two
shared relations). We did, however, assess participants’ ability to
identify the relational correspondences between the two stories. In
this mapping task (always administered first), participants were asked
to identify which of the three stars (Acruxia, Errailel, or Castoriff)
corresponded most closely to each of the three liquids (Denitrogel,
Oreor, and Tetosium). This mapping task was intended to ensure that
participants read the two stories and to assess whether they could in
fact identify structural parallels between the source and the target (a
prerequisite for drawing sensible analogical inferences).

The second task involved drawing an analogical inference about
the astronomy problem on the basis of the source analog from the
domain of chemistry. Participants were asked to judge how likely
it was that two of the three stars would fuse to form a super-star.
To answer this question, they were told to assume that everything
in the descriptions was true and to focus on analogous relations
between the chemist’s observations and the astronomer’s observa-
tions. This inductive judgment was made using the same type of
frequency scale as was used in the previous experiments. Partici-
pants were told to imagine that the astronomer observes 100 cases and
to estimate in how many of these cases two of the three stars would
fuse to form a super-star, giving a number between 0 and 100.

Results and Discussion

If participants failed to correctly answer all three questions
about liquid and star correspondences, we coded their mapping
performance as incorrect. Six out of the 52 participants (4 in the
G1G2P condition and 2 in the G1G2 condition) gave incorrect
mappings. Because incorrect mappings could have led to errone-
ous analogical inferences, we first report analyses of inference data
excluding these participants. Mean inference judgments for G1G2

and G1G2P arguments (excluding data from participants who made
incorrect mappings) were 69.20 and 52.04, respectively (see Fig-
ure 4). These data were analyzed using an independent-samples t
test, which revealed a significant effect of argument type, t(44) �
2.59, p � .013. Even when inference data from participants who
gave incorrect mappings were included, the effect of argument
type remained reliable, t(50) � 2.20, p � .032.

The results of Experiment 3 thus confirm and extend the basic
finding obtained in the previous experiments: When a preventive
causal relation present in the source analog is absent from the

target, the strength of an inductive inference is correspondingly
increased. By demonstrating this effect with cross-domain analog-
ical transfer, the results of Experiment 3 make it clear that this
beneficial effect of reducing overlap of a higher order relation is
not solely attributable to category-based induction; rather, the
phenomenon is observed when people must base an inference
about a target analog directly on a single source analog.

General Discussion

In three experiments reported here, the inductive strength of
analogical arguments increased with the number of shared gener-
ative causes and decreased with the presence of a shared preven-
tive cause. At the same time, including a preventive cause and the
outcome in both analogs necessarily increased the overall match
between them (yielding higher rated similarity of the analogs in
Experiments 1–2). The positive effect of dropping a shared pre-
ventive relation was found both when the causal relations linked
properties of a single object (Experiment 1) and when they linked
relations between multiple objects (Experiments 2–3). In the latter
case, the preventive causal relation was clearly a higher order
relation in the formal sense defined by Gentner (1983). Moreover,
the effect was found not only for within-domain analogies (Ex-
periments 1–2) but also for cross-domain analogies (Experiment
3). Because cross-domain analogical transfer cannot be accounted
for by inferences based on preexisting categories (i.e., category-
based induction), our overall findings support the conclusion that
analogical inference involves using the source analog to guide
construction of a causal model of the target analog. Moreover,
given the close linkage between analogical and category-based
inferences, this basic conclusion applies to inductive inference
broadly, with analogy as an important special case.

In accord with the recent proposal of Bartha (in press), the
present experimental findings suggest that people use causal mod-
els when they draw analogical inferences. People are likely to first
evaluate whether the causal relations in the source are generative
or preventive. When mapped to the target, the resulting causal
model then provides the basis for inferring the likelihood of a
corresponding effect in the target. The presence of a generative

Figure 4. Mean inductive strength judgments for each argument type in
Experiment 3. Error bars represent 1 standard error of the mean.
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cause in the target increases the probability of occurrence of the
effect, whereas the presence of a preventive cause decreases the
probability of the effect. As a consequence, the presence or ab-
sence of a preventive cause in the target has different effects on
perceived similarity versus inductive strength: When the target
includes the preventive cause, perceived similarity increases but
inductive strength decreases. The absence of a preventive cause in
the target increases net positive causal power and yields a stronger
analogical inference.

The interpretation of analogical inference as being based on
causal models is consistent with several findings reported by
Lassaline (1996). She found that a shared causal relation that did
not involve a given target property did not increase the inductive
strength of that property in the target, even though such shared
causal relations increased the overall similarity of the analogs.
Within a causal model, a generative cause produces its own effects
but does not influence the occurrence of causally unrelated prop-
erties. Similarly, Lassaline found that the cause relation yielded
stronger inductive inferences than did the relation “temporally
prior to.” The latter relation is a cue for causality (causes typically
precede their effects; Lagnado & Sloman, 2004) but by no means
guarantees that the relation is causal (e.g., a falling barometer
precedes a storm but does not cause it). Hence, “temporally prior
to” would be expected to yield weaker inductive inferences than a
relation specified to be causal.

