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An important issue in understanding mathematical cognition involves the similarities and differences
between the magnitude representations associated with various types of rational numbers. For single-digit
integers, evidence indicates that magnitudes are represented as analog values on a mental number line,
such that magnitude comparisons are made more quickly and accurately as the numerical distance
between numbers increases (the distance effect). Evidence concerning a distance effect for compositional
numbers (e.g., multidigit whole numbers, fractions and decimals) is mixed. We compared the patterns of
response times and errors for college students in magnitude comparison tasks across closely matched sets
of rational numbers (e.g., 22/37, 0.595, 595). In Experiment 1, a distance effect was found for both
fractions and decimals, but response times were dramatically slower for fractions than for decimals.
Experiments 2 and 3 compared performance across fractions, decimals, and 3-digit integers. Response
patterns for decimals and integers were extremely similar but, as in Experiment 1, magnitude compar-
isons based on fractions were dramatically slower, even when the decimals varied in precision (i.e.,
number of place digits) and could not be compared in the same way as multidigit integers (Experiment
3). Our findings indicate that comparisons of all three types of numbers exhibit a distance effect, but that
processing often involves strategic focus on components of numbers. Fractions impose an especially high
processing burden due to their bipartite (a/b) structure. In contrast to the other number types, the
magnitude values associated with fractions appear to be less precise, and more dependent on explicit

calculation.

Keywords: magnitude representation, distance effect, rational numbers, mental number line, fraction

comparisons

A central issue in understanding mathematical cognition in-
volves determining the nature of mental representations of numer-
ical magnitudes. A ubiquitous phenomenon found for stimuli that
can be ordered along a perceptual or symbolic dimension is that a
magnitude comparison (e.g., choosing the numerically larger of
two digits) is made more quickly and accurately the greater the
magnitude difference between the stimuli (Holyoak, 1978; Moyer
& Landauer, 1967). Such distance effects have also been observed
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with children (e.g., Barth, Mont, Lipton, & Spelke, 2005; Brannon,
2002; Brannon & Van De Walle, 2001). For digit comparisons, the
distance effect typically follows a logarithmic function, such that
comparisons are more difficult for larger magnitude values when
the numerical difference is held constant (Moyer & Landauer,
1967). The distance effect has been interpreted as evidence that
numerical and other magnitudes are coded in an analog form akin
to a mental number line (Dehaene & Changeux, 1993; Gallistel,
1993).

Research on the distance effect has been extended to multi-
digit integers, focusing on the extent to which adults use com-
ponential or holistic strategies to process the integers. The
earliest such study (Hinrichs, Yurko, & Hu, 1981) found evi-
dence of holistic processing, but more recent work using closely
matched pairs of comparisons has revealed evidence for com-
ponential processing of whole numbers. For example, Nuerk,
Weger, and Willmes (2001) found that when the numbers in the
tens place and unit digit were incompatible (e.g., 47 vs. 62),
comparisons were slower and more error-prone than compari-
sons in which the tens and unit digits were compatible (e.g., 52
vs. 67). Further, Verguts and De Moor (2005) found that adults
show a distance effect when comparing double-digit integers of
the same decade; however, no distance effect was apparent for
pairs that were the same distance apart but in different decades
(i.e., a distance effect for pairs like 51 vs. 58, but not for pairs
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like 45 vs. 52; see also Dehaene, Dupoux, & Mehler, 1990). In
addition, Ganor-Stern, Tzelgov, and Ellenbogen (2007) found
evidence for componential processing of double-digit numbers
based on a more implicit measure (the size congruity effect),
which was influenced by the compatibility of the units and tens
digits, but not the magnitude of the number as a whole. On
balance, the weight of evidence suggests that multidigit integers
are processed componentially rather than holistically. Although
distance effects have been observed for comparisons of multi-
digit integers, the effects often depend on comparisons of
component digits, rather than on integrated magnitudes associ-
ated with the entire numbers.

Magnitude Representations for Fractions and
Decimals

In addition to comparing the magnitudes of single digits and
multidigit whole numbers, educated children and adults can also
compare other types of rational numbers, notably fractions and
decimals. Given the evidence reviewed indicating that compari-
sons of multidigit integers are often componential in nature, it is
natural to hypothesize that similar componential processing may
be involved with other rational numbers. Fractions and decimals
are introduced in school later than integers, and a great deal of
evidence indicates that children have difficulty understanding
these number types (Ni & Zhou, 2005; Stafylidou & Vosniadou,
2004; Vamvakoussi & Vosniadou, 2004). What is more contro-
versial is whether adults with high education levels (e.g., college
students) eventually acquire magnitude representations for other
rational numbers that are basically similar to their representations
of integer magnitudes.

Many researchers have examined the extent to which the
mental representation of fractions is the same as or different
from representations of integers (e.g., Bonato, Fabbri, Umilta,
& Zorzi, 2007; Schneider & Siegler, 2010; Siegler, Thompson,
& Schneider, 2011), but the extent to which the distance effect
extends to magnitude comparisons based on fractions is still
unclear. Bonato et al. (2007) found no evidence for a distance
effect related to the relative magnitudes of the fractions in the
comparisons. These investigators argued that adults process
fractions in a piecemeal manner, dividing up the parts of the
fractions (the numerator and denominator), and using heuristics
based on these separate parts to determine the relative sizes of
the fractions. However, Schneider and Siegler (2010) argued
that a distance effect can be obtained for fractions, but only if
the stimuli require processing of the integrated magnitude of the
fraction, rather than just its parts. For example, Bonato et al.
(2007) examined unit fractions in the form 1/n, which do not
require adults to compare the integrated magnitudes of the
fractions. Instead, people could use a simple heuristic: Fractions
that have larger denominators are smaller overall. Thus, they
could just compare the sizes of the denominators to determine
which fraction was larger. When Schneider and Siegler (2010)
tested comparisons based on fractions for which this heuristic
could not be used, they found a pattern consistent with the
hypothesis that adults do in fact use the integrated magnitude of
the fraction to perform the comparison.

Formal and Conceptual Distinctions Among Types of
Rational Numbers

Though adults may be capable of generating integrated magni-
tudes for fractions, there is also evidence that fractions pose extra
processing burdens even for adults (Givvin, Stigler, & Thompson,
2011; Siegler et al., 2011; Stigler, Givvin, & Thompson, 2010; see
Richland, Stigler, & Holyoak, 2012). There are some characteristic
differences between fractions and integers that seem likely to
impact the comparison process. One key difference is in their
perceptual form: Fractions are not represented with a unitary
symbol, but rather have a bipartite structure, being composed of a
separate numerator and denominator. This formal difference be-
tween fractions and integers potentially appears to contribute to
early misconceptions, and also to later use of fallible shortcut
strategies for performing computations with fractions (Bonato et
al., 2007).

Other key differences are more inherently conceptual: For ex-
ample, unlike whole numbers, fractions do not have unique suc-
cessors. This and related conceptual differences play a crucial role
throughout development, especially when children attempt to in-
tegrate fractions into their already well-established understanding
of whole numbers (Ni & Zhou, 2005; Stafylidou & Vosniadou,
2004; see Siegler, Fazio, Bailey, & Zhou, 2013, for a review). For
example, Vamvakoussi and Vosniadou (2004) found that Greek
12-, 14-, and 16-year-olds made several typical mistakes when
completing tasks relating to the infinite number of rational num-
bers in any interval of a number line. The young adolescents
seemed to improperly extend characteristics of integers to other
rational numbers. Their misconceptions included the idea that
fractions are discrete and have unique successors, as integers do,
and that only fractions can lie between two fraction endpoints,
whereas only whole numbers can lie between two whole-number
endpoints.

In evaluating the possible impact of the formal and conceptual
differences between fractions and whole numbers on processing
difficulty and magnitude representation, a comparison with deci-
mals would appear to be potentially illuminating. Like fractions,
decimals denote rational numbers that lack a unique successor. But
in terms of their form, decimals are not explicitly decomposed into
two major parts (numerator and denominator), as are fractions, but
rather are more similar to integers. Decimals are typically intro-
duced in the curriculum after fractions (and whole numbers).
Difficulties have been observed when children attempt to integrate
knowledge about decimals with their knowledge of whole num-
bers. Vamvakoussi and Vosniadou (2004) found that children
inappropriately extend properties of whole numbers to decimals.
Rittle-Johnson, Siegler, and Alibali (2001) found that children
improperly view the number of digits in a decimal as an indication
of its magnitude (e.g., a majority of fifth and sixth graders claimed
that .274 is larger than .83). Such misconceptions suggest that the
conceptual distinctions that separate fractions and decimals, on the
one hand, from whole numbers, on the other, may be especially
significant in making the former types of numbers harder to grasp.

However, there is also evidence suggesting that children can
integrate decimals into their mathematical knowledge more easily
than they can fractions. Iuculano and Butterworth (2011) used a
number line task to assess the accuracy of adults and children in
locating integers, decimals, and fractions on a number line. They
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found that performance was quite similar for decimals and inte-
gers. In contrast, adults and children (aged 10 years) were less
accurate when using fractions, compared with decimals and inte-
gers, in placing a mark on the number line at a certain value, and
were even less accurate when asked to generate a given value
using fractions when shown a mark on a number line.

Such findings suggest that, at least for well-educated adults,
processing decimals may be less computationally demanding than
processing fractions, and that processing decimals may be more
similar to processing integers. Surprisingly, however, no study of
magnitude comparisons has directly compared patterns of perfor-
mance with fractions and decimals. Indeed, only one study has
been reported that examined magnitude comparisons with deci-
mals (Cohen, 2010). This study found that, in addition to the
typical distance effect observed with comparisons of integers,
magnitude comparisons with decimals are mediated by a decimal-
specific strategy.

Goals of the Present Study

In order to examine the similarities and differences among
magnitude representations for distinct types of rational numbers,
we investigated how adults complete magnitude comparisons
across three types of rational numbers: fractions, decimals, and
three-digit integers. By focusing on adult performance, we aimed
to illuminate the end state of the acquisition of magnitude codes
for the various number types. For each type of number, we sought
to determine whether or not a distance effect is obtained, as this
effect is generally considered to be a key “signature” of a magni-
tude representation based on an internal number line. In addition,
we sought to determine whether comparisons are based on inte-
grated magnitude representations or on componential processing
of subparts of the numbers. For this reason, we focused on number
types with compositional structure.

In Experiment 1, we performed the first direct comparison of
magnitude comparisons based on fractions and decimals. One
hypothesis, based on the fact that fractions are introduced in school
prior to decimals, is that fractions may be overall easier to process.
A second hypothesis is based on the argument that although
fractions and decimals are different in form, they share conceptual
properties of noninteger rational numbers. Accordingly, if their
conceptual similarity is critical, fractions and decimals may be
equally easy (or hard) to process. A third hypothesis stems from
the perceptual differences in format between fractions and deci-
mals. Fractions have explicit parts, whereas decimals are more
unitized. If this difference is critical, then decimals will be overall
easier. In Experiments 2 and 3, we added comparisons based on
three-digit integers, enabling us to directly compare processing of
decimals and fractions with processing of compositional integers.
One possibility is that magnitudes are more difficult to assess for
fractions and decimals than for integers, due to the more complex
conceptual structure of both of these types of rational numbers.
However, if fractions impose special processing burdens because
of their bipartite format (e.g., requiring finding a common denom-
inator, or perhaps even translation into decimal form), then frac-
tions may be more difficult to compare than either of the other
number types.

Experiment 1

Method

Participants. Participants were 69 undergraduates from the
University of Washington (mean age = 19.6 years; 39 females).