Lassaline’s (1996) findings are also consistent with the upper
bound hypothesis proposed by Bartha (in press). Bartha argued
that relations in the source domain influence the evaluation of
analogical arguments because the source relations set an upper
bound on the causal strength of any analogical inference in the
target. That is, cause–effect links inferred in the target are at most
as strong as the corresponding cause–effect links in the source.
Relations in the source specified as causal will transfer greater
causal strengths to links inferred in the target than will noncausal
relations such as “temporally prior to.”

Implications for Models of Analogical Inference

What is most surprising about the present demonstration that
people treat generative and preventive causes differently in eval-
uating analogical inferences is not the finding itself (described by
one reviewer as “so clearly true that it’s either deep or trivial”) but
the fact that it challenges all extant computational models of
analogical inference. This fact is yet more surprising because most
of the major theoretical discussions of analogy, beginning with
Winston (1980), have in one way or another acknowledged the
critical importance of causal knowledge as a basis for analogical
inference. Gentner (1983) used the cause relation as the central
example of a higher order relation, defined as a relation taking
another relation as an argument. Her systematicity principle as-
signs a special status to higher order relations as the basis for
constraints on analogical inference. However, both the systema-
ticity principle and its computational implementation, SME (Falk-
enhainer et al., 1989), base analogical inference solely on the
logical form of representations and not on their meaning and hence
are committed to the prediction that shared higher order relations
can only help and never hinder analogical inferences. The fact that
a shared higher order relation—a preventive cause—in fact re-
duces analogical transfer thus provides a compelling demonstra-

tion that any successful model of analogy will need to deal with the
meaning of semantic representations, not just their logical form.

Other theorists, such as Winston (1980) and Holyoak (1985),
have emphasized the centrality of causal knowledge as a pragmatic
(rather than solely structural) constraint on analogical inference.
Yet even computational models that allow for the special impor-
tance of causal relations are in their current implementations
unable to account for our present findings. For example, both
ACME (Holyoak & Thagard, 1989) and LISA (Hummel & Ho-
lyoak, 2003) include mechanisms for placing greater weight on
causal relations so that these have especially strong influences on
analogical mapping and inference. In their current implementa-
tions, ACME and LISA would naturally mark both generative and
preventive causes as important and focus attention on them. How-
ever, these models are unable to grasp that the two types of causes
are important in different ways, with very different implications
for analogical inference—a preventive cause is indeed important,
but the outcome would be more probable without it. Both ACME
and LISA compute a match score, which, although based on more
than structural overlap alone (unlike SME), nonetheless is con-
strained to increase monotonically with the number of matching
relations. The match score in turn determines the probability of an
analogical inference; hence none of these models are able to
account for the decrease in inductive strength that results from a
match between preventive causes present in both the source and
the target analogs.

The basic problem for all extant models of analogy is that they
lack a detailed representation of causal knowledge that could
support commonsense causal reasoning (e.g., generative causes
make things happen, but preventive causes stop things from hap-
pening; causes produce effects, but effects do not produce their
causes; multiple causes combine according to specific generating
functions; see Buehner & Cheng, 2005; Waldmann, 2007; Wald-
mann & Holyoak, 1992). Thus the commonsense nature of the
present findings highlights the weakness of commonsense reason-
ing in current models of analogy.

Analogical Reasoning With Interpreted Structures

The present findings add to a growing body of work suggesting
that future theoretical progress in understanding analogical reason-
ing requires taking a broader view of the overall process. As
pointed out by Bassok, Wu, and Olseth (1995), analogy models
have typically focused on the mechanisms by which correspon-
dences can be established between predetermined representations
of a source and target and then exploited to generate candidate
inferences about the target. Both the input representations (source
and target) and the output (target inferences) are treated as static.
But as Bassok et al. argued, human analogical reasoning appears to
be based on highly dynamic representations. The critical role of
semantic interpretation in analogical processing is bolstered by
evidence that analogical processing automatically activates rele-
vant category relations (Green, Fugelsang, & Dunbar, 2006;
Green, Fugelsang, Kraemer, & Dunbar, 2008). The initial repre-
sentations of the source and target may undergo semantic inter-
pretation and elaboration that in turn affect the ease of analogical
transfer. For example, Bassok et al. observed that people expect
objects to be assigned to people (e.g., golf carts assigned to
caddies) rather than the reverse. These investigators demonstrated
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that when a source analog includes an ambiguous or incongruous
assign relation (e.g., caddies assigned to carts), the stated relation
is likely to be reinterpreted to bring it into accord with prior
expectations. The ease or difficulty of subsequent mapping and
transfer then depends on the correspondences between the inter-
preted representations (see also Kotovsky, Hayes, & Simon, 1985).
Although some efforts have been made to model the dynamic
aspects of analog interpretation by treating mapping as an iterative
process (Hofstadter & Mitchell, 1994; Hummel & Holyoak, 2003),
such work has been limited in scope.