Design and materials. The design and stimuli of Experiment
1 were modeled closely on the study reported by Schneider and
Siegler (2010), with an additional within-subjects condition of
number type (decimals as well as fractions). This task formed one
component of a larger study involving several additional mathe-
matical reasoning tasks (not reported here). Participants completed
a series of magnitude comparisons organized as separate blocks of
fractions and decimals. The order of the fraction and decimal
blocks was counterbalanced across subjects. The fraction block
began with practice comparisons (simpler problems in which both
numerator and denominator consisted of a single digit), followed
by the target fraction comparisons. Similarly, the decimal block
began with practice decimal comparisons (equivalent in magni-
tudes to the practice fractions), followed by the target decimal
comparisons. Order of problems was randomized within each
block. The decimals were the magnitude equivalents of the frac-
tions (see Table 1 for a complete list of fractions and decimals used
in the comparisons). The decimals were all rounded to three digits
to make the decimals consistent in length regardless of their
fraction equivalent. In addition, using three digits helped to stan-
dardize the number of digits participants had to process across
number type (the fractions had between two and four digits). All of
the comparisons were done against the reference value of 3/5 for
fractions or 0.600 for decimals.

Table 1
Fractions and Decimals Used As Targets in Experiment 1,
Paired With Their Alphabetical Code Used in Figures 1 and 2

Code Fraction Decimal
a 20/97 0.206
b 1/4 0.250
c 26/89 0.292
d 30/91 0.330
e 28/71 0.394
f 31/72 0.431
g 32/69 0.464
h 25/49 0.510
i 23/44 0.523
j 33/62 0.532
k 5/9 0.556
1 29/51 0.569
m 24/41 0.585
n 22/37 0.595
[ 27/43 0.628
P 37/58 0.638
q 35/54 0.648
T 36/53 0.679
S 38/55 0.691
t 40/57 0.702
u 41/56 0.732
v 47/59 0.797
w 43/48 0.896
X 49/52 0.942
y 46/47 0.979
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Procedure. Participants were presented with 12 practice trials
and 25 test trials for both fractions and their decimal equivalents.
Within each block, the 25 target trials were repeated five times (in
a new random order each time). After the five random iterations of
the trial lists, the participants would move on to the next number
type. On each trial, the target fraction or decimal was displayed at
the center of the screen. Half of the participants were instructed to
hit the & key if the target fraction (or decimal) was larger than the
reference value of 3/5 (or 0.600) and to hit the g key if the number
was smaller than 3/5 (or 0.600); the other half were given the
reverse key assignments. A reminder was written at the bottom of
each screen as to which key to hit if the target was larger or
smaller.

Participants were instructed to respond as quickly and accu-
rately as possible. They were given a maximum of 5 s to make the
comparison. If they had not made a selection by that time, the
screen moved on to the next trial. Participants were allowed to rest
briefly between each block of trials.

Results and Discussion

Mean error rate was calculated for each target item for each
participant and compared across number type (fraction vs. deci-
mal). As there was no effect of presentation order for number types
(fractions: #[68] = .75, p > .05; decimals: #[68] = .81, p > .05),
all results are reported after collapsing across this counterbalanc-
ing condition. The pattern of error rates for different target mag-
nitudes of each number type is shown in Figure 1. A distance effect
is clearly present for fractions, as error rates increased as target
values approached the reference value of 3/5. Decimals, by con-
trast, yielded perfect accuracy for all target values. Collapsing
across all targets, the mean error rate for fraction comparisons was
5.6% (SD = 6.4), versus 0% for decimal comparisons, a difference
that was highly reliable by a paired-samples ¢ test, #(68) = 7.25,

DEWOLF, GROUNDS, BASSOK, AND HOLYOAK

p < .001. Thus, participants were substantially less accurate for
fraction comparisons than for decimal comparisons.

Mean response time (reaction time [RT]) to make a correct
judgment was also calculated for each participant and compared
across number type (fraction vs. decimal). RTs for trials that were
answered incorrectly, or exceeded the response window, were not
included in these analyses. The pattern of RT values for different
target magnitudes of each number type is shown in Figure 2. The
fraction comparison is clearly slower than the matched decimal
comparison for every matched target value, and the fractions show
a more dramatic increase in RT around the reference value. Col-
lapsing across all targets, mean RT for fractions (1.34 s; SD =
0.47 s) was significantly slower (in fact, twice as long) as that for
decimals (.65 s; SD = 0.12; #[68] = 12.60, p < .001).

In order to assess the functional form of the distance effect for
response times, we considered three models that have often been
used in previous studies of numerical comparisons: linear distance
between the target and reference value (Bonato et al., 2007);
logarithm of the linear distance (i.e., log (ltarget—referencel),
which we will abbreviate as “log Dist” (Dehaene et al., 1990;
Hinrichs et al., 1981; Schneider & Siegler, 2010); and the Welford
function, log (Larger number/[Larger number — Smaller number])
(Moyer & Landauer, 1967; Hinrichs et al., 1981). Of these, the
linear distance was the least successful, as the form of the RT
function in Figure 2 clearly shows a negatively accelerated relation
between RT and distance from the reference value. For the prob-
lems used in Experiment 1 (and also Experiments 2 and 3), the
logarithm of linear distance was extremely highly correlated with
the Welford function, r = —0.99, p < .001; thus, as a practical
matter, these two functions were difficult to distinguish for our
study. The Welford function predicts a subtle asymmetry (higher
RTs for comparisons of target values above vs. below the reference
value, when matched for linear distance), which is not evident in
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Figure 1.

Distribution of percent errors across target magnitudes for fractions and decimals (Experiment 1).

The solid vertical line marks the reference value. See Table 1 for identities of targets indicated by code on x-axis.
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our data (see Figure 2). Accordingly, we selected the logarithmic
distance model (log Dist) for use in the analyses reported here.
Because accuracy was at ceiling for decimals, we focused on
distance effects based on the RT measure (see Figure 2). Log Dist
accounted for 51% of the variance for fractions and 67% of the
variance for decimals. The regression coefficients were significant
for both fractions (B = —0.73, #[23] = 5.14, p < .001), and
decimals (§ = —0.82, #[23[ = 6.82, p < .001). Thus, for both the
fractions and decimals, the pattern of response times follows a
logarithmic function consistent with the distance effect.

An important question is whether fractions are simply slower to
compare than decimals by a constant increment of time, or whether
the slope of the distance function differs between the two number
types. If the extra difficulty of fractions is solely due to the time
required to calculate a magnitude, then the slope of the distance
function would not be expected to differ across the two number
types. However, if the magnitude representation derived for frac-
tions is less precise than that for decimals, then formal models of
magnitude comparison (e.g., Chen, Lu & Holyoak, 2013; Marks,
1972) would predict that the distance effect will be more pro-
nounced for fractions. A linear regression revealed that the loga-
rithmic distance between the target and the reference value signif-
icantly predicted the difference in RT between fraction and
decimal comparisons for the same values, (3 = —0.65; #[23] =
4.10, p < .001; adj. R> = .40). The unstandardized coefficients
yielded a value of —0.34 for the slope of the line, indicating that
the difference in RT (fraction—decimal) decreases by about 0.34
s for every unit increase in the log distance from the reference.
Thus, although both fractions and decimals show a distance effect,
the impact of distance on RT is substantially greater for compar-
isons of fractions than of decimals (i.e., fractions are especially
hard relative to decimals when the distance to the reference value

is small.) This finding indicates that the extra difficulty of fractions
is not solely in initial generation of a magnitude code but also in
the comparison process itself, perhaps due to reduced precision of
magnitude values for fractions (Chen et al., 2013). That is, frac-
tions may elicit less precise magnitude values than do decimals,
perhaps due to greater reliance on approximate estimates when
interpreting fractions.

In the case of decimals, we also wished to determine whether
people used the entire decimal in making comparisons or focused
exclusively on the first significant digit (i.e., the tenths value,
indicated by the first digit after the decimal point). In order to
address this question, we performed a multiple regression analysis
similar to the analyses reported previously, except that log Dist
was computed using the value of the target after truncation to a
single digit (its tenth value). If decisions were based solely on the
first digit, than adding log Dist calculated using the full three-digit
decimal would not explain additional reliable variance beyond that
accounted for using log Dist after truncation. For five of the digit
targets, truncation yielded a value of .6, and hence a distance of 0,
for which the logarithm is undefined; these targets were excluded
from the regression analysis. The first predictor based on log Dist
after truncation predicted 24% of the variance in decimal RTs
(B = —0.52,1[22] = 2.88, p = .009). However, adding the second
predictor, log Dist based on the full three-digit decimal, signifi-
cantly increased the explained variance to 74%, F(1, 22) = 43.84,
p < .001. This finding indicates that participants based decimal
comparisons on more than just the initial digit. However, as we
will see, the results of Experiments 2 and 3 indicate that people can
strategically focus on the first digit. These later experiments did
not involve repeated testing of the same numbers, as was done in
Experiment 1. Thus, it may be that repeated testing encourages
more holistic processing of decimals.
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Given that RTs and error rates were far higher overall for
fractions than decimals, we sought to determine whether the dif-
ficulty of fractions was reduced for those that were relatively
simple in form. We identified 1/4 and 5/9 as relatively “simple”
fractions because they have single-digit numerators and denomi-
nators, whereas all the other target fractions have double digits.
Comparing the RTs of 1/4 with 26/89 and 20/97 (the two fractions
closest in magnitude to 1/4), we found that 1/4 is significantly
faster than 26/89 (.94 s vs. 1.14 s; 1[136] = 2.72, p = .007), but not
20/97 (.94 s vs. .98 s; 1[136] = 0.50, p = .61). This pattern is
consistent with the distance effect, as 1/4 is further from the
reference value than is 26/89. Hence, this finding does not suggest
a special advantage for the simple fraction. Comparing 5/9 with its
two closest values, 33/62 and 29/51, 5/9 was actually significantly
slower than 33/62 (1.8 s vs. 1.4 s; #[114] = 2.37, p = .02) and not
significantly different from 29/51 (1.8 s vs. 1.5 s; #[113] = 1.49,
p = .14). Thus, we did not find any compelling evidence that the
two “simple” fractions were evaluated any more quickly than
would be predicted by distance alone. It is possible that if any
special strategies are potentially applicable for simpler fractions,
these were not used in the present experiment, in which the great
majority of the target fractions were of the more complex format
(two-digit numerators and denominators).

Overall, the findings of Experiment 1 demonstrate that both
fractions and magnitude-matched decimals show reliable distance
effects: Comparisons of both types of rational numbers are faster
(and for fractions, more accurate) as the numerical distance be-
tween the target and reference values increases. But even though
fractions and decimals are conceptually very similar, there was a
clear decimal advantage, as comparisons of fractions proved to be
much slower and more error-prone. In addition, the distance effect
was more dramatic for fractions than for the corresponding deci-
mals, with the impact of distance accelerating more quickly for
fractions. These findings support the hypothesis that the formal
structure of numerical representations influences both overall pro-
cessing difficulty and the precision of magnitude representations.
Decimals appear to benefit from their greater formal similarity to
integers. Experiment 2 was performed to more directly compare
performance with integers to that with fractions and decimals.

Experiment 2

Experiment 2 was designed to replicate and extend the findings
of Experiment 1 by adding an additional number type, three-digit
integers, in addition to a number of other methodological changes.
By including all three number types in a single experiment, it is
possible to directly compare the pattern of performance across all
these types of rational numbers. In light of the results of Experi-
ment 1, which revealed much greater difficulty in processing
fractions than decimals, we were particularly interested in deter-
mining whether or not comparisons of decimals are, in turn, more
difficult than comparisons of corresponding integers.

Method

Participants. Participants were 95 undergraduates from the
University of California, Los Angeles (mean age = 21 years; 72
females), who received course credit.

Design and materials. Three different types of numbers were
used for magnitude comparisons: integers, decimals, and fractions.

Number type was manipulated between participants so that each
participant only received one type of number (in contrast to the
within-subjects design used in Experiment 1), thereby avoiding
any possible carryover effects of strategies that might be evoked
by a particular number type. There were 34 participants in the
fraction condition, 30 in the decimal condition, and 31 in the
integer condition. As in Experiment 1, dependent measures were
percent error and response time.