Whereas research such as that described above has focused
attention on the dynamic nature of the input to analogical process-
ing, the present findings call attention to the dynamic nature of its
output. Extant analogy models apply a CWSG algorithm to a
computed mapping to produce a set of inferences about the target.
These inferences, like the analogs themselves, are represented in
some static code. The degree of belief in an inference is solely
determined by some measure of the goodness of the source–target
mapping from which the inference was derived. What is lacking,
given the findings reported here, is some mechanism for dynam-
ically updating the degree of belief in an analogical inference on
the basis of the causal relationships within the target itself.

Moreover, our findings suggest that the missing theoretical
mechanism for dynamic inference evaluation cannot be simply
outsourced to some postanalogical module, such as verification
based on direct knowledge acquired about the target (as discussed,
e.g., by Falkenhainer et al., 1989, p. 23). Consider the situation
confronting the reasoner in our Experiment 3: No direct knowl-
edge about the behavior of the imaginary star system that forms the
target domain is ever provided beyond that knowledge allowing
computation of the analogical inference in the first place. That is,
the reasoner has no additional basis for assessing how likely it is
that two stars will fuse to form a super-star. Rather, the causal
model of the target—constructed by analogical inference from the
source domain of chemical reactions—itself allows dynamic eval-
uation of degree of belief in the candidate inference. As Bartha (in
press) argued on the basis of actual examples from the history of
science, the credibility of analogical inferences can be assessed in
part by internal criteria. In nonexperimental sciences, such as
astronomy and archaeology, analogy may, at times, provide the
most direct source of knowledge available for evaluating infer-
ences about the target.

Integrating Causal Models With Analogical Inference

The present findings suggest that future theoretical work should
aim to build models of analogy that incorporate the basic elements
of causal models (e.g., Cheng, 1997; Griffiths & Tenenbaum,
2005; Pearl, 1988; Waldmann & Holyoak, 1992). This remains a
challenging enterprise. One impediment is that there is a represen-
tational gap between what are termed causal Bayes nets (Pearl &
Russell, 2003), as exemplified by Figure 1, and the predicate-
calculus style representations that underlie most major analogy
models. Although we have informally characterized the type of
causal arrows shown in Figure 1 as representing higher order
relations, causal Bayes nets typically are interpreted as lacking the
representational power of predicate calculus. Thus a factor such as
G1 is simply an unanalyzed node in a Bayes net, rather than a
full-blown propositional structure such as “Denitrogel is colder

than Oreor” (Experiment 3). From the point of view of models of
analogy, representing the internal structure of propositions is es-
sential to the fundamental operation of analogical mapping and
inference. Thus a basic requirement for integrating causal Bayes nets
with models of analogy is to extend the representational power of the
former (for efforts in this direction, see Milch et al., 2007).

The potential for fruitful interplay between models of analogy
and of causal inference goes in both directions. In particular,
analogical inference provides a possible answer to a central ques-
tion that looms in current work on causal models, namely, how are
causal hypotheses first formed? One suggestion has been that
causal hypotheses are generated by some form of causal grammar
(Griffiths & Tenenbaum, 2007). When a source analog is avail-
able, an alternative possibility is that the CWSG procedure for
building relational structures by analogy can serve to build an
initial causal model of the target. An effective analogy operates by
quickly identifying a high probability region in what may be a vast
search space, generating causal hypotheses about the target that are
more likely (relative to blind search) to be approximately correct.

A study of problem solving by Schunn and Dunbar (1996)
illustrates how cross-domain analogical transfer may guide forma-
tion of a causal model. In an initial session involving a problem in
biochemistry, some participants learned that addition of an inhib-
itory enzyme (preventive cause) decreased virus reproduction. In a
subsequent session the following day, these same participants were
asked to solve a molecular-genetics problem, which also involved
a preventive cause (an inhibitory gene). Schunn and Dunbar found
that participants who had been exposed to the concept of inhibition
in the initial session were more likely than control participants to
develop a solution based on inhibition for the transfer problem,
even though experimental participants evinced no signs of aware-
ness that the earlier virus problem had influenced their solution to
the gene problem. These findings suggest that some form of
analogical transfer (perhaps implicit) can guide the construction of
a causal model appropriate for the target domain. More generally,
analogy and causal inference are intricately related (Holland et al.,
1986), and a full theory of human induction will need to provide
a unified account of both.
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