Table 2 lists the complete set of fractions, decimals, and integers
used. Because the decimal advantage in Experiment 1 might be
attributed, in part, to the relative simplicity of the reference value for
decimals (0.600), in Experiment 2, we instead set the reference
value for decimals at 0.613, thus making the reference value more
complex. The symmetric distribution of target numbers around the
reference value was maintained, such that half of the decimal
targets were greater than the reference value. As the integers were
simply 1,000 times the value of the decimals, 613 was used as the
reference for the integers.

Procedure. Participants received either fractions, decimals, or
integers to compare. The 30 trials were each presented a single
time in random order. Participants were told to complete the
comparison as quickly and accurately as possible. Unlike Exper-
iment 1, no fixed deadline was imposed on time to reach a
decision. The given number for the particular trial appeared in the
center of the screen; participants had to select either the a key
or the / key to indicate whether the number was larger or smaller

Table 2

Fractions, Decimals, and Integers Used As Targets in
Experiment 2, Paired With Their Alphabetical Code Used in
Figures 3 and 4

Code Fraction Decimal Integer
a 20/97 0.206 206
b 1/4 0.250 250
c 26/89 0.292 292
d 30/91 0.330 330
e 28/71 0.394 394
f 31/72 0.431 431
g 32/69 0.464 464
h 12 0.500 500
i 25/49 0.510 510
j 23/44 0.523 523
k 33/62 0.532 532
1 5/9 0.556 556
m 29/51 0.569 569
n 24/41 0.585 585
0 22/37 0.595 595
p 27/43 0.628 628
q 37/58 0.638 638
r 35/54 0.648 648
s 2/3 0.667 667
t 36/53 0.679 679
u 38/55 0.691 691
v 40/57 0.701 701
w 57 0.714 714
X 41/56 0.732 732
y 39/50 0.780 780
z 47/59 0.797 797
aa 718 0.875 875
ab 43/48 0.896 896
ac 49/52 0.942 942
ad 46/47 0.979 979
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than the reference value. As in Experiment 1, there was a reminder
on the right side of the screen that said “larger than 3/5” (or the
reference value appropriate to the number type) and “smaller than
3/5” on the left side.

Results and Discussion

Figure 3 presents the mean error rates for each target, for
each of the three number types. Error rates were much higher
for fractions (M = 18.73; SD = 12.17) than for decimals (M =
3.22; SD = 4.06) or integers (M = 3.76; SD = 3.31). A
one-way between-subjects ANOVA showed that differences
among number types were highly reliable, F(2, 92) = 40.94,
p < .001. Planned contrasts revealed a significant difference in
error rates between the fraction number type and the decimal
and integer number types, #(92) = 9.05, p < .001, but no
significant difference between decimal and integer number
types, #(92) = 0.27, p = .79.

The pattern of response times across all three number types is
depicted in Figure 4 (left panel). RTs were far faster for
decimals and integers than for fractions. For clarity, the pattern
for decimals and integers is also depicted in Figure 4 (right
panel) after rescaling the y-axis to fit the faster time scale of
these two number types. Collapsing over all targets, RTs were
slower for comparisons of fractions (M = 3.3; SD = 1.75) than
of decimals (M = 0.86, SD = 0.21) or integers (M = 0.86;
SD = 0.28). A one-way ANOVA yielded reliable overall dif-
ferences among number types, F(2, 92) = 58.60, p < .001.
Planned contrasts revealed that comparisons of fractions were
reliably slower than those between decimals or integers, #(92) =
10.83, p < .001, whereas RTs did not differ significantly
between the latter number types, #(92) = 0.05, p = .96.

As in Experiment 1, error rates for comparisons of fractions
showed a clear distance effect (see Figure 3), whereas errors for
the other two number types were uniformly low. For the response
time data (see Figure 4), we again performed regression analyses
based on the logarithmic distance measure. Log Dist accounted for
a significance amount of variance for all three number types: 76%
for fractions, 30% for decimals, and 54% for integers (for frac-
tions, B = —0.883, #[28] = 9.97, p < .001; for decimals, B =
—0.57, 1[28] = 3.64, p = .001; for integers, B = —.751, #[28] =
6.01, p < .001). From inspection of the data shown in Figure 4
(right), it appears that the relatively low regression fit for decimal
comparisons reflects noise in the RT pattern. Note that the corre-
sponding fit for decimals was considerably higher in Experiment 1
(67% of variance accounted for).

Intercorrelations between the RT patterns for the three number
types revealed that although all three sets of RTs were related,
decimals and integers had the strongest relation, 7(28) = 0.75, p <
.001, compared with fractions and integers, r(28) = 0.48, p =
.007, or fractions and decimals, r(28) = 0.36, p < .05. As in
Experiment 1, the distance effect was more pronounced for frac-
tions than for the other number types. Linear regressions indicated
that log Dist significantly predicted the difference in RT for
fractions and decimals (B = —0.73, #[28] = 5.71, p < .001, adj.
R* = 0.52), and for fractions and integers (3 = —0.73, 7[28] =
5.62, p < .001, adj. R? = 0.51), but not for the difference in RT
for decimals and integers (3 = 0.23, #[28] = 1.22, p = .23, ad;.
R? = 0.02).

As in Experiment 1, we performed a multiple regression
analysis to assess whether participants made use of the entire
three-digit decimal in making comparisons or just the tenth
value (i.e., first digit). We again calculated log Dist based on

60
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Figure 3. Distribution of percent errors across target magnitudes for fractions, decimals, and integers (Exper-
iment 2). The solid vertical line marks the reference value. See Table 2 for identities of targets indicated by code

on Xx-axis.
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truncating target decimals to their tenths place only (keeping
the reference value as .613 so as to avoid the need to drop
targets that truncate to .6). When log Dist based on truncation
was used as the sole predictor, it accounted for 49% of the
variance (3 = —0.71, #[28] = 5.40, p < .001). In contrast to
the similar analysis in Experiment 1, adding log Dist based on
the full three-digit decimal did not significantly increase the
variance accounted for (49%), F(1, 27) = .21, p = .65. As noted
above, the RT pattern for decimals in Experiment 2 was relatively
noisy (perhaps because the data were derived from a single trial for
each participant, without extensive practice). The decimal RTs in
Experiment 1, which are based on averaging over five trials, were
considerably less variable. The greater variance of decimal RTs in
Experiment 2 may have made RTs less sensitive to the detailed
structure of the three-digit decimals.

We also conducted an analogous multiple regression on the
integer RTs, using log Dist based on truncation to the first digit
(hundreds place). This variable accounted for a significant amount
of variance (R*> = .53, B = —0.74, #[28] = 5.84, p < .001).
However, adding log Dist based on the full three-digit integer
yielded a reliable further increase in variance accounted for from
(total R? = 61%; F[1, 27] = 6.56, p = .02). Thus, we again found
evidence that comparison of multidigit integers was based on more
than just the first digit.

As in Experiment 1, we performed additional analyses to assess
whether “simpler” fractions (those with one-digit numerators and
denominators) were evaluated more quickly than would be pre-
dicted by distance to the reference value. We again found no
evidence that this was the case. For example, RT for 1/4 was not
significantly different from that for 20/97 (2.06 s vs. 1.96 s;
1[39] = 0.50, p = .62) or 26/89 (2.06 s vs. 2.90 s; #[35] = 0.03,
p =.79). Even 1/2, arguably the most common fraction of all, was
not significantly faster than either 32/69 (3.23 s vs. 3.58 s; #[57] =
.53; p = .60) or 25/49 (3.23 s vs. 3.25 s; 1[55] = 0.04, p = .97).
Thus, whatever strategy was used to process the predominantly
two-digit fractions used in our experiments did not appear to
convey any selective advantage on one-digit fractions.

Overall, the results of Experiment 2 extend the findings of
Experiment 1, showing a clear distance effect for all three
number types. Once again, comparisons of fractions proved to
be far more difficult than comparisons of decimals, and the
distance effect was much more pronounced for fractions. Dec-
imals showed an overall pattern very similar to that for matched
three-digit integers, although RTs for decimals in Experiment 2
showed less sensitivity to digits beyond the tenth place, whereas
RTs for integers were sensitive to digits beyond the analogous
centuries place. In general, despite the greater conceptual sim-
ilarity of fractions and decimals, it is decimals and integers that
produce the most similar response patterns for magnitude com-
parisons.

Experiment 3

In Experiment 2, comparisons of decimals appear to be
performed using something close to an “integer strategy,” given
the similarity between the response patterns observed for these
two number types. However, one could reasonably argue that
the decimals used in Experiment 2 fostered an integer strategy,
as the length of the decimals was kept constant (three digits)
and there were no decimals with leading zeros. The sets of
decimals used in Experiment 2 were very similar to those used
in Experiment 2 of Cohen (2010), who also reported evidence
for use of an integer strategy. In his Experiment 3, Cohen
included other types of decimal comparisons for which a direct
analogy with multiplace integers fails (e.g., decimals such as
.027). Cohen found that this more difficult set of decimal
comparisons did increase RT, but only slightly (range of mean
RTs from .8 to 1 s, still far less than the 2- to 8-s range we
observed for fraction comparisons in our Experiment 2). Ex-
periment 3 was performed to examine more directly whether the
greater difficulty of fractions than decimals will still be ob-
served when the decimals include those that do not correspond
in magnitude to integers with the same number of digits.
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Method

Participants. Participants were 26 undergraduates from the
University of California, Los Angeles (mean age = 20 years; 23
females), who received course credit.

Design and material. As in Experiment 2, three different
types of numbers were used for magnitude comparisons: integers,
decimals, and fractions. Number type was manipulated within
subjects (as in Experiment 1). Participants completed a block of
fraction comparisons, of decimal comparisons, and of integer
comparisons, in counterbalanced order. The reference values were
the same as in Experiment 2: integer 613, decimal .613, and
fraction 3/5. The set of targets used was derived from that used in
Experiment 2 but with some changes to manipulate the length of
target decimals (either two, three, or four digits), and to include
decimals in which the first digit was a 0. The full list of targets is
provided in Table 3. To provide variety in format relative to the
earlier experiments, the decimals used in Experiment 3 did not
include a 0 before the decimal point (e.g., .569 rather than 0.569).

Procedure. The procedure closely followed that of Experi-
ment 2, except that the number type was manipulated within
subjects so that every participant completed comparisons of each
of the three number types. The number types were all presented in
blocks following the procedure outlined in Experiment 2. The
order of the blocks was counterbalanced across participants.

Table 3

Fractions, Decimals, and Integers Used As Targets in
Experiment 3, Paired With Their Alphabetical Code Used In
Figures 5 and 6

Code Fraction Decimal Integer
a 120 .050 50
b 3/50 .06 60
c 1/4 25 250
d 3/10 3 300
e 30/91 33 330
f 28/71 .3940 394
g 31/72 4310 431
h 32/69 464 464
i 12 5 500
j 25/49 51 510
k 23/44 .5230 523
1 33/62 .5320 532
m 5/9 556 556
n 29/51 569 569
0 24/41 .5850 585
p 22/37 .595 595
q 27/43 628 628
r 35/54 .648 648
s 13/20 .65 650
t 2/3 .6670 667
u 36/53 .679 679
v 17/25 .68 680
w 7/10 7 700
X 57 7140 714
y 3/4 750 750
z 39/50 78 780
aa 41/50 .820 820
ab 718 .8750 875
ac 49/52 942 942
ad 46/47 .9790 979

Results

In order to assess whether there were order effects in response
time and error rates, we performed a 3 (number type) X 6 (order)
repeated measures ANOVA. The interaction between number type
and order did not approach significance for either error rates,
F(10, 40) = .68, p = .74, or response times, F(10, 40) = .70, p =
.63. Accordingly, we report analyses collapsing over order of
number types.

Figure 5 shows the distribution of errors as a function of the
magnitudes of the target items. Participants made more errors for
almost every magnitude with fractions compared with decimals
and integers. Averaging across magnitudes, fractions yielded the
highest error rate (M = 25%, SD = 15) compared with decimals
(M = 5%, SD = 7) and integers (M = 5%, SD = 6). A one-way
repeated measures ANOVA showed a significant difference in
errors based on number type, F(2, 24) = 20.26, p < .001. Frac-
tions generated significantly more errors than either decimals,
#(25) = 6.37, p < .001, or integers, #25) = 6.09, p < .001.

Response times for correct decisions showed a similar pattern,
as shown in Figure 6. Averaging across magnitudes, fractions
yielded the slowest RTs (M = 2.3 s, SD = 1.6) compared with
decimals (M = .88 s, SD = .3) and integers (M = .73 s, SD = .2)
A one-way repeated measures ANOVA showed a significant dif-
ference in RT based on number type, F(2, 24) = 13.85, p < .001.
Each of the number types differed reliably in their RTs: fractions
versus decimals, #25) = 5.14, p < .001; fractions versus integers,
#(25) = 5.35, p < .001; and decimals versus integers, #(25) = 2.46,
p = .02. However, the difference in RTs between decimals and
integers (about .15 s) was considerably smaller than the difference
between fractions and either decimals (1.42 s) or integers (1.57 s).
The modest increase in response time for decimals compared with
integers is comparable with that observed by Cohen (2010) in his
Experiment 3, which also included decimals of unequal lengths.

As in our previous experiments, we performed analyses to
determine whether “simpler” fractions were computed signifi-
cantly faster than the more difficult fractions. Although compari-
sons with 1/2 tended to be considerably faster than those with
32/69 (1.47 s vs. 2.46 s; 1[28] = 1.23, p = .21) or 25/49 (1.47 s vs.
2.24 s; 1{30] = 1.58, p = .12), neither of these differences was
reliable. Two-thirds (2/3), also a reasonably familiar fraction, was
not significantly faster than 35/54 (2.28 s vs. 2.60 s; #[33] = .54,
p = .59) or 36/53 (2.28 s vs. 3.15 s; #[34] = 1.43, p = .16). Thus,
we did not find clear evidence that “simpler” fractions were
processed in a different way than other fractions, although the
trends suggest that some participants may have done so.

Figure 6 shows a strong distance effect for fractions and a
smaller distance effect for decimals and integers (RT data rescaled
in Figure 6, right). As in the previous experiments, we conducted
a linear regression with log Dist as the predictor. This predictor
was reliable for fractions (B = —.71, #[28] = 5.33, p < .001) with
49% of the variance accounted for, decimals (B = —.36, 1[28] =
36, p = .048) with 10% of the variance accounted for, and
integers (B = —.54, #[28] = 3.36, p = .002) with 26% of the
variance accounted for. For decimals, when distance was com-
puted using values truncated to the tenth place, log Dist accounted
for significantly more variance, 37% (3 = —.63, #[28] = 4.28,p <
.001). Indeed, log Dist based on the entire decimal did not add
significant variance after accounting for the effect of the tenth
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iment 3). The solid vertical line marks the reference value. See Table 3 for identities of targets indicated by code
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place only, F(1, 27) = 1.63, p = .21. Thus, in Experiment 3, in
which the length of the decimals varied, participants apparently
used a strategy of focusing on the value of the first digit. This
strategy would be effective because there were no decimals with 6
in the tenths place that were lesser in magnitude than the reference
value.

As in Experiments 1 and 2, we also found that the distance effect
for fractions was more pronounced than for decimals or integers.
Linear regressions showed that log Dist significantly predicted the
difference in RT between the fractions and decimals (3 = —.74,
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28] = 5.79, p < .001; adj R> = 53%) and fractions and integers
(B = —.70, 1[28] = 5.18, p < .001; adj R> = 47%), but not between
decimals and integers (B = —.04, #{28] = .21, p = .84; adj. R* =
3%). In addition, intercorrelations between decimals and integers
were significantly related, 7(28) = .44, p = .015, but neither fraction
and decimal RTs, r(28) = .28, p = .13, nor fraction and integer RTs,
r(28) = .29, p = .12, were significantly related.

In order to further evaluate the effect of the length of decimals,
we also compared response times for decimals close in magnitude
that varied in length. We found no significant difference in re-
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Figure 6. Distribution of mean response times across target magnitudes for fractions, decimals, and integers
(Experiment 3). The solid vertical line marks the reference value. See Table 3 for identities of targets indicated

by code on x-axis.



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri

°r and is not to be disseminated broadly.

This article is intended solely for the personal use of the individua

COMPARISONS WITH RATIONAL NUMBERS 81

sponse times in these pairs. For example, the RT for .25 was not
significantly different from .3 (.77 s vs. .81 s), #(49) = .40, p = .69.
Also, the RT for .65 was not significantly different from that for
.6670 (1.01 s vs. 1.07 s), #(47) = .40, p = .69. These findings lend
further support to the hypothesis that participants used the first
digit to make comparisons with decimals.

An additional multiple regression was performed with the inte-
ger RTs using values truncated to the hundreds place. The trun-
cated predictor alone accounted for 23% of the variance ( =
—.51; #[28] = 3.09, p = .004), and log Dist based on the entire
number did not significantly increase the variance accounted for,
F(1, 27) = 2.09, p = .16. Thus, the pattern of response times
suggested that participants used componential strategies when
comparing either decimals or multidigit integers.

Overall, the results of Experiment 3 indicate that even when
participants cannot use a direct integer strategy when making
comparisons with decimals, they are still considerably faster and
more accurate in comparing decimals than fractions. Performance
on decimal comparisons was again most similar to integer com-
parisons, whereas comparisons with fractions were distinctly more
difficult than comparisons with either decimals or integers.

General Discussion

The central goal of the present study was to assess the similar-
ities and differences among the processes and representations used
to compare magnitudes with different types of rational numbers,
especially fractions and decimals. Although conceptually similar,
fractions and decimals have very different formal structures: Frac-
tions have a bipartite structure (numerator and denominator),
whereas decimals are formed using a base-ten place-value system,
as are multidigit integers. Thus, fractions have a distinct compo-
nential structure; decimals and multidigit integers share a different
componential structure, based on place values.

Across three experiments, we found that magnitude compari-
sons with all three number types yielded a distance effect, such that
response times were a decreasing function of the logarithm of the
numerical distance between the target and reference values. How-
ever, comparisons of fractions stood out as by far the most difficult
of the three number types, and also the most sensitive to distance.
Fractions were much more difficult to compare than decimals,
even in Experiment 3, in which the decimal format included targets
with different numbers of digits (e.g., .3, .3940) and targets with 0
as the first and/or last digit (e.g., .050). The extra difficulty of
fractions appeared to be ubiquitous, even for “simple” fractions
(e.g., 1/2) when embedded within a set dominated by fractions in
more complex forms. In addition, across all three experiments,
higher correlations were obtained between performance on deci-
mals and integers than between performance with either of these
with fractions. Together, these findings suggest that adults process
decimals and integers highly similarly, whereas fractions are pro-
cessed in different ways.

Both the qualitative and quantitative pattern of RTs for fraction
comparisons observed in the present study RTs closely resembles
that reported by Schneider and Siegler (2010). Schneider and
Siegler found that RTs for fraction comparisons ranged from about
2 to 15 s (their Experiment 2), whereas RTs in the present study
ranged from range from about 2 to 8 s (for our Experiment 2,
which most closely matched Schneider and Siegler’s procedures).

The present study not only confirms the substantial absolute dif-
ficulty of comparisons with fractions but also provides a direct
comparison with the much lower RTs we observed for compari-
sons of decimals and integers.

The greater impact of numerical distance on time to compare
fractions suggests that the magnitude representations associated
with fractions are less precise than those for the other number
types, as would be expected if magnitudes for fractions are gen-
erated by strategies for approximation. Evidence for a less precise
magnitude representation for fractions has been found in other
studies. Kallai and Tzelgov (2009) found that measures of auto-
matic processing, such as the size congruity effect, are not ob-
served in comparisons of nonunit fractions. Kallai and Tzelgov
argue that magnitude values for fractions are not discretely stored
in long-term memory, but rather must be calculated online to
perform arithmetic tasks (also see Iuculano & Butterworth, 2011).
The present findings lend support to this interpretation.

As discussed earlier, fractions pose challenges throughout learning
because of their characteristic differences from whole numbers, both
conceptually and in format. Understanding how to translate the frac-
tion in a/b format to a quantifiable magnitude is very difficult for
children (Ni & Zhou, 2005; Stafylidou & Vosniadou, 2004). More-
over, the present study establishes that generating magnitudes of
fractions is also difficult for adults. Fractions remain more difficult
than decimals, even though the former number type is introduced
earlier in school. It is noteworthy that in many research articles
(including the present one) that deal with fraction magnitudes, the
authors often translate fractions into their decimal equivalents when
trying to convey the magnitudes to the reader (e.g., Schneider &
Siegler, 2010, display their results on graphs for which the x-axis is
labeled not with the actual fractions but with their decimal equiva-
lents).

The greater ease of comparing decimals than fractions, coupled
with the overall similarity of decimal and integer comparisons,
strongly suggests that the formal similarity of decimals and integers
underlies the relative ease of processing the latter number types. Even
when the deviations between the formal structures of decimals and
integers are taken into consideration (as in Experiment 3), the pro-
cessing difficulty of decimals is much more similar to that of matched
integers than matched fractions. Of course, the fact that the format of
decimals permits (and indeed encourages) use of a place-value strat-
egy (similar to that available for multidigit integers) may well be the
key to their computational advantage over fractions. The consistent
compositional structure of decimals and integers affords all the ad-
vantages of metric measures over traditional imperial measures.

At the same time, detailed analyses of response times for decimals
and multidigit integers suggest that participants often used compo-
nential strategies to make comparisons for these number types, focus-
ing primarily on the first digit (the tenths value for decimals, the
century value for three-digit integers). Only Experiment 1, in which
specific numerical targets were repeated multiple times, yielded clear
evidence that decimal comparisons were based on more than the first
digit. The tendency to focus on the first digit appeared to be partic-
ularly strong in Experiment 3, in which the forms of the decimal
targets were highly variable (different lengths in digits). Previous
studies with both multidigit integers (Dehaene et al., 1990; Ganor-
Stern et al., 2007; Nuerk et al., 2001; Vergut & De Moor, 2005) and
decimals (Cohen, 2010) have also yielded evidence for componential
rather than holistic processing of magnitudes. But despite the evi-
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dence suggesting componential processing, a reliable distance effect
was obtained for all number types in all our experiments. Contrary to
what appears to be a common assumption, the ubiquitous distance
effect is not a sufficient indicator that people are basing their numer-
ical comparisons on holistic magnitude representations retrieved from
long-term memory. For componential numbers (including all three
number types investigated in the present study), strategies based on
estimation and componential processing may also yield a distance
effect. Nonetheless, the form of the distance effect (e.g., the steeper
slope observed for fractions than for decimals or integers) may pro-
vide valuable evidence concerning the precision of the magnitude
values used as the basis for comparisons.

It is likely that understanding fractions conveys important concep-
tual benefits. Siegler et al. (2011) argue that learning about fractions
is a crucial part of developing and expanding the student’s concept of
number. Further, Siegler et al. (2012) found that children’s under-
standing of fractions predicts later achievement in algebra and in
overall mathematics by high school. Nonetheless, the format of frac-
tions clearly makes it more difficult to compare magnitudes of frac-
tions than magnitudes of decimals, even though the two types of
rational numbers are conceptually quite similar. The relationship
between numerical formats and performance in different types of
mathematical tasks remains an important area for future research.
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